
Ligand binding to an homo-oligomeric protein, cooperativity, macro and micro 
dissociation constants 

 

The binding of ligand molecules to an homo-oligomeric protein is not complicated, but care is 
required because important differences exist in interpretation of dissociation constants between the 
equations written in terms of concentrations of oligomer (macro dissociation constants) and the equations 
written in terms of concentrations of the monomers (micro dissociation constants). The most 
straightforward formulation for describing the binding of ligand molecules to a homo-oligomeric protein 
lead to experimental values for the dissociation constants that suggest the existence of cooperativity in 
ligand binding when, in fact, there is none. Here the binding to a homo-dimeric protein will be considered, 
first in terms of concentrations of dimers, then in terms of monomers. This will reveal how the equilibrium 
dissociation constants in each forumulation must be interpreted. For our discussion, let P represent the 
concentration of a dimeric protein and L the concentration of ligand. Let K1 be the equilibrium dissociation 
constant for the binding of the first molecule of ligand to P and K2 be the constant for the second 
molecule. The relevant equilibria are: 
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Since total protein equals unliganded plus singly liganded plus doubly liganded, 
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Solving these three equations for P, PL, and PL2 gives 
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These three quantities can be used to obtain the equations for various quantities of interest. For example, 
the amount of subunits with bound ligand will be 2 x PL2 + PL, which is  
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We might at first think that the situation with no cooperativity would have K1 = K2, but this is not the 
case due to the fact that there are two sites to which L can bind to P and two subunits of PL2 from which L 
can dissociate to form PL. To understand more clearly what is going on, let us view the situation from the 
viewpoint of concentrations of monomers. Biochemists call the equilibrium constants that are used in the 
former description macro dissociation constants, and the equilibrium constants that will be used in the 
equations written in terms of monomer concentrations as micro dissociation constants. Although in many 
situations upper case K’s are used to refer to equilibrium constants and lower case k’s are used refer to 
rate constants, in this discussion, let lower case k’s refer to micro dissociation constants. 

Although we are to express the micro dissociation constants in terms of monomer concentrations, 
we need to distinguish the cases of a ligand binding to a monomer in an unliganded dimer, which is 
described by the k1 micro dissociation constant and ligand binding to a singly liganded dimer. This latter is 
described by the k2 micro dissociation constant. The concentration of monomers in unliganded dimers is 
simply 2 x P. Thus  
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 k1 = 2 x K1 or K1 = k1 / 2. Similarly, because there are two monomers with a bound ligand in PL2,  
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and k2 = K2 /2,  or K2 = 2 x k2.  
 

Suppose there were no cooperativity or anticooperativity in the binding of ligand. In this case, k1 = k2 
and we obtain the very important result that in the absence of cooperativity, K1 = ¼K2. Cooperativity in 
binding exists when K1 > ¼K2  and anticooperativity is present when K1 < ¼K2. 

The binding equations can be written in terms of micro dissociation constants merely by replacing 
the macro dissociation constants with their equivalents in terms of micro dissociation constants. For 
example, the previous equation for the amount of subunits with bound ligand yields 
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To check the derivations, consider the case of no cooperativity. In this situation it doesn’t matter 
whether or not the protein is dimerized. Thus we can consider the solution to consist of monomers. In this 
case, we know that the binding is described by a simple Michaelis-Menton binding curve,  
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Now, let us check whether the substitution of k1 = k2 in the equation for bound subunits yields the same. 
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Thus proving the point.  
The free energy of the binding reaction must be independent of whether we express the dissociation 

constants in macro or micro form. Let us check that this is the case. The G of the binding reaction is the 
sum of the s'G of the first and second binding reactions. 21 GGG   . In terms of macro 

dissociation constants,  
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In terms of micro dissociation constants 
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but since k1 = 2 x K1  and k2 = ½ x K2 the second G equation becomes 

21 2
1ln2ln KRTKRTG   

)ln2lnln2(ln 21 KKRT   

21 lnln KRTKRT   


