Electronic Structure Differences in ZrO vs HfO
Weijun Zheng, Kit H. Bowen, Jun Li, Iwona Da#bkowska, and Maciej Gutowski

J. Phys. Chem. A, 2005, 109 (50), 11521-11525 • DOI: 10.1021/jp053593e • Publication Date (Web): 16 November 2005
Downloaded from http://pubs.acs.org on May 6, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 3 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML
Electronic Structure Differences in ZrO\textsubscript{2} vs HfO\textsubscript{2}†

Weijun Zheng and Kit H. Bowen, Jr.*

Departments of Chemistry and Materials Science, Johns Hopkins University, Baltimore, Maryland 21218

Jun Li, ‡ Iwona Dąbkowska,§ and Maciej Gutowski*§,#

W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, Department of Chemistry, University of Gdańsk, 80-952 Gdańsk, Poland, and Chemical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352

Received: June 30, 2005; In Final Form: October 18, 2005

Although ZrO\textsubscript{2} and HfO\textsubscript{2} are, for the most part, quite similar chemically, subtle differences in their electronic structures appear to be responsible for differing MO\textsubscript{2}/Si (M = Zr, Hf) interface stabilities. To shed light on the electronic structure differences between ZrO\textsubscript{2} and HfO\textsubscript{2}, we have conducted joint experimental and theoretical studies. Because molecular electron affinities are a sensitive probe of electronic structure, we have measured them by conducting photoelectron spectroscopic experiments on ZrO\textsubscript{2} and HfO\textsubscript{2}. The adiabatic electron affinity of HfO\textsubscript{2} was determined to be 2.14 ± 0.03 eV, and that of ZrO\textsubscript{2} was determined to be 1.64 ± 0.03 eV. Concurrently, advanced electronic structure calculations were conducted to determine electron affinities, vibrational frequencies, and geometries of these systems. The calculated CCSD(T) electron affinities of HfO\textsubscript{2} and ZrO\textsubscript{2} were found to be 2.05 and 1.62 eV, respectively. The molecular results confirm earlier predictions from solid state calculations that HfO\textsubscript{2} is more ionic than ZrO\textsubscript{2}. The excess electron in MO\textsubscript{2} occupies an sd-type hybrid orbital localized on the M atom (M = Zr, Hf). The structural parameters of ZrO\textsubscript{2} and HfO\textsubscript{2} and their vibrational frequencies were found to be very similar. Upon the excess electron attachment, the M–O bond length increases by ca. 0.04 Å, the OMO angle increases by 2°–4°, and frequencies of all vibrational modes become smaller, with the stretching modes being shifted by 30–50 cm\textsuperscript{-1} and the bending mode by 15–25 cm\textsuperscript{-1}. Together, these studies unveil significant differences in the electronic structures of ZrO\textsubscript{2} and HfO\textsubscript{2} but not in their structural or vibrational characteristics.

Introduction

Zirconia (ZrO\textsubscript{2}) and hafnia (HfO\textsubscript{2}) are important materials due to their present and potential future applications in microelectronics,\textsuperscript{1–4} catalysis,\textsuperscript{5–7} and ceramics.\textsuperscript{8–11} Zirconium ([Kr]4d\textsuperscript{5}5s\textsuperscript{2}) and hafnium ([Xe]4f\textsuperscript{14}5d\textsuperscript{2}6s\textsuperscript{2}) reside in the same group of the periodic table, with the most obvious electronic structure difference between them being that hafnium possesses a closed subshell of f-electrons and zirconium has no f-electrons. Also, as a result of ensuing lanthanide contraction,\textsuperscript{12} both the atomic and the ionic radii of these atoms are nearly the same. As a result of these similarities, Cotton et al.\textsuperscript{12} state “The chemistries of hafnium and zirconium are more nearly identical than for any other two congeneric elements.” Indeed, infrared spectra,\textsuperscript{13} microwave spectra,\textsuperscript{14,15} and theoretical calculations\textsuperscript{13–15} show that the vibrational frequencies of molecular ZrO\textsubscript{2} and HfO\textsubscript{2} are quite close in value, and their bond lengths and bond angles are very similar. This is a manifestation of the well-known chemical similarity of Zr and Hf, which is exemplified in their geochemistry: Hf is found in all zirconium minerals and the separation of the two elements is difficult.\textsuperscript{12}

† Part of the special issue “Jack Simons Festschrift”.
* Corresponding authors. E-mail: K.H.B., kbowen@jhu.edu; M.G., maciej.gutowski@pnl.gov.
‡ W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory.
§ University of Gdańsk.
# Chemical Sciences Division, Pacific Northwest National Laboratory.

