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Abstract—In this paper, we provide a quantitative electroen-
cephalogram (EEG) analysis to study the effect of hypothermia on
the neurological recovery of brain after cardiac arrest. We hypoth-
esize that the brain injury results in a reduction in information
of the brain rhythm. To measure the information content of the
EEG a new measure called information quantity (1Q), which is the
Shannon entropy of decorrelated EEG signals, is developed. For
decorrelating EEG signals, we use the discrete wavelet transform
(DWT) which is known to have good decorrelating properties
and to show a good match to the standard clinical bands in
EEG. In measuring the amount of information, IQ shows better
tracking capability for dynamic amplitude change and frequency
component change than conventional entropy-based measures.
Experiments are carried out in rodents (n = 30) to monitor the
neurological recovery after cardiac arrest. In addition, EEG signal
recovery under normothermic (37 °C) and hypothermic (33 °C)
resuscitation following 5, 7, and 9 min of cardiac arrest is recorded
and analyzed. Experimental results show that the IQ is greater
for hypothermic than normothermic rats, with an 1Q difference
of more than 0.20 (0.20 & 0.11 is 95% condidence interval). The
results quantitatively support the hypothesis that hypothermia
accelerates the electrical recovery from brain injury after cardiac
arrest.

Index Terms—Brain injury, cardiac arrest, EEG, entropy,
hypothermia, wavelet.

I. INTRODUCTION

LECTROENCEPHALOGRAM (EEG) is a record of
Eelectric activity from the scalp, obtained with the aid of
an array of electrodes. The development of quantitative EEG
analysis was motivated by the need for objective measures as
well as some degree of automation [1]. Quantitative EEG anal-
ysis shows promising results as a tool for diagnostic monitoring
of brain injury such as after resuscitation from cardiac arrest

[2]-[5].
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The effects of changes in brain temperature on electroen-
cephalogram (EEG) have been already exploited since 1930s
[6]. Recently the relation between hypothermia and EEG has
been reported by [7], [8]. These results may support the hy-
pothesis that therapeutic hypothermia, which is to lower the
body’s temperature after cardiac arrest, dramatically increases
the chances of recovery and improves the neurological outcome
[91-[11].

However, most of results have been based on subjective and
qualitative observations and not a quantitative EEG-based anal-
ysis of the effect of therapeutic hypothermia after cardiac arrest.
Here, we provide a quantitative, entropy or information based,
analysis of EEG for studying the effect of the therapeutic hy-
pothermia on neurological recovery after cardiac arrest. We hy-
pothesize that brain injury results in a reduction in information
content of the brain rhythm. Further we test the hypothesis that
the neurological recovery in the brain is reflected in the infor-
mation content in EEG signals. From the perspective of the in-
formation theory, the information contained in a signal can be
physically quantified by calculating the entropy [12]. The en-
tropy-based EEG analysis methods have recently been devel-
oped and showed promising results [2]-[4]. For example, Tong
et al. used the time dependent entropy (TDE) measure to study
EEG during the recovery of the brain’s function from asphyxic
cardiac arrest injury. They also compared Tsallis and Renyi en-
tropy methods for hypoxic ischemic injury.

The EEG as a physical signal can be divided into its pre-
dictable component and the uncertain component, and the
amount of information contained in the signal is more re-
lated to the uncertain parts. Thus, for an accurate information
measurement, the predictable component, which is called
the information redundancy, need to be removed as much as
possible. Conventionally the information in EEG signals was
measured without removing the information redundancy. To
remove redundancy in EEG signals we use the discrete wavelet
transform (DWT) for two reasons. One is that theoretical and
experimental results show that correlations between values
after DWT are extremely small. This means that DWT does a
very good job in removing redundancy [14], [15]. The other
reason is that the multiresolution decomposition of DWT re-
sults in a good match to the standard clinical bands of interest:
Gamma, Beta, Alpha, Theta, and Delta (in accordance of the
sampling rate of 250 Hz) [5]. Next we use the Shannon entropy
(SE) to measure the uncertainty. In short, we measure the SE
of decorrelated EEG signals. To distinguish the new wavelet
based measure from the conventional SE, we will call it the
information quantity (IQ).
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II. INFORMATION QUANTITY (IQ)

