# Structure Assembly in Knowledge Base Representation

**Matthias Lalisse** 

# The "Language of Thought" Hypothesis

Classical cognitive science:

Cognitive capacities are systems of computational procedures that operate over domains of symbols to produce behavior

i.e. cognition in general has the formal structure of language

# The Fodor & Pylyshyn Formula

Higher-order cognition is:

Productive: In certain (but not all) domains, there is "discrete infinity"

**Systematic**: Cognitive representations are systematically linked to one another in virtue of what constituents appear in them

Roughly, algebraic closure of the alphabet under the operations of the "grammar": if *Mary loves Kevin* is a sentence, then *Kevin loves Mary* is also a sentence

**Compositional**: There are *semantic* relations between representations that depend on the constituents appearing in them

# Implications of F&P

- Cognitive theories ought to be able to satisfy F&P's "benchmarks"
- They go further & conjecture that any cognitive theory that satisfies the "benchmarks" are necessarily isomorphic to those systems

#### Questions raised for neural models:

- How would these symbolic systems be realized in neural models? (the Implementationalist Question)
- Are there phenomena that symbolic theories do not cover, or that are more cumbersome for them to cover relative to non-symbolic alternatives? (the Symbolic Describability Question)
  - E.g. similarity relations, analogies, prototype effects, etc

# Roadmap

- Connectionist solutions to the Fodor & Pylyshyn criteria
- Properties of some binding operators
- Quasi-compositional phenomena
- Harmony Maximization: a framework for noncompositional computation
- 3 models:
  - Gradient Graphs
  - Harmonic Memory Networks
  - Spatial Attention Networks

# Symbolic systems in neural systems

Classical responses to the F&P framework: Provide explicit mechanisms that satisfy the three criteria

The goal: provide explicit mechanisms that account for the F&P properties

#### **Vector Symbolic Architectures**

Proposals for systems that operate over vectors and derive the F&P properties

#### **General framework:**

There are sets of symbols (fillers) and roles, and a binding operation that combines them into pairwise associations

Binding operator:  $\mathbb{B}(x, y)$ 

Unbinding operator:  $\mathbb{U}\left(x,\mathbb{B}\left(x,y\right)\right)\approx y$ 

There is a coupled unbinding operator that is used to extract parts of the assembled structure

Add appropriate algorithms and:

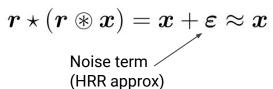
⇒ Yields the Language of Thought properties

# Binding models

- Tensor Product Representations/TPRs (Smolensky 1990, applied in e.g. Schlag 2018)
  - Binding: tensor product
  - Unbinding: dot product with structural role vectors

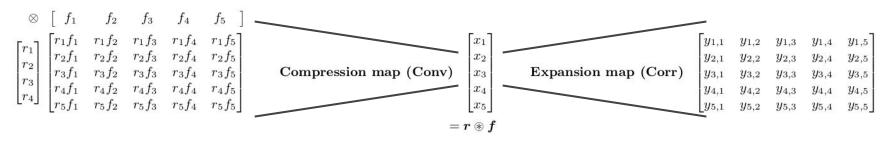
$$m{r}\cdot(m{r}\otimesm{x})=m{x}$$

- Gives **exact retrieval** of the vector associations but in a large representation
- Holographic Reduced Representations/HRRs (Plate 1995, applied in e.g. Nickel 2015, NENGO)
  - Binding: circular convolution
  - Unbinding: circular correlation
  - A kind of "compressed" tensor product
  - The binding has the same dimension as the inputs, but recovery is only approximate



#### On the relation between HRRs and TPRs

- Why are HRRs "good" binding mechanisms?
  - Theorem: The circular correlation tensor is the Moore-Penrose inverse of the circular convolution tensor.
    - Corollary: Correlation provides an *optimal reconstruction* of a TPR that is encoded into a smaller space by the convolution tensor



w.r.t. Convolution, Correlation minimizes the expected retrieval error:

#### HRR computation stream:

- o Take the TPR of a structure that is bound
- $\mathbb{E}\left[\left|\left|\boldsymbol{r}\otimes\boldsymbol{f}-\operatorname{Corr}\left(\operatorname{Conv}\left(\boldsymbol{r}\otimes\boldsymbol{f}\right)\right)\right|\right|\right]$
- Compress the TPR using the forward map (convolution)
- Retrieve the *optimal approximation* of the original TPR using the correlation map
- Do standard standard TPR operations (unbinbing using dot product) to process the structure

# Quasi-compositional phenomena

- Copredication:
  - Dinner was tasty but took forever.
    - [Dinner<sub>substance</sub>] was tasty but [dinner<sub>event</sub>] took forever
- Coercion:
  - Julie enjoyed the book.
    - $\Rightarrow$  Julie enjoyed reading the book.
  - The goat enjoyed the book.
    - ightharpoonup ightharpoonup The goat enjoyed eating **the book**.

