ABSTRACT

This dissertation presents a suite of field observations, flume measurements, and numerical models investigating the response of channel beds to an increased sediment supply. Monitoring the Sandy River, Oregon following removal of the Marmot Dam provides measurements of response to a five-fold sediment supply increase. Where supply increase was the greatest, bed slope became steeper and bed topography became less variable. Reaches with less aggradation responded primarily with bed surface fining. During the initial stages of deposition the bed configuration bore little resemblance to the pre-removal configuration, however, after one year, the planform regained the pre-removal pattern.

In a recirculating field-scale flume with alternate bar topography, sediment supply was increased by manually augmenting the sediment supply in two steps such that the final bed transported three times as much as the initial bed. The initial and final bed topography and texture were very similar and included long stationary alternate bars. The transient bed was very different, dominated by several scales of shorter wavelength migrating bedforms. Further, the adjustment in topographic and textural patterns continued after the bed slope and mean sediment transport had approached steady state.

A one-dimensional (1-D) morphodynamic model predicted steady state slope and transport rates for the flume experiments, but it over-predicted the rate of adjustment. Comparison of 1-D model results with flume observations demonstrated the importance of 2-D adjustments related to the spatial variability of topography and texture.

The ensemble of field, flume, and numerical models highlight four bed responses to sediment supply – changes to the mean and distribution of both bed topography and texture. Adjustments can operate on different time scales, with grain size most likely to respond first. Spatial patterns of topography and texture can adjust to convey an elevated sediment supply without an increase in bed slope. Where slope increases are the dominant response, spatial patterns of topography and texture may moderate the slope effects, introducing systematic errors in one-dimensional model predictions.
Advisor

Peter R. Wilcock
Department of Geography and Environmental Engineering
Johns Hopkins University

Committee Members

Peter R. Wilcock
Department of Geography and Environmental Engineering
Johns Hopkins University

William P. Ball
Department of Geography and Environmental Engineering
Johns Hopkins University

Robert A. Dalrymple
Department of Civil Engineering
Johns Hopkins University
TABLE OF CONTENTS

Abstract ..iii

Table of Contents ..vii

List of Tables ..xi

List of Figures ..xiii

Acknowledgements ...xvii

Chapter 1 – Introduction, Background, Framework ...1
 1.1. Bed Adjustments to Increased Sediment Supply .. 1
 1.2. Previous Work ...4
 1.3. Study Plan ...7

Chapter 2 – Field Measurements of Bed Response to Increased Sediment Supply
 After Removal of Marmot Dam, Sandy River, Oregon ..11
 2.1. Setting ... 11
 2.2. Data Collection & Processing ...15
 2.2.1. Study Reaches ... 15
 2.2.2. Topography and Grain Size ...18
 2.2.3. Sediment Transport ...20
 2.3. Sediment Budget ...23
 2.3.1. Upstream Inputs .. 23
 2.3.2. Reservoir Evacuation .. 25
 2.3.3. Channel Storage .. 25
 2.3.4. Downstream Sediment Flux ...28
 2.3.5. Error Terms ..28
 2.4. Bed Adjustments ...29
 2.4.1. Downstream Reaches ..29
 2.4.2. Dam Reach ..29
 2.5. Discussion ...37
 2.5.1. Sediment Budget ... 37
 2.5.2. Channel Adjustments ... 38
 2.5.3. Relative effect of different bed adjustments ..41
 2.6. Conclusions ..44

Chapter 3 – Experimental Study of the Response to Increased Sediment Supply
 of a Channel with Alternate Gravel Bars ...47
 3.1. Methods ...47
 3.2. Observations ...52
 3.2.1. Topography ..52
 3.2.2. Bed Texture ..56
3.3. Discussion

3.3.1. Topography Adjustments ... 57
3.3.2. Stress Adjustments .. 65
3.3.3. Bed Texture Adjustments ... 68
3.3.4. Role of Bed Adjustments in Changing Transport Capacity 70
3.3.5 Timing of Adjustments .. 72

3.4. Conclusions

Chapter 4 – Evaluating Topography and Texture Response to an Increase in Sediment Supply ... 75

4.1. Methods... 76
4.1.1. Strategy for the Numerical Experiments .. 76
4.1.2. One-dimensional Numeric Mophodynamic Model 78
4.1.3. Two-dimensional Numeric Hydraulic Model 82
4.1.4. Grain Size Information ... 83

