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The “Language of Thought” Hypothesis

Classical cognitive science:

Cognitive capacities are systems of computational procedures that
operate over domains of symbols to produce behavior

i.e. cognition in general has the formal structure of language



The Fodor & Pylyshyn Formula

Higher-order cognition is:
Productive: In certain (but not all) domains, there is “discrete infinity”

Systematic: Cognitive representations are systematically linked to one another in virtue of what constituents
appear in them

Roughly, algebraic closure of the alphabet under the operations of the “grammar”: if Mary loves Kevin is a
sentence, then Kevin loves Mary is also a sentence

Compositional: There are semantic relations between representations that depend on the constituents appearing

in them
(cat, has part, paw)

(panther, is_instance, cat)

E.g. —> (panter, has part, paw) ’



Implications of F&P

[{]

e Cognitive theories ought to be able to satisfy F&P’s “benchmarks”
e They go further & conjecture that any cognitive theory that satisfies the
“benchmarks” are necessarily isomorphic to those systems

Questions raised for neural models:

e How would these symbolic systems be realized in neural models? (the
Implementationalist Question)
e Are there phenomena that symbolic theories do not cover, or that are more
cumbersome for them to cover relative to non-symbolic alternatives? (the Symbolic
Describability Question)
o E.g. similarity relations, analogies, prototype effects, etc 4



Roadmap

Connectionist solutions to the Fodor & Pylyshyn criteria
Properties of some binding operators

Quasi-compositional phenomena

Harmony Maximization: a framework for noncompositional
computation

e 3 models:

o Gradient Graphs

o Harmonic Memory Networks

o Spatial Attention Networks



Symbolic systems
in neural systems

Classical responses to the F&P
framework: Provide explicit
mechanisms that satisfy the
three criteria

The goal: provide explicit
mechanisms that account for the
F&P properties

Vector Symbolic Architectures

Proposals for systems that operate over vectors and
derive the F&P properties

General framework:
There are sets of symbols (fillers) and roles, and a
binding operation that combines them into pairwise
associations
Binding operator: B (z,y)
Unbinding operator: U(z,B(z,y))~y

There is a coupled unbinding operator that is used to
extract parts of the assembled structure

Add appropriate algorithms and:
= Yields the Language of Thought properties



Binding models

Tensor Product Representations/TPRs (Smolensky 1990, applied in e.g. Schlag 2018)

O

O

O

Binding: tensor product
Unbinding: dot product with structural role vectors
Gives exact retrieval of the vector associations but in a large representation

r-(ror)=

Holographic Reduced Representations/HRRs (Plate 1995, applied in e.g. Nickel 2015,

NENGO)
o Binding: circular convolution rx(r®x)=x+exzx
o Unt.)lndmgl: circular corzelatlon Noise term /
o Akind of “compressed” tensor product (HRR approx)
o The binding has the same dimension as the inputs, but recovery is only approximate



On the relation between HRRs and TPRs

e Why are HRRs “good” binding mechanisms?
o Theorem: The circular correlation tensor is the Moore-Penrose inverse of the circular
convolution tensor.
m Corollary: Correlation provides an optimal reconstruction of a TPR that is encoded into
a smaller space by the convolution tensor
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w.r.t. Convolution, Correlation minimizes the expected retrieval error:

e HRR computation stream:
E[||r & f — Corr (Conv (r& f))||]

o Take the TPR of a structure that is bound
o Compress the TPR using the forward map (convolution)

o Retrieve the optimal approximation of the original TPR using the correlation map

o Do standard standard TPR operations (unbinbing using dot product) to process the structure



Quasi-compositional phenomena

e Copredication:
o Dinner was tasty but took forever.
m [Dinner | was tasty but [dinner_ __] took forever
e Coercion:
o Julie enjoyed the book.
m = Julie enjoyed reading the book.
o The goat enjoyed the book. Informational content type
m = The goat enjoyed eating the book.

substance

Physical substance type

Event type

adapted from (Asher 2011)