Physical substance type

Informational content type

**Event type** 

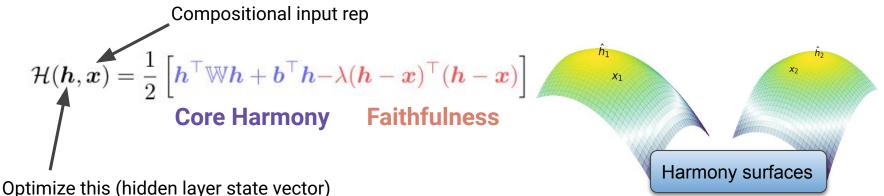
adapted from (Asher 2011)



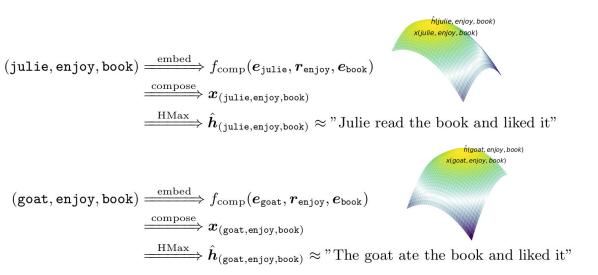
# Harmony Maximization: "supracompositional" computational component

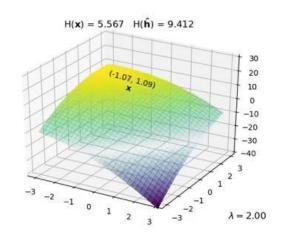
#### Cognitive representations resemble a "Language of Thought" as a first approximation

- Core compositional operations take constituents of a structure and combine them using systematic operations
- A recurrent neural network optimizes the representation on the basis of a Harmony function



## "Books" in an HMax network



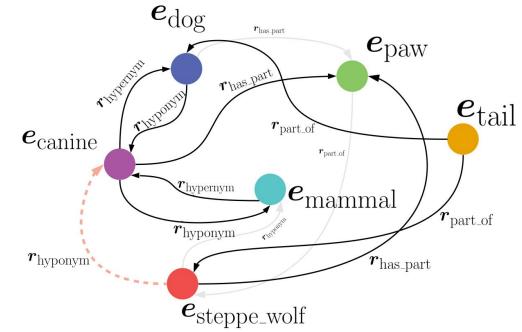




## Problem Domain:

# Knowledge Base Completion

Take a database of facts and generalize the database to new facts



(dog, has\_part, paw)
(dog, hyponym, canine)
(tail, part\_of, dog)
(canine, hypernym, dog)
(mammal, hypernym, canine)
(steppe\_wolf, has\_part, paw)
(canine, hypernym, steppe\_wolf)
(tail, part\_of, steppe\_wolf)
(tail, part\_of, dog)
Infer:

⇒ (steppe\_wolf, hyponym, canine)

Generic strategy: Embed entities and relations, and design a function that takes the embeddings & combines them systematically to derive a score

⇒ Removing this premise makes the inference nondeductive

# **Gradient Graphs**

Application of the mechanisms of Harmonic Grammar (compositional assembly + optimization of the compositional representation) to KBC

#### Basic proposal:

Use an array of **composition functions** to build representations of knowledge base entries

Augment the compositional representations with a **semantic optimization function** that subjects the compositional representations to learned constraints

