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Abstract

A primary goal of connectionist cognitive science is to provide the technical appa-

ratus for modeling cognitive processes as implemented in brainlike systems. From the

structure of classical cognitive theories—alphabets of discrete symbols along with alge-

braic operations on those primitive symbols—one can derive key properties attributed

to “higher-order cognition” by authors like Fodor and Pylyshyn—systematicity, produc-

tivity, and compositionality. This fact has led to theories of that type to serve as the

enduring backbone of cognitive science. Connectionist networks differ from these clas-

sical systems not just in that they are implemented in real numbers while the former

operate over discrete sets, but also in that they can represent system-states that cannot

be factored into algebraic combinations of primitive symbols that are, in a formal sense,

noncompositional.

This dissertation develops, examines, and evaluates a series of models that straddle

that divide. Cognitively-oriented connectionist models in the tradition of Vector Symbolic

Architectures (VSAs) provide a framework by which neural network models can integrate

Fodor and Pylyshyn’s insights, as well as the corresponding architectural commitments

of cognitive theory. Other processes, based in Harmony Maximization [Smolensky and

Legendre, 2006], adjust these structured representations to satisfy learned constraints.

We present three models that use Tensor Product Representations (TPRs) and other

VSAs closely related to them, placing these in a common formal framework and then
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applying them to Knowledge Base Completion: the task of storing large-scale inven-

tories of facts (e.g. WordNet, Freebase, Wikidata) in representations that allow

those databases to be extended via inexact inference. In typical approaches, graph repre-

sentations are obtained compositionally by taking static vector representations of graph

elements (entities and relations) and combining them systematically in order to derive a

score. The first two models combine the compositional operations of VSAs with context-

modulation processes based in Harmonic Grammar [Smolensky and Legendre, 2006]. A

third model examines the proposition that spatial structure implicit in TPRs—with a

number of spatial directions equal to the order of the tensor—can be used as an orga-

nizing principle for the features encoded in the trilinear tensors occurring in the graph

representation setting. Each of the models, we show, performs at the state of the art in

Knowledge Base Completion, and we explore the qualitative aspects of the representations

that they learn.

Readers: Paul Smolensky, Kyle Rawlins, Alan Yuille, Chris Honey, Hynek Hermansky
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Chapter 1

Introduction

One hallmark of the field cognitive science is the conception of cognitive capacities as

systems as computational procedures that operate over domains of symbols to produce

behavior. Representations, in this tradition, are typically discrete, in contrast to the

great variety of neural models that have emerged to model and perform cognitive tasks,

often in an applied setting. To a degree, there is substantive overlap between these two

views, though the connections have become more remote over time as the complexity of

the ensuing models and the functions involved in building them has markedly increased.

The implications of cognitive models of the classical kind—meaning those comprised of

discrete symbols and algebraic rules for combining them—was well summarized by Fodor

and Pylyshyn FodorPylyshyn1988. Such models provide, without additional stipulations,

explanations for three key properties of “higher cognition”—meaning that evinced by hu-

mans. Cognition is productive in that in some1 but not all domains, there is discrete

infinity [von Humboldt, 1999]. Cognition is systematic in the sense that there are syntac-

tic links between cognitive representations in virtue of what constituents appear in those

1e.g. language.
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representations. For example, systematicity says that if Mary loves Kevin is a sentence,

then Kevin loves Mary is also an expression. Put another way, there is algebraic clo-

sure of the alphabet under the operations of the grammar. Given the grammar and the

primitive symbols, one can obtain all recombinations of the constituents as allowed by

the combinatorial system. Finally, cognition is compositional (a property, in their view,

that may be a sub-phenomenon of systematicity) in that there are semantic links between

cognitive representations that depend on the set of constituents appearing in them. For

instance, from the fact that cats have paws and that panthers are cats, we can infer that

paanthers have paws, and we can derive this relationship by rearranging the elements

that occurred in the two premises in a systematic way.

As a preliminary characterization, this is a good start. It captures some essential

characteristics of cognition that may be viewed as a series of benchmarks that a theory of

cognition ought to satisfy. They go beyond this, however, and conjecture that any cogni-

tive theory that satisfies the “benchmarks” are necessarily isomorphic to those systems,

meaning that cognition, whether you express it with dots on a page that resolve into

discrete letters, or as numbers making a pattern on an array of neurons, is basically sym-

bolic computation with a change of data format. Two questions arise. How can standard

symbolic operations be realized in the sorts of mechanisms we find in the brain? This

is the Implementationalist Question. Second, are there specifically cognitive phenomena

that require structures separate from classical deductive systems? Or phenomena that

are relatively much more cumbersome to express in a classical theory relative to available

alternatives? This is the Symbolic Describability Question: What is beyond the capaci-

ties of symbolic systems to capture readily? There are obvious examples of phenomena

that are far more easily expressed in numerical theories than others—things like similar-

ity relations, analogical reasoning, explaining prototype effects, etc. These would require
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very onerous rule systems to express.

This dissertation examines and applies a series of models that enforce certain re-

quirements of transparency between the symbolic level of computation and its neural,

numerical counterpart. Optimality Theory and Harmonic Grammar [Prince and Smolen-

sky, 2004, Smolensky and Legendre, 2006] provide the basis for these models in terms of

their representational formats (varieties of tensor product representations) and computa-

tional procedures (structure assembly and optimization of the structures). In the context

of neural networks, we refer to the process of associating symbols with structural roles

as binding. After developing a framework for analyzing them, we fit the models to the

task of knowledge base representation, evaluate them on benchmarks and demonstrate

state-of-the-art performance.

Chapter 2 provides a common framework for the analysis of Tensor Product Rep-

resentations/TPRs [Smolensky, 1990] and Holographic Reduced Representations/HRRs

[Plate, 1995]—classical solutions to the “filler-role binding problem” [Fodor and Pylyshyn,

1988], each of which has appeared in knowledge base completion, e.g. [Lacroix et al.,

2018a, Nickel et al., 2016, Vashishth et al., 2020]. These methods, and many others, all

fit under the broader rubric of Multilinear Binding—in particular, Bilinear Binding—in

which numerical representations of symbols are bound together using multilinear maps.

We prove a number of theorems that not only unify these representational formats, but

also show the sense in which they are optimal for structure representation subject to

certain constraints, as well as demonstrating the equivalence of well-known models like

HRRs to arbitrary bilinear maps, up to a certain level of description. This chapter en-

riches the traditional answers to the questions surrounding implementation: how, and

how well, can compositional systems be realized in neural networks?

Chapter 3 gives theoretical context and a historical review for the second compu-
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tational feature of the implemented models: optimization via Harmony Maximization,

in which the neural network is designed so as to optimize an internal Harmony func-

tion in order to compute representations satisfying structural constraints. We show how

to reframe certain structure-completion/structure-correction problems as numerical op-

timization problems, providing a basis for the subsequent models.

Chapter 4 implements the principles of Harmonic Grammar in a model—Gradient

Graphs—that combines compositional representation of knowledge base entries with an

optimization procedure based on knowledge constraints encoded in the form of a Harmony

function. We ask: can knowledge graph representations assembled from discrete repre-

sentations using compositional functions be augmented with a Harmony-maximization

procedure? In the model, structured representations of the knowledge base are optimized

with respect to learned semantic constraints, leading the constituents to be adjusted as

a function of the other elements occurring in the structure. The mechanisms described

therein provide a conceptual solution to linguistic phenomena like copredication and co-

ercion (see Section 4.2.3), and relates to the Symbolic Describability Question: what

phenomena can be more elegantly implemented in a numerical system than a symbolic

one?

In Chapter 5, we examine knowledge graph representation using all of the principles

developed in Chapters 1 and 2, developing Harmonic Memory Networks that build struc-

tures via sums of pairwise bindings of symbol components using bilinear maps, as well

as the representation-optimization procedure. In addition to providing insight into the

empirical performance of the binding methods specified in Chapter 1, the model has a

number of practical virtues, including scalability due to the model being immediately

deployable without retraining as the knowledge base is augmented with new facts.

Chapter 6 develops a model based on Tensor Product Representations that novelly
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asks if the volumetric structure implicit in TPRs—with coordinates as 3-tuples of vec-

tor components—can be used as an organizing principle for knowledge representation.

We use a spatial attention “searchlight” to draw attention to features in the TPR that

are relevant to the context of particular queries. Changing the focus of attention in the

3-dimensional tensor, we show, provides a dynamic way of selecting features from multi-

linear representations of a knowledge entries—a model feature which is usually settled a

priori. It also improves the performance on benchmarks.

Chapter 7 provides a summary.
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Chapter 2

Models of filler-role binding

Since the origin of connectionist modeling, a literature has developed that describes ex-

plicit methods of implementing, in neural networks, the types of operations that classical

computers perform, and therefore that feature heavily in classical computational theo-

ries of the mind. In this chapter, we briefly review the two most prominent of these

methods—tensor product binding and binding via circular convolution-correlation, both

of which have appeared in the knowledge base completion literature. We discuss their

properties as binding operators, fit both into a broader framework of Bilinear Binding,

and prove a number of features of convolution-correlation that render it—subject to cer-

tain constraints—optimal among bilinear binding methods for the purpose of structure-

assembly in neural networks.

2.1 Tensor Product Binding

The basic requirements on a binding function are that it provide (1) a way of associat-

ing vectors with one another to assemble a vector representation of the associations (a
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memory vector), and (2) a way of recovering the contents of the memory, i.e. an unbind-

ing/decoding operation.1 Schematically, a binding operation should provide a binding

operation B and an unbinding operation U such that:

U(r,B(r,f)) ≈ f

In words, if a vector r and f are associated in memory, it should be possible to recover

the latter by combining r and the memory B(r,f). Since we are generally interested

in representing structures that have multiple roles, we should like in addition that fillers

be (approximately) retrievable when the structure in question has multiple roles. Thus,

given a set {〈ri,f i〉} of pairwise associations of fillers and role, we desire some method

of combining the individual bindings into a structure representing them all, while pre-

serving the decodeability of the individual associations. That is, with Ψ representing an

aggregation function applied to sets of vector associations, we want that:

U(r`,Ψ ({B(ri,f i)}) ≈ f l (2.1)

i.e. reversing the binding operation does not just work on a single vector association, but

also on aggregated associations.

The tensor product was the first systematic structure-assembly method introduced

to the connectionist representation of cognitive structures to enable fully distributed

representations [Smolensky, 1990]. Tensor product binding takes a pair of vectors r ∈ Rm

(the role) and f ∈ Rn (the filler) and returns a tensor indexed by the indices of the two

vectors. The ijth element of the tensor product r ⊗ f is simply the product of the ith

1We shall use the terms unbinding and decoding interchangeably.
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and jth components of the constituent vectors.

[r ⊗ f ]ij = rifj Tensor Product (definition) (2.2)

The aggregation function is summation of tensor products:

Ψ ({B(ri,f i)}) =
∑
i

ri ⊗ f i (2.3)

The corresponding unbinding operation is the dot product of the role vector with the

tensor product. If T is a tensor of the right dimension, then the unbinding of the value

in role r from T is:

U(r, T ) = r · T (2.4)

with its ith component as

[U(r, T )]i =
∑
j

rjTji (2.5)

In certain conditions, it is possible to guarantee perfect retrieval of the vector associa-

tions, i.e. to ensure equality in Eqn. (2.1). Let R be a set of m roles, and R = {ri} ⊆ Rn

a set of m vectors for each role, with m < n. If this set is linearly independent, then we

can obtain a set R∗ = {r∗i } of dual vectors for R, i.e. vectors with the property that

r∗i · rj =


1 if i = j

0 otherwise.

(2.6)

8



When this holds, there is an unbinding procedure that exactly recovers the vectors bound

to each role vector ri: dotting the tensor product T =
∑

j rj ⊗ f j with the dual vector

for the desired role. It follows from Eqn. (2.6) that, provided each role is bound to a

single filler, the dot product r∗i · T outputs f i, the desired filler vector, without error.

In practice, suitable dual vectors can be obtained by arranging the role vectors in

R into a matrix Mr and computing its pseudoinverse Mr
> (MrMr

>)−1. The columns of

this matrix are then the dual vectors for the corresponding roles. In a notable special

case, one can use the role vectors {ri} themselves, rather than computing dual vectors.

When the vectors are orthonormal—i.e. when each vector has a norm of 1 and a zero

dot product with every other vector in the set—then the vectors are self-dual, so that

the memory can be queried using just the corresponding role vector.

When insisting on linear independence of the role vectors, representations built using

the tensor product can become quite large. A set of k role vectors will require at least

k dimensions in order for the vectors therein to be linearly independent, with the size

of a tensor product representation with `-dimensional fillers having k × ` components.

Whether these space requirements are tractable will depend on the setting, but in modern

applied contexts where vector dimensions easily number in the hundreds, tensor product

bindings can easily overtake hardware constraints. This has motivated the development

of tensor product compression methods of the sort described in the next section. However,

an often serviceable approximation can be obtained via normalization of role vectors even

when these vectors are not linearly independent. When a vector is normalized, its dot

product with itself is 1. The tensor product has the property that:

x · (y ⊗ z) = (x · y)z
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where · is the dot product. In particular, r · (r ⊗ f) = ‖r‖2 f , and if r has norm 1, the

filler is recovered. When the tensor with which r is dotted is not a single tensor product

but rather a sum, the result will depend on the similarity of r with the other role vectors

which are intermingled in memory. However, if the number of bindings stored in any

particular TPR is sufficiently small, and the dimensionality of the role vectors sufficiently

capacious, then role vectors sampled from this set are unlikely to be too similar to one

another to prevent effective decoding [Haley and Smolensky, 2020].

TPRs have convenient mathematical properties. First, they satisfy the principal re-

quirements on any binding method, namely that they allow encoding and decoding of

the contents of given structural positions within a vector-pattern that represents the

structure. When the vectors are suitably chosen, the entire structure can be accessed

without error. In addition, the TPR binding model maps into an intuitive “algebra of

thought” that allows one to easily go between the numerical representations and the

symbolic representations encoded in them. This ability to go between symbolic and neu-

ral representations, and the attendant prospects for unification of neural implementation

with cognitive description, is indeed the basis for their use in the enterprise of Harmonic

Grammar and related formalisms [Smolensky and Legendre, 2006].

2.2 Circular Convolution-Correlation and HRRs

The primary challenge for tensor product representations was already mentioned: the size

of the required tensors. Holographic Reduced Representations (HRRs) were introduced

by [Plate, 1994] as a model of vector computation capable of representing compositional

and recursive structure under very strict resource constraints. They are naturally viewed

as a form of compressed tensor product, and as such, approximate many properties of
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TPRs. From the point of view of the binding problem, they have two properties that

have attracted sustained attention. The first is that HRRs can be embedded within

other HRRs, enabling recursive representations and hierarchical structure. The second

property is that binding two vectors using HRRs leads to a vector that is of the same

dimension as its two inputs. Though the expected decoding error grows both with the

number of associated pairs, and also with the depth of the structure encoded, this error

can, under certain additional assumptions, be treated as noise with a simple distribution,

making it easy to reason about how these errors would behave. The cost in decoding

error is offset by HRRs’ efficient use of spatial memory.

HRRs are based on the operation of circular convolution, a variety of vector multipli-

cation that can be used to associate pairs of vectors and store a number of such pairs in

memory. Consider two n-dimensional vectors x and y.

Definition: Circular convolution. The jth element of the circular convolution x~ y

is

[x~ y]j =
n−1∑
k=0

xkyj−k

where the subscripts are computed modulo n.

Algebraic properties: Circular convolution. The circular convolution is associative,

commutative, and linear in each argument:

Associative x~ (y ~ z) = (x~ y) ~ z

Commutative x~ y = y ~ x

Linear x~ (ay + bz) = ax~ y + bx~ z

A simple way to visualize circular convolution is to imagine it as a wrapped sliding

dot product. Each component of the circular convolution of x and y is a dot product
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of elements of x and y. First, the vector y is involuted by reversing all of its elements

except for the first entry.

Definition: Involution. The ith component of the involution ỹ of the n-dimensional

vector y is

[ỹ]i ≡ ỹi ≡ y−i

modulo n. In the 5-dimensional example:

y = [y0 y1 y2 y3 y4] 7−→ [y0 y4 y3 y2 y1] ≡ ỹ

The particular dot product to be taken at the jth component is obtained by sliding ỹ to

the right by j components. When ỹ reaches the end of x, there are still n− j unmatched

components of ỹ. These are matched to the first n− j components of x.

As an example, consider two five-dimensional vectors x and y. Their circular convo-

lution is a 5-dimensional vector composed of five dot products:

[x~ y]0 =
[x0 x1 x2 x3 x4]

[y0 y4 y3 y2 y1]
= x0y0 + x1y4 + x2y3 + x3y2 + x4y1

[x~ y]1 =
[x0 x1 x2 x3 x4]

y1] [y0 y4 y3 y2

= x0y1 + x1y0 + x2y4 + x3y3 + x4y2

[x~ y]2 =
[x0 x1 x2 x3 x4]

y2 y1] [y0 y4 y3

= x0y2 + x1y1 + x2y0 + x3y4 + x4y3

[x~ y]3 =
[x0 x1 x2 x3 x4]

y3 y2 y1] [y0 y4

= x0y3 + x1y3 + x2y1 + x3y0 + x4y4
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[x~ y]4 =
[x0 x1 x2 x3 x4]

y4 y3 y2 y1] [y0

= x0y4 + x1y3 + x2y2 + x3y1 + x4y0

Iterating through each of the 5 components, the vector x is “pushed” along y by one

component, and any remaining at the right edge of x̃ are wrapped back around to the

beginning of the vector y.

As a network. Similar to tensor product representations, binding in HRRs can be

realized as weight matrices, specific to a given role, that receive a filler vector and assign

it to the role. A role-specific weight matrix Er encoding the filler-role binding can be

defined in terms of the entries of the role vector r, with

[Er]jk = rj−k

again computing the difference k − j modulo n.

Figure 2.1: Synaptic weights of a 5-dimensional circular convolution (Binding) network.

Computing the circular convolution. The naive procedure for computing HRRs is

to take the n2 products occurring in Definition (5.2) and then sum them: n3 operations.

However, HRRs as a binding mechanism are particularly efficient because the circular

convolution can be computed in frequency space using the discrete Fourier transform.

Where F is the Fourier transform, F−1 its inverse, and � elementwise multiplication, the
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convolution can be computed as:

x~ y = F−1 (F(x)�F(y)) (2.7)

with time complexity O(n log n). The unbinding operation also has an efficient algorithm,

which we deal with later.

2.2.1 Properties as a binding operator

Unbinding. A vector f bound to role r may be unbound from f ~ r by using the

circular correlation, denoted by the operator ?.

Definition: Circular correlation. The jth element of the circular correlation x ? y is

[x ? y]j =
n−1∑
k=0

xkyk+j (2.8)

The subscripts are again calculated modulo n. Correlation can be computed quickly in

the frequency domain using the Fourier transform:

x ? y = F−1
(
F(x)�F(y)

)
(2.9)

where F(x) is the complex conjugate of F(x), which is obtained by inverting sign of the

complex component of F(x).

Like the convolution, circular correlation can be visualized as a wrapped dot product.

It is again useful to work through the 5-dimensional example. This time, the vector x is

14



directly slid along y, and there is no involution.

[x ? y]0 =
[x0 x1 x2 x3 x4]

[y0 y1 y2 y3 y4]
= x0y0 + x1y1 + x2y2 + x3y3 + x4y4

[x ? y]1 =
x4] [x0 x1 x2 x3

[y0 y1 y2 y3 y4]
= x4y0 + x0y1 + x1y2 + x2y3 + x3y4

[x ? y]2 =
x3 x4] [x0 x1 x2

[y0 y1 y2 y3 y4]
= x3y0 + x4y1 + x0y2 + x1y3 + x2y4

[x ? y]3 =
x2 x3 x4] [x0 x1

[y0 y1 y2 y3 y4]
= x2y0 + x3y1 + x4y2 + x0y3 + x1y4

[x ? y]4 =
x1 x2 x3 x4] [x0

[y0 y1 y2 y3 y4

= x1y0 + x2y1 + x3y2 + x4y3 + x0y4

The network realization of correlation as a linear neural network (for a given role

symbol r) is similar. The decoding matrix D has [Dr]ij = rj+k, so that

[Dxy]j =
n∑
k=0

xkyj+k = [x ? y]j

In the 5-dimensional case, this is visualized as Figure 2.2. To unbind filler f from role r,

compute:

r ? (f ~ r) = f + ε ≈ f

Unlike with TPRs when the set of roles is linearly independent, this unbinding operation

is only approximate. The term ε in the unbound product is Gaussian under several
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Figure 2.2: Synaptic weights of a 5-dimensional circular correlation (Unbinding) net-
work. In the output, the filler f is superposed with noise.

conditions, discussed in [Plate, 1994] and below. In the case of continuous-valued filler

and role vectors, it is sufficient for the components of each n-dimensional vector to be

independently and identically drawn from the normal distribution with variance 1
d
. The

expected norm of each vector is then 1.

We will now specify the sense in which correlation-decoding is an optimal approxima-

tion.

2.3 Convolution-Correlation binding as special cases

of Bilinear binding

While it is well known that the circular correlation and circular convolution serve as

approximate inverses of one another—e.g. [Plate, 1995, Nickel et al., 2016]—there is a

precise sense in which this is true. We show that the circular convolution and correlation

(holographic reduced representations/HRR binding schemes) correspond to procedures

for compressing (convolution) and decompressing (correlation) tensor product represen-

tations, with the correlation equal to the Moore-Penrose Inverse of a map from the .ensor

product space to the d-dimensional space in which the input vectors reside. Thus, the
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correlation optimally retrieves a d × d-dimensional TPR from its compression as a d-

dimensional vector, specifically with respect to the convolution. Furthermore, this places

these operations in the broader setting of bilinear binding, of which TPR and HRR bind-

ing are special cases. Indeed, any function of two vectors x,y characterized by a linear

map on the tensor product of those vectors (a bilinear map), i.e. with the form (2.10),

f(x,y) = Wx⊗ y (2.10)

with W ∈ Ro ⊗ Rn ⊗ Rm and the dot product along the trailing dimensions of W , can

be rewritten as an encoding and decoding of the tensor product x⊗ y, with the Moore-

Penrose Inverse providing an unbinding procedure for an arbitrary compression map W .

The circular convolution (forward/encoding) map M for dimension d is defined as:

[M ]kij =


1 if j = (k − i) mod d

0 otherwise

Convolution

The corresponding correlation (backward/decoding) map N is:

[N ]ijk =


1 if k = (i+ j) mod d

0 otherwise

Correlation

It is easily verified that these tensor-elementwise conditions are equivalent to the vector-

elementwise definitions of the two operations:

[x~ y]k =
∑
i

xiy(i−k) mod d
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[x ? z]j =
∑
i

xiz(i+k) mod d from [Plate, 1995]

Specifically,

Theorem 2.3.1. Where for each index `, ·` refers to the dot product along the ` index

of M , we have that

(M ·i x) ·j y = x~ y (2.11)

and also,

(N ·i x) ·k z = x ? z (2.12)

Proof. The dot product (2.11) is:

[(M ·i x) ·j y]k =
∑
ij

[M ]kijxiyj

First, note that for a given k, the j such that [M ]kij = 1 is a function of i. call it gk,

which allows us to specify gk(i) = (i− k) mod d. Thus:

[(M ·i x) ·j y]k =
∑
ij

[M ]kijxiyj

=
∑
i

xiygk(i)

=
∑
i

xiy(i−k) mod d

= [x~ y]k
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The proof of (2.12) is similar. k such that k = (i + j) mod d is a function hi(j) = k.

Therefore:

[(N ·i x) ·k z]j =
∑
ik

[N ]jikxizk

=
∑
i

xizhi(j)

=
∑
i

xiz(i+j) mod d

= [x ? z]j

To simplify the following proofs, we have selected an indexation scheme based on

ensuring consistency of the indices for the inputs and outputs corresponding to each

operation (convolution followed by correlation). Thne notation is suggestive of the context

of filler-role binding, but note in passing that the mathematical results themselves are

independent of this setting. The intuition is as follows: Let r(i),f (j),o(k) stand for the

inputs and outputs of convolution and correlation, which are indexed by i, j, k. Starting

with convolution (“binding”), r denotes the first input, f the second input, and o the

output o ≡ r ~ f . Thus, M leads with the output dimension k, followed by the input

dimensions i and j. With respect to correlation (“unbinding”), the inputs are r (the

role) and o (the binding), with the filler as the output. Thus, N is indexed as jik. The

matrix product NM is shorthand for N ·k M , i.e. the dot product of the leading axis of

M with the trailing axis of N . The theorem to be proven is:

NMr ⊗ f ≡ No ≈ r ⊗ f (2.13)
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where the approximation ≈ means that MN minimizes the expected retrieval error spec-

ified in Theorem 2.3.3 below, taken across all choices of r and f . This formulation of

N and M as linear maps on the tensor product space R ⊗ F is equivalent to the dot

products 2.11 and 2.12, i.e. M and N are bilinear on R and F . Note that this is a novel

and more precise statement of the approximation first explored by Plate’s dissertation,

as expounded in Section 2.3.2 below.