Harmony Maximization: “supracompositional”

computational component

Cognitive representations resemble a “Language of Thought” as a first approximation

e Core compositional operations take constituents of a structure and combine them using
systematic operations
e Arecurrent neural network optimizes the representation on the basis of a Harmony function
Compositional input rep

H(h,z) = [hT\Wh +b Th-Ah—2)T(h - :13)] y

DO | =

Core Harmony Faithfulness

10

Optimize this (hidden layer state vector)



“Books” in an HMax network

f)(iul ie, enjoy, book)

embed

(julie’ el’lj Oy, bOOk) : fcomp (ejulie, renjoy, ebook)

compose

& (julie,enjoy,book)

—Max ﬁ(julie,enjoy,book) ~ ” Julie read the book and liked it”

ﬁ(goat, enjoy, book)
embed

2 vrx(goat.e j,;§§k)
(goat, enjoy, book) =22 £ (equns, Penjoss €maa) -

e
compose /
—_— L (goat,enjoy,book)

HMax fl(goat,enjoy,book) ~ ”The goat ate the book and liked it”

H(x) = 5.567 H(h) = 9.412



https://docs.google.com/file/d/1tTpEpceRF5VFSh4va8xS_YgCY_9_F7XO/preview

Thas part

€Epaw

Problem Domain: €tail

€canine

Tpart_of

T hypernym

Knowledge Base
Completion

€mammal

Thyponym o

T part_of

rhyponyrﬁ o
Take a database of facts e
_ steppe_wolf
and generalize the (dog, has_part, paw)
database to new facts Eigf’l’hgziﬁ':f’f::gi)“e) Generic strategy: Embed entities and
(canine, hypernyn, dog) relations, and design a function that
(mammal, hypernym, canine) takes the embeddings & combines

(steppewolf, haspart, paw) them systematically to derive a score

{eaninehypernym steppewolf)
(tail, part_of, steppe_wolf) \
(vl parts.of, dog) = Removing this premise

Infer: makes the inference

—> (steppe_wolf, hyponym, canine) nondeductive 12




(Lalisse & Smolensky 2019)

Gradient Graphs

Application of the mechanisms of Harmonic Grammar (compositional
assembly + optimization of the compositional representation) to KBC

Basic proposal:

Use an array of composition functions to build representations of knowledge
base entries

Augment the compositional representations with a semantic optimization

function that subjects the compositional representations to learned constraints
13



Gradient Graph
Network

Three-layer neural model:
Embedding layer

Feedforward composition
layer

Recurrent optimization
layer
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embeddings
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. Harmonic Tensor Product Representations
GG Composition

Functions LHTPR — €, QT R e,

[z]iji = [ed]i[r];[er]k

Three multilinear Harmonic Elementwise Multiplication
functions of the entity & (DistMult in Wang 2015)

relation embeddings THDM = €, O T O e,
®: elementwise multiplication

Harmonic Circular Correlation
(HolE in Nickel 2015)

ThHoE =T © (€ x e;)
lecxe;]; = Z[e€]z’[er](i+k) mod d

(circular correlation)




Results

Un-optimized (purely compositional)

Tensor Product 5 MR | MRR | HQ1 | HQ3 | HQ10

Representations oy =e,@roe, YxJ|[ 150 [ 278 [.192 [ 305 | 447  1ppe.
10 || 134 | .295 | .204 | .326 | .471  Qpts No-opt

DistMult: Elementwise HHolE/Correlation (Nickel 2016)

multiplication (Yang 2015/ Kaldec

2017) THDM = € O T © €y THHoE =T © (egx e;)

FB15K WN18
Rank Hits@ Rank Hits@Q
Model A MR MRR 1 3 10 A MR MRR 1 3 10
DistMuLT - - .350 - - S77 - - .830 - - 942
ENSEMBLE DM . 36 .837 797 . .904 . 457 790 784 - 950
DistMuLT* - 28 .710 .605 .792 .876 - 220 .825 .714 .938 .950
HDisTMuLT fo’s) 23 .806 751 .845 .898 00 164 .841 .740 .943 .955
HDisTMuLT 50.0 23 .742 661 .799 .881 3.0 184 .831 .732 .931 .945
HoLE - - .524 402 .613 .739 - - .938 .930 .945 .949
HoLE" - 39 .409 .289 464 .647 - 205 916 .893 .936 .946
HHOLE o0 32 .682 575 .763 .850 00 293 919 .903 .934 942 HRRs:
HHOLE 1.0 21 796 727 .848  .901 2.0 183 .939 .931 .945 .951 Opt > No-opt
16

