Headlines at Hopkins: news releases from across
the 
university Headlines
@Hopkins
News by Topic: news releases organized by
subject News by Topic
News by School: news releases organized by the 
university's 9 schools & divisions News by School
Events Open to the Public (campus-wide) Events Open
to the Public
Blue Jay Sports: Hopkins Athletic Center Blue Jay Sports
Search News Site Search the Site

Contacting the News Staff: directory of
university 
press officers Contacting
News Staff
Receive News Via Email (listservs) Receive News
Via Email
Resources for Journalists Resources for Journalists

Virtually Live@Hopkins: audio and video news Virtually
Live@Hopkins
Hopkins in the News: news clips about Hopkins Hopkins in
the News

Faculty Experts: searchable resource organized by 
topic Faculty Experts
Faculty and Administrator Photos Faculty and
Administrator
Photos
Faculty with Homepages Faculty with Homepages

JHUNIVERSE Homepage JHUniverse Homepage
Headlines at Hopkins
News Release

Office of News and Information
Johns Hopkins University
901 South Bond Street, Suite 540
Baltimore, Maryland 21231
Phone: 443-287-9960 | Fax: 443-287-9920

EMBARGOED FOR RELEASE UNTIL
AUGUST 24 AT 8 A.M. EDT
CONTACT: Lisa De Nike
(443) 287-9906
lde@jhu.edu


New Compounds Show Promise in
Fighting Malaria and Cancer

Design of dual action drugs based on ancient folk remedy

Using an ancient Chinese folk remedy as a model, researchers at The Johns Hopkins University in Baltimore have designed several new compounds that, in early testing, promise to be both safer and more effective in fighting malaria and some forms of cancer than the current "gold standard" drug treatments.

Scientists will announce their successful results in late August at the American Chemical Society's annual summer meeting, held this year in Philadelphia. Some of the results also appeared in the January 2004 issue of the Journal of Medicinal Chemistry.

"Preliminary data show that our laboratory-synthesized compounds have a therapeutic index — the measure of a drug's safety and efficacy — that is better, in some cases, many times better, in rodents than the drugs currently considered the gold standard for chemotherapy of both malaria and prostate cancer," said Gary Posner (pictured at right), Scowe Professor of Chemistry in the Krieger School of Arts and Sciences at Johns Hopkins. "These results are preliminary, but exciting, and certainly worth pursuing."

Malaria afflicts between 300 million and 500 million people a year, killing between 1.5 million and 3 million of them — mostly children. Spread by female mosquitos feeding on human blood, the most commonly fatal strain of the malaria parasite began showing formidable resistance to current treatments decades ago, making the development of new and more effective drugs a worldwide priority.

With support from the National Institutes of Health since 1994, Posner's research team, which also includes Theresa Shapiro, professor of clinical pharmacology at The Johns Hopkins School of Medicine, tackled that challenge by designing a series of compounds called trioxanes. These compounds are aimed at mimicking the mechanism of action of artemisinin, the active agent in the Artemisia annua plant, which has been used in China as an herbal remedy for malaria and other fevers for thousands of years.

Posner's research and that of other laboratories revealed that the peroxide (oxygen-oxygen) unit within artemisinin and within other antimalarial trioxane drugs causes the malaria parasites to self-destruct.

"We know that the malaria parasites digest hemoglobin in order to get nutrients, and in the process they release heme," Posner explained. "When the heme encounters the peroxide bond, a chemical reaction occurs. Powerful chemical species such as carbon-free radicals and oxidizing agents are produced, harming and eventually killing the parasites."

In the laboratory, several of the Posner trioxane compounds were compared against sodium artesunate — the gold standard for malaria treatment — in rodents. Administered intravenously, two of the new compounds outperformed the gold standard.

"One was six or seven times better, and the other was three or four times more effective, which is substantial," Posner said. "What's more, when the trioxanes were administered orally, it was found that one of ours is four times more effective. That's significant."

Lab testing also revealed that at least one of the trioxane compounds — known as compound 7 — seems to be even safer than sodium artesunate.

Testing of the Johns Hopkins trioxanes in rodent models for human prostate cancer in collaboration with the Roswell Park Cancer Institute in Buffalo, N.Y., was equally encouraging to the researchers, who are promoting the compounds as dual-use drug candidates.

In that laboratory, researchers pitted the potency of the trioxane compounds against two gold standard anticancer drugs, Gemzar and Adriamycin. They found that while trioxane compound 6 was comparable to the cancer-fighting action of Adriamycin, compound 5 appears to be nearly three times more powerful than that drug.

"Our learning from this is that trioxane dimers 5 and 6, and especially 6, are exciting not just for their antimalarial potential, but also for their anticancer potential," Posner said.


Johns Hopkins University news releases can be found on the World Wide Web at http://www.jhu.edu/news_info/news/
   Information on automatic e-mail delivery of science and medical news releases is available at the same address.


Go to Headlines@HopkinsHome Page