

Typical RF Sub-System Block Diagram Students Design Low DC Power Circuits

Receive Chain

Chip Set for the $5725-5875 \mathrm{MHz}$ ISM Bands

Design Goals:

Battery Power (What Voltage?)
Low Power (i.e Power Efficient)
Output Power 10 or 100 mW ?
Data Rate? Filters?

PROJECTS F10 (Checklist)

C-band Power Amplifier -Paul Van Opens
C-band Power Amplifier -Mitch Flowers
C-band Low Noise Amplifier -Wade Freeman
C-band Power Amplifier -James Pociluyko
C-band Voltage Controlled Osc-Chris Hinton
C-band Voltage Controlled Osc-Ben Woodworth
C-band Transmit/Receive Switch-Nick Garneski
C-band Mixer-James McKnight
jhu10pvo jhu10mf jhu10wf jhu10jnp jhu10crh jhu10bw jhu10ng jhu10jwm

Name	DRC	LVS	Current/Bias	Text	Visual
jhu10bw	\mathbf{X}	\mathbf{X}	$(22 m A) \mathbf{X}$	\mathbf{X}	\mathbf{X}
jhu10mf	\mathbf{X}	\mathbf{X}	$(?) \mathbf{X}$	\mathbf{X}	\mathbf{X}
jhu10ng	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}
jhu10crh	\mathbf{X}	\mathbf{X}	$(\mathbf{1 0 m A}) \mathbf{X}$	\mathbf{X}	\mathbf{X}
jhu10jwm	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}
jhu10jnp	\mathbf{X}	\mathbf{X}	$(\mathbf{2 0 / 3 6 m A}) \mathbf{X}$	\mathbf{X}	\mathbf{X}
jhu10pvo	\mathbf{X}	\mathbf{X}	$(\mathbf{2 0 / 6 5 m A}) \mathbf{X}$	\mathbf{X}	\mathbf{X}
jhu10wf	\mathbf{X}	\mathbf{X}	$(\mathbf{1 0 / 1 0 m A) \mathbf { X }}$	\mathbf{X}	\mathbf{X}
jhu10pr1	\mathbf{X}	\mathbf{X}		\mathbf{X}	
jhu10pr2	\mathbf{X}	\mathbf{X}		\mathbf{X}	
jhu10prj	\mathbf{X}			\mathbf{X}	
jhu09prj	\mathbf{X}			\mathbf{X}	
jhu10wlt	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}
jhu10p24	\mathbf{X}	\mathbf{X}		\mathbf{X}	
jhu10jep	\mathbf{X}			\mathbf{X}	

Test PHEMTs: E/D 4x15, 6x50, 6x80E; 4x50E, 6x40D, 6x44D, 6x86D, 6x55D, 10x96E

1) Paul Van Opens JHU10PVO Power Amp

Power Amplifier for 5.8 GHz band with about 20 dB SS gain targeted for 100 mW Pout. DC Bias measured was about as predicted: VD 3.6V at 70-75 mA S-parameters are shown following with good agreement between simulations and measurements and a slight shift in frequency of the input match. Measured output power was about 2 dB below the 20 dBm goal , which was pretty typical for the designs from the fall 2010 JHU MMIC Class.
Fabrication was provided by TriQuint's using their TQPED GaAs process.

PVO 5.8 GHz Power Amp (Meas/Sim)

PVO 5.8 GHz Power Amp (Meas/Sim)

PVO 5.8 GHz Power Amp (Sim)

PVO 5.8 GHz Power Amp (Sim)

PVO 5.8 GHz Power Amp (Meas)

Paul Van Opens Power Amp--5.8 GHz 3.6 V									
		Loss 3.5 dB for thru							
5.8 GHz	Die\#2	PVO 5.8 GHz E/Dmode Fall10 TQPED				3.6V ; 70 mA			
Pin(SG)	Pout(SA)	Pin(corr)	Pout(corr)	Gain	I1(3.6V)	PDC(mw)	Pout(mw)	Drn Eff	PAE
-20.0	-5.67	-21.75	-3.92	17.83	70	252.0	0.41	0.2	0.2
-10.0	4.83	-11.75	6.58	18.33	71	255.6	4.55	1.8	1.8
-8.0	6.50	-9.75	8.25	18.00	71	255.6	6.68	2.6	2.6
-6.0	8.33	-7.75	10.08	17.83	72	259.2	10.19	3.9	3.9
-4.0	10.50	-5.75	12.25	18.00	73	262.8	16.79	6.4	6.3
-2.0	12.50	-3.75	14.25	18.00	74	266.4	26.61	10.0	9.8
0.0	14.17	-1.75	15.92	17.67	73	262.8	39.08	14.9	14.6
1.0	15.00	-0.75	16.75	17.50	72	259.2	47.32	18.3	17.9
2.0	15.67	0.25	17.42	17.17	71	255.6	55.21	21.6	21.2
3.0	15.83	1.25	17.58	16.33	70	252.0	57.28	22.7	22.2
4.0	16.00	2.25	17.75	15.50	71	255.6	59.57	23.3	22.6