A. Removing Redundancy Using DWT

We denoted a sampled EEG signal as s(7). To remove redun-
dancy in EEG signals we apply DWT to s(i). Wavelet-based
analysis of signals is based on a decomposition of a signal using
an orthogonal family of basis function. While a sine wave based
Fourier analysis is useful in analyzing periodic and time in-
variant phenomena, wavelet analysis is well suited for the anal-
ysis of transient, time-varying signals [14], [15].

A wavelet expansion is similar in form to the well-known
Fourier series expansion, but is defined by a two-parameter
family of functions

=3 aj k(i) ()
ko J

where j and k are integers and the function 1; x(¢) are the
wavelet expansion functions. The computation of the transform
is formulated as a filtering operation with two related finite im-
pulse response (FIR) filters. The DWT coefficients, c}s and d;s
at different scales, are calculated using the following convolu-
tion-like expressions [14]:

gt = Z h(l — 2i)c;
Zg (I = 2i)c )

dT+1

where r denotes the resolution or scale and ¢ is the index for the
samples. The operation defined in (2) is a linear digital filtering
operation using filters / and g, followed by down-sampling. The
coefficients ¢} ’s and d}’s are known, respectively, as DWT co-
efficients at the level 7 scaling. The coefficients c? represent the
source signal, s(7). Filters h and g are FIR quadrature-mirror fil-
ters known as the scaling and wavelet filters, respectively. The
scaling filter is a lowpass filter, while the wavelet filter is high-
pass. For an even length scaling filter the two filters are related
by the following formula:

g(l) = (=1)'W(L =1 =1) (3)

where [ = 0,1---L — 1. Then the DWT coefficients consist
of ¢/t and d; ™! for r > 0. Assuming we use 2-level DWT
decomposition, the DWT coefficients are

C% sy :d% s d :d% cedly
4 4 2
We will denote above expression as WC(r), i.e.,

WC(r) =DWT [s(i)] “4)
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B. Measuring Information Quantity

The SE utilizes the probability distribution to calculate the
information. The classical SE is expressed in

M

SE = — Z p(m)log, p(m) 5)

m=1

where p(m) is the probability of finding the system in the m*"
microstate with 0 < p(m) < 1 and Zﬁf:l p(m) = 1.

To analyze nonstationary EEG signals, we need to get a tem-
poral evolution of SE. To do this an alternative time dependent
SE measure based on sliding temporal window technique is ap-
plied [3], [4]. Let {s(i) : ¢ = 1--- N} denote the raw sampled
signal. Now we define a sliding temporal window w < N, and
the sliding step A < w. Then sliding windows are defined by

W(n;w; A) = {s(i),i=14+nA---w+nA}
wheren = 0,1 - [n/A]—w+1 and [z] denotes the integer part
of z. To calculate the probability, p,,(m) within each window
W (n;w; A), we introduce intervals such that

W (n;w; A) = Up/_y T (6).

Then, the probability p,, () that the sampled signal belongs to
the interval I,,, is the ratio between the number of the samples
found within interval [,,, and the total number of samples in
W (n;w; A). Using p,(m), SE(n) is defined as

IOgQ pn( )) (7)

||M§

Based on the above arguments, we can define the 1Q. First the
DWT coefficients within each window are obtained as

Wi w: A) = DWT Wi w: )] (®)

Then, to calculate p(m) within each transformed window
WC(r;n;w; A), intervals in (6) are modified

WC(r;n;w; A) = UM_\ T,,,. )
Similar to p,,(m) in SE, the probability, p*(m) within each

window WC(r;n; w; A) is calculated using (9) instead of (6).
Finally IQ is defined as

Zp

Thus, we can explore the IQ evolution of the whole data {s(7) :
i=1---N} with (10).