HRRs: Best models overall



Optimized triplets

Obama starts close to 2 Dem

Post-opt: only

Senators, his SecState presidents
US Presidents
George W. Bush Barack Obama ‘
n  x (compositional) h (optimized) n f = (compositional) \ ﬁz'(optimized) \

1 George H. W. Bush George H. W. Bush

Bill Clinton Bill Clinton
Jimmy Carter Jimmy Carter

John F. Kennedy Ronald Reagan

gk N

Ronald Reagan Barack Obama

\

John McCain

Hillary Rodham Clinton
Al Gore

George W. Bush

Bill Clinton

John F. Kennedy

Al Gore

George W. Bush
Bill Clinton

John F. Kennedy
Ronald Reagan
George H. W. Bush

~

n  x (compositional) h (optimized) n / x (compositional) "\ /h (optimized) \

1 John Kerry John Kerry 1 Barack Obama Condoleezza Rice

2 Hillary Rodham Clinton Colin Powell 2 George W. Bush John C. Calhoun

3 Colin Powell Nancy Pelosi 3 Colin Powell Colin Powell

4 Richard Nixon Joe Biden 4 Condoleezza Rice Hillary Rodham Clinton

5 Herbert Hoover Dick Cheney 5 \ John F. Kennedy John Kerry J
) - — 7

Gore starts close to presidents

No presidents

17



Optimized triplets

Already prototypical example

Neighborhood stays the same

/Guz'ses of Bob Dylan

y 4

Singg—Songwriter / Screenwriter
n (:t (compositional)\ (iz (optimized) \ n  x (compositional) h (optimized)
1 Eric Clapton Bonnie Raitt 1 John Lennon John Lennon
2 Bonnie Raitt Eric Clapton 2 Jimi Hendrix Barbara Streisand
3 Van Morrison Van Morrison 3 Barbara Streisand Eric Idle
4 B.B. King B.B. King 4 Eric Clapton Nick Cave
5 &Bob Seger ) k Bob Seger ) 5 Eddie Vedder Alan Bergman
Disc Jockey Writer
n G (compositional)\ Khr(optimized) \ n  x (compositional) h (optimized)
1 Tom Petty Steven Van Zandt 1 John Lennon Alanis Morissette
2 Warren Zevon Erykah Badu 2 Alanis Morissette John Lennon
3 Willie Nelson Alice Cooper 3 Paul McCartney Leonard Cohen
4 John Mayer John Mayer 4 Tina Turner Leonard Bernstein
5 kSteve Earle ) \Moby ) 5 Dolly Parton Prince

Moves nearer to Musicians-who-were-also-DJs 18



Harmonic Memory Networks

In GGs, we took the representations of constituents to be atomic (i.e. there is
no explicit internal structure to the learned embeddings)

Harmonic Memory Networks introduce compositional structure directly into
the embeddings

The framework: Entities are represented as memory states

19



Harmonic Memory Networks

Gradient Graphs: Compositionality + HMax, but representations of constituents are
treated as atomic

Harmonic Memory Networks: Add compositional structure to the representations of the
entities themselves using filler-role binding operations

Framework: Entities are represented as memory states composed of pairwise
bindings of entity and relation vectors.

