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This paper is concerned with the dynamical basis of Maxwell’s demon within the framework of classi-
cal mechanics. We show that the operation of the demon, whose effect is equivalent to exerting a
velocity-dependent force on the gas molecules, can be modeled as a suitable force field without disobey-
ing any laws in classical mechanics. An essential requirement for the models is that the phase-space
volume should be noninvariant during time evolution. The necessity of the requirement can be estab-
lished under general conditions by showing that (1) a mechanical device is able to violate the second law
of thermodynamics if and only if it can be used to generate and sustain a robust momentum flow inside
an isolated system, and (2) no systems with invariant phase volume are able to support such a flow. The
invariance of phase volume appears as an independent factor responsible for the validity of the second
law of thermodynamics. When this requirement is removed, explicit mechanical models of Maxwell’s

demon can exist.

PACS number(s): 05.70.Ln, 05.40.+j, 05.90.+m, 03.20.+1

I. INTRODUCTION

In this paper, we treat Maxwell’s demon [1,2] as a
purely mechanical device, and seek to find the dynamical
basis for the demon from the perspective of classical
mechanics. Since the effect of Maxwell’s demon is
equivalent to exerting a velocity-dependent force on the
gas molecules, we focus on what kind of force field is
needed to implement this effect. The starting point is the
mechanical system composed of N interacting point par-
ticles:

mt,=F/(r;,...,rp,0,...,Ty), (1)
where m; and r; are the mass and position of the ith par-
ticle. Within this framework, we will show that the effect
of Maxwell’s demon can be implemented by using suit-
able velocity-dependent force fields, and an essential re-
quirement for the mechanical model of Maxwell’s demon
is that the phase-space volume of the system must be
noninvariant, or not preserved during time evolution.

In the following sections, we will first construct a
specific type of mechanical models of Maxwell’s demon
by using velocity-dependent force fields. These systems
all have noninvariant phase volume. In order to examine
whether the noninvariance is a general requirement, we
will first formulate the second law of thermodynamics in
an equivalent form which only involves nonvanishing and
robust momentum flows. Because this formulation is
readily expressed in terms of mechanics, we will be able
to show rigorously that in systems with symmetric energy
with respect to momentum reversal, violation of the
second law requires noninvariance of phase volume.

It is interesting to note that this conclusion from our
mechanical approach is consistent with that from
information-theoretic or computational approaches
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[2-6], where it has been pointed out that the contraction
of phase volume is needed for the operation of Maxwell’s
demon due to energy dissipation caused by information
erasure [4].

It should be emphasized however that our models of
Maxwell’s demon perform fully automatically as “auto-
nomous” mechanical systems without actually dissipating
energy. In our approach, there is no explicit formulation
of how information about the movement of the particles
is gathered, processed, and used to control a door of some
kind. Instead, we consider how the motion of the parti-
cles is affected by the velocity-dependent force fields such
that the overall effects of Maxwell’s demon are achieved.
Because we always choose the force to be perpendicular
to the velocity, keeping the kinetic energy of the particles
unaffected, the mechanical demon does not need continu-
ous input of free energy while it works.

II. MECHANICAL MODELS OF MAXWELL’S DEMON

A. A simple example

Consider a modified version of Maxwell’s pressure
demon (see Ref. [2], p. 6): Imagine a torus-shaped con-
tainer is filled with gas and divided by a special “dia-
phragm” which allows gas molecules to pass only in one
direction [Fig. 1(a)]. It is not difficult to see that a macro-
scopic momentum flow will arise and circulate clockwise
indefinitely inside the torus regardless of the initial state
of the system (with possible exceptions of measure zero).
This flow emerges automatically as long as the total ki-
netic energy is nonzero, and is robust against any exter-
nal disturbances. We call such sustaining and robust
momentum flow spontaneous.