Plate stipulates the following conditions on the input vectors: they are i.i.d. with

componentwise mean of zero and variance 1
d

(standard deviation of 1√
d
), meaning that,

when dealing with vectors having unit variance, the binding function is:

(
r/
√
d
)
~
(
f/
√
d
)

= M (r ⊗ f) /d ≡ o

We use the notation of (2.10) above for products of the bilinear map M with tensor

products. In decoding, the role vector must also be transformed, and then, to reset the

output to unit variance, the transformation inverted by multiplying with
√
d, yielding:

√
d
((
r/
√
d
)
? o
)

=
√
d
((
r/
√
d
)
·i (N ·k o)

)
= r ·i No

= r ·i (N ·k (M (r ⊗ f) /d))

= r ·i (NM (r ⊗ f)) /d

The same result can be obtained for vectors with unit variance by packing the variance-

compression conditions into the binding and unbinding maps, e.g. by dividing N and M
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each by
√
d. This yields:

[M ]kij =


1√
d

if j = (k − i) mod d

0 otherwise

Convolution (2.14)

[N ]ijk =


1√
d

if k = (i+ j) mod d

0 otherwise

Correlation (2.15)

We now demonstrate that N is the Moore-Penrose inverse (MPI) of M , i.e. N =

M> (MM>)−1, where transposition is of the first dimension holding the i and j axes

fixed, i.e. [M ]kij = [M>]ijk.

Theorem 2.3.2. The circular correlation tensor N—a linear map Rd → Rd⊗Rd—is

the MPI of the circular convolution tensor M : Rd ⊗ Rd → Rd.

Proof. First, note that

[MM>]k` =
∑
ij

[M ]kij[M ]`ij

Setting [M ]kij = 1√
d

= [M ]`ij implies that j = (k− i) mod d = (`− i) mod d. This is true

if k = `, and only when k = `.2 Thus, the off-diagonal elements of MM> are zero. Now,

take any given k. How many terms in the row-wise sum are nonzero (and thus equal to

2Because if j = (k− i) mod d = (`− i) mod d for potentially distinct k and `, then j = md+ k− i =
nd+ `− i for some m and n, and therefore (∗): md+ k = nd+ `.

Given that j, i, k, ` are bounded by the integer interval [1, d], m and n must be either 0 or 1. For if
m < 0 (with -1 the limiting case), then j is at most −d+ k− i with i at least 1 and k at most d, whence
j ≤ −d+ d− 1, with j a negative integer ⊥. If on the other hand m > 1, with 2 the limiting case, then
j ≥ 2d+ k − i with k at least 1 and i at most d, so that j ≥ d+ 1 ⊥. The proof for n is the same.

Now suppose m 6= n. There is one case without loss of generality: m = 0, n = 1. Plugging into (∗)
above, it follows that −k = d − `, with d − ` a negative integer, which is impossible since ` is at most
d ⊥.

The one remaining case has m = n and therefore k = `, as claimed.
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1√
d
)? There is one and only one such term for each value of j. 3 Thus, we remove the i

index by expressing it as a function gk(j) of j, writing

[MM>]kk =
d∑
j=1

[M ]kgk(j)j[M ]kgk(j)j

=
d∑
j=1

1√
d

1√
d

= 1

This proves each diagonal element is 1. Thus, MM> = I, and M has full row rank, with

right inverse M>.

Observe furthermore that N = M>. Take [M>]ijk = [M ]kij. There are two cases.

If [M>]ijk = 1√
d
, then i = (j − k) mod d. There are two cases. if [M>]ijk = 1√

d
,

then j = (k − i) mod d and therefore j = md + k − i for some m. This implies that

k = −md+ i+ j and therefore k = (i+ j) mod d, which is the condition for [N ]ijk = 1√
d

2.15. If, on the other hand, [M>]ijk = 0, then there is no such m. If we suppose

[N ]ijk 6= 0, then k = (i + j) mod d, from which we have that k = (i + j) mod d and

therefore k = nd+ i+ j. This implies that j = −nd+ k − i, with −n a counterexample

to m in the preceding sentence ⊥. Thus, M>(MM>)−1 = M>I = M> = N , as claimed,

and N is the MPI of M .

N therefore partakes of the properties of the Moore-Penrose Inverse—in particular,

the following optimality relation:

Theorem 2.3.3. The circular correlation is the maximum-fidelity decompressor for a

TPR compressed as r~f = Mr⊗f , in the sense that it minimizes the expected decoding

3To verify this, suppose that j = (i − k) mod d = (i′ − k) for potentially distinct i and i′. Then
nd+ i− k = md+ i′ − k for some m,n which must be equal to one another (footnote 2). So, i = i′.
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error (2.16).

D(N,M) = E
[

1

2
‖r ⊗ f −NMr ⊗ f‖2

]
(2.16)

given that the following assumptions are satisfied: both r and f are zero-mean and are

each have unit isotropic covariance.

Proof. To simplify the notation, let x ≡ r⊗ f . Setting ∂D(N,M)/∂N = Z (with Z the

zero matrix) yields:

Z =
∂

∂N
E
[

1

2

(
x>x− 2x>NMx+ x>M>N>NMx

)]
= E

[
NMxx>M> − xx>M>]

NME
[
xx>

]
M> = E

[
xx>

]
M>

N = E
[
xx>

]
M> (ME

[
xx>

]
M>)−1

To complete the proof, it suffices to show that E
[
xx>

]
= I. We assume that r and

f are zero-mean and componentwise i.i.d. with unit variance, and are also independent

of each other. The expected value of xx> is E [r ⊗ f ⊗ f ⊗ r] (modulo vectorization).

From these distributional assumptions,

E [r ⊗ f ⊗ f ⊗ r]ijk` =


E [ri]E [rk]E [fjf`] = 0 if i 6= k (independence)

E [rirk]E [fj]E [f`] = 0 if j 6= ` (independence)

E [ri
2]E

[
fk

2
]

= σri
2σfk

2 = 1 if i = k and j = `

Thus, E [r ⊗ f ⊗ f ⊗ r]ijk` = 0 everywhere except the diagonal, where it is 1.

23



It is clear that Theorem 2.3.3 generalizes for arbitrary encoding maps M , with the

optimal N always the MPI, given appropriate distributional constraints on the input

vectors. The most obvious special case is the tensor product itself, where M is just the

identity map on the tensor space R⊗F , which also provides the inverse map. Crucially,

though, there are in general no constraints on the size of the input vectors or the size of the

encoded output, as there are in the special case of HRRs, meaning that TPR-compression

provides a general mechanism for binding schemes. The forward map takes the TPR

and maps it linearly into a lower-dimensional representation. The backward map—the

MPI—optimally recovers the TPR, from which standard TPR unbinding operations (dot

products with role vectors) can proceed as usual.

A brief note: the situation does not materially change when we are dealing with

sums of tensor products rather than tensor products themselves. As long as the in-

dividual FRBs are uncorrelated, summing TPRs has the effect of simply dilating the

correlation matrix Ω ≡ E
[
xx>

]
from unit isotropy to an isotropy scaled by the num-

ber of summands.4 The scaling b factor cancels in the matrix inversion for the MPI,

so that the decoder becomes E
[
xx>

]
M> (ME

[
xx>

]
M>)−1 = bIM> (bMIM>)−1 =

b1
b
M> (MM>)−1 = MPI(M).

This characterization has some interesting consequences for Plate-binding. HRRs

come with particular computational advantages—namely, that they can be computed

quickly—O(d log d)—using frequency-domain calculations [Plate, 1994]. Beyond this,

are there reasons for preferring the HRR operations—among, say, all bilinear binding

4Let the summed FRBs be indexed by m, with each superposed binding x =
∑

m x(m) =
∑

m r
(m) ⊗

f (m). The entries of the covariance are [Ω]ij = E
[(∑

m x
(m)
i

)(∑
n x

(n)
j

)]
=
∑

mn E
[
x
(m)
i x

(n)
j

]
.

For the off-diagonal elements (i 6= j), componentwise independence allow us to rewrite [Ω]ij =∑
mn E

[
x
(m)
i x

(n)
i

]
= 0 for all summands. For i = j, we have [Ω]ii =

∑
m E

[
x
(m)
i x

(m)
i

]
+
∑

m6=n x
(m)
i x

(n)
i

with the second terms all zero and the terms with m = n the variance of each component of x. Together,
then, Ω = bI where b is the number of bindings.
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operations obeying the constraint W : Rd ⊗ Rd → Rd—on the grounds of expected

decoding accuracy (2.16)? In fact, any matrix with full row rank will do.

Theorem 2.3.4. The decoding error D(M,N), which is minimized with respect to N

(i.e. for fixed M) as D(M,M>(MM>)−1) ≡ D̂(M), is minimized with respect to both

encoding and decoding by any encoding matrix M with full row rank.

Proof. As a corollary of 2.3.3, for any given encoding matrix M , X has a unique decoding

matrix N that minimizes D(M,N). Thus, we can express the decoding error, minimized

with respect to Y , as a function of M :

D̂(X) = E
[

1

2

(
x>x− 2x>NMx+ x>M>N>NMx

)]
= E

[
1

2

(
x>x− 2x>M>(MM>)−1Mx+ x>M>(MM>)−1MM>(MM>)−1Mx

)]

If M has full row rank so that MM> is positive definite and (MM>)−1MM> = I, this

simplifies to:

D̂(X) = E
[

1

2

(
x>x− 2x>M>(MM>)−1Mx+ x>M>(MM>)−1Mx

)]
= E

[
1

2

(
x>x− x>M>(MM>)−1Mx

)]

Taking the derivative with respect to M , we obtain:

∂D̂(X)

X
= (MM>)−1ME

[
xx>

]
− 2(MM>)−1ME

[
x>x

]
M>(MM>)−1M

= (MM>)−1ME
[
xx>

]
− 2(MM>)−1ME

[
x>x

]
M>(MM>)−1M

= (MM>)−1M − (MM>)−1MM>(MM>)−1M

= (MM>)−1M − (MM>)−1M
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= Z

Thus, the derivative is everywhere zero, and each M is optimal—given that its decoder

is optimized.

The meaning of this result is that, with respect to the primary encoding-decoding ob-

jective—reconstruction error, which is the principal objective that any binding method

ought to satisfy—convolution-correlation is just as good and no better than any other

TPR-encoding map of the right size.

In the proofs, we made several assumptions about the distributions of filler and role

vectors. We now address some of these caveats.

2.3.1 Effect of normalization

The above results being in hand, we can reanalyze the role of convolution-correlation

binding and its value. HRRs amount to the following procedure:

(1) a. Bind and compress with the forward map M . Input: tensor product r ⊗ f .

Output: vector o = r ~ f .

b. Unbind and decompress with the reverse map N . Input: vector o. Output: an

array T in the tensor product space R⊗F , with the property that T ≈ r⊗f

(for the case of a single binding) in the sense of Theorem 2.3.3.

c. Apply dot product between the retrieved TPR and the role vector (or its

dual). Inputs: role vector r and tensor T . Output: vector f̃ with f̃ ≈ f .

In typical implementations of tensor product representations, it is required that the role

vectors be—ideally—orthonormal. When the full TPR is at issue, this guarantees lossless
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
r1f1 r1f2 r1f3 r1f4 r1f5
r2f1 r2f2 r2f3 r2f4 r2f5
r3f1 r3f2 r3f3 r3f4 r3f5
r4f1 r4f2 r4f3 r4f4 r4f5
r5f1 r5f2 r5f3 r5f4 r5f5


= r ⊗ f


r1
r2
r3
r4
r5



[
f1 f2 f3 f4 f5

]⊗ 
x1
x2
x3
x4
x5


= r ~ f

Compression map (M)


t1,1 t1,2 t1,3 t1,4 t1,5
t2,1 t2,2 t2,3 t2,4 t2,5
t3,1 t3,2 t3,3 t3,4 t3,5
t4,1 t4,2 t4,3 t4,4 t4,5
t5,1 t5,2 t5,3 t5,4 t5,5

Expansion map (N)


t1,1 t1,2 t1,3 t1,4 t1,5
t2,1 t2,2 t2,3 t2,4 t2,5
t3,1 t3,2 t3,3 t3,4 t3,5
t4,1 t4,2 t4,3 t4,4 t4,5
t5,1 t5,2 t5,3 t5,4 t5,5



r1
r2
r3
r4
r5

 •
Unbinding (dot product)

[
o1 o2 o3 o4 o5

]
o = r ? (r ~ f)

= r · T
M and N minimize the expected difference be-

tween the input tensor and its reconstruction T

E
[
‖T − r ⊗ f‖2

]
Figure 2.3: The relation between convolution-correlation decoding and TPR
binding: Applying the convolution tensor to a TPR r ⊗ f is equivalent to the circu-
lar convolution of r ~ f . Decoding the compressed tensor with the correlation tensor
N optimally reconstructs the input tensor, after which standard TPR unbinding opera-
tions—dot products with role vectors when these are normalized, or with the duals of the
role vectors—are applied. The relationships depicted here are general. They pertain not
just to HRR binding, but to any suitable TPR encoding map M (i.e. one with a valid
left inverse).
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addressing using the original role vectors: if the tensor T =
∑

i ri⊗f i, then rj ·T = f j.

Barring this, it is often sufficient in practice for the role vectors to be normalized. This

encoding scheme has the property that rj · rj ⊗f j = f j, i.e. lossless addressing from the

TPR consisting of a single FRB. Distributions for normalized vectors are more difficult to

calculate because of inter-component correlations arising from the normalization process.

For instance, if d− 1 components are zero, then the final component must be 1. We now

show that the distributional requirements imposed on vectors in the optimality Theorem

2.3.3 are satisfied when the role vectors are random normalized vectors, i.e. where each

role vector r = r
‖r‖ , when r is sampled from a symmetric distribution with mean zero,

and has isotropic covariance that is solely a function of d.

Theorem 2.3.5. Let X =
{

x
‖x‖

}
be the set of vectors obtained as the normalization of

each d-dimensional vector in X where X is distributed symmetrically with mean zero.5

X is also distributed with mean zero and covariance 1
d
I.

Proof. The expected variance of xi is

E
[
xi

2
]
≡ E

[
xi

2

‖x‖2

]
= E

[
xi

2∑
j xj

2

]

= E

[
xi

2

xi2 +
∑

j 6=i xj
2

]

xi
2 and

∑
j 6=i xj

2 are independent chi-squared distributions with degrees of freedom 1 and

d − 1. The variance is therefore distributed as a ratio of chi-squared distributions. The

5Symmetry means that p(xi) = p(−xi) for all xi. The normal distribution N (0, cI) for any c is a
special case.
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ratio is a beta-distribution with shape parameters 1
2

and d−1
2

. The expected value is:

E
[
xi

2
]

= E

[
xi

2

xi2 +
∑

j 6=i xj
2

]
=

1

d

The variance may be set to 1 by rescaling the normalized vector xi by
√
d, which is simply

the inverse of Plate’s transformation from unit-variance to expected-norm 1 vectors.

The off-diagonal terms are zero, as we prove using the symmetry of the expectation.

E [xixj] ≡ E
[
xixj

‖x‖2

]
= E

[
xixj

xi2 + xj2 +
∑

k 6=i,jxk2

]

=

∫ ∞
−∞

p(x1, x2...xi...xd)
xixj

xi2 +
∑

k 6=i xk
2
dx

=

∫ ∞
−∞

p(xi)

∫ ∞
−∞

p(x1, x2...xi−1, xi+1...xd)
xixj

xi2 +
∑

k 6=i xk
2
dx/idxi (independence)

where x/i denotes the vector x excluding the ith component. p(xi) is symmetric (i.e.

p(xi) = p(−xi)), yielding:

E [xixj] =

∫ ∞
0

p(xi)

∫ ∞
−∞

p(x/i)
xixj

xi +
∑

k 6=i xk
2
dx/idxi+∫ 0

−∞
p(xi)

∫ ∞
−∞

p(x/i)
xixj

xi +
∑

k 6=i xk
2
dx/idxi

=

∫ ∞
0

p(xi)

∫ ∞
−∞

p(x/i)
xixj

xi +
∑

k 6=i xk
2
dx/idxi+∫ ∞

0

p(−xi)
∫ ∞
−∞

p(x/i)
−xixj

(−xi)2 +
∑

k 6=i xk
2
dx/idxi

=

∫ ∞
0

p(xi)

∫ ∞
−∞

p(x/i)
xixj

xi +
∑

k 6=i xk
2
dx/idxi−
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∫ ∞
0

p(xi)

∫ ∞
−∞

p(x/i)
xixj

xi +
∑

k 6=i xk
2
dx/idxi

= 0

That the expected mean of x is zero is proven by the same symmetry considerations.

As a corollary, X satisfies the requirements for the MPI (including the specific case

of the convolution-correlation pairing) to be optimal. Therefore, using the conditions

assigned to tensor product representations in self-addressing binding schemes (i.e. with

normalization of the role vectors) in the convolution-correlation setting is tantamount to

the same procedure as in (1), with the only difference being that the input role vectors are

normalized, so that decoding is perfect in the single-binding case. Importantly, optimality

of TPR decoding is preserved.

2.3.2 Relation to Plate’s statement of the approximation

Plate provides the following account of the relation between convolution and correlation.

The result of composing the convolution and correlation operations is to retrieve the

convolved vector with the following componentwise error pattern:

[r ? (r ~ f)]i = (1 + ϕi)fi + εi (2.17)

where ϕi = ‖r‖2 − 1 is the squared norm of the role vector (mean-centered with the

expected norm 1), and εi =
∑

j 6=i
∑

k,` rkr`fj.

Plate’s requirements on the distribution of filler and role vectors mean that—due

to the central limit theorem, and in the limit as d −→ ∞—both ϕi and εi can be
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characterized as zero-mean noise, respectively distributed as:

ϕi ∼ N
(

0,
2

d

)
εi ∼ N

(
0,
d− 1

d2

)

These facts (see [Plate, 1994] for proofs) establish the basic procedure outlined by Plate for

convolution-binding: unbinding retrieves an approximation to the original input, which

is then compared with the inventory of vectors (the candidate fillers) to decode using the

closest match—so-called “clean-up” memories—in order to strip the noise terms.

The result established here provides a tighter connection between tensor product and

convolution memories, explaining the sense in which correlation inverts the convolution:

correlation is the best linear decoder for a tensor product compressed with convolution.

In addition, it demonstrates the equivalence of convolution—in terms of decoding accu-

racy—to any other row-independent encoding matrix with the right constraints on the

dimensions of the encoder and decoder (input dimension of d2, output dimension of d).

2.3.3 Computational efficiency of convolution-correlation

We have shown that convolution-correlation decoding is equivalent to bilinear encoding-

decoding with respect to the coarse squared-error criterion (2.16). That perspective,

therefore, does not grant convolution a privileged position among bilinear binding opera-

tions. With respect to that criterion, all bilinear maps with full row rank and having the

right dimensional constraints are optimal solutions. However, convolution has a distinct

advantage in terms of computation-time due to the fact that it can be computed using the

Discrete Fourier Transform in O(d log d) time, in comparison with O(d3) time for naively

computing the tensor product r ⊗ f and multiplication with the d3-element tensor M

[Plate, 1994]. This advantage, however, is somewhat overstated.
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HRRs are optimal only when their strict distributional requirements are met—the

most important of which, in terms of time complexity, is isotropy. This holds not just

theoretically, but also empirically, as we show in Section 2.3.5. If all of the filler-role

bindings (vectors x), or a sufficiently large sample, are available, it is always possible to

transform these vectors so that unit isotropy (E
[
xx>

]
= I) is enforced. The involved

transformation requires computing (or estimating under simplifications like as role-filler

independence, cf. the next section) the covariance matrix Σ, and multiplying the memory

states x by the square root of its inverse, Σ−
1
2 , which may be obtained from its singular

value decomposition. Computing the SVD of this square matrix has complexity O(d3).

In applied settings where the distributions of roles, fillers, and their products must be

learned (i.e. where embeddings must be learned), Σ−
1
2 must be re-estimated at each

step, with the implication that each iteration (in the learning phase, at any rate) also has

cubic time complexity. Thus, the computational advantages of HRRs come at the cost of

accuracy if the algorithm is naively applied.

It is worth reflecting on what are meant by the distributions whose covariances must

be obtained. It is not sufficient to estimate the parameters of the distribution of the role

and filler vectors separately (though this is a heuristic we employ in Chapter 5 for compu-

tational reasons), since even if the constituent vectors are normalized, covariances among

the components of the tensor products (which are the objects on which the isotropy as-

sumptions prevail in all the preceding theorems) will arise if there are correlations between

the role and filler vectors themselves. Those correlations can be estimated directly, but

only at great cost. In a train-test setting, this involves first assembling TPRs for all of

the training inputs, and calculating a covariance matrix that has dimension dr × df—all

for a single step of gradient ascent. This will be a computationally intensive procedure

in virtually any circumstance.
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2.3.4 Non-isotropy and FRB non-independence

Strict isotropy (ΣR ∝ I and ΣF ∝ I) and independence (r is uncorrelated with f) are re-

quired in order for convolution to satisfy Theorem 2.3.3. In general, vectors entering into

binding may not have this structure, particularly in empirical settings where component-

wise correlations are in fact a virtue of learned representations, allowing them to capture

such relations as similarity. However, the very design of typical binding schemes pre-

supposes various independence conditions on the various numerical representations, and

for good reason. These methods arose in the course of attempts to characterize numeri-

cal/neural representations that would share the key characteristics of cognitive systems

like language—especially, their systematicity. From the point of view of strict grammat-

icality or semantic well-formedness conditions, expressions can be arranged freely, with

statistically odd symbol-role associations standing equivalently to statistically congruent

(i.e. with respect to world knowledge/experience) counterparts—given the right level of

abstraction—as long as certain basic type constraints are satisfied. One has little trouble,

for instance, understanding the sentence The ball kicked the boy—at least to the point of

identifying the syntactic and semantic roles associated to each NP—and with respect to

this fundamental capacity of role-association/retrieval, there is no difference between it

and the statistically more congruent The boy kicked the ball.

Due to their a priori formal commitment to, coarsely put, “treating all fillers the

same”, cognitive theories allow exactly these sorts of free combinations of contents with

structural roles, indiscriminate of the identity of those fillers. TPRs under appropriate

constraints of course have this property, as a consequence of perfect decoding. As soon as

TPRs are remapped into spaces smaller than the space of origin (dR×dF ), however, some

information about conjunctions of features of fillers with features of roles (which is what
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the elements of a TPR record) is bound to be lost. As an illustrative example, consider a

model of binding of fillers to the semantic roles of Agent and Patient [Levin and Rappaport

Hovav, 2005]. Reprising the example of kick from above, we might imagine instantiating

the encoding/decoding problem as follows: there are role vectors [0, 1] (Agent) and [1, 0]

(Patient) for the designated structural roles. In addition, there are vectors for boy and

ball which we take to correspond to meaningful features of those objects:

−→
boy = [ 1 0 0 1 ]

−−→
ball = [ 0 1 1 0 ]

consciousness stillness smoothness autonomous motion

We aim to remap the 8-dimensional TPR vectors obtained from taking the tensor product

of the fillers with the roles (in the space R2 ⊗ F4) into a smaller representation, say

into a 4-dimensional space (call it O4). One plausible strategy might be to ignore role-

feature conjunctions that are rare, since the value of these features will often be zero

and thus can be zeroed out in recovering the TPR. Let Agent be highly correlated with

consciousness and autonomous motion (typical properties of biological entities),

and let Patient be correlated with stillness and smoothness (typical properties of

human-made artifacts). An appropriate remapping would be to take only those features

that are highly correlated, since those are the ones that we are most likely to need to

retrieve. The map from R2 ⊗ F4 → O4 is:

1 0 0 0

0 0 0 0

 −→ o1

0 0 0 0

0 1 0 0

 −→ o2
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0 0 0 0

0 0 1 0

 −→ o3

0 0 0 1

0 0 0 0

 −→ o4

where o = [o1, o2, o3, o4] is the output vector, which is obtained by taking the dot product

of the input TPR “matrix” with each element of the “matrix” on the left. The first

element of o records the role-bound feature Agent-and-conscious, the second Patient-

and-still, etc. Inverting this map leads to perfect recovery when boy is bound to Agent

and ball to Patient, but extracts only the zero vector when those roles are reversed.

Such a scheme would perhaps be optimal from the point of view of recovering the

identities of the two participants in the event when the notion of optimality depends on

real-world statistics, e.g. when the role of Agent is highly correlated with consciousness

and evincing autonomous motion and that of Patient with stillness and being smooth.6

It, however, lacks the core feature of symbolic cognitive systems: their compositional

productivity, i.e. the freedom to combine the full inventories of symbols with roles.

It takes some reinterpretation to align these classical concepts with a statistical char-

acterization, and there is no perfect fit. What is intended is something like this: all

features should be treated the same. There should be no systematic difference in the

decodeability of individual characteristics of the representation expressed numerically in

terms of features. Each feature, on aggregate, should be equally decodeable. Thus, the

6We leave aside for present purposes another possible scheme where the maps in question are affine
rather than strictly linear, representing a bias term for the highly correlated features (e.g. Agent-and-
conscious and Patient-and-still), assuming their values to be 1 (since this is true on average), leaving
only the extremely “rare” features to be extracted. In that case as well, though, featural homogeneity is
not satisfied, since the decoding error would be perfect for the rare features selected for decoding, but
not for the common features whose values are set by the bias.
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expected decoding error should be the same for all features (“featural homogeneity”):

E
[
([NMx]k − xk)

2] = E
[
([NMx]` − x`)

2] ∀k, ` (2.18)

This is not a generic property of linear maps, including those with full row rank. As a

very simple example, take the linear map from M : R25 −→ R5 that takes the first 5

components of the input and copies them to R5, with zeros elsewhere, i.e.

Mij =


= 1 if i ≤ 5 and i = j

= 0 otherwise.

This has a well-defined pseudo-inverse, which is just M>. However, it is easily verified

that Eqn. (2.18) is not satisfied in this case, since the expected retrieval error is zero for

the first five components, and for the remaining 20, is the variance of the corresponding

component of x.

Theorem 2.3.6. Let M be an encoding matrix with full row rank, N its pseudoinverse,

and USV any singular value decomposition of M . Further, let the vectors x be distributed

with covariance E
[
xx>

]
= I. Then M and N exhibit featural homogeneity (2.18).