PVO 5.8 GHz Power Amp (Meas)

PVO Meas 10
5.8 GHz 3.6V

2) Chris Hinton JHU10CRH VCO

Voltage Controlled Oscillator (VCO) for 5.8 GHz band.
DC Bias was as predicted: 3V at $10-11 \mathrm{~mA}$
Did not appear to oscillate, however the spectrum analyzer showed periodic bursts around 7 GHz which seemed to be the oscillation attempting to build up but did not have sufficient margin. Hope to re-simulate EM of layout to look for unsimulated parasitic coupling and to try an output load (other than 50 ohms) to see if it will oscillate. Tried manual Load Pull Tuner to try and get it to oscillate.

Test PHEMT 10x96E 3V 27, 76 mA Bias E960327 Vg=+0.53V
E960376 Vg=+0.64V

3) Mitch Flowers JHU10MF PA

Power Amplifier for 5.8 GHz band. Often it is hard to eliminate low frequency oscillation problems with the probe station at the JHU Dorsey campus, and this design presented some of those issues when the DC bias was increased to about 10 dB gain. Measurements were made of just the first stage (-0.5 V VGS, 6-7 mA at 3.6 V) to see if the input match looked reasonable. Then the $2^{\text {nd }}$ stage was biased at its class B (near pinchoff) bias and the input power level increased. During power measurements, the input signal was increased until it saturated and eliminated the low frequency oscillations. Output power was then close to its 20 dbm goal. Wire bonding 100 pf caps next to the MMIC and retesting should provide better results.

MF 5.8 GHz Power Amp Low Frequency Stability Test Problems

Mitch Flowers Power Amp--5.8 GHz Low Freq. Stability Test Problems									
			Loss 3.5 dB for thru			Stg1 3.6V at 16 mA			
5.8 GHz	Die\#1	MF 5.8 GHz	Dmode Fall10 TQPED			3.6V ; 70 mA			
Pin(SG)	Pout(SA)	Pin(corr)	Pout(corr)	Gain	IStg2(V)	PDC(mw)	Pout(mw)	Drn Eff	PAE
9.0	16.50	7.25	18.25	11.00	(3.0/46)	195.6	66.83	34.2	31.5
10.0	16.67	8.25	18.42	10.17	(3.0/48)	201.6	69.50	34.5	31.2
10.0	17.00	8.25	18.75	10.50	(3.2/50)	217.6	74.99	34.5	31.4
11.0	17.50	9.25	19.25	10.00	(3.4/52)	234.4	84.14	35.9	32.3
12.0	17.83	10.25	19.58		(3.5/54)	246.6	90.78	36.8	32.5
13.0	18.17	11.25	19.92	8.67	(3.6/54)	252.0	98.17	39.0	33.7

Note: Adjusted $2^{\text {nd }}$ stage bias and input drive level until low frequency (~20 MHz) oscillations disappeared. Note, output power of about 20 dBm which meets the design goal. Gain above 10 dB seemed to be the edge of the oscillation/stability region. Might be able to retest with decoupling caps closer to the MMIC die. Performance shown with $1^{\text {st }}$ stage at 3.6 V 16 mA bias.

MF 5.8 GHz Power Amp (1 ${ }^{\text {st }}$ Stage Only-solid, both-dash) Low Frequency Stability Test Problems

4) Nick Garneski JHU10NG TRS

Transmit/Receive Switch (TRS) for 5.8 GHz band. This design includes a circuit to create the complementary switch control inputs from a nominal 3 V supply and an control input of 0 , or 3 V . The design worked well including the driver. Plots of simulation versus measurements follow.