The operation of the diaphragm leads to violation of
the second law of thermodynamics. For instance, we can
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FIG. 1. (a) A Maxwell’s demon as a diaphragm (shaded area)
which allows gas molecules approaching from the left to pass
through freely but reflects molecules approaching from the
right. (b) Uniform magnetic fields with opposite directions in
the two adjacent regions allow a positively charged particle to
pass through along the midline via a piecewise circular path
from left to right, but not reversely.

keep the torus in thermal contact with a single heat reser-
voir and extract work from the kinetic energy of the flow,
say, by a small turbine. The joint operation of the dia-
phragm and the turbine will convert heat into work
without other effects: This is a perpetual motion machine
of the second kind.

Obviously even a small probability o <<1 favoring the
gas molecules to pass through the diaphragm in one
direction is sufficient to generate the momentum flow.
When probability a is very small, the maximum rate of
entropy reduction by the operation of the diaphragm can
be estimated as follows. Since the speed u of the nonvan-
ishing macroscopic momentum flow along the longitude
direction of the torus is also very small, the number of
gas molecules passing through a unit area of the dia-
phragm during a unit time approximately equals

an f:(m /27kT)2exp( —mv?/2kT v dv

=an(kT /2am )'"?,

where n is the number density of the gas molecules. On
the other hand, this number flux should also equal the
macroscopic speed u times the number density n. Thus

u~alkT /2em )12 . (2)

When the momentum flow is exploited to do work to the
environment, e.g., via a turbine, the entropy of the system
will be decreasing at the rate dS/dt =—T ~'dW /dt. Ap-
parently, the rate for the work being extracted from
the kinetic energy of the flow submits to
0<dW /dt <nuA(mu®/2), where A is the total area of
the diaphragm. Using (2), we can get

—(k /4m)a*nu A <§<0 .

Note that in Fig. 1(a), the volume of the phase space is
not preserved. In fact, the operation of the diaphragm
implies contraction of the phase volume, because trajec-
tories passing through the diaphragm may merge with
those being reflected from the opposite side of the dia-
phragm. The noninvariance of the phase volume turns
out to be of general importance. The dynamics of this
system also happens to be irreversible, but it will become
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clear later that this feature is not essential.
It is important to realize that the effect of the dia-
phragm on the motion of the gas molecules is functional-

1y equivalent to a velocity-dependent force field. Figure

1(b) is an example showing how a Lorentz force can serve
as a field barrier which allows a charged particle to pass
only in one direction. However, this is true only in the
local region near the midline: If we also take into ac-
count the container walls at the periphery of the magnet-
ic barrier (not illustrated in Fig. 1), it can be seen that the
particle may leak through the barrier in the opposite
direction via a sequence of collisions along the container
walls. The net flow will be exactly zero no matter how
the magnetic fields are arranged. This conclusion follows
directly from our general theorem in Sec. III and the fact
that the Lorentz force still preserves the phase volume.

B. “Implementation” of the demon
using velocity-dependent force

Following the example of the pressure demon in Fig.
1(a), now we use a velocity-dependent force field to imple-
ment a barrier similar to the special diaphragm which al-
lows particles to pass through preferably only in one
direction. We consider the point-particle system (1), and
choose the force to be perpendicular to the velocity, just
like the Lorentz force, so that the total energy of the sys-
tem is automatically conserved.

The concrete form of the force can be specified with
much freedom without the danger of violating any laws
in classical mechanics. We start with the simple case
where the velocity v=(vx,vy,0) is restricted on the x-y
plane. We modify the formulation of the Lorentz force
and let the force be (in arbitrary units)

F(v)=(vXZ)vsind , (3)

where 0 is the angle between v and the x axis, v=|v]| is
the speed, and Z is the unit vector of the z axis. Note that
expression (v XZ) is a Lorentz force, and the scalar factor
(v sinf) only modifies the magnitude of the force. The
direction of the force is reversed when the scalar factor is
negative. Obviously F(v) is still perpendicular to v.
Since F(v) always points toward the positive x axis [Fig.
2(a)], we call % the attracting direction of the force field.
The symmetry of the force field with respect to the x axis
is evident in Fig. 2. It is also clearly seen by rewriting
Eq. (3) as

F(v)=vX(ZXv) .