Proof. The expected componentwise error Di(x) with respect to encoding matrix M ∈

Rm×n is

E
[
([NMx]i − xi)

2] = E
[
ni·
>Mxx>M>ni· − 2ni·

>Mxxi + xi
2
]

where ni· is the ith row of N . M is assumed to have full row rank. We begin by expressing
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M in terms of its singular value decomposition:

M = USV >

where U and V are the matrices of left and right singular vectors of M , and S the square

matrix with singular values along the diagonal. Its pseudoinverse N is

N = V S−1U>

where S−1 has the reciprocals of M ’s singular values along the diagonal. Rewrite ni· as

US−1vi·, with vi· the ith row of V . Thus,

E
[
([NMx]i − xi)

2] = n>i·ME
[
xx>

]
M>ni· − 2ni·

>ME [xxi] + E
[
xi

2
]

= vi·
>S−1U>USV >E

[
xx>

]
V SU>US−1vi·

−2vi·
>S−1U>USV >E [xxi] + E

[
xi

2
]

Setting E
[
xx>

]
= I (which can always be achieved by transformation) implies that

E [xxi] = 1i, the vector with 1 at component i and zeros elsewhere, such that V >E [xxi] =

V >1i = vi·, the ith row of V . Due to the properties of the SVD, U>U = I = V >V .

Therefore,

E
[
([NMx]i − xi)

2] = vi·
>vi· − 2vi·

>vi· + 1

= 1− ‖vi·‖2

Supposing that that the expected componentwise decoding error E [Di(x)] = E [Dj(x)] is

identical for each i, j, it follows that each row of V has the same norm. To get the other
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direction, follow the equal signs in reverse.

Corollary 2.3.6.1. When its assumptions are satisfied, convolution-correlation decoding

has featural homogeneity under criterion (2.18).

Proof. The rows of M are orthonormal—a corollary of the fact that MM> = I (see

Theorem 2.3.2). This being so, we have M = IIM with I having orthonormal columns

and likewise M for the rows. Thus, IIM is a singular value decomposition of M , with

M = V > in the standard formula. We now show that the columns of M (rows of V ) all

have the same norm. The columns of M are indexed by ij (Eqn. 2.14). The squared

norm of each column is
∑

k ([M ]kij)
2. For a given i, j, there is one and only one k such

that j = (k − i) mod d (footnote 2), and the value of that entry is 1√
d
. The norm, 1

d
, is

the same for each column of M .

2.3.5 The empirical performance of binding methods

The theoretical results provide an account of (1) the way in which correlation decodes

convolution, including the sense in which that pairing is optimal, and (2) the reasons why

convolution-correlation decoding—beyond the utility derived from the fast DTFT pro-

cedure for computing it—may have a preferred place among bilinear binding operations

when at issue is the modeling of cognitive operations that, at a certain level of abstraction,

do not seem to depend on a representation’s featural content. However, we depended on

idealizations like isotropy and independence, idealizations that do not tend to hold in

empirical settings. We now ask: what effect does departure from the assumptions have

on decoding accuracy in well-controlled simulations in which we vary the distributions of

vectors that enter into binding, and inspect the performance of different bilinear binding

methods in decoding the results.
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Figure 2.4: Samples from a distribution of 25d role vectors, 25d filler vectors, and 252 =
625d tensor product filler-role bindings, projected onto a plane. The second column from
the left depicts a distribution of normalized role vectors sampled from the distributions
on the left—normalized in PC space for the purposes of visualization (in actuality these
are projected onto the 25d hypersphere), and similarly for the filler vectors (second plot
from the right). The first sample (blue) is drawn from an isotropic distribution. The
second (red), anisotropic.

Even from a purely empirico-theoretical perspective, this analysis is important to

do for a number of other reasons. The most obvious is that the results enumerated

above refer specifically to the most convenient criterion available for the analysis of linear

models: the sum of squared componentwise error. In the deployment of these models,

however, the situation is more complicated. Accuracy in applications typically depends

on additional operations applied to the retrieved vectors, specifically those itemized in

Section 2.3.1. The usual computation stream—using the bilinear map notation developed

in this chapter, which encompasses convolution-correlation as well as a broader landscape

of models where dimensions are allowed to vary—is the following:

(2) Filler-role binding computation stream: To retrieve filler vector f i ∈ F
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Figure 2.5: Decoding accuracy for filler-role bindings sampled from two distributions (Fig-
ure 5.7). The color-coding legends for the left-two columns are at the top (blues/isotropic)
and bottom (reds/anisotropic), and indicate the dimensionality of the output vectors.
Comparisons between correlation and MPI decoding—the rightmost column—are labeled
as in the legend on the very right. Details: For 15 iterations, we sampled encoding ma-
trices M and solved for their decoding matrices N using the Moore-Penrose inverse. The
matrices were varied for the output dimensions (i.e. the amount of compression), with
a minimum of 25d (i.e. the output dimension of the convolution). Varying these, we
assessed the decoding accuracy as a function of the number of bindings superposed in
memory. The rightmost graphs depict the results for just the models with 25d output di-
mensions—both those with convolution-correlation, and with sampled encoding/decoding
matrices—using the color/style scheme indicated in the rightmost box. The colors/styles
are shared between the top (isotropic) and bottom (anisotrophic) graphs.
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bound to a given role ri, do:

argminj dist

(
f j, ri · unvec

(
NM vec

(∑
i

ri ⊗ f i

)))

where vec is the vectorization function for multi-indexed tensors, unvec the inverse

of that operation, and dist some distance function, (e.g. Euclidean, negative cosine

or Pearson similarity).

Using these methods, then, involves role-extraction of fillers via a dot product post-

compression, comparison with an external inventory of vectors, as well as employment

of a distance function. Given the variability introduced by these additional parameters,

they are best investigated empirically.

In Figure 5.7, we show the results of running an array of binding-unbinding algorithms

on vectors generated from a number of different distributions. There are two main cat-

egories: the isotropic distribution (red) was sampled from two zero-mean Gaussian (one

for fillers and for roles) with covariance matrix I. The resulting distribution of tensor

products r ⊗ f , which is isotropic but non-Gaussian, is also displayed. The anisotropic

distribution for r and f were generated from randomly sampled covariance matrices Σr

and Σf , each divided by the trace of the matrix in order to match the expected norm of

the isotropic distribution. The resulting distribution of TPRs is, as well, anisotropic. Ad-

ditionally, for each of these sampling sources, we generated a distribution from projecting

the role vectors onto the unit hypersphere (vector normalization). These vectors were

entered into an iterative sampling process for memory vectors (sums of TPRs) where 1

to 20 25-d role vectors were bound to any of 50 25-d filler vectors. The inventory of roles

and fillers was resampled 15 times. Starting with an inventory of 25 role and 50 filler
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vectors sampled from the (an)isotropic distributions, there are four basic models:

1. Dual vector decoding: Assemble M as M =
∑

i ri ⊗ f i. Encode-then-decode the

TPR as M̃ = unvec (NM vec (M)) (M the encoding matrix and N its pseudoinverse),

and then dot the result with the dual vector ri
∗. Observe that, in this model,

decoding is exact for the uncompressed TPR, i.e. ri
∗ · M = f i.

2. Normalized vector decoding: M =
∑

i
ri
‖ri‖ ⊗ f i, with decoding as f̃ i = ri

‖ri‖ · M̃.

In this case, decoding from the original memory is inexact due to overlap between

the role vectors.

3. Plate decoding: Role and filler vectors are rescaled by 1
d

to ensure the Plate

conditions (componentwise variance of d) are met in the isotropic case. The same

transformation is applied for the vectors sampled from the anisotropic distribution,

which have an expected norm of 1 due to trace-normalization, but with varying

componentwise variances. The compressed memory is assembled as M̃ =
∑

i
ri√
d
~ f i√

d
,

with decoding using the correlation and the rescaled role vector, the result again

rescaled to invert the Plate transformation: f̃i =
√
d
(

ri√
d
? M̃
)

.

4. Normalized correlation decoding: Here, role vectors were first normalized,

which yields a distribution that satisfies the Plate conditions (componentwise vari-

ance of
√
d) in the isotropic case. Filler vectors are simply rescaled. The memory

is M =
∑

i
ri
‖ri‖ ~

f i√
d
, with decoding as f̃i = ri

‖ri‖ ? M̃.

Whereas in (1) and (2) we vary the output dimension of the encoding matrices, (3) and

(4) are restricted to just those with 25-d output vectors. To rank the encoding-decoding

outputs with respect to the inventory of fillers, we used the negative cosine similarity as

a distance measure.
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Results. Figure 2.5 shows the results for all models. We first examine the isotropic

distribution (top row, Blue). As expected, the models with greater output-dimension

performed better than those with tighter resource constraints, with a gradual cline as

the number of stored bindings increases. Across the board, normalized vector decoding

performed better than dual vector decoding, and with a more gradual decline in perfor-

mance in all cases. Most starkly, performance with 25-d output vectors in the normalized

setting is near perfect (.997) with a single binding, whereas it is only .231 in dual-vector

decoding. Observe that, since in each iteration we sampled 25 role vectors from a 25-d

space, the role vectors tended to have low overlap—with a mean absolute dot product of

.16 (determined empirically)—which accounts for the empirical sufficiency of normalized

vector decoding in memories with multiple superposed bindings.

The rightmost panel shows the results of comparing all 25-d output vectors, separating

out the randomly generated encoding maps from convolution-correlation decoding. We

find that correlation-decoding performs equivalently to the sampled encoding maps. This

is expected given Theorem 2.3.4, though there we used a different criterion for evaluating

model error. The empirical result extends this finding to a more realistic setting in which

vectors are bound, retrieved, and then distance-matched to a given inventory.

The results for the anisotropic distribution are displayed in the three bottom graphs.

Dual vector decoding is perfect in the case of 625-d vectors (the full TPR), but at the

chance level when memories were remapped into a space smaller than the original TPR.7

This is probably due to the near-singularity of the role-vector matrix—from which we

compute the dual vectors via the pseudoinverse—when its rows (the role vectors) are

highly correlated.8 The situation is somewhat better for self-addressing vectors. Re-

7The chance level is MRR=.0899, which was verified empirically by sampling ranks uniformly from
50 (for the 50 filler options).

8Inspecting the dual vectors derived from this procedure showed duals with components whose values
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trieval with normalized roles provides reasonable decoding accuracy for a small number

of bindings, but drops to the range of .19 to .28 (across all memory embedding sizes) as

the number of stored bindings increases (compared to the range .27 to .97 for the same

models, 20 bindings, under isotropy). The severe degradation of performance in this case

shows the importance of satisfying the isotropy conditions in order for MPI decoding

(including correlation decoding) to be accurate.

Observe that decoding error in anisotropic distributions comes from a number of

sources. The first is the non-optimality of the MPI, leading to error in retrieval of the

tensor product in the decompression phase. Second, error arises in unbinding due to

role vectors being tightly packed together with other role vectors, meaning that unbind-

ing retrieves from neighboring roles when those roles are summed together in memory.

Similarly, error is introduced from the fact that some filler vectors are extremely close

together due to correlations. Combined, these factors drastically affect MPI decoding.

This section provides an empirical evaluation of correlation/correlation and other

methods of bilinear vector-binding in controlled simulations. In Chapter 5, using an

applied model developed therein, we will additionally ask: (2) how do the different bind-

ing methods behave in empirical settings where the assumptions—especially, role-filler

independence—are not satisfied? This is important for a number of reasons. The first

is that, while the above simulations vary the distributions of input vectors, which has

consequences for the distribution of tensor products entering into the bilinear binding

operations, it is noteworthy that correlations between the components of the constituent

vectors (the fillers and the roles) are not the only source of correlations between compo-

nents of the input tensors. As mentioned in 2.3.3, another source is correlations between

were in the hundreds or thousands, meaning that small numerical differences in the retrieved TPRs led
to large differences in their dot products with the duals.
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the choices of fillers and roles. It is not sufficient that the sentient feature be uncorrelated

with the animate feature on the filler vectors—correlations which can always be corrected

for using the coordinate transformation specified in Section 2.3.3 above. Reprising an ex-

ample from earlier, the filler boy should be uncorrelated with the role Agent, and the

filler ball uncorrelated with the role Patient. It should be clear that these conditions do

not typically hold and, that where they do not, the transformations required to enforce

them come at great computational cost.

2.4 Summary

In this chapter, we have reviewed the two primary methods proposed for implementing

analogues of symbolic structure-assembly in neural network models. In restricting our-

selves to these classical models, we have not treated the wealth of models that rely on

significant nonlinearities. The upshot is that these models are amenable to theoretical

analysis. We have provided such an analysis in terms of a broader framework of Bilinear

Binding, which encompasses both the tensor product and convolution-correlation decod-

ing, as well as a number of implementations of Tensor Product Representations that have

coped with the dimensional requirements of TPRs by reducing these to tractable size with

learned linear maps. We have shown that, with respect to certain theoretical criteria,

these methods are equivalent, and that convolution-correlation is on equal footing with

arbitrary bilinear maps, both in terms of accuracy and in terms of computing resources

required. Empirical results suggest that the flexibility in parameter-learning available

to bilinear models tends to improve performance relative to the fixed inductive biases

implied in the convolution-correlation setup.
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Chapter 3

Characteristics of self-optimizing

networks

There is good evidence for the existence of self-optimizing networks as the neural ba-

sis of cognitive computation in certain domains. Niessing and Friedrich [Niessing and

Friedrich, 2010] examined the neural classification of olfactory stimuli in the olfactory

bulb of explanted zebrafish brains. Imaging activation in response to stimuli with com-

pounds gradually varied in their concentration of several amino acid odors, they extracted

temporally-varying neural patterns on a set of mitral cells with quarter-second temporal

resolution. They found that neural patterns were initially highly correlated across all

inputs, and then gradually decorrelated and binned into distinct classes corresponding to

the dominant scent, arriving at steady-state patterns for each category at around 1500

milliseconds. Small initial pattern differences were gradually magnified, with clearly-

discriminable patterns emerging in the steady state, leading to categorical encoding of

continuously-varying inputs—a result that replicates similar experiments in rats [Barnes

et al., 2008] showing categorical grouping of neural patterns with linearly-varying input
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characteristics. The results also accord well with the categorical structure of scent per-

ception in humans [Castro et al., ], with clear analogues in perceptual studies showing

categorical perception in cognitive domains such as color [Hanley and Roberson, 2011]

and speech-sound perception [Altmann et al., 2014].

The authors remark that the results are consistent with point-attractor models of

neural computation, in which neural circuits are configured such that a neural popula-

tion’s temporal dynamics lead to patterns gravitating to designated points in the ac-

tivation space (see Fig. 3.3 for a qualitative comparison of modeling results with the

results of Nissing and Friedrich). At a conceptual level, network architectures of this

kind can be characterized as performing “pattern-completion”—taking input patterns

that correspond imperfectly with stored patterns representing discrete stimulus classes,

and gradually warping the inputs into the target patterns.

Thus, the available neuroscientific evidence recommends the pursuit of network ar-

chitectures based on attractors—networks that compute representations across time with

various steady states corresponding to discrete stimulus classes. In other words, cate-

gorization of sensory inputs does not just consist of a discriminative procedure (feedfor-

ward), but rather of (feedback-mediated) pattern modification that is well characterized

as modulation of input patterns into patterns corresponding to the prototypes for each

class.

We start from this intuition that computation in neural networks can often be modeled

as a time-dependent process in which a network’s internal representations of a stimulus

are operated on by a network’s internal dynamics. In many cases, it is convenient to

begin by defining a measure—henceforth, the Harmony—that assigns a numerical value

to every possible state of the network, and which can also be used to directly define self-

optimizing dynamics that have the right general properties. An appropriate Harmony
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Figure 3.1: Schematic for a two-class radial pattern-completion network, a composition
of two RBF circuits. Green nodes hold the value of the main state variable x, with
blue nodes and orange nodes implementing the transformations x − µ and W (x − µi),
respectively. The weight matrix W is set to Σi

−1. The red node computes the main
nonlinearity: the dot product of the blue nodes and orange nodes (Mahalanobis distance
between x and µ), passing through the exponential function. This computes ψ(x;µi,Σi),
a scalar that gates the green weights. The input to the state variable x is the desired
gradient.
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Figure 3.2: Left: Harmony surface for a two-distribution Radial Basis network over two
state space components x1 and x2, where α and β are set to the normalization constants
for the corresponding distribution, multiplied by 1

2
(uniform priors). Each distribution

has a distinct mean µi and covariance Σi, yielding two local optima, one at each mean.
Right: pointwise gradients for the state variable x = [x1, x2], with stable equilibria at the
two means.

function has the property that its stable maxima are associated with all and only the

target patterns—e.g. the prototype patterns for the target classes. We show by example

how an appropriate choice of Harmony function allows one to derive networks with the

right dynamics.

3.1 Example: Radial Basis Networks

Let’s examine the simple case of a multi-class classification problem. We first define a neu-

ral network architecture—organized along the lines of the principles of self-optimization—that

performs a simple multi-class classification problem in a manner that accords with the

qualitative facts observed by Niessing and Friedrich. We set the Harmony to a weighted

sum of radial basis outputs. Sticking with the two-class example for simplicity, this is:
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Figure 3.3: Optimization dynamics of an RBF with a 10-dimensional state space and the
Harmony function (a) projected onto the first two principal components. (b) Visualiza-
tion of zebrafish mitral cell patterns in response to chemical stimulation of the olfactory
bulb, with the concentration of the chemical stimulus varied gradually. Stimuli were
composed of a pair of chemicals (Tryptophan/Trp and Phenylalanine/Phe) in varying
ratios ([100% Trp, 0% Phe]; [90% Trp, 10% Phe], etc.). The figure illustrates steady
states (right) and temporal trajectories (left) of neural responses to stimuli thus varied.
(c) Temporal trajectories of points—projected onto the first 3 PCs—sampled from the
pair of distributions that generated (a) according to RBF dynamics (Direction of time is
from the interior to the boundaries of the state-space cube).

(1) HBRF(x) = α·exp
{
−1

2
(x− µ1)

>Σ1
−1(x− µ1)

}
+β·exp

{
−1

2
(x− µ2)

>Σ2
−1(x− µ2)

}
≡ α · ψ

(
x;µ1,Σ1

−1)+ β · ψ
(
x;µ2,Σ2

−1)
where α and β reflect priors on each distribution, and may be set to the prior-weighted

normalization constants for the multivariate normal distribution—pi(2π)−
d
2 |Σi|−

1
2 with∑

i pi = 1, in which case H(x) is exactly the marginal probability of x under a mixture

of Gaussians with means µi, precision matrices Σi
−1, and priors α, β—or arbitrarily.

Local maximization of the value of HRBF(x) with respect to x can be viewed as assigning

the input to one of the i available classes, each with a corresponding “prototype” µi.

The discriminative procedure is straightforward: compute output values for the terms

corresponding to each class, and pick the class that is most likely to have generated the

input. However, the neuroscientific evidence enumerated above suggests that, in broad
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strokes, the computational procedure that is actually implemented amounts to having

a network set up such that running the network forward performs class assignment by

morphing the input pattern into an output pattern that is prototypical for one of the

classes. Our premise is that the morphing function can be characterized by gradient

ascent on a network Harmony function. For HRBF, the relevant network is given by

setting the time-derivative of the activation values for x to the derivative of HRBF with

respect to x:

(2) dx
dt

= ∂HRBF

∂x
= −α·ψ

(
x;µ1,Σ1

−1)·Σ1
−1(x−µ1)−β ·ψ

(
x;µ2,Σ2

−1)·Σ2
−1(x−µ2)

In words, the velocity of x is the sum of two affine transformations of x, weighted by the

current values of the corresponding scalar ψ (x;µi,Σi).

This function may be implemented using one of the RBF circuits depicted on each

side of Fig. 3.1, which illustrates a network whose spreading activation yields the desired

dynamics. The activation of each unit n obeys the rule

(3) dxn
dt

= f(ιn(t))− xn(t)

where f(ιu(t)) denotes a function of the input to u at time t, and the second term denotes

a decay in proportion to the current activation value of the unit—requiring that the unit

have a constant external input to maintain its current level of activation. For all but one

unit in each circuit, f is the linear identity f(ιu) = ιu, returning the input. First, linear

input units (green nodes). The goal is to compute the value of the main state variable x

as it evolves across time. We give x self-wires (an input maintaining the current level of
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activity) and add a derivative yielded by the computation stream, i.e.:

ιx(t) = x(t) +
∂HRBF

∂x(t)

dx

dt
=
∂HRBF

∂x(t)
sum of ιx and rule (3)

x(T ) = x(0) +

∫ T

0

∂HRBF

∂x(t)
dt

In the second layer, the value of linear input units—shared across distinct circuits

representing each maximum—is transmitted via the identity map (blue wires) to a set of

units implementing mean-subtraction, distinct for each circuit, with biases −µi for each

unit ui. For units u that are linear functions of x with weight matrix W , this is:

du

dt
=

d

dt
[Wx(t)] + ιu(t)− u(t)

= W
∂H
∂x(t)

+ ιu(t)− u(t)

The layer 2 units are initialized to x(t)−µ, with a bias of−µ, yielding du
dt

= ∂H
∂x(t)

, and sim-

ilarly for layer 3, which has weight matrix Σ−1 (orange wires)—the precision matrix for the

corresponding distributions
(
du
dt

= Σ−1 ∂H
∂x(t)

;∴ u(T ) = Σ−1(x(0)− µ) +
∫ T
0

Σ−1 ∂H
∂x(t)

dt =

Σ−1x(t). A single (red) unit implements the key nonlinearity, an exponential of the

dot product of the layer 2 and layer 3 inputs, which multiplicatively gates connections

(green wires) transmitting the gradient ∂H
∂x(t)

∝ Σ−1(x(t) − µ), with the multiplicative

gate yielding an input to x of ψ (x;µ,Σ−1) · Σ−1(x(t)− µ), as desired.

Via the green wires, the current value of the orange nodes passes to the input nodes

via an identity map, multiplicatively gated by the output of the nonlinear unit, such that

the instantaneous input to the green nodes (the input) reproduces the desired gradient (2)
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for one of the two distributions: α ψ(x;µu,Wi)·W (x−µi). The other side of the network

completes the computation by summing in the gradient with respect to the parameters

for the second distribution (β,µ2,Σ2
−1).

With appropriate settings of the parameters, the resulting network has the property

that (1) the network Harmony is the probability density of the current pattern x being

generated by either of the distributions, and (2) the network dynamics perform local

optimization of the network state to yield a pattern prototypical for one of the two dis-

tributions. Composing multiple circuits of this type allows us to derive pattern-mapping

networks solving classification problems with arbitrary numbers of classes.

A network with this structure models the qualitative dynamics observed in brain stud-

ies of pattern categorization—namely, approaching an attractor that sharply categorizes

inputs by clustering them as a function of the original input. Figure 3.3 illustrates the

resulting dynamics from a discrete-time simulation with two distributions and difference

equation

x(t+ 1) = x(t)− τ · α · ψ
(
x(t);µ1,Σ1

−1) · Σ1
−1(x(t)− µ1)

− τ · β · ψ
(
x(t);µ2,Σ2

−1) · Σ2
−1(x(t)− µ2)

for some τ , which is the sum of derivatives for the two distributions with respect to x(t).

This illustration links optimization processes to the likely biological solutions to cer-

tain computational problems—in this case, the assignment of sensory input to classes

grouping like stimuli. In the characterization developed here, those inputs are taken to

stand in for neural patterns. However, it is also possible to think in terms of conceptual

attributes of objects or other stimuli that vary essentially smoothly and continuously

in their values, and yet exhibit fairly sharp category boundaries in most cases. Human
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can readily produce judgments of the prototypicality of stimuli with respect to particular

categories, and that prototypicality correlates with other observables like reaction time

in classification tasks, the rate with which children acquire categories with/without nat-

ural prototypes, and the probability that subjects will produce particular instances of a

category—e.g. “dog” versus “dolphin” as instances of “mammal” [Rosch, 1978].

Self-optimizing networks of the indicated sort—where points in a continuous space

of attributes are assigned to local maxima—can explain these broad qualitative charac-

teristics in fairly straightforward ways with appropriate linking hypotheses—linking, for

instance, processing time in classification tasks to the time that is required to map a point

to its corresponding prototype, with computation time defined by optimization dynamics

quite literally; or the relative sharpness of category membership yielded by the presence of

stable equilibria only at local maxima. Classic findings about the categorical perception

of speech sounds—showing, for instance, that stimuli with continuously-varying physical

quantities such as Voice Onset Time (VOT) are nevertheless sorted into discrete percepts

with precise VOT boundaries [Goldstone and Hendrickson, 2010] also accord well with

this picture.

3.1.1 Harmony networks

Self-optimizing networks provide a plausible basis for the development of models that

reside at the interface of cognition and neural computation. They key difficulty of ap-

plying them in a field like language has to do with the daunting productivity of domains

where combinatoric possibilities come into play. The central free parameter in the RBF

network architecture is the selection of the mean vectors µ, which specify the maxima

associated with each attractor, each of which is defined by one of the subcircuits. It is
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easy to see how classification problems with arbitrarily large numbers of classes can be

built by composing arbitrary numbers of subcircuits.

Additionally, groups of independent classification tasks can be solved by solving each

task in orthogonal subspaces of the input space, with distinct subnetworks handling each

classification task. For instance, one can associate a maximum with each sequence of two

licit English words (e.g. [cat, paw], [fish, scale], and [fish, paw] are all sequences, but

[tac, awp] is not) by concatenating two networks, each of which solves the independent

task “map the input in position i ∈ {1, 2} to the nearest word” Formally, the resulting

network has the property that H([s1, s2]) = H1(s1) + H2(s2), where H1 and H2 are

Harmony functions (1) for each subnetwork. This network has maxima all points where

both H1 and H2 are at equilibrium—thus, a maximum associated with each pair of licit

strings.