Nevertheless, in the solid state, differences emerge between ZrO\textsubscript{2} and HfO\textsubscript{2}. For example, significant differences in elastic behavior and transition pressures were suggested for ZrO\textsubscript{2} and HfO\textsubscript{2}.\textsuperscript{16} and the temperature-induced monoclinic to tetragonal transition is about 500 K higher in HfO\textsubscript{2} than in ZrO\textsubscript{2}.\textsuperscript{17} Moreover, recent theoretical and experimental work\textsuperscript{18} found that the thermodynamic stabilities of ZrO\textsubscript{2} and HfO\textsubscript{2} films are quite different when they are in contact with silicon. In fact, of substantial practical interest, the same study indicates that the HfO\textsubscript{2}/Si interface is stable with respect to silicide formation, whereas the ZrO\textsubscript{2}/Si interface is not, making HfO\textsubscript{2} a contender as a replacement for SiO\textsubscript{2} as a high-k gate dielectric.\textsuperscript{18} Because thermodynamic stability is a critical property for microelectronic devices, it is important to better understand the source of the difference. Given that most structural properties of ZrO\textsubscript{2} and HfO\textsubscript{2} are very similar, differences between their solid state properties must trace back to subtle differences in electronic structure. The difference between adiabatic electron affinities of otherwise similar molecules provides a sensitive measure of their electronic structure differences. To determine these values experimentally, we measured the gas phase, anion photoelectron spectra of ZrO\textsubscript{2} and HfO\textsubscript{2}, whereas to obtain them theoretically, we conducted electronic structure calculations on ZrO\textsubscript{2} and HfO\textsubscript{2} using density functional theory (DFT) and wave function-theory-based ab initio methods.

Molecular ZrO\textsubscript{2} and HfO\textsubscript{2} were previously reported as polar structures.\textsuperscript{13–15,19} The results of a matrix isolation study indicated
that the MO$_2$ (M = Zr, Hf) is bent, and the upper limit for $\Delta$OMO was assigned to $113 \pm 5^\circ$ and $115 \pm 5^\circ$ for M = Zr and Hf, respectively.\textsuperscript{13} The stretching frequencies of these $C_2v$ structures are strikingly similar: $\nu_1(a_1) = 884.3$ and 883.4 cm$^{-1}$, $\nu_3(b_2) = 818$ and 814 cm$^{-1}$, for ZrO$_2$ and HfO$_2$, respectively; see also Table 1.\textsuperscript{13} More accurate structures were determined from rotational spectra: the Zr–O bond length is 1.7710 ± 0.0007 Å, ZrOZrO = 108.11 ± 0.08°,\textsuperscript{14} the Hf–O bond length is 1.7764 ± 0.0004 Å, ZHOHO = 107.51 ± 0.01°.\textsuperscript{15} The electric dipole moments determined from Stark-effect measurements are 7.80 and 7.92 D for ZrO$_2$ and HfO$_2$, respectively.\textsuperscript{13,14} Finally, the frequency of the bending vibration of ZrO$_2$ was estimated to be 290 cm$^{-1}$, on the basis of its inertial defect.\textsuperscript{14}