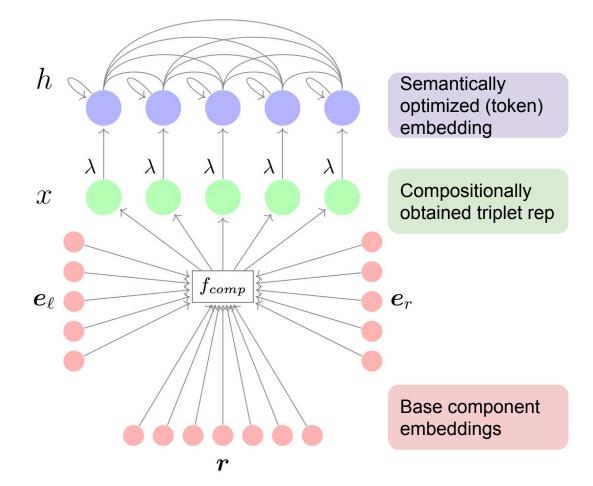
## Gradient Graph Network

Three-layer neural model:

**Embedding layer** 

Feedforward **composition layer** 

Recurrent optimization layer





# GG Composition Functions

Three multilinear functions of the entity & relation embeddings

#### Harmonic Tensor Product Representations

$$oldsymbol{x}_{ ext{HTPR}} = oldsymbol{e}_{\ell} \otimes oldsymbol{r} \otimes oldsymbol{e}_{r} \ egin{align*} [oldsymbol{x}]_{ijk} = [oldsymbol{e}_{\ell}]_{i} [oldsymbol{r}]_{j} [oldsymbol{e}_{r}]_{k} \end{bmatrix}$$

Harmonic Elementwise Multiplication (DistMult in Wang 2015)

$$oldsymbol{x}_{ ext{HDM}} = oldsymbol{e}_{\ell} \odot oldsymbol{r} \odot oldsymbol{e}_{r}$$

⊙: elementwise multiplication

Harmonic Circular Correlation (HolE in Nickel 2015)

$$oldsymbol{x}_{ ext{HHolE}} = oldsymbol{r} \odot \left( oldsymbol{e}_{\ell} \star oldsymbol{e}_{r} 
ight)$$

$$[oldsymbol{e}_{\ell}\staroldsymbol{e}_{r}]_{j} = \sum_{i} [oldsymbol{e}_{\ell}]_{i} [oldsymbol{e}_{r}]_{(i+k) mod d}$$
 (circular correlation)

## esults

#### **Tensor Product** Representations

 $x_{ ext{HTPR}} = e_{\ell} \otimes r \otimes e_r$ 

MR150

134

MRR .278

.295

H@1.192

.204

H@3.305

.326

.447

.471

H@10

TPRs: Opt > No-opt

DistMult: Elementwise

DISTMULT\*

HDISTMULT

HDISTMULT

HOLE

HOLE\*

HHOLE

HHOLE

**HHolE/Correlation** (Nickel 2016)

 $oldsymbol{x}_{ ext{HHoLE}} = oldsymbol{r} \odot (oldsymbol{e}_\ell \star oldsymbol{e}_r)$ 

Un-optimized (purely compositional)

multiplication (Yang 2015/ Kaldec 2017)  $x_{\text{HDM}} = e_{\ell} \odot r \odot e_r$ 