S-Parameter Files (on, off) Left $=\mathrm{L}$, Right +R NGLON V $+3 \mathrm{~V}, \mathrm{Vc} 0 \mathrm{~V}$ NGLOFF V+3V, Vc 3V NGRON V+3V, Vc 3V NGROFF V+3V, Vc 0V

NG 5.8 GHz TR Switch (Meas vs. Sim-dotted)

Note: $3^{\text {rd }}$ RF port is terminated in 50 ohms and is not calibrated (noisy meas.).

NG 5.8 GHz TR Switch (Meas ON/OFF)

Note: $3^{\text {rd }}$ RF port is terminated in 50 ohms and is not calibrated (noisy meas.).

5) James McKnight JHU10JWM MXR

Diode Mixer for 5.8 GHz band. This design includes a lumped element hybrid and a DC offset to provide good conversion loss with low Local Oscillator (LO) drive levels. Following are the results which were very good when +0.7 V at $1-2 \mathrm{~mA}$ of DC bias is provided. This mixer was combined with Ben Woodworth's VCO design and worked very well (see JHU10PR1).

Test PHEMT 6x44D
D264313 Vg $=-0.51 \mathrm{~V} 3 \mathrm{~V} 13 \mathrm{~mA}$ D264327 Vg $=-0.35 \mathrm{~V} 3 \mathrm{~V} 27 \mathrm{~mA}$ Test PHEMT 6x86D
D516326 Vg $=-0.51 \mathrm{~V} 3 \mathrm{~V} 26 \mathrm{~mA}$ D516353 Vg $=-0.35 \mathrm{~V} 3 \mathrm{~V} 53 \mathrm{~mA}$ Test PHEMT 6x55D
D330317 Vg $=-0.51 \mathrm{~V} 3 \mathrm{~V} 17 \mathrm{~mA}$ D330334 Vg $=-0.35 \mathrm{~V} 3 \mathrm{~V} 34 \mathrm{~mA}$

JM 5.8 GHz Mixer

Note: Mixer works better with forward biased diodes.

JM 5.8 GHz Mixer

Up Conversion			RF=5.79 N"+0.7V Bias w/o Resistor 2mA"				RF=5.775 MHz		Loss (gain
LO 5.8G	LO (corr)	RF (meas)	RF (corr)	Loss (gain)	LO 5.8G	LO (corr)	IF (meas)	RF (corr)	
2	0.25	-46.3	-44.6	-34.6	2	0.25	-43.5	-41.8	-31.8
4	2.25	-40.5	-38.8	-28.8	4	2.25	-37.8	-36.1	-26.1
6	4.25	-34.5	-32.8	-22.8	6	4.25	-32.5	-30.8	-20.8
8	6.25	-31.0	-29.3	-19.3	8	6.25	-29.7	-27.9	-17.9
10	8.25	-29.2	-27.4	-17.4	10	8.25	-28.2	-26.4	-16.4
12	10.25	-27.8	-26.1	-16.1	12	10.25	-27.2	-25.4	-15.4
14	12.25	-27.3	-25.6	-15.6	14	12.25	-26.7	-24.9	-14.9
Up Convers	sion		$\mathrm{RF}=5.79 \mathrm{~N}$	No Bias			RF=5.775	MHz	
LO 5.8G	LO (corr)	RF (meas)	RF (corr)	Loss (gain)	LO 5.8G	LO (corr)	IF (meas)	RF (corr)	Loss (gain
2	0.25	-48.0	-46.3	-36.3	2	0.25	-45.3	-43.6	-33.6
4	2.25	-43.7	-42.0	-32.0	4	2.25	-40.3	-38.6	-28.6
6	4.25	-37.7	-36.0	-26.0	6	4.25	-34.7	-33.0	-23.0
8	6.25	-35.3	-33.6	-23.6	8	6.25	-32.7	-31.0	-21.0
10	8.25	-35.0	-33.3	-23.3	10	8.25	-33.0	-31.3	-21.3
12	10.25	-35.2	-33.5	-23.5	12	10.25	-33.7	-32.0	-22.0
14	12.25	-35.3	-33.6	-23.6	14	12.25	-34.3	-32.6	-22.6

Note: Hybrid LE Design should work best as a down converting mixer, but was tested in the up configuration for completeness.