Take, however, the problem of choosing between competing combinatorial structures

with the property of mutually dependent choices—e.g. the same task as above but now

restricted to only plausible pairings. Now, [cat, paw] and [fish, scale] are sequences but

[fish, paw] and [cat, scale] are not—commonsense semantics of two-word phrases. In

this case, the selection of s1 depends on the selection of s2, and we should like for the

following relations to hold:

H(cat, paw) > H(fish, paw) H(fish, scale) > H(cat, scale) (3.1)

If Harmonies H(s1, s2) sum linearly as H(s1) + H(s2)—as they do in RBF networks

segmented into orthogonal optimization problems in the indicated way—then H(cat) +

H(paw) > H(fish) + H(paw) ⇒ H(cat) > H(fish) and also H(fish) + H(scale) >
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H(cat) +H(scale)⇒ H(fish) > H(cat).1

3.2 Self-optimizing networks in combinatorial domains:

Harmonic Grammar and Gradient Symbolic Com-

putation

The tradition of Harmonic Grammar [Smolensky and Legendre, 2006] (HG) deals pri-

marily with cases of this kind—where the choice of value for a given variable depends

on the choice for another variable—via the introduction of connections between elements

representing each variable.2 HG combines two main elements: (a) a method for assem-

bling structures from inventories of representations of the parts of the structure, and (b) a

computational procedure—based on optimization of input patterns—for resolving input

patterns into output patterns that satisfy certain constraints, which include mutual-

1This is isomorphic to the XOR problem.
2In the HG formalism, this is done by using quadratic functions network states. For instance, the

fish− paw problem can be solved in a 4-unit network with a quadratic Harmony function. There is
one unit for each assignment of a words to a role, e.g. [1, 0, 0, 0] for fish-as-first-word, [0, 1, 0, 0] for
cat-as-first-word, [0, 0, 1, 0] for scale-as-second-word, and paw-as-second-word. There are symmetric
weights between each of the four units in the network, yielding a weight matrix W :

W =


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1


W is built up systematically by placing a 1 in cells where the the corresponding vector elements “go
together”, and a −1 otherwise. For instance, W1,3 = W3,1 = 1 because “fish-as-first-word” goes with
“scale-as-second-word”, and W2,3 = W3,2 = −1 because cat-as-first-word“ does not go with scale-as-
second-word”. The Harmony function—analogous to Eqn. (1) for the RBF network—is Hfish-paw =
x>Wx. It can be verified that the inequalities in Eqn 3.1 hold for each of the corresponding network
states. This shows how networks with this quadratic architecture can encode optimization problems
exhibiting mutual dependence, allowing us to correctly score competing alternative structures. The
additional problems of designing a network that computes the optimization, and does so while assigning
steady states only to valid structures, is addressed in the subsequent text.
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dependence relations such as those of 3.1. Element (a)—combinatorial assembly—is

specified by an inventory of roles (structural positions), an inventory of fillers (say, the

lexical inventory of a language), and an operation—the tensor product ⊗—which serves

to associate fillers with roles. Let symbols be denoted in typewriter font and the cor-

responding vectors in bold, with S = {fi/ri} denoting a set of associations of fillers fi to

corresponding roles ri. Its embedding is a vector s assembled as

s =
∑
i

ri ⊗ f i (3.2)

with the role and filler vectors typically chosen to be linearly independent sets. Each

ri and f i are vectors in the sets {ri}, {f i} of embeddings of each symbol. Licit structures

are thus required to have each role bound to exactly one filler, and each filler-role binding

ri ⊗ f i must have coefficient 1 in the sum. To encode structures where only a subset of

roles are bound to fillers (e.g. where structures are sequences of symbols with a given

max-length), one can introduce a “null” filler as one of the vectors in the filler space, so

that the constraint of one filler per role is satisfied. Element (b)—encoding of constraints

on structures—is provided by parameters W and b—a weight matrix and bias vector,

each in the vector space R ⊗ F ⊗ F ⊗ R and R ⊗ F , respectively. States of the network

reside in the product space R ⊗ F , and the well-formedness of structures—the result

of often conflicting constraints—is generated by second-order interactions between the

components of the state space (the symmetric matrix W ). Together, these parameters

define the well-formedness measure Harmony over any y ∈ R⊗ F in the state space:

H0(y) =
1

2

(
y>Wy + b>y

)
(3.3)
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Sometimes, W is directly set to be negative-definite, which guarantees concavity across

the entire state space. Alternatively, one can implement “Faithfulness” constraints penal-

izing the network state if it drifts too far from the initial input vector x: −λ(y−x)>(y−

x). As long as the hyperparameter λ is set to be greater than the largest eigenvalue of

W , the result is a concave quadratic function of y. Then, H(y) has a unique maximum

for any input x. From these condition, networks with the self-optimization property can

be derived. In reality, these formulations are largely interchangeable and come down to

the definition of W , since in each case the resulting function hinges on a negative definite

matrix—W itself in case 1 where the constraint is imposed on W directly, and W − λI

in case 2 where the constraint is set on λ and referred to as Faithfulness. We show how

this is so in Appendix A of Chapter 4.

While the concavity of H means that the unique y can analytically solved, it is readily

seen that, although H0 defines well-formedness for all licit structures of the correct form

3.2, it also defines well-formedness for all other states in the product space, which are not

in general thus expressible. In particular, the optimal network state ŷ = argmaxyH(y)

will not. Relative probabilities between specific discrete structures are established by

their location in the vector space and corresponding Harmonies, but the network does

not generally resolve into the encoding of a single discrete structure. Hence, at the level

of the neural implementation, establishing rankings between candidate structures was

possible only by iterating across all of the candidates and calculating their harmonies—a

procedure mimicked in the organization of symbolic tableaux for the purposes of linguistic

analysis, but quite at odds with the core interest of Harmonic Grammar as a formalism

that mediates between connectionism and grammar—that interest being in its promise

of neurobiologically-plausible implementation of structure-selection in combinatorically-

expressive domains, implemented as Harmony-maximization by gradient ascent.
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Implementation of the right optimization dynamics is the product of more recent

work under the name Gradient Symbolic Computation (GSC) [Smolensky et al., 2014,

Tupper et al., 2018]. Here, the standard dynamics of Harmonic Grammar are coupled

with additional dynamics that show preference for structures that are licit in having the

form of 3.2. The architecture provides a systematic way of deriving structured networks

with harmony landscapes that have two properties: (a) the Harmony function 3.3 ranks

candidate structures according to their satisfaction of constraints encoded in the network

parameters, and (b) equilibrium states of the network (local optima) are to be found

only at points representing licit structures. This implies that network dynamics designed

to follow the gradient of H will converge to—and only to—local optima (see fig. 3.4).

Paired with a procedure analogous to simulated annealing—where the strength of the

quantization parameter is gradually raised as the network computes along the gradient,

with random perturbations—the network will, in the limit, tend to converge to the global

optimum [Tupper et al., 2018].

Let Xr ∈ Rnr×|R| and Xf ∈ Rnf×|F | denote the matrices with the role vectors and

filler vectors as rows. Stipulate that the sets of role and filler vectors {ri}, {f j} span the

corresponding spaces. When the roles and fillers are set to be linearly independent—and

thus form a basis for each space—both are invertible, with Xr
−1 and Xf

−1 having as

columns the dual vectors Xr
−1

[:,i] = r∗i and Xf
−1

[:,i] = f ∗i for the corresponding fillers

and roles. The Quantization Harmony Hq is defined [Smolensky et al., 2014] as the

quartic function over x ∈ R⊗ F :

Hq(x) = −
∑
i

(
−1 +

∑
j

(
r∗i · x · f ∗j

)2)2

−
∑
ij

(
r∗i · x · f ∗j − 1

)2 (
r∗i · x · f ∗j

)2
(3.4)

Observe that each x in the network state space can be expressed as some x =
∑

ij αijri⊗
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f j, where each αij = r∗i ·x·f ∗j . The first term says that the sum of the squared coefficients∑
j αij

2 for each role i is 1, and the second says that each αij = r∗i · x · f ∗j is either 0 or

1. Together, these terms set equilibria at points where where one and only one αij is 1

for each role ri, i.e. the points
{∑

i ri ⊗ f j
}

for any of the |F ||R| assignments of a single

filler to each role. The total Harmony H is the sum of H0—the structural well-formedness

measure—along with the quantization term Hq—which requires states to have the right

form 3.2:

H(y) = (1− q)H0(y) + qHq(y) (3.5)

where q ∈ [0, 1] is a scalar known as the quantization strength. The sum of these terms

yields a composite well-formedness measure with peaks at each discrete structure, the

height of those peaks determined primarily by the Core Harmony 3.3 (fig. 3.4 provides

an example).

GSC was devised for the general purpose of selecting structural descriptions in discrete

combinatorial domains, i.e. where the outputs of computation necessarily correspond

to discrete structures. The introduction of Quantization dynamics into the framework

enforces this constraint while providing an explicit mechanism: gradient ascent paired

with annealing—for resolving arbitrary inputs into a selection of discrete structures3.

This is one of several methods by which one can obtain discrete-domain elements from

continuous vector representations, the first being iteration over the possible structures.

In the applied domain that is the subject of this thesis, in order to link arbitrary inputs

to corresponding discrete structures, we use another: content retrieval via unbinding

operations, combined with a cleanup memory. Instead of requiring that representations

3Given that the quantization strength q is sufficiently high, each terminus of computation (each
optimum) uniquely identifies one of the licit structures.
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Figure 3.4: Harmony surface for a Harmonic Grammar defined over a filler-role inven-
tory of two fillers and two roles, each component being 4-dimensional—leading to a
16-dimensional network state space for representing filler-role bindings. The network
Harmony is depicted after projection of all points onto two principal components, at
various settings of the quantization parameter q.

at the output of computation factor, one can obtain a discrete structure by simply forcing

the network to produce an answer using a sort of “memory retrieval” operation modeled

on the filler-role binding framework. In the standard case where the binding operation is

the tensor product, and the dot product with dual vectors providing the corresponding

unbinding operation, this allows an arbitrary vector s that lives in the right space—i.e.

with s =
∑

ij sijri ⊗ f j and {ri ⊗ f j} being a basis for that space—to be addressed

with each role, yielding r∗i · s =
∑

j sijf j ≡ f̃ i. The “best” filler for the given role is

then selected by choosing the filler that is closest to the result—for instance by taking

argminj

∥∥∥f j − f̃ i∥∥∥2.
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A version of this procedure is used in the Harmonic Memories model elaborated in

Chapter 5, where we adopt the two-way binding (fillers and roles) model of representa-

tion as a basis for representing graph components (specifically, entity “memories”), with

a subsequent Harmony maximization procedure which models the satisfaction of learned

semantic constraints on licit structures. In that case, the intuition is the same as the

one described in the GSC framework above: an input representation taking the form

of superposed filler-role bindings is subjected to optimization of an associated Harmony

function. There are, however, significant departures with respect to the form of the

computational process—modifications due in large part to the computational efficiency

requirements of our applied setting: knowledge base completion. Maximizing the utility

of GSC networks requires stochastic optimization of a highly nonlinear function with a

(generally large) number of local minima that is exponential in the size of the memory

(the number of superpositions allowed). For the m roles (with m the memory capacity)

and a basis of fillers with size n, the set of licit structures has size nm, with the base-

line algorithm (iteration) for computing Harmonies for each structure having exponential

time. Usually, structure-selection is performed using stochastic optimization of the cur-

rent network state, with stochasticity introduced in order to escape local minima, as in

Hopfield networks [Hopfield, 1982].

Stochasticity also has utility in computational modeling of cognitive processes. While

the strict Harmony values of network states—its local and global optima and structure-

rankings derived therefrom—are associated with grammatical knowledge rather than pro-

cessing, i.e. computationally specifying the set of linguistically licit structures, stochastic

optimization can model such variables as computation/processing time as well as compre-

hension or production errors. The GSC model has been profitably used in both domains.

On the grammatical side, [Smolensky and Goldrick, 2016] characterize the phenomenon
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of French laison using constraints encoded in a Harmony function, finding that the model

can be parametrized in such a way as to yield grammatical predictions about which

French phrases should be liaised. On the processing side, [Whan Cho et al., 2017] model

incremental syntatic parsing using a GSC network. In addition to defining grammatical

knowledge (the inventory of locally optimal states and their scores), they show how a

network with different policies for augmenting the quantization parameter q across time

lead to different processing dynamics as new words are added to an evolving parse, com-

bining core grammatical knowledge with the computation speedup obtained from parsing

a sentence as it is built up incrementally. They find that different q-update policies lead

to different predictions about how a GSC parser will process garden path sentences—i.e.

whether the network converges to local (garden path parses) or global minima (the cor-

rect parse). Stochasticity makes erroneous states available, and the q parameter models

how the network interacts with noise to produce correct vs. incorrect parses in different

proportion.

When the interest is primarily in modeling grammar, parsing or other cognitive phe-

nomena within restricted domains, it is tractable to define network weights analytically

and to perform optimization via simulation of the implied dynamical system. Our appli-

cations, however, require speedy training as well as inference.

Consider first what is required in order to define network weights for a GSC network.

The key function is 3.4, in which each sum of filler-role bindings is identified with an

optimum. Expanding out the first and largest term of 3.4 leads to a polynomial with

|R|2|F|2 terms. For even a small optimization problem having, say, 10 roles and 100

fillers, this is a million products, each of which must be recomputed for all timesteps

in the state-optimization during inference. This component of the GSC Harmony is the

one that imposes the constraint that all output states be superpositions of discrete filler-
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role bindings, and the result of suspending is that output states no longer correspond

to discrete structures. However, as we discuss in Chapter 4, allowing the network to

represent semantic modulation of input symbols as a function of their contexts leads to

output representations whose structure is both useful and interpretable (e.g. Table 4.4).

Thus, this gradience in output representations is in fact a virtue.

Most significantly from a computational point of view, it is not generally possible

to provide linearly independent filler-role bases where relations number in the tens to

hundreds and entities number in the tens of thousands. The required embedding sizes are

not accessible. In addition, there are numerous representational constraints imposed by

our application setting, in which roles correspond to relations which may have multiple

target entities (e.g. feline has both cat and leopard as hyponyms), meaning that the

desired outputs are not one-to-many (a function, as required by definition 3.4), but

rather many-to-many (a relation). The simplifications we make are, therefore, largely

unavoidable.

3.3 Conclusion

In this chapter, we have reviewed an array of neural networks that perform pattern-

completion in the form of optimizing a dynamical system, elaborating on applications of

these network to solving of combinatorial problems stated in terms of filler-role bindings.

Networks of this general form provide the foundation for the models we develop in Chap-

ters 4 and 5. What the models share is the definition of a Harmony function H assigning

a score to each state of the network. Under appropriate constraints to the form of H, the

corresponding networks define dynamical systems with optima at each valid solution.

The overall framework of self-optimizing networks is quite general, and there are many
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degrees of freedom in their design. The Radial Basis Networks developed in Section 3.1

rely on bilinear operations with a nonlinear transfer function and multiplicative connec-

tion weights. The GSC networks of Section 3.2 depend on Hq, a quartic function, whose

computation stated in neural terms requires synapses that integrate four-way products.

An interesting question—but one that is ancillary for our purposes—is which networks of

this general form are appropriate for modeling cognitive phenomena? A central constraint

on such networks, as models of neural computation, should be their neural plausibility,

and it is not straightforwardly clear that the networks reviewed in this chapter can meet

the threshold of compatibility with known bioneural principles. We mention in passing,

however, that the networks deployed in the subsequent two chapters have very clear neu-

ral models in the fairly strict sense that they rely only operations familiar from classical

neural networks: symmetric bidirectional connection weights, with the linear transfer

function defining the activation of each neural unit. While the focus here is primarily

applied, it should not be understated that these networks can serve as a unifying principle

for knowledge representation in a way that bridges the divide between cognition and its

neural implementation.
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Chapter 4

Gradient Graphs

4.1 Introduction

As they are conventionally analyzed, representations of semantic or linguistic data are

“compositional”: the meanings of complex representations are built up from the meanings

of their constituent parts.1 This idea has motivated numerous models of graph data

deployed in knowledge base completion (KBC), in which embeddings of entities and

relations are combined into composite representations—pairs of entities in a particular

relation with one another—that are built up systematically from the constituent parts.

But what happens when the whole is not a simple function of the parts? A natural case

arises in the interpretation of Noun-Noun compounds. The contrasting senses of vampire

cat (a-cat-that-is-a-vampire) and vampire stake (a-stake-used-to-kill-a-vampire) has as

much to do with the compatibility of the constituent nouns occurring in a given relation

than with the meanings of the individual components of the phrase.

Pursuing this line of thought, we propose Gradient Graphs, a neural network model

1An earlier version of this work was published in the Proceedings of the Society for Computation in
Linguistics [Lalisse and Smolensky, 2019].
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for KBC built on the principle that compositionally-obtained representations of seman-

tic objects can be optimized to reflect context-specific aspects of the meanings of their

constituents. The issue of context-conditioned, tokenized semantic representations has

received little explicit attention in the KBC literature. However, precedents do exist.

[Bordes et al., 2011] model context-sensitive entity senses by embedding relations as

pairs of matrices (Rlhs, Rrhs) that linearly transform entity embeddings into pairs of em-

beddings defined by the relation and the entities’ positions within it (the left-hand-side or

right-hand-side). The distances of the resulting embeddings are then compared. [Socher

et al., 2013] cope with the context-sensitivity of relation meanings by learning a k×d×d-

dimensional tensor embeddings for each relation, letting their model represent polysemy

by learning k versions of the relation represented in the k slices of its embedding tensor.

The intuition underlying this approach is that, for instance, the relation has part has a

different sense when applied to a biological organism than when predicated of a company.

While the former has parts like organs and limbs, the latter has parts like subsidiaries and

workers, which occupy very different parts of the semantic space. Each relational slice is

then responsible for learning the compatibility of arguments within particular semantic

subspaces.

In contrast to these other works, our approach is more radical in the sense that our

context-sensitive representations of knowledge base entries are not just computed from

the entries’ constituent elements (entity and relation embeddings), but are instead the

result of a representation-optimization procedure that balances compositionally-derived

representations with general knowledge about the characteristics of well-formed semantic

structures. We show that this additional “supracompositional” processing, in addition

to yielding sizable accuracy improvements over the compositional models we apply it to,

leads to embeddings of entity tokens with interpretable characteristics.
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4.1.1 Layout of the chapter

Section 4.2 lays out the general framework, which is compatible with a variety of im-

plementations. Section 4.3 presents two compositional embedding models proposed in

the literature. We adapt these models to construct compositional embeddings, and in

Section 4.4 report evaluations of Gradient versions of these models. Section 4.5 discusses

the characteristics of the resulting semantic representations in greater detail, as well as

their role in assisting inference. Section 4.6 concludes. Technical details about the model

and the implementations are given in the Appendices.

4.2 Optimization of semantic tokens

The hypothesis underlying the approach we propose is that noncompositional effects in

knowledge base data can be modeled by subjecting candidate facts to a process of opti-

mization with respect to a set of learned semantic coherence conditions. These semantic

coherence conditions, encoded in a symmetric matrix, map out the covariance structure

of the semantic space, indicating which semantic features are likely to co-occur with one

another. The embedding of a given triplet is then the vector obtained by optimizing the

semantic coherence of the the triplet embedding.

We first lay out the model in abstract form, before introducing particular implemen-

tations. Let x ∈ Rd be a d-dimensional embedding of a knowledge base triplet (e`, r, er)

obtained as some function fcomp—the composition function—of the embeddings of the

left and right entities as well as the relation r. Section 4.3 provides several models for

constructing the triplet embedding x. Also, let h be a d-dimensional vector giving the

internal (“hidden”) state of the network. The Harmony of an internal state h of the

68



λ λ λ λ λ

fcompfcomp

x

h

e` er

r

Figure 4.1: Gradient Graph as a recurrent neural network. In addition to bias terms
(omitted in the figure) and self-connections, hidden units are densely connected to one
another via a layer of connections with symmetric (undirected) weights, and receive con-
stant input weighted by λ from a single unit in the input layer. The composition function
fcomp(e`, r, er), which differs between implementations, computes a compositional em-
bedding x, which is fed into a hidden layer h of the network. The continuous-time
dynamics of this network compute an internal representation ĥ of the input triplet that
is optimal with respect to the Harmony 4.1—a measure of the triplet’s semantic well-
formedness.

network with respect to the triplet embedding x is

H(h,x) =
1

2

[
h>Wh+ b>h−λ(h− x)>(h− x)

]
(4.1)

where W is a d× d weight matrix with W = W> and b is a bias vector, both learned.

4.1 is composed of two terms: Core Harmony, a measure of the semantic coherence of

the state vector h, and Faithfulness, a penalty incurred due to the state h’s deviation

from the compositional triplet embedding x. λ is a hyperparameter that controls the

magnitude of the penalty incurred for straying from x.
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H(h,x) may be rewritten as 4.2.

H(h,x) =
1

2
[h> (W− λI)h+ (b+ 2λx)>h− λx>x)] (4.2)

If λ is greater than the largest eigenvalue of W, then V = W − λI is negative-definite,

and H(h,x) has a unique global optimum ĥ = argmaxhH(h,x) for each x. In closed form,

this global optimum is

µ(x) = −V −1
(

1

2
b+ λx

)
(4.3)

which depends only on the network parameters and on x. The expression µ(x) comes

from observing that ĥ is the mean of a Gaussian distribution with inverse covariance

matrix V , which implies that ĥ is the most probable state h of the network with respect

to the probability distribution over the state space defined by p(h|x) ∝ exp{H(h,x)}

(see Appendix A). We take the token embedding for a triplet x to be µ(x), which is the

most semantically coherent triplet embedding given the compositional triplet x. In the

limit as λ→∞, µ(x) is just x itself. Let λW denote the largest eigenvalue of W; then as

λ→ λW, µ(x) may become arbitrarily far from the triplet embedding x.

A Gradient Graph may be viewed as a neural network with weight matrix W and

bias vector b
2
, where the synaptic weights W specify a feedback layer through which the

values of the hidden state units affect one another. The construction is as follows. We

stipulate that the hidden state of the network follows the gradient of Harmony over time:

dh

dt
=
∂H(x,h)

∂h
(4.4)
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Therefore,

dhi
dt

=
d

dhi

1

2

[
h>Wh+ b>h− λ ‖x− h‖2

]
=

d

dhi

1

2

[∑
jk

hjWjkhk + bihi − λ(xi − hi)2
]

=
1

2

[∑
j

hjWji +
∑
k

Wikhk

]
+
bi
2

+ λxi − λhi

The above specifies the connectivity of a network whose hidden units have the linear

transfer function (f(ι) = ι), bias b
2

and external input x (weighted by λ). Each hi also

receives self-inhibitory input weighted by −λ, as well as inputs Wijhj from each hj. The

symmetry of W implies that each term Wijhj = hjWji occurs twice, so that the factor

of 1
2

cancels. This connectivity structure is illustrated in Figure 4.1.

4.2.1 Relation to Harmonic Grammar

In addition to being globally optimal with respect to the Harmony function H(h,x)

conditioned on a particular input x, µ(x) is the unique fixed point of this network’s

state-evolution dynamics. It is interesting to note that such networks are the connection-

ist foundation for Harmonic Grammar (HG) and Optimality Theory (OT) in linguistics

[Smolensky and Legendre, 2006], where the dynamics of a neural network perform opti-

mization over internal representations of an input structure. Appropriate output repre-

sentations are then selected in accordance with well-formedness constraints encoded in

the network parameters. There, the output representation balances Faithfulness to the

input (an Underlying Form) and the network’s knowledge about the characteristics of

well-formed structures in general.
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Similarly, it is appealing to conceptualize the hidden layer of a Gradient Graph net-

work as cleaning up a knowledge base triplet by subjecting it to semantic well-formedness

conditions. The optimal triplet µ(x) is then the point to which the network converges

in the limit of infinite computation time. However, our model differs from typical im-

plementations of HG and OT in that the optimal structure µ(x) does not, in general,

decompose into a unique combination of the input constituents (entity and relation em-

beddings). The resulting representations are in this sense gradient, rather than being the

product of a combination of discrete objects. Furthermore, Gradient Graphs are, to our

knowledge, the first application of these ideas to the automatic learning of an appropriate

semantic optimization function from a large amount of data.

4.2.2 Comparison with translation-based approaches

Like a large class of Translation-based models [Bordes et al., 2011, Yoon et al., 2016, Lin

et al., 2015, Ji et al., 2016], our inference procedure consists of the application of an

affine transformation to an input x (Equation 4.3), which is then scored using some

regular operation. In our case, this scoring function is quadratic. A particular close

cousin is the bilinear Semantic Matching Enery (SME) method of [Bordes et al.,

2014], which learns a global three-mode tensor W that, when dotted along the third mode

with a relation embedding r, yields a relation-specific matrix Wr. Along with learned

left and right bias vectors b` and br, this weight matrix is fed into the bilinear scoring

function 4.5:

scoreSME(e`, r, er) = (Wre` + b`)
>(Wrer + br) (4.5)
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Expanding out this expression, we get 4.6.

e`
>Wr

>Wrer + b`
>Wrer + br

>Wrel + b`
>br (4.6)

The relation-specific bilinear form Wr
>Wr is, like our global W matrix, symmetric. The

remaining terms, apart from the constant b`
>br, compute a pair of relation-specific bias

vectors b`
>Wr and br

>Wr applied to the pair of entity embeddings. The resulting Energy

function used to score triplets has more than a passing similarity to our Harmony function

4.1 when λ =∞ and, thus, no optimization takes place.