Evidently, this model can be immediately generalized
into three dimensions by assuming the axial symmetry of
F(v) around x.

Now consider the trajectory of a single particle of unit
mass within a uniform force field specified by (3). The
speed v of the particle is conserved in the motion. By
v=F(v), we get

oy=v}, = @)

==p.0, . (5)

v Uy

y

To compute the trajectory, it is convenient to use & as 2
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FIG. 2. (a) Dependence of the force given by (3) upon the
direction of the velocity (represented by the radial arrows). (b)
Trajectories starting from the origin approach the asymptote
y=0(—m<0y<w). When 6,>7/2 or <—7/2, x attains its
minimum In|sin@,| at y =6,— /2 or 8+ m/2. (c) Uniform field
between the dashed lines with the attracting direction pointing
downward allows all particles approaching from above to pass
through, but not the reverse, except the “leakage” caused by
nearly perpendicular impinging.

parameter. From v, =vcos, v,=vsin6, and Eqs. (4)
and (5), we can obtain O=—v si.n9. ~ Thus,
dx /d§=v, /0=—cotf, and dy/d6=v,/0=-=1. For
the initial conditions x =y =0 and 6=0,, the solution is

x =In|sinf,| —1In|sin8| , y=6,—6 .

The trajectory depends only on the initial direction 8, of
the velocity, but not on the speed v. It always approaches
the direction of X [Fig. 2(b)].

It is interesting to note that similar equations were also
derived in a Lorentz gas model with a time-varying
thermostatting force [7]. It follows from (4) and (5) that
ax /3x +4dy /3y +av, /v, +3v, /dv,=—v,. By Liou-
ville’s theorem, the phase volume dx dy dv,dv, is ex-
panding when v, <0 and contracting when v, >0. For
trajectories going along the attracting direction, the
phase volume is contracting (see also Ref. [7]).

Figure 2(c) illustrates how this force field is used to im-
plement the special diaphragm of the pressure demon.
Whereas a particle approaching the field barrier down-
ward (in the attracting direction of the field) can always
pass through, a particle approaching from below can pass
the barrier directly only when |sinf,| <exp(—w ), where
w is the width of the field barrier and, as before, §, is the
angle between the approaching velocity and the attract-
ing direction. This mechanism still works when we add
in elastic collisions among the particles and between the
particles and the container walls. In fact, within the
force field the component of the total momentum along
the attracting direction never decreases regardless of the
interactions among the particles, because the interactions
conserve the momentum while Eq. (4) ensures 9, >0 for
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each individual particle. In contrast to the Lorentz force
mechanism in Fig. 1(b) where a particle may collide with
a container wall again and again along the antiattracting
direction, now a particle will leave the wall after a single
collision to approach the attracting direction [8].

C. Modified models

In the model considered in the preceding section, there
exists weak “leakage” of particles along the antiattracting
direction due to nearly perpendicular impinging. Al-
though the leakage can be made as small as desirable by
increasing the width of the field barrier, we point out that
it is possible to get rid of the leakage altogether by using
force of the form

F(v)=(vX2)A()B(O) . (6)
Consider the special case

F(v)=(vXZ)v tan(6/2) . )]

Now the situation is similar to that in (3) and X is still the

attracting direction, but in the antiattracting direction
(60— L), instead of approaching 0, the magnitude of the
force now approaches infinity. This will prevent the leak-
age [9]. The trajectory now becomes

x =co0s8p—cosf+In(1—cosb,)—In(1—cosh) ,

- y=0,—0+sinf,—sinb .

As the initial angle 6,— &, the trajectory approaches a
limit curve, whose minimum of x has the finite value

Xpin=In2—1<0 (8)

at 6=xw/2. A field barrier thicker than 1—In2 will
practically stop the leakage.