Rank Model MRMRR  $\lambda$ DISTMULT .350Ensemble DM<sup>†</sup> 36 .837

 $\infty$ 

50.0

 $\infty$ 

1.0

28

23

 $^{23}$ 

39

32

21

FB15K

.710

.806

.742

.524

.409

.682

.796

1

.797

.605

.751

.661

.402

.289

.575

.727

Hits@ 3

.792

.845

.799

.613

.464

.763

10 .577

.904

.876

.898

.881

.739

.647

.850

.901

 $\lambda$ 

 $\infty$ 

3.0

 $\infty$ 

2.0

Rank MR

457

220

164

184

205

293

183

MRR

.714

.740

.732

.930

.893

.903

.931

**WN18** 

.830

.790

.825

.841

.831

.938

.916

.919

.939

Hits@ 1 3 .784

.943

.931

.945

.936

.934

.945

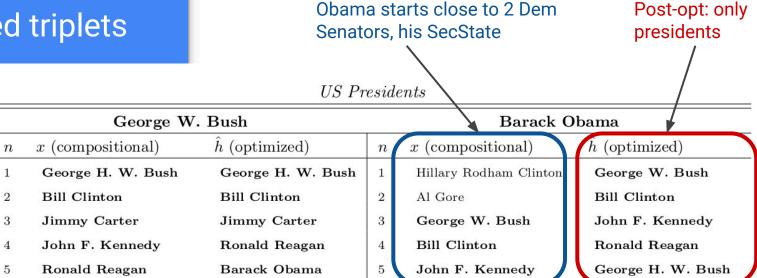
10 .942 .938

.950 .950 .955 .945.949.946 .942 .951

HRRs: Opt > No-opt

.848 HRRs: Best models overall

# Optimized triplets



| John McCain | Al Gore |
|-------------|---------|
|-------------|---------|

| n | x (compositional)      | $\hat{h}$ (optimized)                                                                                          | n   | x (compositional) | h (optimized)           |
|---|------------------------|----------------------------------------------------------------------------------------------------------------|-----|-------------------|-------------------------|
| 1 | John Kerry             | John Kerry                                                                                                     | 1   | Barack Obama      | Condoleezza Rice        |
| 2 | Hillary Rodham Clinton | Colin Powell                                                                                                   | 2   | George W. Bush    | John C. Calhoun         |
| 3 | Colin Powell           | Nancy Pelosi                                                                                                   | 3   | Colin Powell      | Colin Powell            |
| 4 | Richard Nixon          | Joe Biden                                                                                                      | 4   | Condoleezza Rice  | Hillary Rodham Clinton  |
| 5 | Herbert Hoover         | Dick Cheney                                                                                                    | 5   | John F. Kennedy   | John Kerry              |
| - |                        | 1.000 R.000 R. | 100 |                   | STATES TO THE TRANSPORT |

# Optimized triplets

#### Already prototypical example

Neighborhood stays the same

|                | Singer-Sc         | ongwriter             | Screenwriter |                   |                       |  |  |
|----------------|-------------------|-----------------------|--------------|-------------------|-----------------------|--|--|
| $\overline{n}$ | x (compositional) | $\hat{h}$ (optimized) | n            | x (compositional) | $\hat{h}$ (optimized) |  |  |
| 1              | Eric Clapton      | Bonnie Raitt          | 1            | John Lennon       | John Lennon           |  |  |
| 2              | Bonnie Raitt      | Eric Clapton          | 2            | Jimi Hendrix      | Barbara Streisand     |  |  |
| 3              | Van Morrison      | Van Morrison          | 3            | Barbara Streisand | Eric Idle             |  |  |
| 4              | B.B. King         | B.B. King             | 4            | Eric Clapton      | Nick Cave             |  |  |
| 5              | Bob Seger         | Bob Seger             | 5            | Eddie Vedder      | Alan Bergman          |  |  |

|                | Disc J            | ockey                 | Writer |                   |                       |  |  |
|----------------|-------------------|-----------------------|--------|-------------------|-----------------------|--|--|
| $\overline{n}$ | x (compositional) | $\hat{h}$ (optimized) | n      | x (compositional) | $\hat{h}$ (optimized) |  |  |
| 1              | Tom Petty         | Steven Van Zandt      | 1      | John Lennon       | Alanis Morissette     |  |  |
| 2              | Warren Zevon      | Erykah Badu           | 2      | Alanis Morissette | John Lennon           |  |  |
| 3              | Willie Nelson     | Alice Cooper          | 3      | Paul McCartney    | Leonard Cohen         |  |  |
| 4              | John Mayer        | John Mayer            | 4      | Tina Turner       | Leonard Bernstein     |  |  |
| 5              | Steve Earle       | Moby                  | 5      | Dolly Parton      | Prince                |  |  |

With Paul Smolensky & Eric Rosen

# Harmonic Memory Networks

In GGs, we took the representations of constituents to be atomic (i.e. there is no explicit internal structure to the learned embeddings)

**Harmonic Memory Networks** introduce compositional structure directly into the embeddings

The framework: Entities are represented as **memory states** 

# Harmonic Memory Networks

**Gradient Graphs**: Compositionality + HMax, but representations of constituents are treated as atomic

**Harmonic Memory Networks**: Add compositional structure to the representations of the entities themselves using filler-role binding operations

- Framework: Entities are represented as **memory states** composed of pairwise bindings of entity and relation vectors.
- Related to Graph Convolution methods (Shichtkrull 2017, Dettmers 2018) and recent Graph Attention Networks (Nathani 2019)

# Representing Entities

Target: a memory state that includes all the links relevant to a given query

Scoring function for each neighborhood link, with the function depending on the query