JM 5.8 GHz Mixer
JM Meas 10
Mixer Down Conversion

Note: Mixer works better with forward biased diodes (+0.7V).

JM 5.8 GHz Mixer

JM Meas 10
Mixer Up Conversion (Hybrid)

Note: Hybrid LE Design should work best as a down converting mixer, but was tested in the up configuration for completeness.

6) Ben Woodworth JHU10BW VCO
Voltage Controlled Oscillator (VCO) for 5.8 GHz band.
DC Bias was as predicted: 2 V at 22-23 mA.
Oscillated at the desired frequency band with about 2.5 mW of output power. Two die were measured for a tuning voltage of 0 to 0.8 V with similar results. This VCO was combined with James McKnight's mixer design and worked very well (see JHU10PR1).

Test PHEMT 6x40D at 3 V
D240312 VG=-0.51V
D240324 VG=-0.35V D240344 VG=-0.12V
Test PHEMT $4 \times 50 \mathrm{E}$ at 3 V
E200306 VG=+0.53V
E200316 VG=-+0.64V
E200326 VG=+0.73V

BW 5.8 GHz VCO (Meas)

BW 5.8 GHz VCO (Meas)

BW VCO Freq vs. Tune Voltage

7) Wade Freeman JHU10WF LNA?

Low Noise Amplifier for 5.8 GHz band. Since this is a low DC powered LNA, the 8510 NWA tends to lose lock if you lower the input power level below about -10 dBm, however this level is too high and compresses the gain of the LNA. The gain measurement with the Noise Figure meter is higher and matches the simulations. Noise figure was just above 1 dB . S-parameters were taken for biases of 3 V at 8 $\mathrm{mA}, 4 \mathrm{~V}$ at 12 mA , and 5 V at 14 mA .

Test PHEMT 4x15D 3V D60306 VG=-0.35V D60311 VG=-0.12V
Test PHEMT $4 \times 15 \mathrm{E} 3 \mathrm{~V}$
E60305 VG=-+0.64V
E60308 VG=+0.73V
Test PHEMT 6x80E 3 V
E480320 VG=-+0.53V
$\mathrm{E} 480347 \mathrm{VG}=+0.64 \mathrm{~V}$

WF 5.8 LNA (Meas/Sim)

Measured Gain in Compression on 8510 NWA (Low DC Power MMIC)

WF 5.8 LNA (Meas/Sim)

WF 5.8 LNA (Meas NF/Gain)

8) James Pociluyko JHU10JNP PA

Another Power Amplifier for 5.8 GHz band with about 20 dB SS gain and 100 mW Pout. There were some initial small signal oscillation problems with the measurements but small tweaks in the setup produced good stable results.
DC Bias was measured at several biases. S-parameters are shown versus simulations. Power measurements show good efficiency and the design achieved 100 mW of output power.

JNP227 2V at $27 \mathrm{~mA}-0.5 \mathrm{~V}$ $18-19 \mathrm{~dB}$ gain JNP3630 3.6 V at $30 \mathrm{~mA}-0.5 \mathrm{~V}$ $18-19 \mathrm{~dB}$ gain
JNP3643 3.6 V at $43 \mathrm{~mA}-0.4 \mathrm{~V}$ $18-19 \mathrm{~dB}$ gain

JNP 5.8 PA (Meas 3.6V 30 mA -dash, 43 mA -solid)

JNP 5.8 PA (Meas 43 mA-solid vs. Sim-dash)

JNP 5.8 GHz Power Amp (Meas)

James Pociluyko Power Amp--5.8 GHz 3.6 V									
				Loss 3.5 dB for thru					
5.8 GHz	Die\#1	PVO 5.8 GHz E/Dmode Fall10 TQPED				3.6V ; 66 mA			
Pin(SG)	Pout(SA)	Pin(corr)	Pout(corr)	Gain	I1(3.6V)	PDC(mw)	Pout(mw)	Drn Eff	PAE
-15.0	1.67	-16.75	3.42	20.17	57	205.2	2.20	1.1	1.1
-10.0	6.67	-11.75	8.42	20.17	57	205.2	6.95	3.4	3.4
-5.0	11.58	-6.75	13.33	20.08	59	212.4	21.53	10.1	10.0
-2.0	14.42	-3.75	16.17	19.92	66	237.6	41.40	17.4	17.2
-1.0	15.25	-2.75	17.00	19.75	70	252.0	50.12	19.9	19.7
0.0	16.08	-1.75	17.83	19.58	74	266.4	60.67	22.8	22.5
1.0	16.67	-0.75	18.42	19.17	78	280.8	69.50	24.8	24.5
2.0	17.33	0.25	19.08	18.83	82	295.2	80.91	27.4	27.0
3.0	17.83	1.25	19.58	18.33	86	309.6	90.78	29.3	28.9
4.0	18.17	2.25	19.92	17.67	89	320.4	98.17	30.6	30.1
5.0	18.42	3.25	20.17	16.92	91	327.6	103.99	31.7	31.1