Methods

Experimental Methods. Anion photoelectron spectroscopy is conducted by crossing a mass-selected beam of negative ions with a fixed-frequency laser beam and energy-analyzing the resultant photodetached electrons. The technique is governed by the following energy-conserving relationship:

\[ h\nu = E_{KE} + E_{BE} \]

where $h\nu$ is the photon energy, $E_{KE}$ is the measured electron kinetic energy, and $E_{BE}$ is the electron binding energy. The experiment was conducted on an apparatus consisting of a Nd:YAG laser vaporization source, a linear time-of-flight mass spectrometer, a mass gate, a momentum decelerator, a second Nd:YAG laser, and a magnetic bottle energy analyzer. The experiment was conducted on an apparatus consisting of a Nd:YAG laser, and a magnetic bottle energy analyzer. The spectrometer, a mass gate, a momentum decelerator, a second Nd:YAG laser vaporization source, a linear time-of-flight mass spectrometer, a mass gate, a momentum decelerator, a second Nd:YAG laser, and a magnetic bottle energy analyzer. The resolution of our magnetic bottle electron energy analyzer was 3.9 eV at an EKE of ~1 eV. The apparatus has been described in the detail elsewhere.\textsuperscript{20}

The anions, ZrO$_2^-$ and HfO$_2^-$, were generated by a laser vaporization source by focusing the pulsed (10 Hz), second harmonic (532 nm) beam of a Nd:YAG laser onto a zirconium rod (6.2 mm diameter, 99%), Alfa Aesar #10443) in the former case and onto a hafnium rod (5.0 mm diameter, 97%, Goodfellow HF007910) in the latter case. In both cases, the target rod was continuously rotated and translated so that the laser struck a different spot each time it was fired. The carrier gas used in the laser vaporization source was high-purity helium, which issued through a pulsed valve, having a backing pressure of ~4 atm. Oxygen was not added to the carrier gas, because the oxygen on the surface of the zirconium and hafnium rods was found to be adequate for making the metal oxide anions of interest.

Franck–Condon analyses were conducted on both the ZrO$_2^-$/ZrO$_2^-$ and the HfO$_2^-$/HfO$_2^-$ systems using the PESCAL program.\textsuperscript{21}

Theoretical Methods. Initial calculations were performed with relativistic SBKJ pseudopotentials and basis sets\textsuperscript{22} and the B3LYP exchange-correlation functional.\textsuperscript{23} Advanced ab initio calculations were further carried out using the coupled cluster method with single, double, and noniterative triple excitations (CCSD(T)).\textsuperscript{24} All electrons were treated on oxygens with aug-cc-pVTZ basis sets.\textsuperscript{25} Stuttgart energy-consistent, small-core pseudopotentials and the (8s7p6d)/(6s5p3d) basis sets were used

![Photoelectron spectra of ZrO$_2^-$ and HfO$_2^-$ recorded with 3.493 eV photons.](image)

Figure 1. Photoelectron spectra of ZrO$_2^-$ and HfO$_2^-$ recorded with 3.493 eV photons.

for Zr and Hf.\textsuperscript{26} As the excess electron in the anions are localized at the metal centers, the (8s7p6d)/(6s5p3d) basis sets of Zr and Hf were further expanded with polarization and diffuse functions as described below. A small basis set (denoted as S) on M (M = Zr, Hf) included a set of diffuse d functions $\xi(M,d) = 0.01$ and a large basis set (denoted as L) included two f and one g polarization functions and two diffuse s and two diffuse d functions. The exponents of s and d diffuse functions were obtained from even-tempered progressions with a constant of 0.5, initiated from the most diffuse s and d functions in the original (8s7p6d)/(6s5p3d) basis set. The scalar relativistic effects were taken into account via the relativistic pseudopotentials obtained from Wood–Boring all-electron calculations on the atoms.\textsuperscript{26} Spin–orbit coupling effects might be important for the hafnium compounds but they were neglected in the current approach. The CCSD(T) forces and curvatures were calculated numerically. Excited electronic states of neutral ZrO$_2$ and HfO$_2$ were calculated using time-dependent density functional theory (TDDFT) with the L basis set and the B3LYP exchange-correlation functional. The DFT calculations were performed with Gaussian98\textsuperscript{28} and CCSD(T) calculations with MOLPRO.\textsuperscript{29} Molden was used for the visualization of singly occupied molecular orbitals.\textsuperscript{30}