The original form of Maxwell’s demon, the speed
demon, can also be implemented by a force field of the
type (6). It is helpful to notice that in a uniform force
field of this type, the geometric shape of a trajectory is
determined only by the function B(0). Because the speed
v is conserved, the function 4(v) serves only as a con-
stant scaling factor for the equations of motion, and thus
also as a scaling factor for the trajectory without altering
its geometric shape. In the special case 4(v)=v, such as
in (3) and (7), the trajectory is independent of the speed v.
We can use this special case as a reference. When
A(v)¥v, the trajectory is geometrically similar to the
reference, but the size is scaled by a factor

v/ A(v).

As a consequence, if v / 4(v) is an increasing (decreasing)
function of v, then the trajectory has a larger (smaller)
size for higher (lower) speed of the particle.

Figure 3 shows how this property is exploited to imple-
ment the speed demon. Now Eq. (7) is the reference case
with A(v)=wv. In this case, a particle can penetrate a
barrier up to a distance of 1—In2 [perpendicular-
impinging limit, see expression (8)]. For an arbitrary
function A(v), this distance becomes (1—In2)v/4(v)
due to the scaling property. Therefore, in Fig. 3 a parti-
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FIG. 3. A barrier composed of two uniform force fields of
type (6) allows a particle to pass downward only if its speed
v <1, and upward only if v > 1. Inregion I: A4(v)=v? and the
attracting direction of the ﬁeld is upward. In region II:
A(v)=1, and the attracting direction is downward. In both re-
gions, B(0)=tan(6/2). The trajectones shown are the limit
curves for perpendicular impinging along the antiattracting
directions. Numbers refer to speeds. w=1—1In2.

cle may pass through barrier IT where 4(v)=1 only if its
speed v >w /(1—In2). Orice it has passed barrier II, it is
along the attracting direction of barrier I and thus has no
problem going outf. Similarly, a particle may pass
through barrier I followed by barrier II only if its speed
v <(1—In2)/w. The overall effect is to favor high speed
particles to pass upward and low speed particles to pass
downward.

Notice that broken time-reversal symmetry is not
necessary for the operation of Maxwell’s demon, al-
though in Fig. 1(a) the operation of the diaphragm is ir-
reversible. The example of Fig. 2 has reversible dynam-
ics. In general, the system with velocity-dependent force
of the general form (6) is time reversible if and only if
F(—v)=F(v), which is equivalent to

B(0+m)=—B(0),

where the function B(8) is of period 27. As for the in-
variance of phase volume, it follows from Liouville’s
theorem that for a single particle in a field (6), the phase
volume dx dy dv,dv, is preserved if and only if B(8) is a
constant.

III. IS NONINVARIANCE OF PHASE VOLUME
NECESSARY FOR MAXWELL’S DEMON?

A. Spontaneous momentum flow (SMF)

The mechanical models of Maxwell’s demon con-
sidered in the previous sections all have noninvariant
phase volume. Is this noninvariance an accidental
feature or a general requirement?

One closely related result comes from the computation-
al approach: It was shown that erasure of information is
needed to prepare the memory of Maxwell’s demon for
the next round of computation [4]. The erasure of infor-
mation implies energy dissipation, which in turn implies
phase volume contraction. However, this mechanism of
phase volume contraction is different from that in our
mechanical models, where the energy is always con-
served. Another difference is that in our models the
demon is implemented simply as velocity-dependent force
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fields, which do not have internal states for information
storage and processing. It seems rather natural to regard
these models as purely mechanical devices.

For a rigorous mechanical approach to the problem of
noninvariance of phase volume, we will elaborate the
concept of spontaneous momentum flow first introduced
in the model of Fig. 1. In general, by spontaneous
momentum flow (SMF), we mean a sustaining and robust
momentum flow inside an isolated mechanical system.
Robustness is an essential feature of SMF. A purely sus-
taining momentum flow needs not be a spontaneous one.
For instance, when a hard-sphere gas is confined by a
spherical container with a perfectly smooth and elastic
surface, a momentum flow is also expected to sustain if

.the total angular momentum

L= 3 p; X1;,
i

an invariant of this system, is initially nonzero. Unlike
the torus system of Fig. 1(a), this flow cannot survive
external disturbances. It is unable to restore itself once it
is 'destroyed.