JNP 5.8 GHz Power Amp (Meas)
JNP Meas 10
5.8 GHz 3.6V

9) James McKnight \& Ben Woodworth JHU10PR1 VCO + MXR

Students consider the impact of their design on other blocks in the system for integration into a larger MMIC. While they do not have sufficient time in their six week design cycle to integrate the blocks together, some of the designs are incorporated into larger die sites within the tile as space allows. The instructor combines and compacts the layouts into a larger die site. In this example, Ben Woodworth's VCO was combined with James McKnight's mixer design in a 60×90 mil die site. The combination worked very well. The diode DC offset bias of the mixer allowed a low LO drive from the VCO to provide good conversion loss. Conversion loss is shown following for the combined circuit. The VCO output frequency was tuned slightly by the mixer diode DC bias (RF match shift), and was measured with the 0.7 V diode bias.

JHU10PR1: JM and BW 5.8 GHz VCO+MIX (Meas)

Worked Very Well! Diode Bias on Mixer of about +0.7 V at 2 mA dramatically Lowers the LO power needed for decent conversion loss. VCO was measured to produce about 4 dBm of output power which is sufficient to drive the Mixer with the Bias offset. The Diode Bias did slightly affect the VCO output frequency since it changes the RF load somewhat. LO/IF Isolation was measured: 16 dB . Conversion Loss: 16 dB VDD: 2 V @ 24 mA ; Vtune=0.2V; Vbias=0.7V @ 2 mA

JHU10PR1: JM and BW 5.8 GHz VCO+MIX (Meas)

PR1 BW VCO Freq vs. Tune Voltage

VCO Tuning Range with Vbias=0.7V @ 2 mA ; VDD=2V @ 24 mA

10)Nick Garneski \& Wade Freeman JHU10PR2 TRS + LNA

Students consider the impact of their design on other blocks in the system for integration into a larger MMIC. While they do not have sufficient time in their six week design cycle to integrate the blocks together, some of the designs are incorporated into larger die sites within the tile as space allows. The instructor combines and compacts the layouts into a larger die site. In this example, Nick Garneski's TR Switch was combined with Wade Freeman's LNA design in a 60×120 mil die site. This combination illustrates some of the impact of subsystem design when you combine at the system level. Both designs worked well individually, but the combined TR Switch and LNA had significantly lower gain than would be expected from individual measurements. Following is a re-simulation of the TR Switch measurements combined with the LNA measurements showing a significant drop in gain. If you look at the return loss of the LNA, it was optimized for 50 ohm loads but has high VSWR and may explain the low gain of the combination. Also, there may be some subtle variation due to compacting the layouts in order to squeeze them into the single die site.

JHU10PR2: WF and NG 5.8 GHz TRS+LNA (Meas ON/OFF)

Simulation vs. Measured-Low Gain due to High VSWR (LNA)?

11) Dr. Willie Thompson JHU10WLT PA 32 GHz Lang Coupler 32 GHz Diode Mixer E/D Mode 6x50 um PHEMTs

BroadBand Amplifier for 2-6 GHz. The other test circuits, a 32 GHz Lang Coupler Circuit and a 32 GHz Lang Diode Mixer, could not be measured with the current equipment at Dorsey.

