
G O L O M B' S G A M B I T S &trade
Solutions to "Calendar Oddities"
By Solomon Golomb '51
A. The Gregorian Calendar
1. The Gregorian calendar was named for Pope Gregory
XIII.
2. It was introduced in 1582.
3. It replaced the Julian calendar (named for Julius
Caesar), in which every fourth year was a leap year.
4. In the Gregorian calendar, a year is ordinary unless the
year number is a multiple of 4, in which case it is a leap
year unless the year number is a multiple of 100, in which
case it is ordinary unless the year number is a multiple of
400, in which case it is a leap year. (Got that?) So the
year 2000 (500 times 4) was a leap year, but the year 1900
was not, and the year 2100 will not be.
B. Friday the 13th
1. In an ordinary year, February, March, and November all
start on the same day of the week. If they start on Sunday,
then all three will have a Friday the 13th. In a leap year,
January, April, and July all start on the same day of the
week. If this day is Sunday, then all three will have a
Friday the 13th. There is no way to have four Fridays the
13th in a single calendar year.
2. In an ordinary year, February and March can both have a
Friday the 13th, only four weeks apart.
3. In a leap year that starts on Sunday, January, April,
and July will have Fridays the 13th in a span of 183 days
(counting both enddays), or half a year. In an ordinary
year that precedes a leap year, September, December, and
March can have Fridays the 13th. This also has a span of
183 days, counting both enddays.
4. Each of the seven months from May through November
begins on a different day of the week; so every year, one
of these months will have a Friday the 13th and no year can
be Fridaythe13th free. In two consecutive ordinary years,
if July of the first year has a Friday the 13th, this will
not recur until September of the following year, 14 months,
or 61 weeks (427 days) later. (On average, in 14 months, we
would expect each starting day of the month to occur twice
on each day of the week.) The result is the same when a
leap year is followed by an ordinary year (since there is
no leap day in the 14month interval in question). However,
in an ordinary year followed by a leap year, if August of
the first year has a Friday the 13th, this will not recur
until October of the following year, again an interval of
14 months (or 61 weeks, or 427 days).
C. Miscellany
1. Every month has 11 ambiguous days, from the 1st to the
12th, excluding the day with the same number as the month,
since dates like 4/4 have the same meaning in both systems.
Thus each year has 132 ambiguous dates. (If a European saw
a sign "Open 24/7" on an American store, might she think
that the store would not be open until July 24?)
2. "OCT. 31 = DEC. 25" could mean "octal 31 = decimal 25";
that is, the number we would write as 25 in standard
decimal notation becomes 31 when written in base 8.
3. The holidays in question occur on 1/1, 2/2, 5/5, 6/6,
and 11/11.
4. When George Washington was born, England and its New
World colonies were still on the Julian calendar, and
reckoned February as near the end of the year. Hence, when
George Washington was born, the "local date" was February
11, 1731. That corresponds to what we now call February 22,
1732, in the Gregorian calendar.
D. Subtleties
1. In an ordinary year there are 365 days, which is 52
weeks plus one day. In a leap year, there are 366 days,
which is 52 weeks plus two days. In a 400year cycle of the
Gregorian calendar, there are 97 leap days (every fourth
year except for three of the 100years). Hence in 400
years, we have 400 x 52 weeks, plus 400 + 97 days. Now, 400
+ 97 = 497 = 7 x 71, so we have exactly (400 x 52) + 71
weeks = 20,871 weeks. That is, every 400year cycle of the
Gregorian calendar starts on the same day of the week
(1600, 2000, 2400 all begin on Sunday); and everything
repeats, including the day of the week, every 400 years.
Since 400 is not a multiple of 7, no date falls on a given
day of the week exactly oneseventh of the time! (It would
have to occur on that day of the week 400/7 times in 400
years, but 400/7 is not a whole number.)
2. In 400 years, there are 12 x 400 = 4,800 months. This
number is also not a multiple of 7, so no day of the month
can occur on a particular day of the week exactly
oneseventh of the time. By actual count, the 13th of the
month is (slightly) more likely to fall on Friday than on
any other day of the week!
3. In 1616, Catholic Spain was already on the Gregorian
calendar, while Protestant England (under Elizabeth I) was
still on the Julian calendar. If we restated the date of
Shakespeare's death as we did with Washington's date of
birth, we would find that Shakespeare died on May 3
(Gregorian), but for some reason it is not customary to
restate 17thcentury English dates.
4. Russia under the Tsars, and in the Russian Orthodox
Church even today, the Julian calendar prevails; but after
the Bolshevik Revolution, Russia abandoned the Julian
calendar for civil purposes, and the Julian date in October
became a date in November. (I was careful not to say that
Lenin and Co. adopted the Gregorian calendar. The official
Soviet calendar had a slightly different rule for which
century years should be leap years, but this would not
diverge from the Gregorian calendar for several more
centuries. I assume that with the collapse of the Soviet
Union, Russia will simply use the Gregorian calendar for
civil purposes.) The various Eastern Orthodox churches
today do not agree on the date of Christmas. For Russia, it
is still December 25 Julian, which (since 1900) has been
January 7, Gregorian. The Armenians, for reasons related to
the ancient date of the Epiphany, celebrate Christmas on
January 6, Gregorian. And the Greeks, who were never part
of the Tsarist empire, and are in both NATO and the
European Union, celebrate Christmas on December 25,
Gregorian (except for the Greek Orthodox Church in the Holy
Land).
If this is not complicated enough for you, we could mention
the intricacies of the Jewish, Muslim, and Chinese
calendars, which are used to determine holiday dates such
as Passover, the Eid alFitr (end of Ramadan), and Chinese
New Year, respectively.
Return to September 2007 Table
of Contents