4.2. 1-D Model Performance ... 85

4.3. 2-D Effects on Transport Rate ... 91
4.3.1. Spatial Variability .. 91
4.3.2. Stress and Grain-size Correlation ... 94

4.4. Time Scales of Bed Adjustment ... 96
4.4.1. Numerical Experiments ... 97
4.4.2. Adjustment Times ... 99
4.4.3. Factors Affecting Adjustment Times ... 101

4.5. Conclusions .. 103

Chapter 5 – Summary and Synthesis; Patterns and Timescales of Bed Response to an Increase in Sediment Supply 107

5.1 Summary of Observations .. 108
5.2. Bed Adjustments .. 110
5.3. Conceptual Model .. 113
5.3. Conclusion .. 118

Notation .. 121

Bibliography .. 123

Curriculum Vita .. 131
LIST OF TABLES
Table 1. Summary of flume experiment. ... 49
Table 2. Shields number response for constrained runs. .. 70
Table 3. Matrix of numerical experimental runs. .. 77
Table 4. Comparison between flume experiments and 1-D numerical simulation. 86
Table 5. Bed stress and sediment transport rates of 1-D and 2-D models 93
Table 6. Relative effects of slope increase versus grain size fining 96
LIST OF FIGURES

Figure 1. Overview map of the Sandy River Basin. ..12
Figure 2. Discharge for USGS gage 14137000, Sandy River near Marmot.13
Figure 3. Pre- and post-removal photographs of Marmot Dam.14
Figure 4. Overview of the Dam Reach. ..15
Figure 5. Overview of the lower study reaches. ..16
Figure 6. Sandy River bed-material grain size measurements.17
Figure 7. Sediment transport measurements at the Brightwood Site.22
Figure 8. Sediment budget for the first two years after dam removal.24
Figure 9. Net annual sediment accumulation and evacuation for all study reaches.26
Figure 10. Map of elevation changes in the Dam Reach. ..27
Figure 11. Longitudinal profile of the Dam Reach. ..30
Figure 12. Channel waterline and planform description immediately below the dam site. ..32
Figure 13. Cross section profiles at the USGS cableway ..34
Figure 14. Distribution of bed heights in the Dam Reach ..35
Figure 15. 2007 bed heights plotted against 2009 bed height36
Figure 16. Bed Material Load in the Dam Reach ..38
Figure 17. Photographs of river bed before and after dam removal.42
Figure 18. Flume experiment grain size distribution. ..50
Figure 19. Comparison of point count and automated measures of grain size.52
Figure 20. Time series of bed adjustment during the flume experiments.53
Figure 21. Longitudinal profiles of the flume bed. ...55
Figure 22. Flume bed topography. ..58
Figure 23. Flume bed texture. ...59
Figure 24. Cumulative frequency distribution of bed heights.60
Figure 25. Locations of bars and pools throughout the flume experiment.62
Figure 26. Transition matrix between bars and pools for initial and final beds.63
Figure 27. Frequency analysis for bed topography and sediment flux.64

Figure 28. Patterns of alternate bar development in the bar building experiments of Ikeda [1983] ..66

Figure 29. Flume bed stress distribution. ...68

Figure 30. Flume bed stress. ...69

Figure 31. Grain size distributions used in numerical models. ..76

Figure 32. Predicted and observed results for sediment supply experiments.87

Figure 33. Sediment transport computed in different numerical models.93

Figure 34. Example 1-D morphodynamic model output. ..98

Figure 35. Adjustment times (T_{95}) for sediment flux, bed slope, and grain size99

Figure 36. Frequency distribution of adjustment times. ...100

Figure 37. Dimensionless adjustment time as a function of dimensionless sediment transport rate. ...103

Figure 38. Predicted and observed adjustment times. ..104

Figure 39. Conceptual model of bed adjustment. ...115
ACKNOWLEDGEMENTS

I literally could not have done this research without the combined contributions of dozens of individuals both in the field and in the laboratory.