Test PHEMT 6x50D 3V
D300315 VG=-0.51V
D300330 VG=-0.35V
D300355 VG=-0.12V
Test PHEMT 6x50E 3 V
E300310 VG=+0.53V
E300325 VG=+0.64V
E300340 VG=+0.73V

JHU10WLT: Amp 2-6 GHz (Meas 16 mA, 32 mA IDS)

Measured Power Amp at $3.1 \mathrm{~V} 16 \mathrm{~mA}, 32 \mathrm{~mA}$ bias

JHU10WLT: Amp 2-6 GHz (Sonnet Simulation)

JHU10WLT: Amp 2-6 GHz (Sonnet Simulation)

JHU10WLT: Amp 2-6 GHz (Sonnet Simulation)

Sonnet EM simulation (lossless vs. Measured)

12) John Penn JHU10P24 2.4 GHz PA Test Circuits

Power Amplifiers for 2.4 GHz .
These test circuits include a design matched to the fundamental $(\mathrm{H} 1)$, another with a $2^{\text {nd }}$ harmonic short circuit (H2), and a third with an open circuit $3^{\text {rd }}$ harmonic (H3) for efficiency comparisons. The H1 and H3 designs compare well to sparameter measurements but the H 2 design did not have much gain initially. It appeared to be marginally unstable under probe measurements. Later, it was remeasured with better results but had to be overdriven to get a measurement with the NWA. Power measurements were initially taken of the H 1 and H 3 designs, and later the H 2 design was able to be remeasured and had the best efficiency. The H3 design was the worst efficiency.

PAE24 Harmonic Terminations JHU10P24 (Meas/Sim)

m9 freq $=2.400 \mathrm{GHz}$ $\mathrm{dB}(\mathrm{S}(2,1))=15.756$

m 25 freq $=2.391 \mathrm{GHz}$ dB(PAE24H1V3..S $(2,1))=14.644$

m24
freq=2.391GHz
dB(PAE24H1V3..S(1,1))=-19.09
m23
freq $=2.391 \mathrm{GHz}$
$\mathrm{dB}($ PAE24H1V3..S(2,2))=-6.393

Fundamental only match (H1)

Good comparison between measurements (solid) and Simulations (dot)

PAE24 Harmonic Terminations JHU10P24 (Meas/Sim)

PAE24H1 Meas 10 Emode 2.44 GHz 3.0V

Fundamental only Match (H1) with Good Efficiency (2.44 GHz)

PAE24 Harmonic Terminations JHU10P24 (Meas/Sim)
 m26
 freq=4.800GHz freq=5.196GHz

dB(PAE24H2V3MS2..S(2,1))=-7.102

m24
freq=2.391GHz
dB(PAE24H2V3MS2..S $(1,1))=-13.766$
m23
freq $=2.391 \mathrm{GHz}$
dB(PAE24H2V3MS2..S(2,2))=-10.396

Fundamental plus Short Circuit 2nd Harm (H2) Poor gain as measured (solid) vs. Simulations (dot) Measured slightly compressed (marginal stability!)
Simulation With Typical NL PHEMT and Measured-Similar Results.

PAE24 Harmonic Terminations JHU10P24 (Meas/Sim)

PAE24H2 Meas 10
Emode 2.44 GHz 3.0V

Fundamental plus Short Circuit 2nd Harm (H2) with Excellent Efficiency (2.44 GHz)

PAE24 Harmonic Terminations JHU10P24 (Meas/Sim)

```
freq=2.400GHz
dB(S(2,1))=15.948
```

m25
freq $=2.391 \mathrm{GHz}$
$\mathrm{dB}(\mathrm{PAE} 24 \mathrm{H} 3 \mathrm{~V} 3 . . \mathrm{S}(2,1))=14.32 \ddagger$

PAE24 Harmonic Terminations JHU10P24 (Meas/Sim)

PAE24H3 Meas 10
Emode 2.44 GHz 3.0V

Fundamental plus Open Circuit $3^{\text {rd }}$ Harm (H3) with Moderate Efficiency (2.44 GHz)

PAE24 Harmonic Terminations JHU10P24 (Meas/Sim_Son)

PAE24 Harmonic Terminations JHU10P24 (Meas/Sim_Son)

m24

freq $=2.391 \mathrm{GHz}$
$\mathrm{dB}($ PAE24H1V3..S $(1,1))=-19.096$

Fundamental only (H1)
Sonnet EM Simulation
Top-Measured Results for H 2 with measured
PHEMT show
Bottom Right—Measured Results for H2 with NL PHEMT show similar results
m23
freq $=2.391 \mathrm{GHz}$
$\mathrm{dB}(\mathrm{PAE} 24 \mathrm{H} 1 \mathrm{~V} 3 . . \mathrm{S}(2,2))=-6.39$

m25
freq $=2.391 \mathrm{GHz}$
dB(PAE24H1V3..S(2,1))=14.644

freq $=2.400 \mathrm{GHz}$ $\mathrm{dB}(\mathrm{S}(1,1))=-28.486$

m24

dB(PAE24H1V3..S $(1,1))=-19.09$
freq=2.391GHz
dB(PAE24H1V3..S(2,2))=-6.39:

PAE24 Harmonic Terminations JHU10P24 (Meas/Sim_Son)

PAE24 Harmonic Terminations JHU10P24 (Meas/Sim_Son)

Fundamental plus Short Circuit 2nd Harm (H2) Sonnet EM Simulation With Typical NL PHEMT and Measured-Similar Results. Top-Measured Results for H1, H2, H3 show unconditional stability.
Bottom-Sonnet Simulations show marginal stability at 1 and 5 GHz , need to re-measure H 2 ?

PAE24 Harmonic Terminations JHU10P24 (Meas/Sim_Son)

m26
freq $=4.800 \mathrm{GHz}$
$\mathrm{dB}(\mathrm{S}(2,1))=-0.103$
m27
freq $=5.196 \mathrm{GHz}$
dB(PAE24H2V3MS2..S $(2,1))=-7.102$ m25
freq $=2.391 \mathrm{GHz}$
dB(PAE24H2V3MS2..S(2,1))=12.021

$$
0
$$

m15

$$
\mathrm{m} 15
$$

$$
\begin{aligned}
& \text { freq=2.400GHz } \\
& \mathrm{dB}(\mathrm{~S}(1,1))=-24.454
\end{aligned}
$$

freq $=2.391 \mathrm{GHz}$
$\mathrm{dB}($ PAE24H2V3MS2..S(1,1))=-13.766

Fundamental plus Short Circuit 2nd Harm (H2) Sonnet EM Simulation
Top-Measured Results for H2 with measured PHEMT (overdriven due to stability issues)
Bottom Right-Measured Results for H2 with NL PHEMT show similar results
m23
freq=2.391 GHz
$\mathrm{dB}($ PAE24H2V3MS2.. $\mathrm{S}(2,2))=-10.396$

PAE24 Harmonic Terminations JHU10P24 (Meas/Sim_Son)

PAE24 Harmonic Terminations JHU10P24 (Meas/Sim_Son) m 9 freg $=2.400 \mathrm{GHz}$ $\operatorname{mfreq}_{\text {freq }}^{\mathrm{m} 25} .391 \mathrm{GHz}$
 dB(PAE24H3V3..S(2,1))=14.32

Fundamental plus Open Circuit $3^{\text {rd }}$ Harm (H3 Sonnet EM Simulation
Top-Measured Results for H 2 with measured PHEMT show
Bottom Right-Measured Results for H 2 with $\mathrm{NL}_{\mathrm{m}^{2}}$
PHEMT show similar results

13) John Penn JHU09PRJ "Corrected" 2.4 GHz Front End

This 2.4 GHz front end circuit was designed and tested in the fall 2009 class but had a slight flaw in the BPSK modulator. The fix was to add a 4 K ohm resistor to ground as a DC reference to the switches. The original circuit was written up in the Jan/Feb 2011 Defense Electronics Magazine. The RF front end consists of a BPSK modulator, TR Switch, power amplifier, and a low noise amplifier.

The actual gain of this circuit might be slightly higher as these small 4×15 um PHEMT based amplifiers tend to compress even at the lowest drive level (-10 dBm) of the 8510 NWA used for the measurements.

JHU09PRJ: RF Front End 2.4 GHz

Measured Receive (LNA+TRS) at 3V ~10 mA (solid-meas, sim-dot)

JHU09PRJ: RF Front End 2.4 GHz

Measured Noise Figure Receive (LNA+TRS) ~3dB at 3V ~10 mA

JHU09PRJ: RF Front End 2.4 GHz

Measured Transmit (BPSK+PA+TRS) at 3V $\sim 10 \mathrm{~mA}$ (solid-meas, sim-dot)

14) John Penn JHU10PRJ 5.8 GHz Front End

This 5.8 GHz RF front end circuit is similar to the 2.4 GHz front end designed and tested in the fall 2009. The RF front end consists of a BPSK modulator, TR Switch, power amplifier, and a low noise amplifier. At the higher 5.8 GHz frequency, the interconnect parasitics are more critical. Since this was a test circuit, additional optimization of the interconnect affects on the combined circuit was ignored. This may be why the gains tend to be lower than the simulations and also shifted somewhat in frequency.