A distinctive characteristic of our approach in relation to these structurally similar

models is that the transformation undergone by a Gradient Graph triplet is directly

connected to the well-formedness criterion according to which triplets are evaluated in

inference. As illustrated in the Discussion, our transformation of a compositional triplets

using learned well-formedness criteria leads to two kinds of triplet embeddings: compo-

sitionally obtained type embeddings, and contextually optimized token embeddings. In

qualitative and quantitative analyses of the learned representation, we see (1) that the

space of compositionally obtained triplet embeddings has a reasonable structure, indepen-

dently of the optimizing transformation, that is already sensitive to the context supplied

by the relation, and (2) that semantic optimization improves these compositional rep-

resentations in recognizable ways. Interestingly, improving triplets with respect to the

Harmony function does not uniformly place them in regions that are high-Harmony in a

global sense. In fact, we find that whereas positive triplets end up close to other positive

triplets, plausible but negative triplets tend to be detained in clusters with other negative

instances (Tables 4.2 and 4.4).
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4.2.3 Harmony-Maximization as context-modulation: An intu-

ition

Although our main problem domain is knowledge representation (a “language of thought”)

rather than language itself, a version of the token-type distinction we use here has prece-

dent appears in the linguistic analysis of nouns in constructions where they are considered

in certain aspects. Take for instance the following examples, adapted from [Asher, 2011]:

(1) Copredication

a. Lunch was delicious but took forever.

b. The books are heavy but informative.

Clearly, lunch can appear as the argument of both predicates being delicious and taking

forever. But the predicates applied to it are predicates of categorically different types of

things. Lunch was delicious in its aspect as a physical substance, but lunch took forever

in its aspect as an event. Similarly for the books : they are heavy as physical substances,

but informative when considered as abstract informational entities. “Copredicative”

sentences like these are interesting because they require interpreting lunch as the same

entity when it is being delicious and taking forever. Yet the event of lunch does not have

a taste, nor does the meal itself have a duration [Liebesman and Magidor, 2019]. Indeed,

the licitness of copredication is a key datum in establishing that differing senses of a word

are examples of polysemy and not homophony. Take the well-known case of bank as in

an issuer of credit and bank as in a riverbank, which are homophones. Copredication fails

in this case:
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(2) a. *The bank that holds my mortgage is very slippery when it rains.

b. The bank that holds my mortgage is on 4th Avenue.

Put in our terms, while bank the physical building is sufficiently close to bank the abstract

legal entity that instances of the two can be morphed into one another, this is not the

case for the homophonous senses of bank.

A related phenomenon is coercion. Take the two sentences sentences below, also from

[Asher, 2011]:

(3) Coercion

a. Julie enjoyed the book.

⇒ Julie read the book.

b. The goat enjoyed the book.

⇒ The goat ate the book.

Clearly the book in the context of Julie refers to the abstract object with its informational

content, and in the context of the goat, to the physical substance of which the book is

composed. This difference explains the inferences that can be drawn from each of these

sentences: the word enjoyed has accommodated the context of the head noun.

A characterization of these phenomenon in our terms distinguishes between enjoy in

both predications in the following way. Enjoy is initialized to a common representa-

tion (vector) eenjoy. It occurs in two predication structures: (julie, enjoy, book), and

(goat, enjoy, book). There are corresponding vectors for each element, with enjoy in

both contexts initialized to a common vector eenjoy. When occurring in the structure,

eenjoy is subjected to the semantic type requirements of the other arguments in the
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structure. julie is capable of consuming the book’s most salient characteristic—the in-

formation—while the goat can only interact with the book as a physical object. So while

the initial representation of enjoy is the same, the final representation must take into

account the selectional constraints associated with the other vectors. Our mechanism for

instantiating this difference is optimization of the lunch vector with respect to these

semantic constraints as embodied in the weights of W. In terms of the model, the Har-

mony surfaces for the two compositional inputs are different because of the Faithfulness

term, and so the optimized version of the Julie triplet will end up somewhere close to

“Julie read the book”, and the goat version ends up close to “The goat ate the book”.

This example is depicted in Figure 4.2.

An interesting aspect of our model is that it does not only produce a score for the

involved predications, but directly modifies the input vector representation of enjoy into

a one that is modulated by the context (e.g. enjoy-as-reading and enjoy-as-eating), with

the contextualized facts involving enjoyment now evaluated with eenjoy in its optimized

form. We make use of this attribute in the analyses of Section 4.5 by inspecting both the

type and token representations of entities.

4.3 Compositional and Gradient Models

Optimization with respect to the Harmony measure H can be implemented wherever

we can construct a triplet embedding x. In our experiments, we apply Harmonic opti-

mization of triplet representations to two compositional embedding models drawn from

the knowledge base completion literature: DistMult and HolE. Both models specify

a scoring function for triplet embeddings obtained via operations applied to embeddings

of the three triplet components—two entity vectors and a relation vector—with no ad-
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(julie, enjoy, book)
embed

======⇒ fcomp(ejulie, renjoy, ebook)
compose

======⇒ x(julie,enjoy,book)

HMax
======⇒ ĥ(julie,enjoy,book) ≈ “Julie read the book and liked it”

(goat, enjoy, book)
embed

======⇒ fcomp(egoat, renjoy, ebook)
compose

======⇒ x(goat,enjoy,book)

HMax
======⇒ ĥ(goat,enjoy,book) ≈ “The goat ate the book and liked it”

Figure 4.2: Coercion as optimization in a Gradient Graph.
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ditional learned components apart from these representations of the triplet constituents.

We take the terms occurring in these scoring functions to be components of the represen-

tation of the triplet, specifying what information about the triplet elements is important

to evaluating the triplet’s quality. Hence, we constructed Harmonic triplet embeddings

according to the desideratum that every term occurring in the basic method’s scoring

function should also appear in the triplet representation x in the Harmonic model. For

instance, the score of a DistMult triplet is a sum of three-way products of the corre-

sponding elements of the embeddings e`, r, and er. Setting the products [e`]i[r]i[er]i to

appear in our compositional triplet embeddings (as in Eqn 4.8) satisfies this desideratum.

DistMult [Yang et al., 2015] is a baseline model for scoring knowledge base triplets

using the scoring function 4.7:

scoreDistMult(e`, r, er) = e`
> diag(r) er (4.7)

where e`, r, er are d-dimensional embeddings and diag(r) is the d×d-dimensional matrix

obtained by arranging the elements of r along the diagonal. [Kadlec et al., 2017] have

recently shown that DistMult can outperform many more elaborate scoring functions

when hyperparameters are properly optimized, making it a strong baseline comparison

for the method we propose. In addition, DistMult often occurs as a subcomponent

in state-of-the-art KBC models—e.g. [Schlichtkrull et al., 2017, Toutanova et al., 2015].

From this starting-point, we construct Harmonic DistMult (HDistMult) by setting

the triplet embedding x to the elementwise multiplication of the relation and the pair of

entity vectors:

xHDM = e` � r � er (4.8)
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where � denotes elementwise multiplication.

Holographic Embeddings (HolE) were introduced by [Nickel et al., 2016] build-

ing on theoretical work by [Plate, 1995], as a means of constructing compressed tensor

product representations of relational triplets. The method computes the score for a triplet

(e`, r, er) from the similarity between a relation vector and the circular correlation e` ?er

of the entity vectors and a relation vector:

scoreHolE(e`, r, er) = r>(e` ? er) (4.9)

where the circular correlation of e` and er is computed as 4.10.

e` ? er = F−1
(
F(e`)�F(er)

)
(4.10)

where F and F−1 denote the Fourier Transform and its inverse, and F(e`) is the com-

plex conjugate of F(e`), which reverses the sign of the imaginary terms of the Fourier-

transformed vectors.2 Circular correlation is asymmetric (e` ? er 6= er ? e`)—allowing it

to model asymmetric relations—and the result of the operation has the same dimension-

ality as the input vectors, while still carrying information about which pair of entities

was bound together via correlation.

We construct Harmonic HolE (HHolE) triplet embeddings via elementwise mul-

2The Fourier transform redescribes a function of time into its frequency components. In the context of
holographic embeddings, its utility comes from the Convolution Theorem, which states that convolution
in the time domain corresponds to elementwise multiplication in the frequency domain. This is useful
in actual computations. The circular correlation—which consists of convolution with a time-reversed
signal—can also be computed as a sum over off-diagonals of the tensor product of vectors, with time
complexity O(d2). In contrast, the Fast Fourier Transform (FFT) has time complexity O(n log n) [Nickel
et al., 2016], though see Chapter 2’s remarks on the computational efficiency of HRRs in the presence
of anisotropy.
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tiplication of relation vectors with the correlated pair of entity vectors:

xHHolE = r � (e` ? er) (4.11)

In both Harmonic models, the score for a candidate triplet (e`, r, er) with embedding x

is calculated by taking the Harmony of its optimal instantiation, ĥ = µ(x), i.e.

score(x) = H(µ(x),x) (4.12)

In the experiments, we train our networks using the log-softmax objective with negative

sampling. For each positive training example (e`, r, er) with embedding x, we construct

N negative examples (ẽn` , r̃
n, ẽnr ) obtained by deleting either the left or right entity of

the true triplet and replacing it with a randomly sampled entity vector. Let x̃n denote

the embedding of the nth negatively sample triplet (ẽn` , r̃
n, ẽnr ). The training objective

is then to minimize 4.13:

LH(e`, r, er) = − log
exp{H(µ(x),x)}

exp{H(µ(x),x)} −
∑N

n=1 exp{H(µ(x̃n), x̃n)}
(4.13)

This has the effect of increasing the Harmony of positive examples relative to negative

samples. The learning rule is thus Harmony-maximizing: the network parameters maxi-

mize the well-formedness of the positive examples relative to negative samples.
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FB15k WN18

Rank Hits@ Rank Hits@

Model λ MR MRR 1 3 10 λ MR MRR 1 3 10

DistMult - - .350 - - .577 - - .830 - - .942

Ensemble DM† - 36 .837 .797 - .904 - 457 .790 .784 - .950

DistMult∗ - 28 .710 .605 .792 .876 - 220 .825 .714 .938 .950

HDistMult ∞ 23 .806 .751 .845 .898 ∞ 164 .841 .740 .943 .955

HDistMult 50.0 23 .742 .661 .799 .881 3.0 184 .831 .732 .931 .945

HolE - - .524 .402 .613 .739 - - .938 .930 .945 .949

HolE∗ - 39 .409 .289 .464 .647 - 205 .916 .893 .936 .946

HHolE ∞ 32 .682 .575 .763 .850 ∞ 293 .919 .903 .934 .942

HHolE 1.0 21 .796 .727 .848 .901 2.0 183 .939 .931 .945 .951

Table 4.1: Results on FB15k and WN18. The results from the original DistMult
and HolE models are drawn from [Yang et al., 2015] and [Nickel et al., 2016]. Our
reimplementations∗ of DistMult and HolE differ in numerous details from those in
the original papers (see Appendix B for technical details). Ensemble DistMult† refers
to the hyperparameter-optimized Ensemble (product of experts) reimplementation of
DistMult proposed by [Kadlec et al., 2017]. For each model, we report Mean Rank (MR)
and Mean Reciprocal Rank (MRR), as well as Hits@N for N ∈ {1, 3, 10}. Hits@N
denotes the fraction of test instances in which the true triplet completion had rank less
than or equal to N . The best results within each category (DistMult and HolE) are
marked in bold, and the best results overall are additionally underlined.

4.4 Experiments

We evaluated Gradient Graphs using the standard WN18 and FB15k datasets [Bordes

et al., 2013]—which are subsets of the WordNet [Miller, 1995] and Freebase [Bollacker

et al., 2008] databases—on the Entity Reconstruction task. In Entity Reconstruction,

the network ranks completions of triplets ( · , r, er) and (e`, r, · ) with deleted left and

right entities. The model is successful if it ranks the true triplet above other candidate

completions. We report results in the filtered evaluation setting [Bordes et al., 2013], in

which a test triplet is only ranked against triplets that do not occur in the database.

The rank of a test triplet is thus the rank of the first correct answer to the query. For

both DistMult and HolE, we report the originally reported results alongside results

for our reimplementations, comparing these models with our Harmonic variants HDist-
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Mult and HHolE with and without optimization of hidden layer representations. The

Harmonic models with λ =∞ have the Harmony function H(x,x), i.e. where the hidden

representation is just the compositional embedding itself and the Faithfulness penalty in

(4.1) is 0.

Our models used 256- to 512-dimensional embeddings and manually tuned values of

the hyperparameter λ. In all models, entity and relation embeddings were normalized

to ‖v‖ = 1. We do not regularize parameters, but instead set an upper bound λ − ε

(ε a small constant) on the l2 norm of the weight matrix W, which helps constrain the

spectral norm (maximum eigenvalue) of W to remain lower than λ. This may be seen as

adopting a uniform prior on weight matrices lying within the n-ball with squared radius

λ − ε. Importantly, this procedure keeps the matrix V = W − λI negative-definite—a

necessary condition for the existence of a unique optimum for H(h,x).

Results from the experiments are reported in Table 4.1. Overall, we found that models

using our quadratic scoring function 4.1 to perform best across the board. This effect

was particularly seen in more stringent evaluation criteria—Hits@1 and Hits@3—leading

to, for instance—a 15% improvement in Hits@1 (accuracy) on Freebase between our

DistMult reimplementation and quadratic HDistMult (λ =∞). The bestDistMult

models were those with high λ values; however, within-model comparison of HolE shows

dramatic improvements from including the optimization component—a 32% increase in

FB15k accuracy between the results of [Nickel et al., 2016] and our HHolE with a

permissive λ-criterion of 1.0.
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4.5 Discussion

In part, the appeal of our supracompositional representations stems from their ability

to produce emeddings of tokens of semantic objects—that is, embeddings that take into

account the context of a particular instance of a semantic type. Tokenized embeddings

have proven useful in various settings. For instance, [Dasigi et al., 2017] construct token

embeddings by superposing learned vectors for Wordnet senses in ratios determined

by a probability distribution computed from the context. The resulting representation

is a context-weighted sum of discrete senses drawn from a hand-crafted ontology. Closer

to our approach, [Belanger and Kakade, 2015] model text as a linear dynamical system

that generates texts through transitions of a continuous-state, discrete-time dynamical

system across time. Estimates of the system’s most probable internal state can then be

extracted as an embedding of the tokens, which prove useful in language modeling and

other downstream tasks.

In our framework, types correspond to static entity and relation embeddings that are

the input to fcomp, and the triplet embeddings resulting from their combination. Token

triplet embeddings are produced by optimization of the hidden layer of a GGraph. To

understand the effect of optimizing the hidden layer of a GGraph both on its learned

representations and on its performance in inference, we used the best-performing trained

HHolE model to produce token embeddings of database triplets in order to inspect their

semantic neighborhoods.

For a given compositional triplet embedding fcomp(e`, r, er) ≡ x, we first computed

the optimized triplet representation µ(x) ≡ ĥ using Equation 4.3. Treating ĥ as the

contextually optimal (token) embedding of the triplet (e`, r, er), we then examined the

semantic neighborhood by computing the 5 closest optimized embeddings in the context of
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the same relation. Table 4.4 shows the semantic neighborhoods of compositional triplets

x and optimized triplets ĥ for different possible completions of a number of queries. Rows

1 and 2 display completions of the query ( · , office position or title, US President),

and Rows 2 and 4 consider the neighborhood of the entity embedding of Bob Dylan in

the context of queries about his profession (e` = Bob Dylan, r = has profession) while

varying the profession er (Table 4.5. This illustrates how the representation of Bob Dylan

varies across his different professional guises.

The tables illustrates the utility of token embeddings in inference. Token embeddings

of George W. Bush and Barack Obama in the context of a query about their having

held the office of U.S. president are in semantic neighborhoods with a greater density

of true instances of U.S. Presidents than their type embeddings. The negative examples

John McCain and Hilary Rodham Clinton have type embeddings that are close to actual

presidents. This is sensible since, for instance, Hilary Rodham Clinton is married to

Bill Clinton—one of her nearest neighbors. But both of the negative examples’ token

embeddings have neighborhoods that are mostly cleared of actual presidents—despite

having type embedding neighborhoods that are relatively dense with presidents.

Turning to Table 4.5, we note that Bob Dylan’s type embedding is already in a

neighborhood dense with singer-songwriters. It is appropriate, then, that this neighbor-

hood undergoes no change apart from minor re-ranking when the triplet (Bob Dylan,

has profession, singer-songwriter) is optimized. For more difficult cases, how-

ever, where Dylan is not a prototypical example, the semantic neighborhoods undergo dra-

matic rearrangement. For instance, optimizing the triplet (Bob Dylan, has profession,

disc jockey) correctly places Dylan in the neighborhood of other DJs, despite the im-

plausibility of this association in the neighborhood of his type embedding, which contains

no DJs. This places him in the token neighborhood of Moby, who is otherwise quite unlike
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∆density t statistic p

Pos 0.241 t = 99.7 p� 10−10

Neg -0.059 t = −62.4 p� 10−10

Table 4.2: Change in neighborhood (top-5 closest neighbors) density of true triplets
(∆density) for positive and negative triplets drawn from the triplet classification dataset
introduced by [Socher et al., 2013], which is derived from the FB15k test set and consists
of 59,071 positive triplets and the same number of negative triplets. This resulted in
N = 118, 142 queries for both positive and negative examples (two for each triplet,
querying both the left and right entity). After computing each triplet’s neighborhood,
we counted the number of triplet neighbors that were in fact in the training, validation,
or test sets of FB15k, yielding a measure of the concentration of true and false examples
in the neighborhood of both type and token triplet embeddings.

Bob Dylan except in respect of their common career as DJs.

Combined with our finding that optimization yields the most dramatic improvements

in the more stringent evaluation criteria (Hits@1 and Hits@3), this suggests that our

optimization procedure is particularly helpful in arbitrating between difficult cases. This

qualitative observation about the neighborhoods of compositional and supracompositional

triplets can be quantified. Using the triplet classification dataset introduced by [Socher

et al., 2013], which contains an equal number of positive and negative triplets, we find

(Table 4.2) that positive triplets, on average, end up in neighborhoods with tightly packed

positive examples than their compositional counterparts. On the other hands, negative

triplets suffer a decrease in the number of positive triplets in the neighborhoods of their

optimized embeddings.

To further quantify the role of semantic optimization in inference, we correlated the

difference between the Harmony (score) of input triplets pre-and post-optimization with

the change in its rank on the FB15k dataset. The change in Harmony is computed as

∆H = H(µ(x),x) −H(x,x), i.e. the difference between the Harmony of the token em-
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bedding and the Harmony of the type embedding. This comparison is model-internal—it

does not compare models trained to do token inference with models trained for type

inference. However, it serves as a useful index of the performance gains attributable to

the optimization procedure. If optimizing a triplet representation indeed improves its

relative position among all candidate triplets, we expect changes in Harmony to be neg-

atively correlated with the change in rank of positive triplets. Consistent with this, we

find that optimization leads to significant improvements in raw rank in our best trained

HHolE model (Spearman’s ρ = −0.0157, p < 10−6, Figure 4.5). When considering the

change in Mean Reciprocal Rank, a more standard evaluation metric, we find that ∆H

is positively associated with improvements in MRR (ρ = .1370, p� 10−10),3 particularly

when triplets whose ranks do not change at all are omitted (ρ = .3746, p� 10−10). In

other words, when semantic optimization makes a difference, it does so for the better.

For HDistMult, ∆H is significantly associated with increases in the rank of true

triplets (ρ = 0.1226, p� 10−10), a result consistent with our finding that this class of

models disprefers low settings of λ. This illustrates the importance of choices of rep-

resentational format for embeddings of semantic data. Our optimization procedure can

only operate over information that is contained in its compositional input. Hence, choices

about how to combine the learned features of entities and relations—i.e. about the man-

ner of composition—are central to our framework.

4.5.1 Desiderata of a composition function

What factors affect the success of semantic optimization in combination with a particu-

lar composition scheme? We suspect that multiplicative interactions across embedding

3∆MRR is computed as MRR(µ(x)) − MRR(x), i.e. the difference between the Mean Reciprocal
Rank of the supracompositional and the compositional triplets.
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Figure 4.3: Effect of optimization on the rank of FB15k validation set triplets (N =
100, 000; 50, 000 triplets with two queries per triplet) from the best-performing HHolE
model (d = 512, λ = 1.0). The horizontal axis is a triplet’s change in Harmony pre-and
post-optimiation (∆H ≡ H(µ(x),x)−H(x,x)) minus the mean change in Harmony for
all triplets (µ(∆H)). This is plotted against rankq(µ(x))−rankq(x), the triplet’s change
in rank due to optimization for query q. A negative correlation indicates reductions in
rank (improvements) associated with increasing optimization of triplet representations.

components—which are present in HHolE and absent in HDistMult—are essential for

our optimization procedure to contribute helpfully to inference. Both DistMult and

HolE are special cases of contracted Tensor Product Representations (TPRs), obtained

by summing over (HolE) or discarding (DistMult) terms from the three-way tensor

product e` ⊗ r ⊗ er.4 In particular, DistMult retains only multiplicative interactions

within components, omitting terms with non-matching indices. This fact appears to be

crucial. In a follow-up experiment, we implemented a series of full TPR models trained

on FB15k, using the composition operation (4):

(4) xHTPR = e` ⊗ r ⊗ er

Such models are necessarily small in size due to the rapid growth of dimensionality for

TPRs as a function of the dimensionality of entity and relation embeddings. Conse-

4See [Nickel et al., 2016] for discussion of holographic embeddings as compressed tensor products.
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λ MR MRR H@1 H@3 H@10

∞ 150 .278 .192 .305 .447

1.0 134 .295 .204 .326 .471

Table 4.3: Performance of HTPR models with and without optimization (controlled by
λ). For both models, entities were 5-dimensional and relations 20-dimensional. This
trend held across other hyperparameter settings.

quently, their performance is also poor in comparison to our other implementations.

However, the trend matched that which we observed within the HHolE class: models

including the optimization procedure consistently outperformed those with λ = ∞ (see

Table 4.3). From this, we conclude that other embedding-based KBC models incorporat-

ing cross-component multiplicative interactions are likely to see improvements from the

addition of a semantic optimization step prior to scoring.

4.6 Conclusion

In this chapter, we proposed Gradient Graphs, a general method for augmenting com-

positional representations of Knowledge Graphs with a post-composition procedure that

optimizes the well-formedness of triplet embeddings, highlighting the model’s connection

to Harmonic Grammar and Optimality Theory. The resulting model shows marked im-

provements over the compositional models it is implemented alongside, and also produces

triplet token embeddings with properties that prove useful for inference about knowledge

base entities. In future work, we intend to explore the utility of semantically-optimized

token embeddings in other linguistic settings.
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US Presidents

George W. Bush Barack Obama

n x (compositional) ĥ (optimized) n x (compositional) ĥ (optimized)

1 George H. W. Bush George H. W. Bush 1 Hillary Rodham Clinton George W. Bush

2 Bill Clinton Bill Clinton 2 Al Gore Bill Clinton

3 Jimmy Carter Jimmy Carter 3 George W. Bush John F. Kennedy

4 John F. Kennedy Ronald Reagan 4 Bill Clinton Ronald Reagan

5 Ronald Reagan Barack Obama 5 John F. Kennedy George H. W. Bush

John McCain Al Gore

n x (compositional) ĥ (optimized) n x (compositional) ĥ (optimized)

1 John Kerry John Kerry 1 Barack Obama Condoleezza Rice

2 Hillary Rodham Clinton Colin Powell 2 George W. Bush John C. Calhoun

3 Colin Powell Nancy Pelosi 3 Colin Powell Colin Powell

4 Richard Nixon Joe Biden 4 Condoleezza Rice Hillary Rodham Clinton

5 Herbert Hoover Dick Cheney 5 John F. Kennedy John Kerry

Table 4.4: Semantic neighborhoods of type (pre-) and token (post-optimization) triplets output by the
best-performing HHolE model (d = 512, λ = 1.0). Effect of optimization on the semantic neighborhoods
of entity embeddings in the context of the query ( · , office title, US President). For each entity, we
retrieved the 5 closest (Euclidean Distance) compositional triplet embeddings, as well as the five closest
triplets, among all candidate triplets, when all these candidates are optimized. Triplet completions
that in fact occur in FB15k are marked in bold. Human-readable entity names were retrieved from
a mapping between Freebase machine IDs and names of Wikipedia articles built by [Ling and Weld,
2012]. See main text for discussion of the results.
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Guises of Bob Dylan

Singer-Songwriter Screenwriter

n x (compositional) ĥ (optimized) n x (compositional) ĥ (optimized)

1 Eric Clapton Bonnie Raitt 1 John Lennon John Lennon

2 Bonnie Raitt Eric Clapton 2 Jimi Hendrix Barbara Streisand

3 Van Morrison Van Morrison 3 Barbara Streisand Eric Idle

4 B.B. King B.B. King 4 Eric Clapton Nick Cave

5 Bob Seger Bob Seger 5 Eddie Vedder Alan Bergman

Disc Jockey Writer

n x (compositional) ĥ (optimized) n x (compositional) ĥ (optimized)

1 Tom Petty Steven Van Zandt 1 John Lennon Alanis Morissette

2 Warren Zevon Erykah Badu 2 Alanis Morissette John Lennon

3 Willie Nelson Alice Cooper 3 Paul McCartney Leonard Cohen

4 John Mayer John Mayer 4 Tina Turner Leonard Bernstein

5 Steve Earle Moby 5 Dolly Parton Prince

Table 4.5: Guises of Bob Dylan: Effect of optimization on the semantic neighborhood
of Bob Dylan in the context of four queries about his profession: Bob Dylan as
singer-songwriter, screenwriter, disc jockey, and writer. Bob Dylan is
a positive instance of each of these professions in FB15k. The procedure for extracting
neighborhoods is the same as in Table 4.4.
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4.7 Appendix A: Model details

(5) Claim: µ(x) = −(W− λI)−1(1
2
b + λx) is the unique global optimum for H(h, x)

for any fixed x.