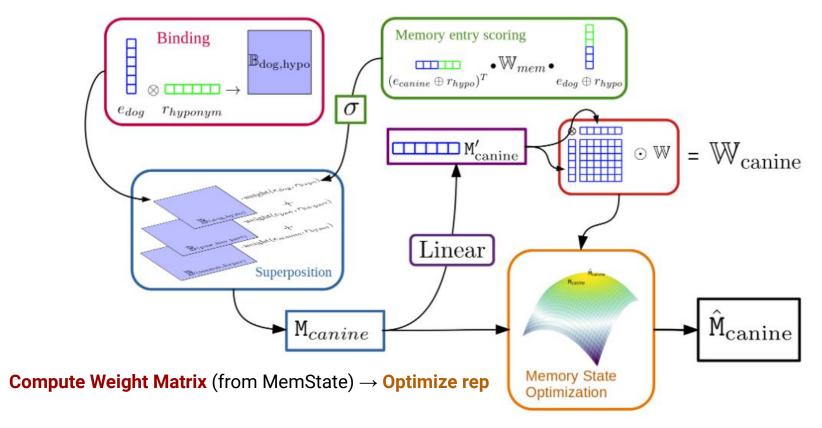
weight
$$(\boldsymbol{e}_c, \boldsymbol{r}_c | \boldsymbol{e}_i, \boldsymbol{r}_q) = \sigma((\boldsymbol{e}_i \oplus \boldsymbol{r}_q)^\top W_{\text{score}} (\boldsymbol{e}_c \oplus \boldsymbol{r}_c) + \boldsymbol{r}_{score}^q (\boldsymbol{e}_c \oplus \boldsymbol{r}_c))$$

**Bind** the entity and relation vectors in the neighborhood, and then take a **weighted sum** of all of the bindings

$$\mathtt{M}_i = \sum_c \mathrm{weight}(oldsymbol{e}_c, oldsymbol{r}_c | oldsymbol{e}_i, oldsymbol{r}_q) \mathbb{B}\left(oldsymbol{r}_c, oldsymbol{e}_c
ight)$$

#### **HMem Architecture**

Score neighborhood entries → Compute bindings → Sum weighted bindings → Outputs MemState



# Inference

After optimization, the memory state should include new neighborhood entries that answer the query

We decode these using the corresponding unbinding function

$$r_{
m hyponym} \cdot \hat{ exttt{M}}_{
m canine}$$
 Dot product (TPR)

$$r_{\mathrm{hyponym}}\star\hat{\mathtt{M}}_{\mathrm{canine}}$$
 Circular correlation (HRR)

"Is steppe\_wolf a type of canine?"

If yes: 
$$r_{
m hyponym} \cdot \hat{ exttt{M}}_{
m canine} pprox e_{
m steppe\_wolf}$$