The actual gain of this circuit might be slightly higher as these small 4×15 um PHEMT based amplifiers tend to compress even at the lowest drive level (-10 dBm) of the 8510 NWA used for the measurements.

JHU10PRJ: RF Front End 5.8 GHz

Measured Receive (LNA+TRS) at 3V ~10 mA (solid-meas, sim-dot)

JHU10PRJ: RF Front End 5.8 GHz

Measured Noise Figure Receive (LNA+TRS) $\sim 3.5 \mathrm{~dB}$ at $3 \mathrm{~V} \sim 10 \mathrm{~mA}$

JHU10PRJ: RF Front End 5.8 GHz

Measured Transmit (BPSK+PA+TRS) at 3V $\sim 10 \mathrm{~mA}$ (solid-meas, sim-dot)

15) John Penn JHU10JEP
2.4/5.8 GHz RF Front End Test Circuits

These were individual test circuits from the 2.4 GHz and 5.8 GHz RF Front End designs. All of these circuits worked as expected and were intended to "debug" any issues with the full combined RF front end circuits which both worked well. Included here are the 2.4 GHz BPSK modulator, Power Amp, and Low Noise Amp. At 5.8 GHz, the BPSK modulator, Power Amp, Low Noise Amp, and TR Switch are included. Both LNAs are biased at 3V, 3 mA and the PAs at $3 \mathrm{~V}, 7-8 \mathrm{~mA}$.

JHU10JEP: RF Front End 2.4 \& 5.8 GHz Circuits

Measured $2.4^{\circ}{ }^{\circ} \mathrm{G} \mathrm{C}^{\mathrm{GH}} \mathrm{Z}$ Circuits (BPSK, LNA, PA) at 3V

JHU10JEP: RF Front End 2.4 \& 5.8 GHz Circuits

Measured 5.8 GHzz Circuits (BPSK, LNA, PA, TRS) at ${ }^{\text {then }}{ }^{\text {tent }}$

JHU10JEP: RF Front End 2.4 \& 5.8 GHz Circuits

JHU10JEP: RF Front End 2.4 \& 5.8 GHz Circuits

Measured 5.8 GHz LNA Circuit vs. Sonnet Sim (meas-solid)

JHU10JEP: RF Front End 2.4 \& 5.8 GHz Circuits

Measured 5.8 GHz PA Circuit vs. Sonnet Sim (meas-solid)

JHU10JEP: RF Front End 2.4 \& 5.8 GHz Circuits

Test PHEMTs Fall 2010 TQPED

De-embed GSG Launch for Comparison to Measured Results Smaller PHEMTs may be overdriven with NWA (8510 at -10 dBm)

Test PHEMTs Fall 2010 TQPED

De-embed GSG Launch for Comparison to Measured Results Seems to model as 100 um wide MLIN of -50 to -100 um length! Had to vary length for other size PHEMTs/Launches

Test PHEMTs Fall 2010 D300 (6x50um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 D300 (6x50um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 D60 (4x15um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 D60 (4x15um)

$-0.1,-0.35 \mathrm{Vgs}$ Sweep 3V ~ 6, 11 mA IDS IDS
Swp Min
0.1 GHz

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 D240 (6x40um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 D240 (6x40um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 D516 (6x86um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 D516 (6x86um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 E300 (6x50um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 E300 (6x50um)

+0.52, 0.64, 0.73V Vgs Sweep
3 V ~ 10, 25, 40mA IDS

Swp Min
0.1 GHz

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 E60 (4x15um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 E60 (4x15um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 E200 (2x50um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 E200 (2x50um)

$+0.52,0.64,0.73 \mathrm{~V}$ Vgs Sweep 3V ~ 6, 16, 26 mA IDS Swp Min
0.1 GHz

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 E480 (6x80um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 E480 (6x80um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 E960 (10x96um)

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

Test PHEMTs Fall 2010 E960 (10x96um)

E960_F10
$+0.52,0.64 \mathrm{~V}$ Vgs Sweep 3 V ~ 27, 76 mA IDS

Swp Min
0.1 GHz

Uses Sonnet Simulation of GSG Launch for Comparison to Measured Results