e (m)) - (10)

m)log, (p
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C. Comparing IQ With Conventional Wavelet Entropy (WE)

It is worth relating the IQ in (10) with the conventional WE
in [5]. In the WE, the probability is calculated as the relative
wavelet energy, i.e.,

(1)

where E,,(m) is the energy of the DWT coefficients in m sub-
band and E,, = er\r/le E,(m). Then the WE is defined as

12)

Zp

Thus, WE measures how spread the DWT coefficients are in
different subbands. The WE provides a good way to analyze
short duration EEG signals. But it may show ambiguous re-
sults for signals with large dynamic amplitude range in time do-
main. This is because the WE is based on the normalized relative
wavelet energy, not absolute energy. More substantive compar-
ison will be shown in Section III for simulated signals.

().

m) log, (p

III. SIMULATION RESULTS

To illustrate the necessity of redundancy removal in calcu-
lating the entropy, computer simulations are carried out. Two
signals, s1(n) and sa(n), are generated as

27 fon

s1(n) = sin (13)
where
n=0---255, fo = 2 Hz,T = 256
and
s2(n) = P (s1(n)) (14)

where P(-) is the random permutation operator. Since so(n) is
generated by randomly permutating s (n), the two signals have
the same distribution. Note that neighboring samples in s1(n)
are highly correlated but so(n) is nearly uncorrelated. We can
initially expect without any calculation that more information
is needed to represent so(n) than s1(n) and, thus, so(n) has
more entropy since so(n) quite obviously is more complex and
disordered.

For the two signals we calculate IQ for various wavelet de-
composition levels, 7 in Table I. Note the case of » = 0 which
means that no DWT is applied. In this case, from the perspec-
tive of the SE the two signals are considered as the same since
those have the same distribution. This leads to the unexpected
result that the two signals have the same entropy. From the table
we see that the SE is the same for both at 1.03. This result con-
flicts with our initial guess that sy(n) will have higher entropy
than s1 (n). But as r increases, IQ for s1(n) decreases. This im-
plies that DWT successfully removes redundancy in s1(n). On
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TABLE I
1Q OF THE TWO SIGNALS WITH THE SAME DISTRIBUTION BUT DIFFERENT
CORRELATION DEGREE

0.19
1.13

0.15
1.13

1.03
1.03

0.83
1.13

0.56
1.13

0.29
1.13
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Fig. 1. Time evolution of SE, WE and IQ for signal with time-varying fre-

quency components and Gaussian distribution. (a) Time domain representation.
(b) Comparison of SE, WE, and IQ.

the other hand, IQ for s2(n) is kept almost same for various 7.
This is because s2(n) is already uncorrelated. After 5 level de-
composition, IQ for s1(n) is 0.15 and 1.13 for so(n). This result
concurs with our initial guess.

To see the time evolution of IQ, other simulated signal with
multiple sinusoidal components and Gaussian distribution is
used in Fig. 1. The number of sinusoids is time-dependent, sys-
tematically increasing for the first 12 s. After that, the signal has
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TABLE II
RAT GROUPS USED IN EXPERIMENTS
Group No. of Rat asphyxia temperature
hypo normo
Gs.g 5 5min v
Gs.N 5 5min Vv
Gru 5 7min Vv
G7.N 5 7min 4
Go.u 5 9min v
Go,N 5 9min v

Gaussian distribution with increasing value of standard devia-
tion. Fig. 1(a) shows the simulated signal in time domain. It starts
with single sinusoid and after 4, 6, 8, and 10 s., one more sinusoid
isaddeduntil 12 s. Then from 10to 12 s., it consists of 5 sinusoids
whose frequenciesare 1,5, 10,20,and 40 Hz. Here, we can antici-
pate thatthe amount of information or entropy increases with time
until 12 s, after that it will show a large decease due to the small
magnitude around zero until 13 s, and it will increase continually.
Fig. 1(b) shows the plots for SE, WE and IQ. From O to 12 s., the
SE without removing redundancy is almost constant regardless
of the number of sinusoidal components but IQ and WE increase
in accordance with the increase of sinusoidal components. From
12 to 13 s., SE and 1Q show a large decrease as expected but WE
keeps constant without any responsivity to the signal change.
From 13 5.1Q and WE continually increase but WE is still kept the
same as before. The SE can be a good measure for observing dy-
namic amplitude change but may not be for frequency component
change. Interestingly the WE has the opposite property to that of
SE, it is good for frequency change and not good for amplitude.
The proposed 1Q is shown to be a good measure for both.