It will be shown later that the second law of thermo-
dynamics holds if and only if SMF does not exist. The
concept of SMF is an imaginary one since no known
physical systems exhibit it. Nevertheless, SMF will prove
to be a very helpful theoretical tool. On the one hand,
the second law can be formulated equivalently in terms of
SMF. On the other hand, the descriptive definition of
SMF is readily reformulated in rigorous mechanical
terms.

For an exact formulation of SMF, consider the
mechanical system composed of N interacting point par-
ticles. Let ¥ be a fixed spatial region. The total momen-
tum inside V at a given time is

N
Jp(8)= 3 pixp(r)), )

i=1

where r; and p; =m;i; are the position and momentum of
the ith particle at that time, and y,(=0,1) is the indica-
tor function of region V. Obviously the total momentum
J,(§) is a function of the state of the system
§=(qy;- - . 1455P, - - -»Ps) With s=3N.

We say that there is a spontaneous momentum flow in
the system if the long-term average

1 pr
Jp=1lim —| J (T, §)dt 10
p = am fo v(T:5) (10)

is the same for all initial states { from the same energy
surface 2 (with a possible exception of the measure zero),
and is nonzero for some spatial region V. Here T,{
denotes that state of the system at time ¢ starting from
the initial state {EX. :

In this formulation, the nonvanishing long-term aver-
age captures the sustaining feature of SMF. The indepen-
dence of the average upon the initial state implies the
robustness of SMF, because the same flow should appear
whenever the system attains the same energy. It is not al-
ways necessary to strictly require that the long-term aver-

age be the same for all initial states from the whole ener-
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gy surface =. Depending on the nature of the external
disturbances and the structure of the system, the collec-
tion of all permissible initial states in the presence of dis-
turbances may form only a subset of =. Although the re-
quirement for the independence all over X seems ap-
propriate for the examples considered in this paper, it is
understood that a generalized formulation of SMF is pos-
sible.

The momentum flux at a single point can be defined as

the limit of j=limJ, /¥ as V shrinks to zero around that
point, if the limit exists. For the simple example con-
sidered in Sec. II A [Fig. 1(a)], we can estimate that
|jl ®nmu with u being given by (2).

A requirement on the rate of convergence should also
be included in the exact formulation of SMF. Consider
the difference defined by

Dyn )= |- [TIATLE T,

By (10) we know that D (7,{)—0 as 7—» o for each fixed
initial state £& 3. But there is no restriction on how the
rate of convergence varies with different initial states.
Roughly speaking, it is desirable to ensure that a stable
momentum flow can be established in a practically finite
time for all initial states. It is too strong to require that
the convergence be uniform across the energy surface Z,
namely, there exists a function &(7) such that &(r)—0
monotonically as 7— o, and

Dy(r,&)<elr) - (11

always holds for all {EZ. For our future consideration,
we need only require

lim [ Dylr,0)du(¢)=0, (12)

which includes the uniform convergence (11) as a special
case. Here p is the measure on the energy surface and
p(Z) is finite. We conjecture that our exact formulation
of SMF with the weak requirement (12) applies to the
models considered in the previous sections. Further-
more, if SMF is physically meaningful, an upper bound
for the averaged difference [ 3Dy (7,£)du(&) should exist
as a function of the time span 7, and this function should
approach zero reasonably fast as 7— 0. i

B. Formulation of the second law by SMF

From the specific examples in the previous sections, we
have already seen that Maxwell’s demon can be used to
generate SMF. We will show that there is a general rela-
tionship between SMF and possible violations of the
second law: (i) the existence of a perpetual motion
machine of the second kind implies the existence of SMF;

and (ii) the existence of SMF implies the existence of a

perpetual motion machine. Due to the descriptive nature
of the original formulations of the second law, we can
only use the descriptive definition of the SMF in the fol-
lowing consideration.