### Results

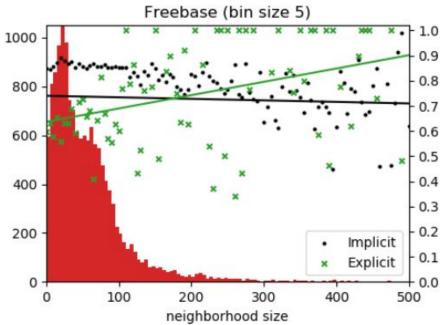
|     |                                                   | WordNet    |      |      |      | Freebase |           |             |      |             |      |
|-----|---------------------------------------------------|------------|------|------|------|----------|-----------|-------------|------|-------------|------|
|     | Model                                             | MR         | MRR  | H@1  | H@3  | H@10     | MR        | MRR         | H@1  | H@3         | H@10 |
|     | DistMult [Yang et al., 2015] <sup>†</sup>         | 457        | .790 | -    | 2    | .950     | 36        | .837        | 123  | -           | .904 |
|     | ComplEx [Troullion et al., 2016]                  | -          | .941 | .936 | .945 | .947     | -         | .692        | .599 | .759        | .840 |
|     | R-GCN+ [Schlichtkrull et al., 2017]               | -          | .819 | .697 | .929 | .964     | -         | .696        | .601 | .760        | .842 |
|     | ConvE [Dettmers et al., 2017a]                    | 374        | .943 | .935 | .946 | .956     | 51        | .657        | .558 | .723        | .831 |
|     | SimplE [Kazemi and Poole, 2018]                   | -          | .942 | .939 | .944 | .947     | -         | .727        | .660 | .773        | .838 |
|     | HypER [Balazevic et al., 2019a]                   | 431        | .951 | .947 | .955 | .958     | 44        | .790        | .734 | .829        | .885 |
| _   | TorusE [Ebisu and Ichise, 2018]                   | -          | .947 | .943 | .950 | .954     | -         | .733        | .674 | .771        | .832 |
|     | HMem-CConv                                        | 262        | .927 | .913 | .939 | .946     | 24        | .664        | .548 | .749        | .867 |
|     | HMem-CConv+                                       | 227        | .933 | .919 | .945 | .952     | <u>24</u> | .664        | .547 | .749        | .866 |
| HRR | $\mathrm{HMem\text{-}CConv}_{\infty}$             | 308        | .884 | .851 | .912 | .934     | 39        | .488        | .363 | .554        | .734 |
|     | $\mathrm{HMem\text{-}CConv}_{\infty}+$            | 183        | .899 | .866 | .930 | .951     | 39        | .481        | .357 | .546        | .725 |
|     | HMem-CConv <sub>im</sub>                          | 344        | .936 | .929 | .942 | .947     | 25        | .728        | .637 | .795        | .881 |
|     | HMem-TPR                                          | 253        | .934 | .923 | .944 | .948     | 30        | .590        | .478 | .660        | 788  |
|     | HMem-TPR+                                         | <u>174</u> | .944 | .932 | .955 | .960     | 29        | .592        | .479 | .662        | .791 |
| TPR | $\mathrm{HMem}\text{-}\mathrm{TPR}_{\infty}$      | 395        | .874 | .823 | .922 | .939     | 38        | .612        | .517 | .669        | .782 |
|     | $HMem-TPR_{\infty}+$                              | 323        | .879 | .24  | .930 | .950     | 37        | .616        | .521 | .674        | .786 |
|     | $\mathrm{HMem}\text{-}\mathrm{TPR}_{\mathrm{im}}$ | 245        | .936 | .924 | .947 | .952     | <u>24</u> | <u>.790</u> | .731 | <u>.831</u> | .886 |

**SOTA** 

Non-compositional (implicit binding) models perform best on Freebase

**WordNet: Best Model is TPR with HMax** 

# Implicit vs Explicit Binding



|                  |      | T    |      | Ī    |      |      |
|------------------|------|------|------|------|------|------|
| $\mathbf{Model}$ | 100  | 200  | 300  | 400  | 500  | 600  |
| Implicit         | .862 | .816 | .793 | .702 | .741 | .617 |
| Explicit         | .632 | .746 | .772 | .856 | .835 | .900 |

Implicit > Explicit Binding only for entities with small neighborhoods

Why? Embeddings with large neighborhoods have more training instances, but represent more superpositions, meaning more intrusion during unbinding

The **optimal embedding of the memory** is a weighted sum of ALL the neighbor TPRs

$$egin{equation} \mathbf{M}_{\mathrm{cat}} = \sum_{i,j} p(oldsymbol{r}_i, oldsymbol{e}_j | oldsymbol{e}_{\mathrm{cat}}) \; oldsymbol{r}_i \otimes oldsymbol{e}_j \end{aligned}$$

(learned embeddings)

### Scalability considerations

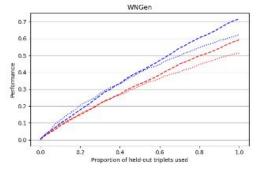
Compositional entity representation allows the model to obtain representations for entities that did not occur in training  $\Rightarrow$  generalization to novel entities

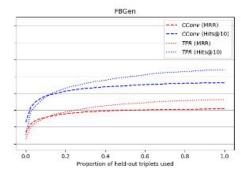
#### 2 new datasets: WNGen and FBGen: Subsets holding out all triplets involving a set of test entities

|       | heldout | train | valid | test | obs  |
|-------|---------|-------|-------|------|------|
| WNGen | 1.5K    | 141K  | 1.7K  | 1.7K | 6.8K |
| FBGen | 1K      | 496K  | 15K   | 15K  | 62K  |