IV. EXPERIMENTAL METHODS

We obtained experimental EEG recording from rats during
experiments designated to study the information evolution in
brain rhythms following asphyxic cardiac arrest condition. This
brain injury model has been approved by the animal Care and
Use Committee of the Johns Hopkins Medical Institutions. As-
phyxic cardiac arrest and resuscitation protocol was performed
as modified from Katz and colleagues [16]. The experimental
protocol is as follows.

30 Wistar rats (300 £ 25 g) were randomly assigned to dif-
ferent experimental conditions. Anesthesia was induced with 4%
halothane and 50:50% nitrous oxide: oxygen. Baseline recording
of 10 min was followed by 5-min washout, which was conducted
to ensure that halothane did not have a significant effect on EEG.
After 5-min washout, asphyxia was induced by stopping and
disconnecting the ventilator and clamping the tracheal tube. CA
was decided by observing pulselessness with mean arterial blood
pressure (MABP) <10 mm Hg. Graded asphyxia of 5 (10 rats),
7 (10 rats), and 9 min (10 rats) followed. Also the resuscitation
was done by chest compression until return of spontaneous
circulation (i.e., achieving spontaneous MABP >60 mm Hg).
After waiting for 45-min recovery, two different resuscitation
conditions are applied: normothermia (37 °C) and hypothermia
(33 °C). Clinical hypothermia was undertaken with sedation
and paralysis, in our model, halothane maintained anesthesia
was continued, and the rats were cooled using misted cold water
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Fig.2. Real EEG data for a rat which is recovered after asphyxic cardiac arrest.
(a) EEG recording under normothermia (I) is 10 min (baseline), (II) is 7-min
brain injury after cardiac arrest and (III) is recovery under normothermia (37
°C). (b) EEG recording under hypothermia (I) is 10 min (baseline), (II) is 7-min
brain injury after asphyxic cardiac arrest, (III) is 45-min early recovery under
normothermia and (IV) is recovery under hypothermia (33 °C).

and fan to reach a graded target temperature. In rats assigned
to hyperthermia, the temperature change was undertaken at the
same interval as the hypothermia group. Core temperature was
monitored using the vital view Mini-mitter temperature sensor.
This telemetric system allows for an untethered monitoring of
core—intraperitoneal temperature. Similar system was used
in the studies done at the Safar laboratories, who are pioneers
in this area [17]. The extracranial temperature monitor is also
closely patterned to the actual clinical situation that monitors
the temperature in the urinary bladder or in the heart [10].

Table II summarizes the rat models used in the experiments.
Two channels of EEG using subdermal needle electrodes
(Grass Instruments, Quincy, MA) in right and left parietal
areas, one channel of ECG and one channel of arterial pressure
were recorded continuously before the insult, during the insult
and about 3-hour recovery. The signals were digitized using
the data acquisition package CODAS (DATAQ Instruments
Inc., Akron OH). Sampling frequency of 250 Hz and 12 bit
analog-to-digital conversion were used. Fig. 2(a) and (b) illus-
trates EEG recordings under normothermia and hypothermia,
respectively.
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Fig. 3. SE and IQ for experimental EEG data for rats under normothermia and hypothermia after 5-, 7-, and 9-min asphyxia cardiac arrest (Each curve is the
averaged result over 5 rats). (a) Comparison of SE under hypothermia to SE under normothermia for 5-min brain injury. (b) Comparison of IQ under hypothermia
to IQ under normothermia for 5-min brain injury. (c) Comparison of SE under hypothermia to SE under normothermia for 7-min brain injury. (d) Comparison
of IQ under hypothermia to IQ under normothermia for 7-min brain injury. (¢) Comparison of SE under hypothermia to SE under normothermia for 9-min brain
injury. (f) Comparison of IQ under hypothermia to IQ under normothermia for 9-min brain injury.
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TABLE III
STATISTICAL RESULTS OF SE

