Headlines at Hopkins: news releases from across
the 
university Headlines
@Hopkins
News by Topic: news releases organized by
subject News by Topic
News by School: news releases organized by the 
university's 9 schools & divisions News by School
Events Open to the Public (campus-wide) Events Open
to the Public
Blue Jay Sports: Hopkins Athletic Center Blue Jay Sports
Search News Site Search the Site

Contacting the News Staff: directory of
university 
press officers Contacting
News Staff
Receive News Via Email (listservs) Receive News
Via Email
Resources for Journalists Resources for Journalists

Virtually Live@Hopkins: audio and video news Virtually
Live@Hopkins
Hopkins in the News: news clips about Hopkins Hopkins in
the News

Faculty Experts: searchable resource organized by 
topic Faculty Experts
Faculty and Administrator Photos Faculty and
Administrator
Photos
Faculty with Homepages Faculty with Homepages

JHUNIVERSE Homepage JHUniverse Homepage
Headlines at Hopkins
News Release

Office of News and Information
Johns Hopkins University
901 South Bond Street, Suite 540
Baltimore, Maryland 21231
Phone: 443-287-9960 | Fax: 443-287-9920

EMBARGOED FOR RELEASE ON
WEDNESDAY, AUG. 25, AT 6 P.M. EDT
CONTACT: Phil Sneiderman
443-287-9907
prs@jhu.edu


Riverbank Filtration Pulls Pollutants from
Drinking Water

Soil Beside the Stream Can Remove Harmful Microbes and
Organic Material, Researchers Find

Harmful contaminants often taint drinking water drawn directly from a river, but a low-cost natural filter may lie just beyond the banks. Johns Hopkins researchers have found that the soil alongside a river can remove dangerous microbes and organic material as water flows through it. The cleaner water is then pumped to the surface through wells drilled a short distance from the river.

This technique, called riverbank filtration, has been used in Europe for more than 50 years to improve the taste and smell of drinking water and to remove some hazardous pollutants such as industrial solvents. But after studying these natural filtration processes for six years at three rivers in the Midwestern United States, Johns Hopkins researchers have determined that passing river water through nearby sediment can produce other health benefits and may cut water treatment costs.

In riverbank filtration, water from a river passes through nearby soil before it is drawn up through wells. This process removes some contaminants.

Josh Weiss (pictured at right), a doctoral student in the university's Department of Geography and Environmental Engineering, presented the most recent research results on Aug. 25 in Philadelphia at the 228th national meeting of the American Chemical Society. He reported that riverbank filtration appears to significantly decrease the presence of bacteria and viruses. Water analyses also showed encouraging, though not definitive, signs that this technique can curtail Giardia and Cryptosporidium, two waterborne microorganisms that cause serious digestive ailments.

The latest results confirm the value of riverbank filtration, Weiss said. "It sounds counter-intuitive to drill wells nearby when water can be taken directly from a river," he said. "But our research indicates that riverbank filtration can naturally remove pathogens and organic material that can cause health problems, including some microbes that are able to survive conventional disinfection systems. If you think about how much it costs to build a full-scale treatment plant to make river water safe to drink, you can see how this could be very beneficial."

The research has been supported by Environmental Protection Agency grants awarded to a team led by Weiss' doctoral advisor, Edward J. Bouwer (pictured at left), a professor in the Department of Geography and Environmental Engineering. The team has been studying water drawn from commercial wells located beside the Wabash, Ohio and Missouri rivers near Terre Haute, Ind.; Louisville, Ky.; and Kansas City, Mo.

In several recent papers published in peer-reviewed journals, Weiss, Bouwer and their colleagues have reported that riverbank filtration helps remove organic material left behind by decaying plants. In its natural state, this material poses no health hazards, but exposure to common water treatment chemicals such as chlorine can transform the material into cancer-causing compounds called disinfection byproducts.

"For this reason, it's a good idea to remove as much of this organic matter as we can from the water before it's treated with chemicals," Bouwer said. "Our research indicates that with riverbank filtration, we wind up with fewer of these dangerous disinfection byproducts in the drinking water."

In an environmental engineering and chemistry lab, Edward Bouwer and Josh Weiss inspect a column filled with Potomac River sediment as part of their study of soil as a natural water filtration system.
Photo by Will Kirk

Bouwer added, "Riverbank filtration doesn't completely eliminate the need for water treatment. But it should lower the treatment costs and reduce the risks of mixing chlorine with the organic material that can become carcinogenic."

The researchers studied wells that had been constructed at varying distances — from 90 to 580 feet — from the three rivers. Over a period of days or weeks, river water moves outward toward these wells. As it travels through the sediment, the water is exposed to physical, chemical and biological processes that help remove impurities, the researchers say. Large particles may be pulled out by a straining process. Some of the chemical contaminants and microbes react with components in the sediment and remain behind, too. As a result, the water that reaches the wells is significantly cleaner than it was when it left the river.

In a campus lab, the Johns Hopkins researchers are trying to learn more about this natural filtration process by sending samples of river water through glass columns filled with sediment. They believe that soil characteristics and environmental factors such as the amount of river flow may also affect the natural filtration process. Weiss, who is preparing his doctoral thesis on riverbank filtration, says the technique may not be appropriate in some areas, such as regions of the Western United States where rivers typically dry up in the summer. But in communities that depend on rivers for a year-round supply of drinking water, Weiss expects riverbank filtration to become more common in the coming years. "We definitely think riverbank filtration is worthwhile," he said. "We're letting nature maintain the system, minimizing the need for external maintenance and the associated costs."

Weiss, who is from Aiken, S.C., earned a bachelor's degree in civil engineering at Georgia Tech before enrolling in the graduate program at Johns Hopkins.

Collaborating with Weiss and Bouwer on the American Chemical Society presentation were Charles R. O' Melia of the Johns Hopkins Department of Geography and Environmental Engineering; Ramon Aboytes of Belleville Laboratory, American Water; and Binh T. Le and Kellogg J. Schwab, both of the Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health.

Diagram, photos of the researchers and scientific papers available; contact Phil Sneiderman.

Related Links
Edward Bouwer's Web Page
Department of Geography and Environmental Engineering


Johns Hopkins University news releases can be found on the World Wide Web at http://www.jhu.edu/news_info/news/
   Information on automatic e-mail delivery of science and medical news releases is available at the same address.


Go to Headlines@HopkinsHome Page