Results

Experimental Results. The photoelectron spectra of ZrO$_2^-$ and HfO$_2^-$ are presented in Figure 1. They were both recorded with 3.493 eV photons, the third harmonic of Nd:YAG laser. Because Zr and Hf each have several isotopes, we recorded these

<table>
<thead>
<tr>
<th>TABLE 1: Experimental Electron Affinities and Vibration Frequencies for TiO$_2$, ZrO$_2$, and HfO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>adiabatic electron affinity</strong></td>
</tr>
<tr>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>TiO$_2$</td>
</tr>
<tr>
<td>ZrO$_2$</td>
</tr>
<tr>
<td>HfO$_2$</td>
</tr>
</tbody>
</table>

\textsuperscript{v} $\nu_1$ symmetric stretching, $\nu_3$ asymmetrical stretching, $\nu_2$ bending, $\nu_5$ is not shown here.\textsuperscript{6} Reference 13. \textsuperscript{e} Reference 38. \textsuperscript{d} This PES experiment.
spectra on mass peaks, $^{90}\text{ZrO}_2^-$ and $^{176}\text{HfO}_2^-$ to avoid the possibility of contamination from nearby $\text{ZrO}_2^+$ and $\text{HfO}_2^+$. The electron binding energies (EBE) in both spectra were calibrated against the atomic lines of the copper anion, and the uncertainty of the calibration is ±0.03 eV. The spectrum of $\text{ZrO}_2^-$ is consistent with our former low resolution result.$^{31}$ The spectrum of $\text{ZrO}_2^-$ exhibits a main peak at EBE = 1.64 eV, corresponding to the transition from $\nu = 0$ of the ground state of $\text{ZrO}_2^-$ anion to $\nu = 0$ of the ground state of $\text{ZrO}_2$ neutral. This implies that the adiabatic electron affinity (AEA) of $\text{ZrO}_2$ is 1.64 ± 0.03 eV. The peaks at EBE = 1.75 and 1.86 eV correspond to excited vibrations ($\nu = 1$ and 2, respectively) in the electronic ground state of neutral $\text{ZrO}_2$. The energy spacings between adjacent peaks are both 0.11 ± 0.005 eV, corresponding to a vibrational frequency of 887 ± 40 cm$^{-1}$ for $\text{ZrO}_2$. This value is consistent with that of 884.3 cm$^{-1}$ obtained for the symmetrical stretching mode ($\nu_1$) of $\text{ZrO}_2$ in matrix infrared spectroscopy experiments;$^{13}$ see Table 1. In analogous fashion, the photoelectron spectrum of $\text{HfO}_2^-$ exhibits a main peak at EBE = 2.14 eV, corresponding to the transition from $\nu = 0$ of the ground state of $\text{HfO}_2^-$ anion to $\nu = 0$ of the ground state of $\text{HfO}_2$ neutral. This implies that the AEA of $\text{HfO}_2$ is 2.14 ± 0.03 eV. The peaks at EBE = 2.25 and 2.36 eV correspond to excited vibrations ($\nu = 1$ and 2, respectively) in the electronic ground state of neutral $\text{HfO}_2$. Again, the energy spacings between adjacent peaks are both 0.11 ± 0.005 eV, corresponding to a vibrational frequency of 887 ± 40 cm$^{-1}$ for $\text{HfO}_2$. This value is also consistent with that of 883.4 cm$^{-1}$ obtained for the symmetrical stretching mode ($\nu_1$) of $\text{HfO}_2$ in matrix infrared spectroscopy experiments;$^{13}$ see Table 1. We should mention that the uncertainties of $\nu_1$ frequencies obtained from the photoelectron spectra are larger than those from the matrix infrared spectra.$^{13}$