We define the Harmony of hidden state h with respect to triplet embedding x as in 4.1:

H(h, x) ≡ 1

2

[
h>Wh+ b>h− λ(h− x)>(h− x)

]
=

1

2

[
h> (W− λI)h+ (b+ 2λx)>h− λx>x

]
≡ 1

2

[
h>V h+m(x)>h− λx>x

]
Completing the square yields:

H(h, x) =
1

2

[(
h− −1

2
V −1m(x)

)>
V

(
h− −1

2
V −1m(x)

)]

+
1

2

[
−λx>x− 1

4
m(x)>V −1m(x)

]
≡1

2

[
(h− µ(x))> V (h− µ(x))

]
+ `(x)

which is valid because V = W − λI is symmetric. `(x) does not depend on h, so it is

sufficient to optimize 1
2

[
(h− µ(x))> V (h− µ(x))

]
. Setting ∂H(h,x)

∂h
= 0 yields 2V (h −

µ(x)) = 0; ∴ h = µ(x). Since V is negative-definite, this point is a maximum.

The truth of the claim may be more quickly perceived by observing that H(h, x)

defines a Gaussian distribution over the hidden state variable h with mean µ(x) and

precision matrix Σ−1 ≡ −V . The optimality of µ(x) then follows from the unimodality

of Gaussians.
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The training objective 4.13 may be justified by the following considerations. We take

the compositional triplet data to be generated by hidden states of the gradient graph

network, and maximize the log probability of the training data using the maximum a

posteriori point estimate of the hidden state h. The “complete data” are then D =

{〈ĥ, x〉} = {〈µ(x), x〉}. For fixed x, H(h, x) models the conditional distribution p(h|x),

with

(6) p(h|x) = exp{H(h,x)}
Z(x)

where Z(x) =
∫
h′

exp {H(h′, x)} dh′ = |2πV −1| 12 exp{`(x)} is the partition function con-

ditioned on x. Let χq = {x′} be the set of candidate triplet embeddings consistent with

a given query q. Choosing the discrete distribution p(x) = exp{`(x)}∑
x′∈χq exp{`(x

′)} over triplet

embeddings as the prior probability of the embedding x,5 we have:

p(µ(x), x|q) ∝ exp{H(µ(x), x)}
|2πV −1| 12

∑
x′∈χq exp{`(x′)}

For given parameters, the denominator is constant. So, renormalizing over the discrete

triplets χq gives:

p(µ(x), x|q) =
exp{H(µ(x), x)}∑

x′∈χq exp{H(µ(x), x)}

Approximating the discrete distribution over all of χq with a negative sample yields the

objective 4.13.

5Note that, when H(·, x) is evaluated at µ(x), the only nonzero term in H(µ(x), x) is `(x). Hence, it
is sufficient to perform gradient descent on the prior: `(x)
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4.8 Appendix B: Implementation details

In initial experiments, we searched through a number of candidate models. These included

two Harmonic variants of the Rescal model [Nickel et al., 2011], as well as models

that constructed x as a simple concatenation of entity and relation vectors, as well as

three-way tensor products of these vectors. These initial experiments led us to focus on

DistMult and HolE as the best-performing candidates. Our Harmonic models and

reimplementations of the DistMult and HolE baselines were written in TensorFlow

[Abadi et al., 2016] and estimated using the Adam optimizer [Kingma and Ba, 2015].

With the exception of the HolE reimplementation, we uniformly used the log-softmax

loss 4.13, which performed best in initial experiments. In contrast, [Yang et al., 2015] use

a margin-based ranking loss that is linear in the margin between the scores of positive

and negative examples up to a threshold, and [Nickel et al., 2016] use the pairwise linear

margin loss applied to the scores squashed by the logistic function. For HolE, we used the

linear margin loss, which provided by far the best performance in the experiments. For

each model, we trained until performance on the validation set decrease, then chose the

best-performing embedding size from among d ∈ {256, 512}. Batch size (512), negative

sampling rate (500), and learning rate (0.001) were kept constant across models. We note

in passing that regions of the hyperparameter space for DistMult explored by [Kadlec

et al., 2017] were inaccessible to us for technical reasons. For the Harmonic models, we

manually tuned the λ hyperparameter.
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Chapter 5

Harmonic Memory Networks

Typical embedding-based strategies for knowledge base completion generally rely on

learned embeddings of fact elements (entities and relations) into low-dimensional vec-

tor spaces. Since representations must be learned from training-set instances of each

component, this creates problems when such databases are to be scaled, and therefore

these methods have difficulty accommodating an open-world setting in which knowledge

graphs evolve in time, since new facts inserted into the database after model training

cannot be used for inference without model retraining. Furthermore, databases may be

augmented in time not only with new facts about known entities, but also with new en-

tities. In embedding-based models, new representation for such entities must be trained.

In this chapter, we present Harmonic Memories (HMem), a neural network which

models entities by aggregating information about their neighborhoods in the knowledge

graph using a superposition memory architecture, achieving generalization to new entities

without retraining. The network combines two ideas. First, a representation of entities as

memory states consisting of superposed vector associations between learned entity and re-

lation embeddings. Second, completion of memory states using a learned transformation
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based on Harmony-optimization methods [Smolensky and Legendre, 2006] (and see Chap-

ter 3). We refer to vector associations as bindings in the sense of the “variable-binding

problem” in the philosophy of cognitive science: in neural net models of cognition, how

are representations of the elements of a structure bound together into structures? In this

work, we investigate two solutions prominent in the cognitive science literature—tensor

product binding [Smolensky, 1990] and circular convolution [Plate, 1994]—which were

both effectively applied in knowledge base completion [Nickel et al., 2011, Nickel et al.,

2016].

The approach is inspired by computational modeling of biological neural architectures

for knowledge representation [Crawford et al., 2015], and is related to KBC methods

based on convolution of graph neighborhoods [Schlichtkrull et al., 2017, Dettmers et al.,

2017a, Nguyen et al., 2018], in which inference is performed over representations of aggre-

gated entity neighborhoods. Recent work has extended this idea using Graph Attention

Networks) [Nathani et al., 2018], which assign attention weights to entries in a graph

neighborhood, these being later combined. For instance, [Veličković et al., 2018] use

Graph Attention to generate weights for triplet representations obtained by transform-

ing concatenated entity and relation vectors, combining the results by averaging. This

is similar to our approach, with the key difference that formulating the model—as we

do—in terms of binding allows for clear formal analysis of certain scaling results (§5.6).

We therefore gain in interpretability.

HMem scales well in three respects. First, it allows a database with a fixed set of

entities and relations to incorporate new facts into the model without parameter re-

estimation. Empirically, performance improves in nearly every case when the neighbor-

hoods are thus expanded. Second, it permits the addition of entities unseen in training,

whose representations are undefined in a vector embedding framework. For our model,
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inferences about these entities are possible when a subgraph including them becomes

available. Third, our model effectively handles nodes with high in-degree. We show

that, whereas existing embedding-based approaches show decreased performance with

highly connected nodes, our model exhibits improved performance on nodes with many

neighbors.

§5.1, §5.2 and §5.3 introduce the Harmonic Memory architecture, and §5.4 shows that

our model achieves state-of-the-art results on benchmark KBC datasets. After evalua-

tion on standard benchmarks, §5.5 introduces WNGen and FBGen, new datasets we

have developed based on Wordnet and Freebase that evaluate the network’s ability to

abstract from node identity and make inferences exclusively on the basis of information

about nodes in its neighborhood, and §5.6 examines in detail how the model scales with

the size of entity neighborhoods and the addition of new input facts. §5.8 concludes.

5.1 Representation of memory states

To review the task: a knowledge graph consists of triplets composed of a pair of entities

and a relation, e.g. (ecat, rhas part, epaw). Here, we say that cat is a left-neighbor of paw

with respect to the relation has part. In graph completion, we are given a query in

the form of either (·, r, er) or (e`, r, ·), representing queries of the left and right entity

respectively.

We denote sets of discrete symbols with calligraphic fonts (e.g. V), corresponding

vector spaces with italics (e.g. V ), individual symbols from V with bold letters, corre-

sponding vectors in V in bolded italics (e.g. vi is a symbol and vi its vector embedding)

and memory states with M. E and R denote sets of entities and relations respectively.

We embed each entity and relation symbol ei ∈ E , ri ∈ R in a de, dr-dimensional space,
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yielding vectors ei ∈ E and ri ∈ R which are used to construct graph memories Mi for

each entity by aggregating triplet entries (see Section 5.2) into a representation of the en-

tity’s immediate neighborhood. For example, the memory state for ecanine would include

bindings of hypernym to dog, has part to paw, hyponym to mammal, etc.

Figure 5.1: Left. Neighborhood subgraph for an entity ecanine. In this example, the
unweighted memory state Mcanine in the query (·, rhyponym, ecanine) with true comple-
tion esteppe wolf is B(rrhyper, edog)) +B(r`hypo, edog) +B(rrhas part, epaw) +B(r`hypo, emammal) +
B(rrhyper, emammal) + B(rrhas part. Right. The inference from this neighborhood depicted.
If the premise (canine, hypernym, steppe wolf) is included, then the inference goes
through thanks to the inversion of hypernym—a formal property. When omitted, the
inference is more inductive (“dogs are canines, pugs are canines, labradores are canines,
and all of them have paws, tails, and teeth. So do steppe wolves, which are therefore
likely canines”). Then, it is useful to enumerate examples of canines, with implicit
links to their properties (paws, tails...) encoded in their embeddings in order to draw
the inference. canine’s derivational relationship to the constellation canis minor is
less important in this connection. Drawing such distinctions is the role of the memory
weighting module.

Each model in the HMem class is parametrized by a binding map B that associates

entity and relation entries, and a corresponding unbinding map U. Unbinding approxi-

mately inverts binding operation by addressing the memory using a query relation vector

rq to retrieve entity vectors likely to be bound with that relation in the memory. The

binding and unbinding maps are chosen such that, for an entity whose neighborhood is
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the singleton set {(ei, rj)}:

U (rj,B ({(ei, rj)})) ≈ ei

i.e., ei can be approximately retrieved from the binding of ei to rj by addressing the

memory M = B ({(rj, ei)}).

Associations between entity and relation vectors in our model are pairwise. To ac-

count for the directionality of relations, we train two embeddings for each relation—one

associated with an entity’s left-neighbors and another for its right-neighbors. Each rela-

tion thus has a left-embedding r` and a right-embedding rr, with, for instance, entries

(rrhas part, eclaw) in the memory state for canine and an entry (r`has part, ecanine) in the

memory state for paw (see Fig. 5.1).

Figure 5.2: Harmonic Memory architecture with TPR binding.
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5.2 Binding

Harmlessly overloading the symbol B to apply to both tuples and sets of tuples, we con-

sider binding operations that aggregate neighborhoods via summation of the individual

entries, i.e.

B ({(ri, ei)}) =
∑
i

B (ri, ei)

where B (ri, ei) is the binding of the ith memory entry. As binding operations, we evaluate

the tensor product (5.1) [Smolensky, 1990] and circular convolution (5.2).

BTPR(r, e) = r ⊗ e (5.1)

BCConv(r, e) = r ~ e (5.2)

A tensor product is unbound by left-dotting the memory state with a relation vector r:

UTPR (r, M) = r · M (5.3)

When the relation vectors are normalized, UTPR exactly recovers e from the singleton

memory state M = r ⊗ e. For CConv, the unbinding operation is

UCConv (r, M) = r ? M (5.4)

? denotes circular correlation, which is computed efficiently using the Fourier transform

r ? M = F−1
(
F(r)�F(e

)
, x denoting the complex conjugate of x.

As previewed in Chapter 2, circular convolution encoding with correlation decoding
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was introduced to connectionist modeling by [Plate, 1994], and applied to KBC by [Nickel

et al., 2016] and our work [Lalisse and Smolensky, 2019], exploiting the fact that the

correlation is an approximate inverse of convolution (x ? (x~ y) ≈ y), under additional

stipulations discussed in Appendix 1. There, we describe a transformation on embeddings

in the CConv model that guarantee this property, and improved performance on the

CConv models.

Memory weighting. For entities with large neighborhoods, it is intractable to com-

pute bindings for all neighbors.1 So, prior to superposition, we filter candidate bindings

and commit them to memory in graded form. Entity and relation pairs are scored with

respect to ei and the query relation rq according to Eqn. (5.5), where ⊕ denotes vector

concatenation. Wweight and bweight are learned weight matrices and bias vectors indexed

to rq.

weight(ec, rc|ei, rq) =σ( (ei ⊕ rq)>Wscore (ec ⊕ rc) + rqscore
> (ec ⊕ rc) ) (5.5)

After scoring, the top k = 200 candidate neighbors are bound and entered into memory,

weighted by their scores:2

Mi =
∑
c

weight(ec, rc|ei, rq)B (rc, ec) (5.6)

Remark. Our binding-based approach is inspired by [Crawford et al., 2015], who

developed a biologically realistic neural network for representing Wordnet. In their

1The largest entity neighborhood in WordNet contains 961 links (mean=7), and 9739 (mean=65)
for Freebase.

2While the memory state Mi for a given query also depends on the query relation rq, this additional
subscript is omitted for convenience.
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model, a memory state vector for each entity is formed by summing pairwise associa-

tions (convolution) of entities and relations, one association per graph link. Links can

be recovered by unbinding stored associations from entity memory states to recover a

node’s immediate neighbors. Since Crawford et. al. are mainly preoccupied with neural

realism rather than learning or generalization, the embeddings for each graph element

are randomly sampled rather than trained, and the model is evaluated on an embedding

of the full Wordnet database in a simple artificial task (graph traversal). Thus, their

work only investigates the model’s ability to robustly retrieve the vectorized knowledge

graph. Since our target task requires generalization from a partial graph, we introduce

additional operations that complete the representation of each entity.

5.3 Memory completion

As with the Gradient Graphs model (4), the assembled memory state is forwarded

to a memory completion operation based on optimization of the Harmony Equation

(5.7)—which is parametrized by a learned symmetric weight matrix W and bias vec-

tor b—with respect to the vector m.

HW,b(Mi,m) =
1

2

(
m>Wm+ b>

)
− λ

2
(Mi −m)> (Mi −m)

(5.7)

This is solved by

M̂i = argmaxmHW,b(Mi,m)

= (Wi − λI)−1(2λMi + b)

(5.8)
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when λ—a hyperparameter—is greater than the spectral norm of W, guaranteeing the

existence of a unique optimum for HW,b. This formulation is motivated by associative

memory models like the formally similar Hopfield networks [Hopfield, 1982], which com-

plete corrupted input patterns by minimizing the Energy of the resulting network con-

figuration. λ controls the magnitude of the penalty for the squared distance between

the output and the input memory Mi—encoding the constraint that the output cannot

deviate too far from the initial input (see Chapter 4)—with a value of λ = ∞ implying

that HW,b is maximized at Mi (the output memory is the initial superposition of pairwise

bindings).

We allow the parameters of the Harmony function to change with the query being

posed by specifying a weight matrix Wi computed for any given Mi. The local weight

matrix Wi is computed from a global weight matrix Wglobal and a filter vector M ′
i, which

is a function of the input memory:

Wi = M ′
iM

′
i
> �Wglobal (5.9)

where

M ′
i = Wmap Mi + bmap (5.10)

Wmap and bmap are a learned matrix and bias vector mapping each memory state to a filter

vector, whose self-outer product multiplies the global weight matrix elementwise. The

resulting weight matrices vary smoothly with the value of the input memory state, leading

to distinct hypersurfaces in the |M|-dimensional space of memory states (e.g. Figure 5.3.)

The specific weight-modulation function that is used is a hyperparameter of the overall
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Figure 5.3: Harmony functions on a two-dimensional memory state space (visualized as
surfaces) and optima defined by weight matrices Wfeline,Wcanine calculated from distinct
memory states Mfeline, Mcanine.

framework. We selected this function because of its simplicity (bilinear in the memory

Mi) and the fact that it preserves symmetry of the output weight matrix (since M ′
iM

′
i
>

is symmetric).

In inference, we first optimize Mi to generate opt(Mi) = M̂i. The optimized memory state

is then probed using the unbinding map U(rq, opt(Mi)), returning a vector eo representing

the output of a probe of the memory Mi of ei for entities that are related to ei via rq. The

output of unbinding is then compared with the vectors ec for all candidate completions

ec using the negative squared Euclidean distance.

score(ec) = −‖eo − ec‖2

Training. During training, the link for the current training instance is withheld from

the neighborhood for the corresponding entity, with the input memory state constructed

from the remaining neighbors. This incomplete memory state is then optimized with

respect to Eqn. (5.7), and the result probed for a predicted completion. We use the cross

entropy training loss derived from the squared Euclidean distance of the output from the

true completion, relative to a negative sample N = {en} of alternative completions. For
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instance, the loss for a right-probe of (ei, r, ·) with true entity ej is

L(ej|ei, r) = − log
exp{−‖eo − ej‖2}∑

en∈N exp{−‖eo − en‖2}

5.4 Results

Models were evaluated using the benchmark datasets WN18 (a subset of WordNet),

FB15k (subset of Freebase), and the challenge dataset WN18RR, which removes

reciprocal relation pairs from the training and test set of WN18, which can be solved

by adopting a simple rule-based system [Dettmers et al., 2017a]. We varied the binding

method {CConv, TPR}, the value of optimization constant λ {∞, 1, 2}, and entity and

relation embedding sizes. To illustrate the effect of each model component, we report

results for both binding methods and best results from finite and nonfinite values of λ. If

λ = ∞, the optimization step is the identity map, in which case the inference objective

is to express the target binding as a linear combination of input bindings via memory

weighting.

We report the standard evaluation metrics for the Link Prediction task, in which the

model is queried on both the left and right sides, ranking candidates for each query. For

instance, in the left-query (·, r, ej) with true completion (eT , r, ej), each candidate entity

ec is scored as score`(ec|ej, r). The results are ranked and tabulated with the Mean Rank

(MR), Mean Reciprocal Rank (MRR), and Hits@N metrics. In each case, all attested

links (those found in the training, validation and test sets) were first filtered from the

list of candidates. In Appendix 2, we also report the results from ablating conditioning

of the weight matrix Wi on Mi, instead using the global weight matrix Wglobal.
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WordNet Freebase

Model MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

DistMult [Yang et al., 2015]† 457 .790 - - .950 36 .837 - - .904

ComplEx [Troullion et al., 2016] - .941 .936 .945 .947 - .692 .599 .759 .840

R-GCN+ [Schlichtkrull et al., 2017] - .819 .697 .929 .964 - .696 .601 .760 .842

ConvE [Dettmers et al., 2017a] 374 .943 .935 .946 .956 51 .657 .558 .723 .831

SimplE [Kazemi and Poole, 2018] - .942 .939 .944 .947 - .727 .660 .773 .838

HypER [Balazevic et al., 2019a] 431 .951 .947 .955 .958 44 .790 .734 .829 .885

TorusE [Ebisu and Ichise, 2018] - .947 .943 .950 .954 - .733 .674 .771 .832

HMem-CConv 262 .927 .913 .939 .946 24 .664 .548 .749 .867

HMem-CConv+ 227 .933 .919 .945 .952 24 .664 .547 .749 .866

HMem-CConv∞ 308 .884 .851 .912 .934 39 .488 .363 .554 .734

HMem-CConv∞+ 183 .899 .866 .930 .951 39 .481 .357 .546 .725

HMem-CConvim 344 .936 .929 .942 .947 25 .728 .637 .795 .881

HMem-TPR 253 .934 .923 .944 .948 30 .590 .478 .660 788

HMem-TPR+ 174 .944 .932 .955 .960 29 .592 .479 .662 .791

HMem-TPR∞ 395 .874 .823 .922 .939 38 .612 .517 .669 .782

HMem-TPR∞+ 323 .879 .24 .930 .950 37 .616 .521 .674 .786

HMem-TPRim 245 .936 .924 .947 .952 24 .790 .731 .831 .886

Table 5.1: Results on WordNet and Freebase benchmarks. Hyperparameters
were tuned on the validation set for each model class M, with results recorded for both
infinite and the best finite value of λ. Each model was evaluated on the test set using
the same graph as in training, and also (M+) when extending the inference graph with
all triplets from the validation set, without performing additional gradient descent on
the validation triplets. Implicit binding models (Mim) forego explicit binding in favor of
memory states that are directly learned for each entity. MR: Mean rank. MRR: Mean
reciprocal rank—mean(1/rank). Hits@N: Proportion of test trials in which the rank of
the test entity was less than or equal to N. †: results from [Kadlec et al., 2017], who
optimized hyperparameter settings for DistMult.
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Model MR MRR H@1 H@3 H@10

ComplEx† 5261 .44 .41 .46 .51

ConvE 5277 .46 .39 .43 .48

ConvKB 2554 .248 - - .525

HypER 5798 .465 .436 .477 .522

CConv+ 4609 .408 .373 .427 .471

CConv+ 7553 .387 .347 .414 .453

CConvim 4775 .401 .381 .408 .437

TPR+ 2223 .432 .384 .458 .514

TPR+ 3662 .397 .350 .432 .469

TPRim 3595 .424 .393 .440 .479

Table 5.2: Results on WN18RR. We compare with all models from Table 5.1 where
authors reported results on WN18RR. †: results from [Dettmers et al., 2017a]. The
first- and second-best results are bolded/underline and bolded respectively.

A virtue of our model is that it can be freely augmented with additional graph triplets

after training; hence, we also report results when including validation triplets in the graph

used for inference (Model+). This introduces no bias in model selection, which is per-

formed just on the training data. We also explicitly compare neighborhood aggregation

to an embedding-based approach, the implicit binding models (Modelim), in which mem-

ory states for each entity are learned directly as embeddings rather than being assembled

from the entity neighborhood (explicit binding). These remain binding models since they

are treated identically to the explicit binding memories with respect to unbinding. For

instance, the TPRim model predicts links by unbinding a predicted entity from the opti-

mized memory state opt(Mi), where Mi is now a mE ×mE tensor that is learned for each

entity.

The Harmonic Memory models are state of the art for WN18 and FB15k (Table 5.1),

achieving especially noteworthy improvements in the Mean Rank metric. TPR binding

outperforms circular convolution in every setting with quite low-dimensional embeddings
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(at most 80d for entities and 25d for relations). It is also competitive with recent mod-

els on WN18RR. As well, extending the graph with additional triplets after training

yields improvements in all but one case (HMem-TPR on Freebase). The inclusion

of the memory-completion module substantially improves performance on WordNet

relative to M∞ on the more stringent evaluation metrics—leading for instance to an

8-point improvement in Hits@1 for HMem-TPR. The implicit binding models substan-

tially outperform explicit binding on Freebase, a fact that is only true on aggregate,

with important distinctions arising when entities with different neighborhood sizes are

considered. We explain this further in Section 5.6.

5.5 Generalizing to new entities

To evaluate HMem’s ability to generalize exclusively on the basis of aggregated neigh-

borhoods, we introduce a new KBE task in which models make inferences about entities

not seen in the training set. Consider the following scenario: a model is trained to com-

plete a given knowledge base, but the knowledge base can be augmented in time not just

with new facts about the current set of entities, but also with new entities. It would

be desirable to perform inference over these new entities, without re-training the model,

once partial information about these entities becomes available. Embedding-based mod-

els generally require that a representation for each entity be learned in the course of

training. Hence, entities not encountered in the training set cannot be modelled. This

creates a scalability problem: the knowledge base cannot be augmented with new entities

without additional rounds of gradient descent. In contrast, our networks model entities

by aggregating their links with other entities in the training graph, allowing entities not

seen in training (and hence without a learned embedding) to be represented as memory
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states once information about these entities’ neighborhoods becomes available. Of course,

because our model separates the entity embeddings used to construct memories and the

“embeddings” (memories) derived from memory construction itself, this means we can

only construct representations for the unseen entities using the ones that were seen in

training. This flaw, however, is shared with any model that uses trained embeddings as

an input, as opposed to “embeddings” whose features are derived from rule-based feature

extraction or static word embeddings.

We built two datasets for knowledge base embedding with generalization (KBEGen)

using WordNet (WN18) and Freebase (FB15k). First, a random selection of entities

in each database (1500 for WN18, 1000 for FB15k) were randomly held-out, and all

triplets not containing these entities were assigned to the training set. The number of

entities held out was manually chosen to yield approximately the same training data size

as the original datasets (WN18 = 141k, FB15k = 483k). Of the remaining triplets,

we removed any for which both entities were part of the held-out set, and further split

the remaining data into an observed subgraph (2/3), a validation set (1/6), and a testing

set (1/6). The observed subgraph was used to construct neighborhoods for each of the

held-out entities, which were not trained with any further rounds of gradient descent and

did not have trained entity embeddings.

Evaluation We fit the model using the training set, with the validation set used

for model selection (early-stopping and hyperparameter selection, varying embedding

dimension and λ). In evaluation, the observed subgraph was used to construct a memory

state for each entity in the held-out set using summation of entity-relation bindings in

the observed subgraph for the held-out entity. For each test triplet, the memory state

was probed using the query relation to rank the held-in entities as candidate neighbors

for the modelled entity.
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heldout train valid test obs

WNGen 1.5K 141K 1.7K 1.7K 6.8K

FBGen 1K 496K 15K 15K 62K

Table 5.3: Size of the KBC generalization dataset partitions WNGen and FBGen.
heldout : # of held-out entities; obs(erved): # of triplets containing held-out entities that
were retained for constructing the inference graph. The number of entities held out for
each dataset was manually chosen to yield approximately the same training data size as
the original datasets (WN18 = 141,442, FB15k = 483,142).