Group Shannon Entropy (SE, Mean + SD)
45 min 70 min 120 min 180 min Average t-value (p)

Gsgp  0.70+0.02 0.734+0.04 0.75+0.02 0.67+0.09 0.74+0.11 -0.32
Gsy 0.70+£0.15 067+£019 0.74+£0.09 0.71+0.14 0.76£0.09 (0.3078)
Grp  0.38%+0.18 0.69+0.09 0.69+0.08 0.70+0.09 0.80=+0.09 1.61
Gzn  036+023 0424025 048+0.12 0.65+0.18 0.65+0.10 (0.086)
Goy 037%+0.17 0.61+£0.08 0.64+£0.09 0.62+0.10 0.73+0.14 1.61
Gon 0.134+0.08 0.20+0.03 0.44+0.02 0.60+0.04 0.60=+0.12 (0.073)

Note: In t-value, we compared the averaged SE of hypothermia group with that of normothermia.

TABLE IV
STATISTICAL RESULTS OF IQ

Group Information Quantity (IQ, Mean + SD)

45 min 70 min 120 min 180 min Average  t-value (p)
Gs,g 058+0.01 0.97+0.11 1.22£0.07 0904025 1.0940.23 3.40
Gsny 0.56+0.04 0.56+0.07 0.62+0.03 0.66+0.08 0.7140.09 (0.005)
Gy 028+0.06 0.45+0.08 0.82+£0.06 0.83+0.01 0.99+0.12 5.00
Gy;ny 025+0.10 0.32+0.13 0.38+0.08 0.56+0.22 0.55+0.10 (0.0005)
Ggg 026+£0.16 040£0.08 065+0.11 0.76+0.13 0.75+0.15 2.83
Gon 0.124+0.09 0.194+0.08 0.30+0.11 0.424+0.13 0.50=+0.13 (0.01)

Note: In t-value, we compared the averaged 1Q of hypothermia group with that of normothermia.

V. RESULTS

The EEG recording under normothermia is divided into three
different phases: (I) 10-min baseline, (II) 5-, 7-, and 9-min as-
phyxic cardiac arrest, and (III) early recovery under normoth-
ermia. The EEG recording under hypothermia is divided into
four phases: (I) 10-min baseline, (IT) 5-, 7-, and 9-min asphyxic
cardiac arrest, (IIT) early recovery under normothermia, and (IV)
early recovery under hypothermia. We observed that after car-
diac arrest EEG signal amplitude is highly suppressed and then
gradually activated with time. However, the difference between
the two EEG signals in Fig. 2 was not readily discerned from
visualizing the waveform itself; i.e., the effect of hypothermia
on the EEG signal recovery was not evident without quantitative
analysis.

To exploit the effect of hypothermia on neurological recovery,
we needed to quantify the signal differences and, thus, we cal-
culated SE and IQ for all EEG data. The parameters used in the
calculation were: sliding window length w = 500, sliding step
A = 100, M = 10 and wavelet decomposition scale » = 6.
Fig. 3 illustrates SE and IQ for all EEG data. Each curve is a re-
sult from one group of rats, i.e., each is averaged over three SE
curves or IQ obtained from 5 rats under the same experimental
condition. For example, the solid line in Fig. 3(a) is the averaged
SE result for the group G5 g consisting of 5 rats for which the
experimental conditions were 5-min asphyxia and hypothermia
as described in Table II.