|       | Model                     | MR   | MRR  | H@1  | H@3  | H@10 |
|-------|---------------------------|------|------|------|------|------|
| WNGen | CConv                     | 2286 | .487 | .426 | .527 | .594 |
|       | CConv+                    | 1359 | .592 | .518 | .647 | .716 |
|       | $\mathrm{TPR}_{\infty}$   | 2127 | .435 | .373 | .476 | .540 |
|       | $TPR_{\infty}+$           | 1507 | .514 | .448 | .565 | .624 |
| FBGen | $\mathrm{CConv}_{\infty}$ | 378  | .205 | .130 | .225 | .358 |
|       | $CConv_{\infty} +$        | 373  | .207 | .131 | .251 | .361 |
|       | $\mathrm{TPR}_{\infty}$   | 401  | .252 | .173 | .299 | .439 |
|       | $TPR_{\infty}+$           | 397  | .263 | .173 | .299 | .439 |

Table 5.4: Results on the KBEGEN task.





Performance improves smoothly as more triplets are added to the observed subgraph--system extensibility w/out retraining

# Spatial Attention Networks

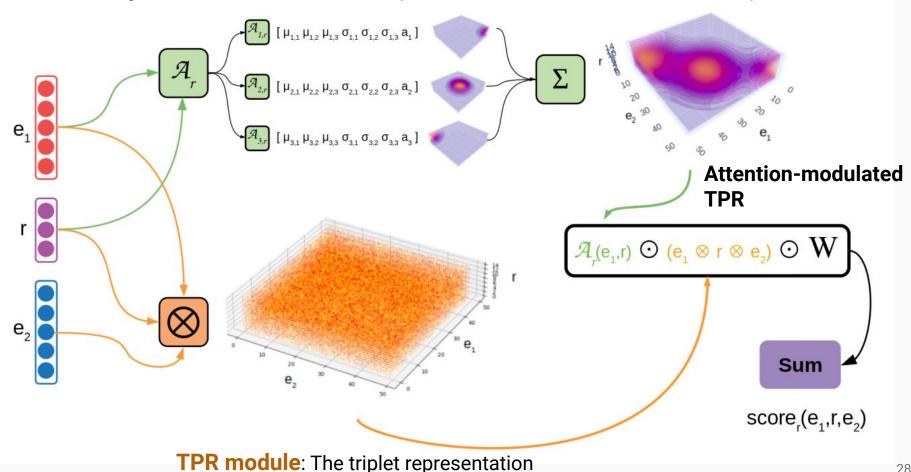
Tensor Product Representations have an implicit spatial structure defined by the coordinates of the involved vectors

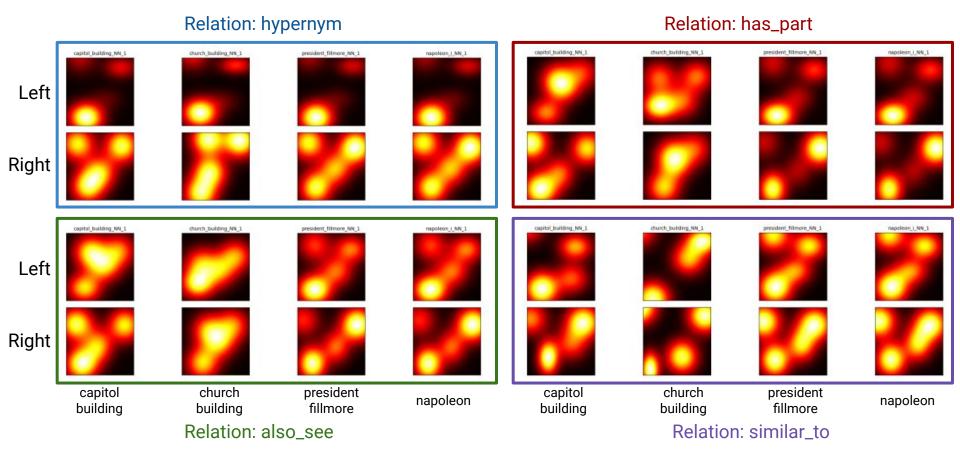
**SAN** input structures: 3-way tensor products of entity and relation vectors

⇒ 3d volumes with 3 spatial coordinates

Can this spatial structure be used as an organizing principle for knowledge representations?