Results. Performance on generating memory states for unseen entities (Table 5.4)

is far from ceiling but well above chance, with a more than 50% accuracy (Hits@1)

for the best-performing model on Wordnet.3 Notably, performance on Wordnet

improves dramatically from the addition of the validation subgraph during inference,

leading to a nearly 10-point increase in accuracy for the best-performing model (CConv+).

Improvements are smaller but reliable for FBGen.

5.6 Scaling properties

As illustrated in Fig. 5.4, superposition memories are prone to increased decoding errors

as the number of stored vectors increases. This is due to two factors: overlap between

relation vectors even when these are linearly independent, and many-to-one nature of

relation-entity bindings. Our model balances two competing priorities: (1) including as

much information as is relevant for inference; (2) reducing the number of stored entity-

relation bindings, which tend to interfere with each other during retrieval.

The memory weighting module shoulders the burden of priority number (2), and is

effective for this purpose (5.5). We compared the embedding-based models with weighted

explicit binding by considering performance as a function of the size of an entity’s neigh-

3Performance with random initialization on Wordnet is less than 1%.
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Figure 5.4: TPR memory. Performance of a simulated TPR memory in retrieval of
stored bindings of 100 100d “entity” vectors bound to twenty 20d “relation” vectors.
For each simulation, we summed n (x-axis) bindings of randomly sampled relations to
randomly sampled entities. Decoding from the TPR degrades as the number of entity-
relation bindings increases (though see [Haley and Smolensky, 2020] for a more optimistic
assessment of the decoding error from overloaded TPRs).

borhood (node degree). Explicit binding outperforms direct embedding in Wordnet,

though both methods are unaffected by neighborhood size. Large differences appear in

Freebase, which has a much higher average node degree. Performance in the implicit

model is highest in smaller neighborhoods and declines with node degree. With explicit

memory construction, however, model performance is higher on nodes with large neigh-

borhoods, peaking at an MRR of .9 for nodes with more than 500 neighbors.

This appears counterintuitive given that higher-degree nodes have more training in-

stances, which might yield higher-quality embeddings in the implicit models. We can

explain this result. Consider the simplified scenario of a TPR memory trained to min-

imize the retrieval error for fixed entity/relation vectors with respect to the embedding

Mcat, we have:

L = E
[
‖ej − ri‖2

]
=
∑
i,j

p(ri, ej|ecat) ‖ej − ri · Mcat‖2
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Mcat is optimized4 by

Mcat =
∑
i,j

p(ri, ej|ecat) ri ⊗ ej

i.e. an expectation-weighted superposition of pairwise vector outer products. In the KBC

setting, the distribution p(ri, ej|ecat) is uniform over all nonzero entity-relation pairs in

the training set, meaning that entities with more neighbors have more nonzero terms

in the solution (cf. fig. 5.4). The learned embedding is thus susceptible to increasing

decoding error with increasing neighborhood size.

This result extends quite generally to a large class of models —such as Rescal [Nickel

et al., 2011] and HolE [Nickel et al., 2016]—that we can formulate as binding models.

For instance, the bilinear scoring function Rescal evaluates triplets by dotting left and

right entity vectors with a relation-specific bilinear form Wr ∈ Rde×de : score(ei, r, ej) =

ei
>Wrej. For given entity embeddings and where the norm of Wr is capped at some

maximum value, the optimal relation embedding5 is a multiple of Ŵr = 1
n

∑n
i e`,ie

>
r,i =

1
n

∑n
i e`,i⊗er,i for all of the n attested 〈e`,i, er,i〉 edges involving r. This is a superposition

of entity pairs bound by the tensor product where, to evaluate candidate links for the

query (ei, r, ·), we first retrieve prototypical r-neighbor for ei—ei · Wr, which is the

weighted sum of all of the entities ej that ei occurred with—and then compare each

candidate with this prototype. The greater the number of attested neighbors ej, the

higher the anticipated retrieval error.

The improvements from comparing explicit versus implicit binding can be attributed

to the weighting module’s judicious choice of information to include in a particular query.

4Up to a scaling factor, provided the components of the relation vectors ri are uncorrelated (i.e. the
second moment E[riri

>] ∝ I). This can be guaranteed by transformation (compare Appendix 1).
5Because the expected score is E

[
vec(ei ⊗ ej)vec(Wr)>

]
= E [vec(ei ⊗ ej)] vec(Wr)> which is maxi-

mized when vec(Wr) is collinear with vec(ei ⊗ ej).
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Model 100 200 300 400 500 600

Implicit .862 .816 .793 .702 .741 .617

Explicit .632 .746 .772 .856 .835 .900

Figure 5.5: Effect of entity neighborhood size on task MRR for the best implicit and
explicit binding models in WordNet and Freebase, with neighborhood sizes binned
at increments of 2 and 5 respectively. The line of best fit for neighborhood size against
MRR is also plotted. Table: MRR for implicit and explicit binding models trained
on FB15k averaging over neighborhoods of different sizes (0 to 99 neighbors, 100-199
neighbors, etc.).

Figure 5.6: Performance on WNGen (left) and FBGen (right) test sets as a function of
the proportion of observed graph triplets included in the inference graph. Each fraction
of the full dataset (observed+valid) was used to construct the inference graph, the model
then being evaluated on the test set. The model was not trained on any triplets from the
observed subgraph or validation set.
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Model MR MRR H@1 H@3 H@10

WNGen CConv 2286 .487 .426 .527 .594

CConv+ 1359 .592 .518 .647 .716

TPR∞ 2127 .435 .373 .476 .540

TPR∞+ 1507 .514 .448 .565 .624

FBGen CConv∞ 378 .205 .130 .225 .358

CConv∞+ 373 .207 .131 .251 .361

TPR∞ 401 .252 .173 .299 .439

TPR∞+ 397 .263 .173 .299 .439

Table 5.4: Results on the KBEGen task.

Notably, our results differ from those of [Schlichtkrull et al., 2017], who found performance

decreases with increasing node degree in a graph convolution-based model, indicating that

our approach is promising to pursue in graphs with high mean node degree.

HMem with explicit binding also scales well with the open-world setting of evolving

knowledge graphs. We note again that performance almost always increases on Word-

Net and Freebase when the inference graph is augmented with validation triplets on

which the model was not trained. Fig. 5.6 makes this point dramatically in the context

of KBEGen. For entities held out from training, we gradually increased the proportion

of the available inference graph—the entirety of which was held out in training—used to

predict links from the test set. For both WNGen and FBGen, performance increases

when new triplets are added, almost linearly in the case of WNGen. The concavity of

the performance from added graph triplets in FBGen is likely not due to diminishing

returns from the addition of information about particular entities, but rather to the fact

that Freebase entities mostly have small neighborhoods, meaning that gains are felt

mainly in the long tail.

Out-of distribution inference. It is instructive to regard this setting (WNGen and
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FBGen) from the point of view of out-of distribution (OOD) inference [Liu et al., 2020].

It is required that the model generalize the learned inventory of memory states (and

associated vector features) to unattested memory states about which the model has

received partial memory states (absent key statistics), making the XGen tasks an in-

stance of few-shot learning [Wang and Yao, 2019]. Due to the compositional nature

of HMem entity-memory representations, the HMem model is structurally capable of

deriving predictions for held-out entities. Its success on that task will depend on how

closely the training samples resemble the held-out samples. Specifically, HMem models

the joint distribution p(ej, ei, eq, rq) as the modeled probability that ej ∈ M̂i(ei, eq, rq) (q

for query), where the notion of set membership employed here refers to the probability

that a TPR/HRR binding is one of the superposed elements in the memory state vector

M̂i (which is a function of observed subgraph and also the query entity and relation). The

features of the query entity and relation eq, rq are learned, as well as those of the target

entity ej and those of all candidate links (ec, rc) in the observed subgraph. Information

about the conditional relationships between the modeled entity and its memory contents

are omitted from the training set.

Are the held-out memory states out-of-distribution? The relatively lower performance

on the XGen tasks in comparison with the standard Wordnet and Freebase evalua-

tions suggests that yes, or at least partly so, but with the following caveat. The way we

constructed the WNGen and FBGen datasets means that, one key statistic—the size of

entity neighborhoods entering into inference—differed systematically between the train-

ing and test sets. In WNGen (FBGen), the 39,443 (13,951) held-in entities comprising

the training set occur in 7.18 (71.12) triplets on average. In the test phase, inference is

done on the basis of the observed subgraph, with each triplet having one and only one

held-out entity, meaning that in WNGen (FBGen), memory states in the test phase
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have 4.53 (62) neighbors on average, or 5.67 (77) if the validation triplets are added in.

At the level of this coarse statistic, then, there is a mismatch between the training and

testing samples in WNGen, though not in FBGen. The performance on FBGen is

essentially asymptotic when all observed/valid triplets are included for inference (Figure

5.6), suggesting genuinely out-of-distribution structure. For WNGen, the gap between

the memory state size between the training and test phase may account for the perfor-

mance gap in this versus the standard setting. So, when in a context of applied knowledge

base completion systems, deploying HMem networks in the open-world setting of exten-

sible graphs depends on the degree to which the novel data serving as the subgraph for

inference match those used in training, especially as relates to node connectivity. On this

point, additional evaluation is required.

5.7 Revisiting the binding models from Chapter 2

In Chapter 2, we evaluated an array of bilinear binding models in controlled simulations,

finding that (1) convolution-correlation decoding is equivalent to generic bilinear binding

when the assumptions of that method—isotropy of the input representations—are sat-

isfied, and (2) that violation of those assumptions leads to severe degradation of those

methods. We now return to the question of bilinear binding models’ performance, this

time in an applied setting of knowledge base completion in WordNet.

Using WordNet data as the input introduces a primary new factor—correlations

between fillers and roles—that was not present in the simulations, e.g. the probability of

being—a top-level category—occurring as the left entity of the hypernym relation, as

opposed to napoleon—a proper name—occurring in the same position. Such correla-

tions are extremely difficult to correct for via the decorrelation transformations discussed
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in Section 2.3.3. Whereas it is computationally tractable to apply transformations to

the individual elements (entity and relation vectors) of a TPR input to bilinear bind-

ing—including HRRs—applying a transformation that includes all sources of correlation

requires, via the most direct route, computing the inverse of a dEdR× dEdR matrix, with

time complexity O(dE
3dR

3). On the other hand, it may be that, if encoding matrices

are allowed to be directly learned from the data, much of the information about the rel-

evant correlations, including an approximation to the decorrelating transformation, may

be packed into the learned matrices.

We investigated this empirically by training several HMem models while varying the

input binding functions. The optimization component of the model is the same as in the

rest of this chapter. However, we introduced bilinear binding functions parametrized by

dE×dR×dB tensors deployed as E⊗R −→ dB bilinear maps. We also compared “Naive”

versions of each representational method with those that implement the decorrelating

transformation recapitulated in Appendix 1 of this chapter in connection with the HMem

model (5.9). Varying the binding function B, we trained each model on WordNet using

output dimension 32, keeping the representations small so that they could be compared

with a full TPR model, whose output representations have 32×32 = 1024 elements in the

costly optimization step. The Naive versions input the entity and relation vectors as they

were learned, while the non-Naive versions decorrelated entities and relations separately.

Additionally, we evaluated a model in which the covariance matrix is estimated as a

learned parameter rather than being computed directly from the embeddings. This allows

us to implement the full computation specified in the non-naive version of the optimal

decoding equation from Theorem 2.3.3 without actually computing the training sample

covariance. The models are:
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1. Tensor Product: B
({
ei/ri

})
=
∑

i ri⊗ei ≡ MTPR where ri and ei are normalized.

To unbind, dot the optimized TPR M̂TPR with the target relation vector rt.

2. Naive HRR: B
({
ei/ri

})
=
∑

i ri ~ ei ≡ MHRR-N. To unbind, do: rt ? M̂HRR-N

3. HRR: Compute covariance matrices ΩE,ΩR for the entity and relation vectors,

separately. Transform each entity and relation vector with the square root of the

corresponding precision matrix and rescale by 1/
√
d, then apply the HRR opera-

tions. Thus: B
({
ei/ri

})
=
∑

i

(
ΩR
− 1

2 ri/
√
d
)
~
(

ΩE
− 1

2 ei/
√
d
)
≡ MHRR. Unbind

with
(

ΩR
− 1

2 rt/
√
d
)
? M̂HRR.

4. Naive Bilinear Binding (Naive BB): Binding is parametrized by a bilinear

map W ∈ E ⊗ R ⊗ E—reshaped to a dE × dRdE matrix—where dR and dE are in

general permitted to differ from one another (in contrast to HRRs). The forward

map is B
({
ei/ri

})
=
∑

iW vec(ri⊗ei) ≡ MBB-N, which is a bilinear map on R⊗E.

The backward map is computed as W−, the Moore-Penrose inverse of W . The

unbinding map is the dot product of the target role with the decompressed tensor

product: rt · unvec
(
W−M̂

)
.

5. Bilinear Binding (BB): The target of this model is to perform a transformation

that optimizes the decoding error of Theorem 2.3.3 in the presence of anisotropy.

The forward map to calculate MBB is the same as (4) above: a learned encoding

matrix applied to the TPR. For unbinding, we aim to calculate the modified MPI:

W− = ΩW> (WΩW>)−1
where Ω is the covariance E

[
MBBMBB

>]. It is intractable to compute Ω directly,

because doing so requires gathering the memory representations for every entity
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Figure 5.7: Results on WordNet using an array of bilinear binding methods.

using the entire training dataset, which must be re-assembled at each training step

as the entity and relation vectors are updated. To cope, we specify Ω as a learned

parameter and solve for W− as usual, with Ω as an additional term in the MPI

solution.

Observe that the Naive version of the TPR model is identical to the non-naive version,

since the modified MPI in the case where the forward map M is the (dEdR) × (dEdR)

identity matrix I yields M− = ΩM>(MΩM>)−1 = ΩΩ−1 = I.

Results are displayed in Figure 5.7. An advantage of the Bilinear Binding method,

as distinct from HRRs, is that it allows the vector dimension of entities and relations to

differ. In this setting, we find that, among all the models with TPR compression, Naive

Bilinear Binding works best for every metric, with slightly better performance when using

this degree of freedom (dE = 64, dR = 16) than the bilinear methods matching the input-

output size of HRRs (dE = 32 = dR). Note that both the BB methods have same-sized

input to the binding step (dE⊗R = 1024) and the same output size (32). The bilinear
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models with learned covariance matrices Ω performed worse than the corresponding Naive

models, perhaps a result of overparametrization.

The naive and non-naive versions of the HRR model performed about equivalently.

In Section 2.3.5, we found that isotropy was required for HRRs to be serviceable. Why,

then, would the decorrelating transformation applied to HRRs not lead to greater per-

formance? Recall that the transformation applied in this case only captures part of the

correlation structure of the full TPRs—that associated with the distribution of roles and

fillers taken separately, ignoring correlations between them. This may explain why that

transformation is unhelpful in this setting. The relatively good performance of the Naive

HRRs would therefore be attributable to the structure of the embeddings adapting itself

to the binding mechanism rather than the other way around, so that that the resulting

representations approximate isotropy. In contrast, the fact that we obtain better perfor-

mance with the Naive versions of the Bilinear Binding models validates the hypothesis

that the broad range of correlations between elements of the tensor products may be rep-

resented, if imperfectly, in the learned encoding maps. The large 32×32 TPRs performed

best, but with relatively low gain given the quadratic increase in representation size.

5.8 Conclusion

This chapter has presented a neural model for knowledge base completion that is powerful

enough to achieve state of the art results on large databases, and flexible enough to evolve

with knowledge base content without retraining. The approach complements existing

neighborhood-aggregation techniques (e.g. graph convolution), with the advantage of

interpretable mechanisms: vector binding and memory completion. The results indicate

that the model operates well at scale and in an open-world setting.
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5.9 Appendix 1: Conditions on CCorr embeddings

(decorrelation transformation)

As discussed in [Plate, 1994], a sufficient condition for circular correlation to approxi-

mately invert circular convolution is that the components of the vectors occurring in the

memory are independently and identically distributed, with an expected norm of 1,6 in

which case the result the binding-unbinding sequence x ? (x ~ y) = (1 + η)y + ε where

η and ε are zero-mean and approximately Gaussian noise terms [Plate, 1994, pg 66].

During learning, the entity and relations embeddings evidently depart from these

strict conditions—as is desirable, since many of their latent features can and do covary.

But to preserve the integrity of the decoding process, we enforce Plate’s distributional

constraints by applying a decorrelating transformation to the embeddings.7 At each step

of training or inference, the entity and relation embeddings are concatenated, and the

resulting array is centered by calculating the mean embedding µ and subtracting it from

each embedding. Let E denote the (|E|+2|R|)×d matrix of centered relation and entity

embeddings. We calculate the empirical covariance matrix of the embeddings Σemp and

regularize it to produce an estimate Σ̂.

Σemp =
1

|E|+ 2|R|
E>E

Σ̂ = (1− α)Σemp + αI

α was set to .2. The regularized estimate of the covariance is then used to calculate

the precision matrix Σ̂−1 for the centered embeddings. This defines a decorrelating—or

6This can be guaranteed by setting the componentwise variance of the input vectors to 1
d .

7Early experiments confirmed that applying decorrelation improved performance with the CConv
model.

120



“whitening” [Diedrichsen and Kriegeskorte, 2017]—transformation for any embedding v,

obtained by centering the vector and then post-multiplying it with the square root of the

precision matrix, divided by
√
d to ensure a variance of 1

d
in every direction:

v̂ =
1√
d

(v − µ)Σ̂−
1
2

where µ is the empirical average of all entity and relation vectors. The resulting dis-

tribution of transformed embeddings is approximately spherical with variance 1
d

and an

expected norm of 1. When this transformation is applied to all vectors involved in binding

and unbinding, Plate’s conditions are met.

5.10 Appendix 2: Ablation

To evaluate the role of each model component, we ablated (1) the memory-completion

operation, in which case the network’s goal is to obtain held-out links as weighted sums

of known links, and (2) conditioning the weight matrix in Eqn. 5.8 on the location of

the input memory Mi. Ablation (1) is implicit in setting the hyperparameter λ =∞. We

performed ablation (2) by keeping the weight matrix constant across all choices of Mi,

completing the memory using Eqn. 5.8 where Wi is set to Wglobal.

Results The results of ablation (1) on the primary models are discussed in the main

text. Ablation of the conditional weight matrix substantially affected performance with

the convolution models, so that the best-performing models are those where Wi is re-

computed for each Mi (Table 5.5). Ablated TPR models performed slightly better on

Freebase, while on Wordnet showed better performance on the Mean Rank metric,

but were substantially outperformed by unablated TPR models on the key evaluation
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metrics, MRR and Hits@1, generally understood as the final arbiters of model perfor-

mance. Interestingly, in contrast to the main results, where adding the validation graph

to the TPR model improved performance on Freebase, doing so with the global weight

matrix is marginally harmful.

WordNet Freebase

Model MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

HMem-CConv 639 .774 .719 .818 .863 336 .456 .372 .517 .597

HMem-CConv+ 475 .787 .730 .880 .952 361 .442 .362 .500 .575

HMem-CConv∞ 815 .842 .793 .884 .916 336 .456 .372 .517 .597

HMem-CConv∞+ 690 .854 .804 .900 .930 361 .442 .362 .500 .575

HMem-TPR 209 .854 .796 .908 .932 303 .449 .361 .507 .601

HMem-TPR+ 124 .863 .804 .920 .944 321 .440 .355 .496 .586

HMem-TPR∞ 154 .866 .784 .923 .950 36 .618 .523 .677 .786

HMem-TPR∞+ 110 .868 .796 .935 .963 37 .616 .521 .674 .786

Table 5.5: Results of ablation of memory-conditioned weight matrix (see Appendix 2
text).
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Chapter 6

Spatial Attention Networks

In this chapter, we develop a model—Spatial Attention Networks (SAN)—in which we

adopt a geometrical view of Tensor Product Representations as 3-dimensional volumes

with a spatial structure. We develop a spatial attention mechanism that selects subgroups

of representation units (TPR components) on the basis of which inference will occur. At

an analogical level, this approach may be likened to the actual spatial organization of

the human brain, in which information regarding particular feature types (e.g. visual

vs. semantic) and particular domains (e.g. humans vs. tools) are selectively encoded

in contiguous volumetric units. Indeed, this is the basic premise of the “searchlight”

procedure in cognitive neuroscience [Kriegeskorte et al., 2006], and the bulk of research

is consistent with it.

At an analytical level, directing network attention to subsets of components in a tensor

representation of the graph may be regarded as an instantiation of a set of proposals based

on modeling knowledge bases using order-3 tensor factorization. Let E and R be the sets

of entities and relations, and further let G ∈ R|E| ⊗ R|R| ⊗ R|E| be the binary tensor

with Gijk = 1 if (ei, rj, ek) is in the graph G, and 0 otherwise. The goal is to find
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W ∈ RdE ⊗ RdR ⊗ RdE , a low-rank approximation of G, by factoring G as

(1) G ≈ f (E ·1 (R ·2 (E ·3 W )))

where E and R are the entity and relation embedding matrices, f is some linking function,

and ·m is the inner product of the trailing axis of the embedding matrices along the mth

mode of W . The resulting tensor should have high values in the i, j, k cell if (ei, rj, ek)

is in the knowledge base, and low values if it is not. As observed in [Lacroix et al.,

2018b] and [Balazevic et al., 2019b], a number of existing knowledge base representation

techniques fit within this general schema, parameterized by the selection of particular

components of the approximation matrix W . For instance, the DistMult model [Yang

et al., 2015] (elementwise multiplication of entity and relation vectors) sets the elements

Wijk to 1 if i = j = k, and 0 otherwise, i.e. taking the superdiagonal of the tensor

e1⊗r⊗e2. The Rescal model [Nickel et al., 2011]—where each relation is embedded as

a bilinear form Rr with triplets scored as e1
>Rre2—can be rewritten with relation vectors

r with dE
2 elements indexed as tuples (i, j) in the closed integer intervals [1, dE]× [1, dE].

W is then the fixed tensor with Wi,(k,`),j = 1 if i = k and ` = j, and 0 otherwise. Other

cases, like ComplEx [Troullion et al., 2016], can also be thus subsumed (see [Lacroix

et al., 2018b, Balazevic et al., 2019b]). In the most general case, W is learned rather

than preset, allowing the network to learn which third-order interactions in the three-way

product e1 ⊗ r ⊗ e2 to pay attention to, and with what weight.

Taking the components of the factored knowledge graph (i.e. the embedding matrices

E and R as well as the graph kernel W ) as the input, our approach builds in a dynamic se-

lection of components of the learned weight matrix W , using the vectors for a given query

to produce a distribution—the attention—over elements of compressed graph represen-
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Figure 6.1: Spatial Attention Network architecture. Entity and relation vectors go
through two streams of computation. The query is (e1, r, ?). The first stream (green)
computes a 3-dimensional attention mask. e1 and r are combined to yield parameters
for the H-headed attention distribution, each head a Gaussian. These are summed to-
gether to produce an attention mask A`(e1, r). The second stream (orange) produces a
third-order tensor with the same dimensions as the attention mask—the tensor product
e1 ⊗ r ⊗ e2. The results of both streams are multiplied elementwise with a third-order
tensor W , with all elements of the resulting tensor summed to yield a score for the triplet.
For simplicity, we depict a single vector for each entity and relation, entering into both
the tensor product module and the attention module. Some of the models have separate
sets of vectors for each module (see Results 6.3).

tation which are then used in inference. Specifically, we constrain the attention weights

to a form which preserves the spatial distribution of tensor elements conceptualized as a

volume (see Fig. 6.1).

Embeddings to volumes. We start by embedding each entity and each relation

in dE and dR-dimensional spaces, respectively. For a given triplet (e`, r, er), there are

vectors e`, r, er, which are combined using the tensor product (⊗) to create a dE×dR×dE-
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dimensional tensor embedding for the triplet:

embed(e`, r, er) = e` ⊗ r ⊗ er

The resulting tensor can be visualized as a 3-dimensional space (a volume) whose coor-

dinates are three-tuples of the indices of the vectors e`, r, er.

Attention and attention-free models. Ultimately, candidate triplets are evalu-

ated with respect to a third-order weight tensor W ∈ E ⊗R⊗E. In the simplest model,

without attention, this is done by dotting the triplet embedding with W to yield a score

for each candidate. In models with attention, we perform the additional step of multi-

plying the weight matrix elementwise with an attention distribution computed from the

entity and relation vectors for the query. As in Chapters 4 and 5, queries come in the

form of an entity-relation pair with either the left or right entity to be selected from a

list via ranking. For instance, for the query (soul, part of, ?), a right-query attention

function Ar computes an attention volume Ar(soul, part of) from the vectors for soul

and part of. In the two cases, the scores are therefore computed as:

(2) score(e1, r, er) = 〈e1 ⊗ r ⊗ e2,W〉 (Base model)

(3) scorer(e1, r, e2) = 〈e1 ⊗ r ⊗ e2,Ar(e1, r)�W〉 (Attention model)

where 〈a, b〉 is the inner product and � is elementwise multiplication. The scores for the

Attention model are indexed to the query direction because the corresponding attention

functions only take the relation and query entity vector as inputs—e1 for Ar in query

(e1, r, ?), and e2 for A` in query (?, r, e2).
1

1Query direction-specific attention heads are necessary for computational reasons. The training regime
requires negative sampling of possible alternative completions of the triplet. It is well known that tuning
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Multi-headed Gaussian attention. We adopt a Gaussian functional form for

the attention distributions. For each of H attention heads (indexed by h), we train a

subnetwork to generate parameters for a Gaussian distribution centered at a point in

the volume. Each attention head generates a parametric normal distribution over the 3-

dimensional coordinates of the weights. For a given (right-directed) attention head Ah,r

(with left-directed attention heads indexed as Ah,r, the output is 3 mean parameters (a

vector µh = [µ1,h, µ2,h, µ3,h computed from [m1,h,m2,h,m3,h]) and 3 variance parameters

(a diagonal matrix Σh with diagonal elements computed from [s1,h, s2,h, s3,h]), as well as

an attention weight ah. All of the distributional parameters—including the attention

weight, are computed using the “Nonlinear-Bilinear” function (4).