Franck–Condon analyses were conducted on both the $\text{ZrO}_2/\text{ZrO}_2^-$ and the $\text{HfO}_2/\text{HfO}_2^-$ systems and the results fitted to their respective photoelectron spectrum. For the $\text{ZrO}_2^-$ photoelectron spectrum, our best fit was obtained when the symmetric stretch ($\nu_1$) of neutral $\text{ZrO}_2$ equaled 871 cm$^{-1}$ and when the AEA of $\text{ZrO}_2$ equaled 1.65 eV. Both of these values are consistent with our a priori assignment of the $\text{ZrO}_2^-$ photoelectron spectrum. For the $\text{HfO}_2^-$ photoelectron spectrum, our best fit was obtained when the symmetric stretch ($\nu_1$) of neutral $\text{HfO}_2$ equaled 872 cm$^{-1}$ and when the AEA of $\text{HfO}_2$ equaled 2.15 eV. Both of these values are again consistent with our a priori assignment of the $\text{HfO}_2^-$ photoelectron spectrum. For both systems, the measured values of AEA and the $\nu_1$ frequencies are in excellent agreement with the calculated values, vide infra and Table 2.

**Theoretical Results.** The most stable structures of $\text{ZrO}_2$ and $\text{HfO}_2$ in the ground electronic states have $C_{2v}$ symmetry. These are closed-shell systems; thus the symmetry is $^1A_1$. The structures of anionic $\text{ZrO}_2$ and $\text{HfO}_2$ maintain the $C_{2v}$ symmetry and the excess electron occupies a fully symmetric orbital ($a_1$); see Figure 2. Thus the symmetry of the open-shell electronic anionic states is $^3A_1$. The calculated bond lengths, OMO bond angles, adiabatic electron affinities, and harmonic vibration frequencies for $\text{ZrO}_2$ and $\text{HfO}_2$ are listed in Table 2. The reported values AEA include vibrational zero-point energy contributions. The CCSD(T)/L values of AEA are 1.62 and 2.05 eV for $\text{ZrO}_2$ and $\text{HfO}_2$, respectively, thus in excellent agreement with the corresponding measured values of 1.64 ± 0.03 and 2.14 ± 0.03 eV. There are only small differences in the values of AEA obtained with the S and L basis sets. Including spin–orbit coupling effects may further improve the agreement with

<table>
<thead>
<tr>
<th>System</th>
<th>Method</th>
<th>M–O Bond Length (Å)</th>
<th>Symmetry</th>
<th>OMO Bond Angle (deg)</th>
<th>AEA (eV)</th>
<th>$\nu_1$ (cm$^{-1}$)</th>
<th>$\nu_2$ (cm$^{-1}$)</th>
<th>$\nu_3$ (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{ZrO}_2$</td>
<td>CCSD(T)/L</td>
<td>1.797</td>
<td>109.6</td>
<td>1.62</td>
<td>887</td>
<td>281</td>
<td>835</td>
<td></td>
</tr>
<tr>
<td>$\text{ZrO}_2$</td>
<td>CCSD(T)/S</td>
<td>1.816</td>
<td>109.4</td>
<td>1.67</td>
<td>876</td>
<td>272</td>
<td>842</td>
<td></td>
</tr>
<tr>
<td>$\text{HfO}_2$</td>
<td>CCSD(T)/L</td>
<td>1.815</td>
<td>109.9</td>
<td>2.05</td>
<td>869</td>
<td>266</td>
<td>801</td>
<td></td>
</tr>
<tr>
<td>$\text{HfO}_2$</td>
<td>CCSD(T)/S</td>
<td>1.826</td>
<td>109.8</td>
<td>2.07</td>
<td>859</td>
<td>254</td>
<td>805</td>
<td></td>
</tr>
<tr>
<td>$\text{ZrO}_2$</td>
<td>B3LYP/SBKJ</td>
<td>1.806</td>
<td>108.0</td>
<td>1.85</td>
<td>906</td>
<td>295</td>
<td>854</td>
<td></td>
</tr>
<tr>
<td>$\text{HfO}_2$</td>
<td>B3LYP/SBKJ</td>
<td>1.843</td>
<td>110.3</td>
<td>-</td>
<td>850</td>
<td>272</td>
<td>799</td>
<td></td>
</tr>
</tbody>
</table>

The values of AEA include vibrational zero-point energy corrections.