#### Spatial attention modules: Output attention distributions on the TPR components





New dataset assembled from WikiData

# Results

| Model    | MR   | MRR  | Hits@1 | Hits@3 | Hits@10 |
|----------|------|------|--------|--------|---------|
| TPR BASE | 1164 | .267 | .197   | .295   | .405    |
| SAN 3H   | 983  | .292 | .220   | .326   | .421    |

### WN18RR ("challenge" subset of WordNet)

Table 6.5: Results on the Companies dataset.

SAN outperforms TPR on the **Companies** dataset

| Model                                           | MR    | MRR         | Hits@1      | Hits@3      | Hits@10 |
|-------------------------------------------------|-------|-------------|-------------|-------------|---------|
| M3GM <sup>†</sup> [Pinter and Eisenstein, 2018] | 2193  | .498        | .454        | -           | .590    |
| GAAT [Wang et al., 2019]                        | 1270  | .467        | .424        | .525        | .604    |
| Inverse Model [Dettmers et al., 2017b]          | 13526 | .348        | .348        | .348        | .348    |
| TPR Base                                        | 3858  | .364        | .344        | .371        | .398    |
| SAN 2H                                          | 3463  | .376        | .353        | .386        | .416    |
| Inverse Model+rev                               | 13526 | .348        | .348        | .348        | .348    |
| TPR Base+rev                                    | 1180  | .599        | .572        | .613        | .645    |
| SAN 4H+rev                                      | 1656  | <u>.605</u> | <u>.580</u> | <u>.619</u> | .644    |

TPR & SAN both

Baseline symbolic model (inverse relations)

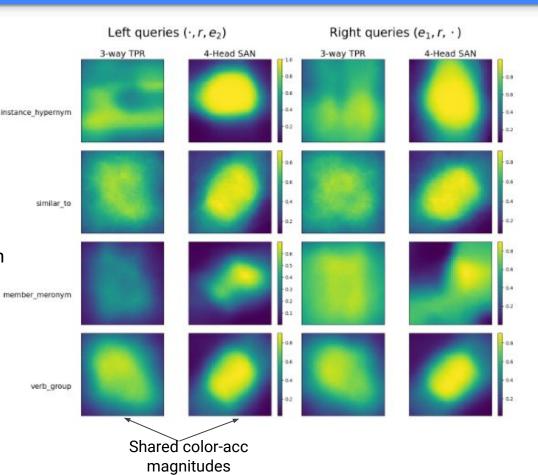
outperform the SOTA on WN18RR

#### Spatial arrangement of features

Accuracy (MRR) when placing the searchlight at each point on the entity1-entity2 grid

**3-way TPR**: diffuse & lower accuracy distribution (highly distributed representations)

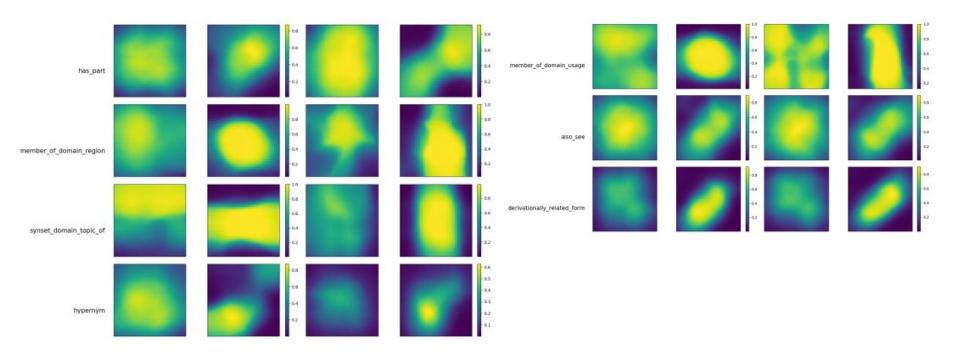
**SAN Network**: High accuracy in local regions. Relation-specific information tightly localized (semi-localist rep)



# Conclusion

- Explicit binding models provide an implementationalist account of symbol-processing in neural networks (+ similarity & other properties tough to capture in a symbolic model)
- When non-compositional processes come in—e.g. interactive meaning-modulation in coercion/copredication—we can use mechanisms like Harmony Maximization to modulate the representation
- Each of the models presented operates at the SOTA for knowledge base representation
- We hope this work brings attention & interest to classical binding models as candidates for cognitive theories

## More searchlights



#### HRRs & TPRs (the full pipeline)