(4) [m1,m2,m3, s1, s2, s3, a] = Wout

(
tanh(We,`e1 + be,`)

> V tanh(Wr,`r + br,`)
)

+ bout

where V is a dE × 7 × dR bilinear weight matrix bout a bias vector, both shared for left

and right queries.

Other combination functions examined. We investigated a number of different

combination functions for computing the attention. In each case, Wout is a matrix (or

tensor) mapping into the 7-dimensional space of distribution parameters (means, vari-

ances, and attention weight). Indices to the query direction (left or right) are removed

for simplicity, but in general some or all of the parameters are specific to a direction,

except where otherwise indicated:

the batch size and negative sampling rate parameters for knowledge base completion models has sizable
effects on the model performance [Kadlec et al., 2017]. The H attention masks computed based on just
the query entity and relation collectively have size hde

2drnb. If the attention is additionally conditioned
on the second entity, this becomes hde

2drnbnn. For single-headed attention with competitive batch sizes
(1024) and negative sampling rates (512 per training triplet) with de = 75, dr = 25 as in the experiments,
this is 73 billion real numbers, which is intractable for our computational resources.
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(5) a. Elementwise multiplication Wout(W`eq �W`rq) + bo

Linearly mapping the entity and relation vectors into a common space (using

We and Wr), multiplying this result elementwise, and linearly mapping this

into the 7-parameter space (Wout))

b. Simple nonlinear Wout σ(Win(eq ⊕ rq))

Taking the concatenation of entity and relation vectors, and feeding these

through a 2-layer nonlinear network. We tried versions where Wout is spe-

cific to direction and where it is shared across directions—with directionality

encoded by the input map Win.

c. Simple bilinear eq ·Wout · rq + b>(eq ⊕ rq)

Application of a bilinear map to the pair of input vectors eq, rq, where Wout

is a de × 7× dr-dimensional tensor.

d. Linear attention Wout(eq ⊕ rq) + b>(eq ⊕ rq)

A linear map applied to the entity and relation vectors.

The array of models investigated were largely variations on the basic schemata indicated

above.

The parameters We,`, be,`,Wr,`, and br,` are specific to right-hand queries—i.e. query-

ing (e1, r, ?) using the left entity vector e1—and the rest are shared for both direc-

tions. The output is then nonlinearly transformed, bounding (6) the mean within the

dE × dR × dE box and (8) the variance between a minimum and maximum variance

minvar-i,maxvar-i (for the ith coordinate), which are set as hyperparameters:

(6) µ = [µ1, µ2, µ3] = [tanh(m1)
de
2
c+ g1, tanh(m2)

dr
2
c+ g2, tanh(m3)

de
2
c+ g3]

(7) σ = [σ1, σ2, σ3]
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(8) σi = minσi + sigmoid(σi)(maxvar-i −minvar-i)

(9) α = sigmoid(a)

where c is a manually set dilation constant (generally set to 1) allowing the mean vector to

be slightly larger than the maximum box coordinates, and g = [g1, g2, g3] is the grid cen-

ter.2 The minimum and maximum values for σi are set to multiples of the corresponding

dimensionalities. The covariance matrix Σ is diag(σ).

These parameters define a Gaussian density, which we do not renormalize with the

partition function (i.e. so that the value of the attention at the mean is 1). The Gaussian

for this head is then multiplied by α, which weights each attention head, turning it on or

off:

Ah,r(e1, r)i,j,k = α
(
exp

{
−([i, j, k]− µh)>Σ−1h ([i, j, k]− µh)

})
where each [i, j, k] is a grid point in Rde × Rdr × Rde . The output of attention head is

an order-3 tensor, of the same size as the triplet representation e1 ⊗ r ⊗ e2. Finally, the

results from each attention head are summed to produce a distribution as a weighted sum

of the distributions from each head:

Ar(e1, r) =
∑
h

Ah,r(e1, r)

To obtain a score for each triplet, the attention mask is then input into the scoring

equation (3), yielding a dot product of the attention-masked weights with the tensor

product representation of the triplet.

2e.g. if de = 75, dr = 25, the grid center is [37, 12, 37] (indices range from 0 to 74 for the entity, 0 to
24 for the relation)
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6.1 Computational efficiency considerations

In principle, it is possible to select Gaussian densities with non-diagonal covariance ma-

trices Σh by generating the 6 independent elements of the covariance matrix (3 diagonal

and 3 off-diagonal cells). However, the representations thus constructed are very large.

Let t = |E|2|R| denote the size of the tensor product representation T , and T3 the spatial

coordinate-tensor with 3t elements. The cost of the bilinear operation is 3t× 9 products

(the multiplication of Σ−1h with each coordinate [i, j, k] in T3), with the 3t elements of the

output multiplied elementwise by T (3t products). This step thus requires 30t products

for each head. The output is the attention mask, which is then multiplied elementwise

by T . For instance, if (as in our experiments) the entities are 75-dimensional and with

25-dimensional relations, the triplet representations have t = 140, 625 components. The

spatial coordinate tensor T3 has 421,875 components, and computing the density requires

31t = 4, 359, 375 products, multiplied by the number of heads. Computations on this

scale exceeded available resources.

The computations can be simplified by employing diagonal covariances, in which case

the masks can be calculated for each constituent (entities and relations) as 1d Gaussian

masks for each head parameterized by the mean and the 1d variances. As a result, there

are now |E| products for the two entities from applying the mask, another |R| from

applying the mask to the relation, with the masked triplet representation given by the

tensor product of the three. This yields a complexity of 2|E| + |R| + |E|2|R|, which in

the use-case above corresponds to 140,800 products—a 30-fold speed-up.

In early experiments, we explored non-diagonal covariance structures and found that

they performed about equivalently to the diagonally-parametrized densities. Given those

models’ added computational cost, those reported here uniformly employed diagonal vari-
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ances.

6.2 Datasets

To evaluate SAN, we used the standard benchmark datasets as well additional databases

constructed with the intention of probing the qualitative aspects of the model’s distribu-

tion of attention. The intuition behind the SAN approach is that the use of attention

might drive the model to allocate information relevant to a particular inference-domain

to different regions of the input vectors, to the effect that, for instance, information about

an entity’s physical concrete aspects (e.g. shape, size—physical attributes) and its ab-

stract aspects (e.g. taxonomy) might be spatially separated. Noting that, in all of the

standard datasets (WordNet, Freebase, etc.), there is a wide variety of entities and

relations (e.g. WordNet includes humans, countries, animals—including species and

higher-order taxonomic objects—abstract categories, and much more), we constructed

subsets of Wikidata3, a large-scale knowledge base that aims to convert Wikipedia into

the standardized (e1, r, e2) format of knowledge bases. In addition to evaluating the Spa-

tial Attention concept on larger datasets, using a dataset that is restricted to a particular

domain of entities allows us to qualitatively probe the spatial organization of information

arrived at by the model after training—for instance, whether information about time

period is spatially dissociated from information about geographical location, profession,

etc.

The two new datasets—Humans and Companies—were built using [Boschin and

Bonald, 2019]’s collections of domain-specific subsets of Wikidata, consisting of all

triplets rooted at the “topic” nodes human and business. Taking Humans as the

3https://www.wikidata.org/
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Dataset
Min node
occurrence

Min attr
occurrence

n-nodes n-attributes
Attr. in

test?
Train Validation Test

Humans 25 10 63,166 124,282 X 1,383,214 10,000 8,930

Companies 10 5 7,855 8,721 X 56,468 5,000 4,964

Table 6.1: Statistics for the Wikidata subsets Humans and Companies.

example, each Wikidata entity e that occurs in the triplet (e, instance of,human)

was labeled a “node” and included in the Humans subgraph. All within-domain re-

lations between humans were retrieved, e.g. sibling, child, doctoral advisor,

godparent, etc. In addition, all “attributes” of within-domain entities were harvested,

meaning all Wikidata entities that were within one hop of a within-domain entity with

respect to some relation. Thus, since (heraclitus, occupation, philosopher) is a Wiki-

data triplet, philosopher was included in the dataset as an attribute.

To derive domain-specific subsets suitable for the knowledge base completion task,

we removed the knowledge bases first for infrequent entities, and then for attributes that

were infrequent for those entities. Due to the size of the Humans dataset, we made

inference more tractable by only including node links (not links to the out-of-domain

attributes) as triplets in the test phase, holding out 10% of the 189,304 within-node

triplets as test/validation sets. The dataset statistics are presented in Table 6.1.

We also evaluated the model on the NELL-995 dataset introduced to KBC in [Xiong

et al., 2017]. NELL is a knowledge graph consisting of high-confidence facts gleaned

from the automated Never-Ending-Language Learner initialized in 2010 [Carlson et al.,

2010], which induces KB-format facts from text data. The NELL database has a nat-

ural entity-type system, with, for instance, mick jagger occurring with the prefixes

actor in triplets about his marriage with jerry hall, and musician in facts about

the rolling stones. This led to the following architectural tweak: we split each

entity symbol into type and entity tokens, learning separate embeddings for both enti-
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Humans

Entity 1 Relation Entity 2

sidney moncrief position on team shooting guard

quentin roosevelt father theodore roosevelt

nathanael greene cause of death hyperthermia

virgin mary child jesus christ

ferenc farkas occupation music pedagogue

sir richard ingoldsby honorific prefix sir

louis ix of france manner of death natural causes

Companies

Entity 1 Relation Entity 2

svenska dagbladet place of publication stockholm

hotel bristol instance of hotel

harman international industries subsidiary martin professional

the niu ridge payment types accepted maestro

theodore roosevelt island located in washington d.c.

gazprom neftekhim salavat industry petroleum industry

dreamville records country united states of america

Table 6.2: Example triplets from the Humans and Companies datasets.

ties and their types. We inserted compositionality into the representations by combin-

ing entity and type vectors when constructing queries, both during training and infer-

ence. Candidate vectors were generated using a simple composition function f applied to

the pair of vectors, so that the embedding for musician mick jagger was obtained

as f(musician, mick jagger). We report the results for simple addition—f(musician,

mick jagger) = vmusician + vmick jagger, which worked better than elementwise multipli-

cation. Both combination functions performed better than using undecomposed entity

symbols.
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Model MR MRR Hits@1 Hits@3 Hits@10

M3GM† [Pinter and Eisenstein, 2018] 2193 .498 .454 - .590

GAAT [Wang et al., 2019] 1270 .467 .424 .525 .604

Inverse Model [Dettmers et al., 2017b] 13526 .348 .348 .348 .348

TPR Base 3858 .364 .344 .371 .398

SAN 2h 3463 .376 .353 .386 .416

Inverse Model+rev 13526 .348 .348 .348 .348

TPR Base+rev 1180 .599 .572 .613 .645

SAN 4h+rev 1656 .605 .580 .619 .644

Table 6.3: Performance of the SAN model on WN18RR. TPR Base denotes the base-
line third-order model with scoring function (2). SAN 2h is the Spatial Attention Net-
work with 2 attention heads. The models in the bottom panel (M+rev) are trained on
then WN18RR dataset —which removes inverse relation pairs from WN18—augmented
with inverse triplets for each relation—i.e. we introduce a relation r−1 for each r and, for
each training triplet (e1, r, e2), add the triplet (e2, r

−1, e1) to the training set—a regimen
that is standard in this literature (e.g. [Xiong et al., 2017, Lacroix et al., 2018a]). The
Inverse Model refers to a model introduced by the creators [Dettmers et al., 2017b] of
WN18RR. The Inverse Model achieves state of the art performance on WN18, but not
WN18RR. The results are identical in the standard and +rev regimens, which provides
a sanity check for that approach. †: Best published.
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6.3 Results

We obtained the best-published results on WN18RR dataset (Table 6.3. Our best model

outperforms the state of the art by more than 10 points on the key MRR metric. These

performance improvements hold for both the standard TPR model, as well as for the

Spatial Attention Networks. Additionally, including the spatial attention mechanism

yields increases on the most stringent metrics (MRR and Hits@1).

We also observed noteworthy performance improvements on the Companies dataset

from introducing Spatial Attention, which led to improvements on all metrics, including

more than 2 points on MRR. Performance on the remaining datasets (Table 6.4) showed

little difference between the baseline TPR model and those with spatial attention, with

the baseline model performing better in most cases.

6.4 Discussion

Beyond performance, we were primarily interested in the way that the introduction of

spatial attention would lead to a reorganization of information in entity, relation, and

triplet representations relative to models without this mechanism. A great variety of

knowledge base completion models are usefully characterized as subclasses of a TPR

model, where the binary graph tensor is factored into an approximation. The charac-

teristic distinguishing such models is which subset of elements of the tensor are selected

for inference, this selection being static (DistMult, for example, statically selecting the

diagonal elements of the tensor).

To examine the amount of spatial localization of information about different entity

properties, we mapped the model’s accuracy when selecting entity features using a sliding
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All queries

Model MR MRR Hits@1 Hits@3 Hits@10

NELL-995

TPR Base 752 .408 .334 .449 .536

SAN3h 833 .401 .326 .442 .534

SAN3h-s 1812 .392 .315 .434 .532

FB15k-237

TPR Base 124 .314 .228 .341 .486

SAN3h 124 .309 .221 .335 .487

SAN4h-s 130 .307 .221 .334 .482

Humans

TPR Base 154 .556 .306 .782 .891

SAN3h 177 .550 .310 .764 .888

SAN4h-s 174 .541 .281 .777 .895

Left queries

Model MR MRR Hits@1 Hits@3 Hits@10

NELL-995

TPR Base 1148 .206 .159 .222 .290

SAN3h 1171 .208 .161 .218 .298

SAN3h-s 3142 .204 .155 .226 .294

FB15k-237

TPR Base 160 .249 .171 .267 .404

SAN3h 154 .239 .155 .256 .410

SAN4h-s 163 .240 .158 .260 .405

Humans

TPR Base 152 .559 .307 .787 .890

SAN3h 177 .551 .306 .768 .890

SAN4h-s 168 .545 .284 .781 .894

Right queries

Model MR MRR Hits@1 Hits@3 Hits@10

NELL-995

TPR Base 357 .610 .510 .677 .782

SAN3h 495 .594 .490 .667 .769

SAN3h-s 482 .579 .476 .641 .771

FB15k-237

TPR Base 89 .380 .285 .414 .567

SAN3h 95 .380 .288 .414 .564

SAN4h-s 98 .375 .284 .408 .560

Humans

TPR Base 157 .552 .305 .777 .892

SAN3h 177 .548 .314 .759 .886

SAN4h-s 180 .537 .279 .773 .895

Table 6.4: Results of the TPR Base and SAN graph models on NELL-995, FB15k-
237, and the new Humans dataset. Models with separate entity and relation vectors
for computing attention are suffixed as M-s. The best performance in each category is
bolded.
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Figure 6.2: Accuracy (MRR) for the baseline TPR model and the 4-headed Spatial Attention Network for
Left-headed and Right-headed queries when attention is centered at a pair of mean coordinates (m1,m2).
We used a Gaussian “searchlight” centered at each pair of the 75 indices of e1 and e2. For (m1,m2),
we multiplied e1 and e2 elementwise with Gaussian kernels centered at (m1,m2) and with the maximum
variance allowed by the model. The variance in this case is 148, which is the variance allowed by the
model that generated the attention maps in Figure 6.3. The diagonal m1 = m2 is the line from the top
left to the bottom right. Accuracy is measured as the mean reciprocal rank (MRR), with colorbar values
shared across the left-two and right-two columns to facilitate comparison of total accuracies across the
pair of models for same-direction queries. See section 6.4 for discussion.
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Model MR MRR Hits@1 Hits@3 Hits@10

TPR Base 1164 .267 .197 .295 .405

SAN 3h 983 .292 .220 .326 .421

Table 6.5: Results on the Companies dataset.

Gaussian window applied to the WN18RR entity vectors. Figure 6.2 visualizes this

accuracy on the plane defined by the two entity vectors, split by relations. Each point on

the heatmap is the result of computing the accuracy (MRR) for a sample of triplets when

multiplying each entity vectors with the Gaussian filters centered at the corresponding

pair of components, with no filter applied to the relation. Accuracy ranges are indicated

by the colorbars. Left- and right-directed queries are split within each panel.

We find that in comparison with the baseline TPR model (left panel), the trained SAN

model displays clear spatial structure as well as a tight concentration of information at

the regions peak accuracy. Comparing the accuracy ranges for the two pairs of heatmaps

shows that, systematically, small regions of the plane can be used to obtain high accuracy

on the SAN-trained model, whereas this is not the case for the simple TPR —confirming

that information pertinent to different kinds of queries is spatially localized in SAN, and

moroseo distributed in the case of the baseline model. Right-queries of member meronym

have a widespread accuracy profile and with a maximum accuracy of about .4 in the TPR

baseline, whereas a small number of components are sufficient to yield well above .6 for the

SAN models (the color bars to the right of each figure indicate the min and max values for

each heatmap). The maximum value of queries of derivationally related form

is around .65 for the TPR, and .85 for SAN. For both model types, the very edges of

the plane tend to have low accuracy, which is simply a function of the fact that fewer

components are activated at those edges.
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As well, the resulting localization patterns reflect properties we would expect from the

logical characteristics the corresponding relations. Symmetric relations like similar to,

verb group, also see, or derivationally related form are essentially trans-

poses of one another across left- and right-queries, reflecting the fact that, for such re-

lations, the model should assign the same score to e1 ⊗ r ⊗ e2 as to the transpose

(e1⊗r⊗e2)> = e2⊗r⊗e1. Transposition-invariance is thus a learned feature of the spatial

maps. For highly asymmetric relations like has part (cat, paw), or member meronym

(wolf, pack) do not show such symmetry.

Figure 6.3 displays the attention maps output by the attention module for four re-

lations (rows), varying the entity (columns) and the query-direction (sub-rows). Atten-

tion distributions vary substantially as a function of all three factors (entity, relation,

and query-direction)—indicating that the dynamic attention module retrieves informa-

tion from the volume with greater precision than is suggested by the aggregate accuracy

maps. Visually, these show the kinds of coarse generalizations one would anticipate. En-

tities at the same taxonomic levels (e.g. cat/dog and feline/canine) have attention

distributions, across relations, that are more similar to each other than to their neighbors

at different levels of the taxonomy. Conceptually similar entities with the same tax-

onomic rank (depth in the hierarchy) such as president fillmore and napoleon

have essentially the same attention maps across the board and yet have essentially disjoint

graph neighborhoods, indicating that the relatively coarse category-distinctions reflected

in the attention-allocation mechanism are in fact highlighting regions where informative

features are likely to reside, with those regions containing the information itself.

There are two ways the model could be succeeding: by (1) direction to relevant

information, or by (2) redirection to the answer. Suppose you go to the library and ask the

librarian, “Where does the Pope sleep?” The librarian might (1) hand you a book about
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the Pope, or (2) hand you a book called “The Vatican”. In the first case, the librarian

did not know the answer, but directed you to a source of information. In the second case,

the librarian already knew the answer, and gave you a “location” that is the answer. In

our model, (2) would be an effective strategy if, for instance, there as a single component

in the representation denoting “The Vatican”, the searchlight’s job is to highlight that

specific component. If the other argument of the query is not “The Vatican”, then the

score will be low. The question here is essentially, “Is the attention mechanism doing the

job of the librarian (locating information to be used by the downstream module), or is

the attention mechanism doing inference itself? If it is doing the inference itself, then we

would expect the spatial maps to differ substantially even for near neighbors. Instead,

we observe that near neighbors receive very similar attention maps. As illustrated in 6.3,

the relevant conceptual dimensions that define similarity do not simply involve nearness

in the sense of distance in the graph. The similarity maps for cat and dog are more

similar to one another than the maps for cat and feline, despite the fact that cats

are proper subsets of felines. Similarity in this case takes into account a conceptual

dimension of taxonomic depth, along which cat and feline differ. The result is a

model that has the anticipated structure: the attention mechanism provides a lookup

mechanism for features encoded in the vector representations for the entities, rather than

serving as the core inference engine itself.

6.5 Summary

In this chapter, we presented a novel graph completion model that takes into account the

three-dimensional structure of graph element representations arising from the use of 3-

way tensor products. The model allocates spatial attention to regions of a volume defined
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Figure 6.3: Attention distributions for a sampling of entities and four relations:
also see (top panel), has part (middle panel), and similar to (bottom panel) in
WN18RR. The top row in each panel shows attention distributions for left queries—e.g.
(?, has part, cat)—and the bottom row for right queries—e.g. (cat, has part, ?).
Weighted attention distributions were computed for each head and then summed across
head. We then took the central slice along the relation axis, yielding the planes visualized
above. See section 6.4 for discussion.
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by the components of the input vectors. We situate this model in a strand of research

that encompasses a broad range of models found in the literature—in particular, all those

whose scoring functions are strictly functions of products between embeddings for each

entity and a relation. Such models—the trilinear forms—basically involve a selection of

components of the 3-way products which enter into the final sum. Usually, these selections

are made a priori, as in the case of DistMult, Rescal, HolE, etc. In contrast, our

model selects products from the full tensor product in a graded fashion by weighting each

component using a spatial attention model, and does so dynamically on the basis of the

input representations themselves—one particular way of implementing dynamic selection

of a trilinear form for graph completion. Interestingly, we find that the attention maps

typically do not contain the core components of classic models like DistMult (the

elements of the main diagonal in the 3-way tensor product), yielding instead asymmetric

attention maps distributed across the entire representation. In addition to providing

performance boosts in several databases, we suggest that this framework may serve as a

way of investigating the properties of different trilinear models, and inducing such models

directly from data.
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Chapter 7

Conclusion

This dissertation has developed, implemented, and studied the properties of an array

of novel machine learning models. The goal of the range of models we have examined

is twofold: to take seriously the proposal, which is at the core of cognitive science as

a field, that the form of the language of thought and its implementation as a symbolic

system are tightly interwoven. The most prominent feature in our collective theories of

the language faculty, incomplete as they are, is their description as the computations of

machines operating over discrete sets, functions on those sets, and—in work that trods

in the direction the quantitative description of the language system as it is deployed in

real time—probabilities assigned to the elements of those sets.

From the other side, we have the recognition that the descriptive systems we adopt

in the course of analyzing those systems bear limited relation to what is known about

the machinery that carries those computations out. And whereas a variety of cognitive

operations, in relation to their neural underpinnings can be understood rather well and to

such an extent that precise mappings can be established between the neural circuitry and

its resultant behavior, that knowledge is limited to what can be gathered in the course
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of invasive experiments that have been unavailable in the study of higher cognition—by

which I mean simply that which is unique to humans.

Here we have chosen, in a sense, to approach this problem from the top down: to

select, among the bloom of models yielded by several decades’ investigation into AI, those

that are most amenable to analysis on the terms set forward by cognitive science. What

seems an initially strict limitation is in fact quite expansive. The classical methods that

implement the principle of compositionality in its most direct form, those that submit

easily to formal analysis, are those based on Tensor Product Representations [Smolensky,

1990]. As it turns out, a large class of methods that share the basic properties realized by

the tensor product—specifically, those that involve multiplicative interactions between

components of vectors, i.e. the bilinear forms—all fit within a common framework that

includes other classical proposals, such as that of Plate [Plate, 1994]—which aim to

deal with the large space requirements of TPR-like systems—as well as more modern

implemented systems that directly compute tensor products and then compress them

with a linear map [McCoy et al., 2019]. All such models share a common core, and may

be reasoned about in much the same way: as Encoders of structured representations

(TPRs) into compressed versions of those representations, paired with Decoders that are

optimal given those constraints.

TPRs as a class of models, then, provide a basis for investigating structured represen-

tations in a more applied setting. To that end, we have deployed three new models on

the task of knowledge base completion. The task domain of KBC requires the representa-

tion of a large numbers of symbolic relationships, which are naturally approached using

compositional methods used to construct the elements of a knowledge base—3-tuples

constructed from entities and relations. We have shown how a broadly compositional

approach to assembling a representation can be combined with methods drawn from con-
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nectionist Energy functions—in linguistics, Optimality Theory and Harmonic Grammar

[Smolensky and Legendre, 2006]—allow for both compositional representations with clear

constituency relations between the elements, as well as adjustments made to those rep-

resentations in the course of computation. These models, we show, can be analyzed in

exactly this way: as compositional building-blocks paired with neural operations that

adjust the representation so as to account for its context in the structure. In Chapters

4 and 5, we develop methods for analyzing those adjustments, and directly link them to

the model’s performance on benchmarks.

Finally, pursuing an existing line of research unifying a variety of KBC models in the

common framework of tensor products and elements selected from them a priori, we de-

veloped a model in which there is a dynamic selection of components of the tensor product

representations that capture three-way interactions between entities and relations. That

model was based on an analogy with the spatial contiguity of co-functional voxels in the

brain—a premise of the searchlight method in cognitive neuroscience. It and the rest of

the ensemble of methods developed here represent state of the art performance on the

KBC task, and in one case set a new state of the art (Chapter 6).

We hope that this work will bring new interest to the analysis of compositionality in

neural systems for knowledge base representation.
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