$\nu_2$ is the symmetric stretching mode, $\nu_1$ is the bending mode, and $\nu_3$ is the asymmetric stretching mode. “L” and “S” stand for the “large” and “small” basis sets, see text. For “SBKJ”, see ref 22.

![Figure 2](image)

Figure 2. Excess electron in $\text{MoO}_2^-$ ($M$ = Zr, Hf) occupying an $a_1$-symmetry orbital dominated by the $M$’s $ns$ and $(n-1)d$ orbitals.

for the $\text{HfO}_2$ systems. The B3LYP values of AEA are overestimated with respect to the CCSD(T) results by 0.2–0.3 eV, which is typical for this exchange-correlation functional.$^{2,23}$

Our calculations confirm that the neutral $\text{ZrO}_2$ and $\text{HfO}_2$ have $C_{2v}$ symmetry and a very similar bond length and $\angle\text{OMO}$. The M–O distances calculated at the CCSD(T)/L level are 1.797 Å for $\text{ZrO}_2$ and 1.815 Å for $\text{HfO}_2$, thus ca. 0.03–0.04 Å longer than the microwave spectroscopy predictions.$^{14,15}$ The bond lengths are sensitive to the selection of one-electron basis set (L vs S) and the computational method (CCSD(T) vs B3LYP). The CCSD(T)/L values of $\angle\text{OMO}$ of 109.6° and 109.9° are in excellent agreement with the previous findings of 108.11 ± 0.08° and 107.51 ± 0.01° for $\text{ZrO}_2$ and $\text{HfO}_2$, respectively.$^{14,15}$

The calculated, harmonic, CCSD(T)/L frequencies for the symmetrical stretching mode of 887 cm$^{-1}$ ($\text{ZrO}_2$) and 869 cm$^{-1}$ ($\text{HfO}_2$) are consistent with the 887 ± 40 cm$^{-1}$ value resulting from the photoelectron spectra. However, the more accurate results from matrix infrared measurements$^{13}$ of 884.3 cm$^{-1}$ ($\text{ZrO}_2$) and 883.4 cm$^{-1}$ ($\text{HfO}_2$) reveal that the calculated values might be inaccurate by ca. 15–20 cm$^{-1}$. The calculated harmonic CCSD(T)/L frequencies for the asymmetrical stretching mode are also inaccurate by ca. 20 cm$^{-1}$. The calculated frequency for the bending mode of $\text{ZrO}_2$ (281 cm$^{-1}$) agrees well with the 290 cm$^{-1}$ value determined from the inertial defect.$^{14}$ The B3LYP vibrational force constants are systematically larger for $\text{ZrO}_2$ than for $\text{HfO}_2$ and so are the reduced masses resulting in very similar values of vibrational frequencies for the two molecules.

Upon the excess electron attachment the M–O bond lengths increase by ca. 0.04 Å and $\angle\text{OMO}$’s increase by 2–4°; see Table 2. The differences in geometries between the neutral and the anion are along the symmetrical stretching mode, $\nu_1$, and...
the bending mode, $v_2$. The frequencies of all vibrational modes decrease upon the excess electron attachment with a larger shift (30–50 cm$^{-1}$) for the stretching modes and a smaller shift of 15–25 cm$^{-1}$ for the bending mode.

$\text{ZrO}_2$ and $\text{HfO}_2$ are polar molecules with the experimentally measured dipole moments of 7.80$^3$ and 7.92$^{15}$ D, respectively. The calculated dipole moments are consistent with experiment in predicting a larger polarity of $\text{HfO}_2$ than of $\text{ZrO}_2$, but the absolute values of dipole moments are overestimated. Indeed, the corresponding B3LYP/S values are 8.00 and 8.06 D. The overestimation is even larger at the CCSD/S level with the corresponding values being 8.40 and 8.60 D. The effective charge on the metal, determined from the Mulliken population analysis with the B3LYP/SBKJ wave functions, is $+1.15$ and $+1.10$ e, for $\text{HfO}_2$ and $\text{ZrO}_2$, respectively. The excess electron is found to localize on the metal atom, where the positive pole of the dipole is (Figure 2). An excess electron bound by a polar molecule, which does not contain a transition metal atom, is typically described by a fully symmetric sp-type hybrid orbital; see ref 34 for numerous examples. In the case of $\text{ZrO}_2$ and $\text{HfO}_2$, however, the $n$ and $(n - 1)$d orbitals are available on the metal atom, whereas the np orbitals are higher in energy. The excess electron is then described by a fully symmetric sd-type hybrid orbital with $a_1$ symmetry (Figure 2).