Part (i). Because different formulations of the second
law are equivalent, let us stick to the Kelvin-Planck state-
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ment and suppose there exists a perpetual motion
machine which can extract heat from a single reservoir
(say, a water tank) and convert it into work without other
effects. To show that statement (i) is true, we need only
to show that we can use this machine to generate SMF.
First, the work produced by this machine can always be
applied to start and maintain a momentum flow, for in-
stance, a circular water current in the tank, with the aid
of some stirring apparatus [Fig. 4(a)]. The heat generated
by the stirring goes back to the water tank (the heat
reservoir). The large system composed of the perpetual
motion machine, the water tank, and the stirring ap-
paratus is itself an isolated system where (at least in the
tank) a momentum (water) flow will persist. Because the
perpetual motion machine is expected to perform robust-
ly, this flow is also robust against external disturbances.
Since this flow is both sustaining and robust, it is there-
fore a SMF. '

Part (ii). To show that statement (ii) is true, let us sup-
pose there exists an isolated system exhibiting SMF. We
take it for granted that we can always extract work from
the kinetic energy of the flow, say, by a small turbine
[Fig. 4(b)]. To regain the kinetic energy of the flow, just
keep this system in thermal contact with a single heat
reservoir. Since the spontaneous flow in the system is ex-
pected to persist regardless of the disturbances induced
by the turbine and contact with the reservoir, the joint
operation of the system and the turbine will convert heat
first into momentum flow and then into work without
other effects. This violates the Kelvin-Planck statement
of the second law.

We have therefore shown that the Kelvin-Planck state-
ment of the second law is equivalent to the statement in
any isolated system, no spontaneous momentum flow ex-
ists. Because SMF can be formulated rigorously in terms
of mechanics, we will be able to consider the dynamical
conditions required for violating the second law via SMF
by any mechanical devices, which include Maxwell’s
demon as a special case.

C. A nonexistence result

Our theorem about the nonexistence of spontaneous
momentum flow is as follows. The point-particle system
(1) cannot exhibit SMF if (i) its energy function E is sym-
metric under momentum reversal, namely,

(a) (b)

FIG. 4. Schematic diagrams showing that (a) a perpetual
mobile (PM) can be used to generate spontaneous flow; and con-
versely, (b) a system exhibiting spontaneous flow can be used to
‘build a perpetual mobile. See text.



E(Z)=E(), 13
where £=(q,,... »ds» —P1>- - - »—Dg) denotes the state
obtained by inverting the momenta in state
§=(qy,...,45P15. - - »p); and (ii) the phase volume

dQ=dq, ‘- dq,dp, - - - dp, is invariant during time evo-
lution, and the total phase volume is finite for finite ener-
gy-

The energy function E need not coincide with a Hamil-
tonian function of the system. But in the case where the
energy function is also a Hamiltonian, Eq. (13) is the con-
dition for the time reversibility of the system [10]. Note
that energy function of the general form

E()= 3 p}/2m;+dlqy,...,q,)
i=1

has momentum-reversal symmetry. The corresponding
system need not be conservative. For example, velocity-
dependent forces, such as the Lorentz force, can also be
included as long as they do not alter the energy. In fact,
all the demon models considered in Sec. II have an ener-
gy function of this form.

From condition (ii), we know that the microcanonical
measure {4 on the energy surface given by

du=d3/|VE|
]—1/2

=d3 l S
1
with d = being the area element on the energy surface =,
is finite and invariant during time evolution. Further-
more, it is easily seen that measure y is symmetric with
respect to momentum reversal in the sense that for all
measurable 4 C2

w(A)=p(4), (14)

2 2

3E
dg;

AE
ap;

where A={C:LE 4]}.