Fig. 3(a) compares SE under hypothermia to SE under
normothermia for 5-min injury and Fig. 3(b) compares IQ.
During early recovery phase, before temperature change at
60 min, we observed the increase in both SE and IQ. After
temperature change the difference in IQ between two plots, for
hypothermia and normothermia, becomes more apparent, as
shown in Fig. 3(b). The difference in SE is not so noticeable for

5-min injury. Fig. 3(c) and (d) illustrate the results for 7-min
injury. In these cases, the clear distinction in EEG recovery
with and without hypothermia were observed from both the SE
and the IQ curves. For 9-min injury model, of which the results
are shown in Fig. 3(e) and (f), similar trends were observed.
In summary, both the SE and the IQ of EEG data under hy-
pothermia are generally higher than those under normothermia
for various injury levels. These results reinforce the idea that
hypothermia accelerates the neurological EEG signal recovery
after cardiac arrest.

Tables IIT and IV summarize statistical results of the SE and
the IQ at 45, 70, 120, and 180 min, respectively. Also averaged
SE and IQ from 120 to 180 min for each group are calculated.
Comparing the results at 45 to 70 min, we observed a noticeable
increase for the groups under hypothermia as visually seen in
Fig. 3. The averaged SE and IQ under hypothermia are higher
than those in normothermia. Also groups under longer injury
period result in lower SE and IQ. This result coincides with the
fact that the longer injury period is, the worse the neurological
recovery is. To compare the hypothermia results to the normoth-
ermia, we calculate the difference of the average values using
t-test.

To validate the quantitative EEG measure such as SE and 1Q,
an independent observer using a comprehensive behavioral ex-
amination serially evaluated a single neurological deficit score
(NDS) after injury. The overall template of the NDS is pat-
terned after the standard neurologic examination in humans.
The NDS was determined at 6 h after injury. The NDS ranges
from 80 (best) to 0 (brain dead) and its score is based on general
behavioral, brain-stem function, motor assessment, sensory as-
sessment, motor behavior and seizures. The NDS and its detail
components can be found in [18]. Fig. 4 gives a better illus-
tration of the correlation between quantitative measures and
NDS.
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Fig. 4. The quantitative EEG measures (SE or IQ) versus NDS (a) averaged SE versus NDS. (b) Averaged IQ versus NDS.

VI. DISCUSSION AND CONCLUSION

Recently entropy based methods have been developed to ana-
lyze EEG data and showed good results [2]-[13]. One approach
measured the entropy using a probability distribution of signal
amplitude in time domain. Thus, it successfully detected local
irregularity in time domain. Another approach, such as the WE
in (12), calculated EEG power in different bands and measured
how wide the power distributes in frequency bands. Therefore,
the WE is a good measure of spectral order/disorder but less sen-
sitive to amplitude change in time domain. The new measure, IQ
inherits merits and overcomes the shortcomings of the two ap-
proaches. Actually the IQ can be interpreted as a unified entropy
measure applicable to both time and frequency domain since it
is based on time-frequency representation of wavelet transform.

In Section V, we have presented quantitative results to sup-
port the idea that hypothermia possibly diminishes the neurolog-
ical damage after cardiac arrest, as evidenced by the EEG signal
recovery after cardiac arrest. Assuming that the larger informa-
tion content of the brain rhythm, the better neurological brain
status, we measured the information in EEG data in terms of SE
and 1Q. Using SE and IQ, we have shown that EEG data under
hypothermia contained more information than those under nor-
mothermia. Also this feature was observed more clearly from
the new measure, IQ than SE.

The limitation of this work is that the hypothermia situation
was set to only one temperature, 33 °C. To clearly establish the
neurological dependency on temperature, we need to do more
experiments under various temperatures and with more animals.
It may also be worth contrasting the neurological response under
hyperthermia (temperature greater than 37 °C). As well, long
term recovery and survival of the animals receiving hypothermia
treatment remains to be established.

In summary, we believe that the newly developed measure,
the 1Q, can be directly applied to quantitative EEG analysis of
neurological injury and recovery. This measure is shown to be
useful in titrating different grades of cardiac arrest injuries and
hypothermic treatments.
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