Much of the field data was collected by undergraduate interns from the National Center for Earth-surface dynamics: Viviana Berrios, Kimber Cooks, Ramsey Coronado, Kim Devillier, Diana Di Leonardo, Carl Ekstrand, Kiernan Folz Donahue, Michaela Long, Cecilia Palomo, Gabriel Richarde, Jessica Roark, Tim Shin, Katie Trifone. Two interns also returned as invaluable field assistants: Daniela Martinez, and Dajana Jurk. Connie Athman (USFS), Bill Doran (Metro Parks), and Portland General Electric (particularly John Esler) provided logistical support. Mackenzie Keith of the USGS kindly shared data from her graduate studies on the dam removal. Likewise, Greg Stewart passed on a wealth of knowledge from his PhD work on the Sandy River. This research greatly benefited from being part of a larger monitoring effort on the Sandy River. Gordon Grant (USFS), Jim O’Connor (USGS) and Jon Major (USGS) tirelessly pushed forward the federal agency portion of that effort.

Making my first foray into laboratory experiments with the main channel at St. Anthony Falls Laboratory (SAFL) was a daunting undertaking. Long hours and a large supply of patience by Craig Hill, Jeff Marr, and the rest of the staff at SAFL helped the experiments succeed. Arvind Singh and Andreas Krause helped both the design and execution of the experiment. Without Ben Erickson’s ability to plan, build, shovel, and arm twist people into moving rocks, the experiment could not have been run. Finally, Kristen Sweeney not only volunteered on the Sandy River, but figured out how to make the flume and magic cart sing. Her tireless hours are much appreciated.

One of the pleasures of this experience has been the fellow graduate students whom I have met along the way. My good friend Rose Wallick not only was there on day one of the Marmot Project, but their farm is one of my favorite refuges for good food, cold beer, and enthusiastic discussions - professional and otherwise. The Barflies - Susannah Er-
win, Andreas Krause, and Christian Braudrick - were the geographically diverse research group that shared friendship and common experiences whether discussing papers over Skype or enjoying tubular meat over a fire. They brought a great sense of community to what could otherwise be a lonely undertaking.

In the late spring of 2007, Graham Matthews told us that we should not worry about a thing because he was putting Smokey Pittman in charge of their Sandy River project. Smokey’s enthusiasm and ability to make things happen led directly to the excellent field data used in this research. More importantly, Smokey took the time to teach a brand new graduate student how to do fieldwork in the most professional manner. I am proud to have learned so much from my friend Smokey.

Peter Wilcock took a chance, breaking in a complete novice to the discipline. I knew all about the Mach Number but had never heard of a Shields Number. Peter was always patient as I tried to learn a new field, and did not skip a beat as we transitioned from on-campus time to working closely separated by thousands of miles. From an introduction to geomorphology on day one to continuously improving this dissertation up to the last minute, he never ceased to give his time to teach and make me better. I feel fortunate for stumbling on this opportunity. It has truly been a pleasure.

I owe the largest debt of gratitude to my wife, Andi. I am not sure either of us knew what we were in for combining a PhD program with an Air Force squadron command, but together we made them both work. She gave me the freedom to pursue this degree, put up with my absences (both physically and mentally), and provided unwavering support along the way. She has been my fort and has made this all possible. Andi, thank you.

This work was supported by funds from the National Center for Earth-surface Dynamics, a National Science Foundation Science and Technology Center, under agreement no. EAR-0120914, the Oregon Watershed Enhancement Board, the National GEM Consortium, and the Veterans Administration through the Post-9/11 GI Bill.
NOTATION

The following symbols are used in this paper:

\(\alpha \) = parameter relating roughness height to surface \(D_{90} \);
\(a_u \) = upwinding coefficient used for spatial derivatives in equations (11) and (12);
\(a_{int} \) = parameter characterizing material released as the bed aggrades;
\(b \) = exponent in the hiding function (equation 7) used to compute bedload transport
\(B \) = flow width;
\(c_1, c_2, c_3 \) = coefficients in dimensionless adjustment time prediction equation(19);
\(C_d \) = drag coefficient;
\(D \) = grain size;
\(D_i \) = representative grain size for the \(i \)th size fraction;
\(D_{xx} \) = grain size for which \(xx\% \) (50, 86, 90) of the grain size distribution is finer;
\(D_{50g} \) = median grain size of the portion of the grain size distribution larger than 2mm;
\(D_{sm} \) = geometric mean grain size of the surface grain size distribution;
\(e \) = water surface elevation;
\(F_i \) = proportion of size \(i \) on the bed surface;
\(F_s \) = fraction of the bed covered in sand (<2 mm);
\(f_{li} \) = proportion of the material of grain size \(i \) in the active layer-substrate interface;
\(\phi \) = ratio of stress to reference stress;
\(g \) = gravitational acceleration;
\(h \) = flow depth;
\(\eta \) = bed elevation;
\(L_f \) = bed length;
\(L_a \) = active layer thickness;
\(\lambda \) = decay parameter;
\(\lambda_p \) = bed porosity (set to 0.35);
\(p_i \) = proportion of grain size \(i \) in transport;
\(Q \) = water discharge (volumetric);
\(Q_i \) = imposed sediment mass flux;
\(Q_0 \) = pre-increase equilibrium sediment mass flux;
\(q^* \) = dimensionless unit sediment volumetric flux;
\(q_b \) = total bedload transport rate per unit width;
\(q_{bi} \) = bedload transport rate per unit width of size \(i \) (volumetric);
\(\rho \) = water density;
\(s \) = sediment specific weight (ratio of sediment to water density) (set to 2.65);
\(S \) = bed slope;
\(S_f \) = friction slope;
\(\tau_0 \) = bed shear stress;
\(\tau_{rm}, \tau_{ri} \) = reference bed shear stress for the mean and \(i \)th grain size;
\(\tau^*_{rmi} \) = reference dimensionless bed shear stress for the mean grain size;
\(\tau^* \) = Shields Stress (equation 6);
\(T_{25} \) = adjustment start time; time required to complete 25\% of the total adjustment;
\(T_{95} \) = adjustment time; time required to complete 95\% of the total adjustment;
\(T^* \) = dimensionless adjustment time;
\(U \) = depth averaged streamwise velocity;
\(u^* \) = shear velocity;
\(W^*_i \) = dimensionless transport rate for the \(i \)th size fraction.
BIBLIOGRAPHY

Ferguson, R.I., (2003), The missing dimension: effects of lateral variation on 1-D calculations of fluvial bedload transport, Geomorphology, 56, 1-14.

Ikeda, H., (1983), Experiments on bedload transport, bed forms, and sedimentary structures using fine gravel in the 4-meter-wide flume, Environmental Research Center Paper 2, University of Tskuba, Japan.

Kennedy, R., (1907), Hydraulic Diagrams for Channels in Earth, Giving Discharges, Issued for the use of the Public works department, India, Calcutta.

Madej, M.A., and V. Ozaki, (1996), Channel Response to Sediment Wave Propagation and Movement, Redwood Creek, California, USA, Earth Surface Processes and Landforms, 21(10), 911-927

Middleton, G.V., and J.B. Southard, (1984), Mechanics of Sediment Movement, lecture notes for Short Course No 3., sponsored by the Eastern Section of the Society of Economic Paleontologists and Mineralogists. 3, doi: 10.2110/scn.84.03.0001.

Stillwater Sciences, (2009), Post-dam-removal Channel Complexity Monitoring Survey Data Analysis, Sandy River, Oregon, 1st Year Following Dam Removal, technical Memorandum, prepared for Portland General Electric, Berkley, CA.

Watershed Sciences, (2009), LiDAR and True-Color Orthophotographs, Airborne Data and Processing: Sandy River, Oregon, submitted to Stillwater Sciences, Berkeley, CA

CURRICULUM VITA

I was born on April 23, 1973 and spent my youth on the Colorado Front Range. Upon graduation from the US Air Force Academy, I received both a Bachelors of Science in Political Science, and a commission as an Air Force 2nd Lieutenant on May 31st, 1995. My career as an Air Force officer and F-16 fighter pilot took me from Asia to the Middle East, and throughout the western United States. After nearly 11 years, multiple deployments, a few Air Medals, and several thousand flying hours, I left the Air Force at the rank of Major. My shift from national security issues to western water issues began in Boise, Idaho as a graduate research assistant at the University of Idaho and a Boise State University student. Fortuitous events brought me east to Baltimore for graduate school where in my coursework and research I endeavored to strike a balance between a technical focus on fluid mechanics and sediment transport on one hand, and the larger context of water resources development, fish ecology, and environmental policy on the other. During my graduate school career, I earned Masters of Science from the Department of Geography and Environmental Engineering, Johns Hopkins University, worked as a hydrologist and geomorphologist for the USGS Alaska Science Center, and spent time researching and living in wonderful places such as Sandy, Oregon, Minneapolis, Minnesota, and Anchorage, Alaska.