It should be mentioned that the mere existence of a
symmetric and invariant measure on the energy surface is
sufficient for proving the theorem. No other details
about the measure are necessary. Condition (ii) can
therefore be generalized as follows.

(ii') There exists a finite measure y on the energy sur-
face = such that g is invariant during time evolution and
is symmetric with respect to momentum reversal [Eq.
(14)].

To prove the theorem, suppose there exists a system
which exhibits spontaneous flow while having an invari-
ant, symmetric, and finite measure ¢ on 2. According to
our rigorous formulation, we have

- 1 pr
Tp=lim —
p= lim — fo I (T, E)dt#0 (15)

for some V¥, and ?V is the same for all initial states € 3.
Here T, is the group of transformations on the energy
surface 2 with T,T, =T, ,, for all real numbers a and b.
Moreover, the difference
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1 T =
Dy(ng)=|— [TIAT,Hdt =Ty
submits to
lim szy(T,é')d[.L(é')-"—‘O.

Thus, given an arbitrary £>0, we can choose 7 large
enough such that

szV(r,g)dy(§)<s. (16)
On the other hand,
S Dyin)dp(e)

I

1 T =
~ [ J 1T Odt du )Ty

>

1 pr =
= fo Y AT,)dt—T,

du(g)’

; (an

where, as usual, u(X)=1 has been assumed for simplicity.
Changing the order of the integrations, we first consider

| fzm T,0)du(&)= [ r_ s I (EEUT_ L)
= fzJV(§)dy(§) . (18)

Here the first equality is generally true, and the second
equality holds because T, preserves the measure p. It fol-
lows from definition (9) that

J(D)==T,(). (19)

From Eq. (13) we know that £E S implies E X, and vice
versa. The symmetry of the energy surface and symme-
try of the measure u [Eq. (14)] together with Eq. (19) im-
ply that the last integral in Egs. (18) cancels out and
equals zero. Therefore the right-hand side of expression
(17) equals |¥,,|. Combining (17) with (16) yields

e> szV(T,g)d,u(g)ZlfVI.

The arbitrariness of € contradicts the assumption J,7-0.
Hence T, =0 for all spatial regions V. This completes the
proof.

It is important to note that our theorem does not rely
on any assumption of the ergodicity of the system. In the
following section, we will actually’' need to apply the
theorem to nonergodic systems. If the system is ergodic,
however, the theorem still holds, and the proof becomes
simpler. One can then replace the time average in (15) by
the average on the energy surface and thus directly goes
to the last step of (18).

D. Remarks and conclusions

The purpose of introducing spontaneous momentum
flow is to transform the original Kelvin-Planck statement
concerning a perpetual motion machine of the second
kind into an equivalent formulation which involves only
an isolated mechanical system. Although the perpetual

mobile itself is expected to be an open system which con-
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verts heat into work, it can be incorporated into a large
system which is isolated and exhibits SMF [cf. Fig. 4(a)].
We have shown that the existence of the perpetual mobile
implies the existence of SMF, and vice versa.

Because an exact formulation of SMF can be expressed
solely in terms of mechanics, we are able to prove the
nonexistence of SMF under the assumption of symmetric
energy with respect to momentum reversal. The con-
clusion is that any point-particle systems with invariant
phase volume cannot exhibit SMF. As a consequence,
such systems cannot serve as Mazxwell’s demon (see
below). If we want to model Maxwell’s demon as
mechanical systems with symmetric energy, as in the
models in Sec. II, then the noninvariance of phase
volume is a necessary requirement. For comparison, a
system based on Lorentz force and potential force, as in
Fig. 1(b), cannot serve as Maxwell’s demon, because
phase volume is preserved by its dynamics:

myv=qvXB(r)—qVe(r) .