The low lying electronic states of the neutral $\text{ZrO}_2$ and $\text{HfO}_2$ were characterized at the TDDFT/B3LYP/S level of theory. For both systems, the lowest excited singlet and triplet states are of $B_1$ symmetry, with the $b_1$ orbital localized on the metal atom. The more stable $^3B_1$ states are at 2.15 and 1.55 eV with respect to the ground singlet state for $\text{ZrO}_2$ and $\text{HfO}_2$, respectively. The related $^1B_1$ states are less stable by 0.07–0.08 eV. Thus the excited electronic states of the neutral do not contribute to the photoelectron spectra recorded with the 3.493 eV photons.

**Discussion**

The significant electron affinity difference between $\text{ZrO}_2$ and $\text{HfO}_2$, combined with the lack of a measurable difference in their $v_1$ vibrational frequencies and very similar molecular geometries, appears to indicate electronic structure rather than size or bonding effects as the primary basis for reactivity and stability differences between $\text{ZrO}_2$ and $\text{HfO}_2$. The difference in stability of the $\text{ZrO}_2$/Si and $\text{HfO}_2$/Si interfaces with respect to formation of metal silicides was interpreted in terms of a larger stability of (i) HfO$^-$ rather than ZrO$^-$ and (ii) zirconium rather than hafnium silicides.$^{18}$ The current results shed new light on differences in electronic structure of $\text{ZrO}_2$ and $\text{HfO}_2$.

Recent computational results on various polymorphs of $\text{HfO}_2$ and $\text{ZrO}_2$ indicate that the former is more ionic than the latter.$^{35}$ The former also has a larger band gap across all polymorphs. These results are consistent with the finding that the calculated heat of formation for the monoclinic phase is larger by 0.60 eV/formula unit for $\text{HfO}_2$ than for $\text{ZrO}_2$, with the experimental difference being 0.49 eV.$^{17}$ The difference in ionicity is also confirmed by dipole moments of $\text{HfO}_2$ and $\text{ZrO}_2$ 7.92 and 7.80 D, respectively.$^{15,14}$ A difference in the dipole moment might contribute to the different values of AEA for $\text{HfO}_2$ and $\text{ZrO}_2$; see Tables 1 and 2 and Figure 1. All these findings are consistent with a small difference in the electronegativity of Zr and Hf: 1.4 and 1.3, respectively, according to Pauling’s scale.$^{36}$

How important is the lanthanide contraction for Hf? It has recently been demonstrated for various polymorphs of $\text{MO}_2$ that the volume per formula unit is smaller for $\text{HfO}_2$ than for $\text{ZrO}_2$, as if the ionic radius was smaller for “Hf(+4)” than for “Zr(+4)”.$^{35}$ The difference was 3.9% for the most stable monoclinic phase. This result is surprising because usually for congeneric elements an increase in the atomic number leads to an increase of the atomic or ionic radius. For typical elements from the second and third transition metal rows such an increase is reduced by the electron occupation of the 4f and relativistic effects, whereas for Zr and Hf the relative sizes are apparently reversed, as in the case of monovalent coin metals.$^{37}$ Indeed, the recommended ionic radius for “Hf(+4)” is smaller by 0.01 Å than for “Zr(+4)”,$^{12}$ which qualitatively confirms the structural predictions for bulk phases. For the molecular systems, however, the measured M–O distance is larger for $\text{ZrO}_2$ (1.7710 ± 0.0007 Å)$^{14}$ than for $\text{HfO}_2$ (1.7764 ± 0.0004 Å).$^{15}$ Clearly, the parallelism between structural properties of bulk phases and molecular systems is limited.

The neutral $\text{ZrO}_2$ and $\text{HfO}_2$ are highly polar and the excess electron is described by a sd-type hybrid orbital localized on the metal atom. In the case of $\text{HfO}_2^-$ small amplitudes can be also identified on oxygens (Figure 2). The availability of $(n - 1)d$ orbitals makes the charge distribution of an excess electron different than in anions of polar molecules that do not contain a transition metal atom. One might only speculate what the charge distribution of an excess electron would be in polar molecules with available $(n - 2)f$ orbitals, such as CeO$_2$ or BaO anions.

Because Ti, Zr, and Hf are all in the same group of the periodic table, it is also interesting to compare the electron affinities and vibrational frequencies of $\text{ZrO}_2$ and $\text{HfO}_2$ with those of $\text{TiO}_2$. Wu and Wang$^{38}$ reported the photoelectron spectrum of $\text{TiO}_2^-$. They found the adiabatic electron affinity of $\text{TiO}_2$ to be 1.59 ± 0.03 eV and the frequency of $v_1$ to be 940 ± 40 cm$^{-1}$. These properties of $\text{TiO}_2$, $\text{HfO}_2$, and $\text{ZrO}_2$ are compared in Table 1. Note that $\text{ZrO}_2$ and $\text{HfO}_2$ have essentially identical vibrational frequencies, whereas the $v_1$ vibrational frequency of $\text{TiO}_2$ differs from them. This indicates differences in bonding strength and reduced masses between $\text{TiO}_2$ and $\text{ZrO}_2$ (Hf$\text{O}_2$). Consistent with this, the atomic and ionic radii of zirconium and hafnium are the same to within 0.01 Å, whereas the ionic radius of Ti(+4) is smaller by 0.1 Å than those of Zr(+4) and Hf(+4).$^{12}$ The comparison reverses, however, when adiabatic electron affinities are compared. The electron affinities of $\text{TiO}_2$ and $\text{ZrO}_2$ are rather similar, differing by only 0.05 eV, whereas the electron affinities of $\text{HfO}_2$ and $\text{ZrO}_2$ differ substantially, i.e., by 0.50 eV. These comparisons reinforce the implication that differences in the electronic structures of Hf and Zr are at the root of chemical differences between $\text{ZrO}_2$ and $\text{HfO}_2$. This points to the nonnegligible role of f-electrons and relativistic effects in the chemistry of hafnium compounds.

It may be useful to mention that there are other examples among atomic metals, metal–ligand complexes, and metal dimer and cluster anions, in which the excess electron occupies a metal s orbital, which likewise shows an increased electron affinity for the third transition series congener, mirroring the trend observed here.$^{39}$ This pattern has been ascribed to relativistic effects, resulting in more strongly bound s electrons in the third transition series. Because the orbital occupied by the extra electron in $\text{ZrO}_2^-$ and $\text{HfO}_2^-$ has a significant metal s character (Figure 2), the reported values of AEA are consistent with this trend. This observation supports our conclusions that the presence of f electrons in the third transition series affects valence electronic structure controlled by the 5d and 6s orbitals.

**Acknowledgment.** We acknowledge the reviewers for their insightful and constructive comments. K.B.’s portion of this work was supported by The Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department
Electronic Structure Differences in ZrO₂ vs HfO₂


of Energy under Grant No. DE-FG0295ER45538. Acknowledgment is also made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research under grant No. 28452-AC6. M.G.’s and J.L.’s portion of this work was supported by DOE Basic Energy Sciences, Division of Chemical Sciences. I.D. is a holder of a Foundation for Polish Science (FNP) Award. Computing resources were available through (i) a Computational Grand Challenge Application grant from the Molecular Sciences Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory, a national scientific user facility supported by the U.S. DOE, OBER and located at PNNL, and (ii) the National Energy Research Scientific Computing Center (NERSC). PNNL is operated by Battelle for the U.S. DOE under Contract DE-AC06-76RLO 1830.

References and Notes