To show why it follows from the nonexistence theorem
that Maxwell’s demon itself must have noninvariance of
phase volume, suppose we can implement Maxwell’s
demon as a mechanical system with invariant phase
volume. This will lead to contradiction. Obviously we
can use the demon to construct a perpetual motion
machine of the second kind by adding necessary ap-
paratus which, as usual, are themselves conservative
mechanical systems with invariant phase volume. Then,
as in Fig. 4(a), we can add in more conservative mechani-
cal parts to the perpetual mobile, like the water tank and
stirring apparatus, to get a large system exhibiting SMF.
Since the phase volume of each subsystem is preserved,
the phase volume of the large composite system must also
be preserved. The existence of SMF in this system con-
tradicts our theorem.

IV. DISCUSSION

The theorem about the nonexistence of spontaneous
momentum flow stresses the strong connection between
invariance of phase volume and the second law of ther-
modynamics. Not surprisingly, the results are consistent
with the conventional approach of equilibrium statistical
mechanics, where the preservation of the phase volume
by Liouville’s theorem is usually considered as the start-
ing point for its basic postulate on equal a priori probabil-
ity.

The aforementioned connection, however, is not al-
ways obvious. For example, it has been suggested that
some integrable or nearly integrable systems might be
used to violate the second law of thermodynamics, be-
cause according to the Kolmogorov-Arnold-Moser
(KAM) theorem those systems can survive the presence
of weak perturbations without going into chaos [11]. Our
nonexistence theorem practically rules out this possibili-
ty, because the KAM theorem [12] concerns perturbation
on Hamiltonian systems, where phase volume is always
preserved.

Another aspect of the connection between the invari-
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ance of phase volume and the second law is the existence
of mechanical models of Maxwell’s demon when phase
volume is not preserved. Although our models of
Maxwell’s demon do not disobey any laws in classical
mechanics and the dynamics of the model in Sec. IIB
bears formal resemblance to that of the Lorentz gas mod-
el with isokinetic thermostatting force [7], they are ap-
parently not constructed as real physical systems which
violate the second law. Nonetheless, the models are help-
ful to illustrate the fact that the validity of the second law
relies on the dynamics of the underlying mechanical sys-
tems. This validity cannot be justified by the laws of clas-
sical mechanics alone. Invariance of phase volume ap-
pears as an additional factor which is responsible for this
validity. In the hypothetical case where phase volume is
not preserved, possible violation of the second law still
cannot be ruled out theoretically. Looking from another
angle, if the second law is taken as a fundamental as-
sumption, then the invariance of phase volume may be
considered as a constraint imposed by the second law on
the allowable dynamics of the mechanical systems.

Finally, we will provide a rather intuitive argument for
the general relationship between SMF and phase volume
contraction. The basic idea is that the states of the sys-
tem corresponding to SMF, if it exists, are expected to
form an attractor in phase space due to the robustness of
SMF. For a more formal consideration, suppose there is
an isolated system exhibiting spontaneous flow. Let = be
the energy surface and F CZ be the collection of all states
that specify an instantaneous spatial distribution of mo-
menta close to that of the long-term average limit. Al-
though the exact meaning of “close” is undefined here,
we expect

ulF)<<1

because most states on the energy surface = should corre-
spond to thermodynamic equilibrium rather than to a

-flow state. Here u(2)=1 is assumed. But F is also ex-

pected to be an “attractor” on 3, namely, starting from
an arbitrary initial state {EZX, after a long time ¢ there
should be a large probability p(=1) for the system to be
in a flow state, or T,{ EF. The stability of the probability
demands that

limu(GNT_,F)/u(G)=p
t—> o

for all measurable G C= [13]. We need only consider the
simple situation G =X and get

lim pu(T _,F)=p=1>>u(F) .

t—» 00

This requires u(T_,F)>>u(F) for large t. Hence the
phase volume must be contracting somewhere surround-
ing F. In other words, we have shown that the existence
of SMF implies contraction of phase volume, which con-
clusion is consistent both with our results in the previous
sections and with the results of the computational ap-
proach [4].
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