Related to Graph Convolution methods (Shichtkrull 2017, Dettmers 2018) and recent
Graph Attention Networks (Nathani 2019)

20



Representing Entities

Target: a memory state that includes all the links relevant to a given query
Scoring function for each neighborhood link, with the function depending on the query
Weight(ec, ’rclei, 'rq) :0'( (ei S5 rq)T Wescore (ec ©® rc) e & rgcore—r (ec 8% T‘c) )

Bind the entity and relation vectors in the neighborhood, and then take a weighted sum of
all of the bindings

M; = Z weight (e, rc|e;, r4)B (¢, ec)
(84

21



HMem Architecture

Score neighborhood entries — Compute bindings — Sum weighted bindings — Outputs MemState

Binding ' Memory entry scoring E
oo e Wieme
@ OII111] —» (€canine © Thypo) €dog D Thypo
Cdog  Thyponym g
oo
OooIIoM. . oW = .
canine — Wcanlne

Linear a8 - o

B ..ﬁz-'-‘ff-"‘"“ Suporpositioy / -
\> > — M

Mcanine w canine

Memory State

\Optimization ) 9

Compute Weight Matrix (from MemState) — Optimize rep




Inference

After optimization, the memory state should include new neighborhood entries that
answer the query
We decode these using the corresponding unbinding function

Prypeni N | —— Dot product (TPR)

Thyponym * Meanine Circular correlation (HRR)

“Is steppe_wolf a type of canine?”

Ifyes:  Thyponym Mcanine ~ Esteppe_wolf
23



HRR

TPR

SOTA

WordNet Freebase

Model | MR MRR H@l H@3 H@10 | MR MRR H@l H@3 HQI0 |
DistMult [Yang et al., 2015]t 457 .790 - - .950 36 .837 - - .904
ComplEx [Troullion et al., 2016] - 941 936 .945 .947 - .692 599 759 .840
R-GCN+ [Schlichtkrull et al., 2017] - .819 697 929 .964 - .696 .601 .760 .842
ConvE [Dettmers et al., 2017a] 374 .943 935 .946 .956 51 .657 558  .723 .831
SimplE [Kazemi and Poole, 2018] - .942 939 944 .947 - 27T 660 773 .838
HypER [Balazevic et al., 2019a] 431 .951 .947 .955 .958 44 790 .734 .829 .885
TorusE [Ebisu and Ichise, 2018] - 947 943 950 .954 - 733 674 771 .832
HMem-CConv 262 .927 913 .939 .946 24 .664 .b48 749 .867
HMem-CConv+ 227 933 919  .945 .952 24 .664 .547 .749 .866
HMem-CConv 308 .884 .851 912 934 39 488 .363 .5bH4 734
HMem-CConv .+ 183 .899 .866 .930 951 : )
HMem-CConviy, 344 .936  .929 942 947 25 .728 .637 .795 .881
HMem-TPR 253 .934 .923 .944 .948 30 .590 478 .660 788
HMem-TPR+ liza 944 932 955 960 | 20 502 479 662 791
HMem-TPR 395 874 .823 .922 .939 38 612 517 .669 782
HMem-TPR o + 323 .879 .24 930 .950 37 .616 .521 .674 .786
HMem-TPRipm 245 936 924 947 952 |[[24 790 .731 .831 .886

WordNet: Best Model is TPR with HMax

Non-compositional
(implicit binding)
models perform best
on Freebase



Implicit vs Explicit Binding

Freebase (bin size 5)
x x X OMMX XXX X X MK XX wx x.F1.0

09 Implicit > Explicit Binding only for

°  entities with small neighborhoods

- 0.6

o5  Why? Embeddings with large

04 neighborhoods have more training
% instances, but represent more

1000

800

600

400

— 0.2 st :
20 +  Implicit superpositions, meaning more
« Bt 1" intrusion during unbindin
0 . T 0.0 g g
0 100 200 300 400 500

neighborhood size

The optimal embedding of the memory is
Model | 100 | 200 | 300 | 400 | 500 | 600 | 3 weighted sum of ALL the neighbor TPRs

Implicit | .862 | .816 | .793 | .702 | .741 | .617 ]

Explicit | 632 | .746 | .772 | .856 | .835 | .900 Meat = »_ D(Ts,€j]€cat) T3 ® €;
1,7

(learned embeddings)



Scalability considerations

Compositional entity representation allows the model to obtain representations for entities
that did not occur in training = generalization to novel entities

2 new datasets: WNGen and FBGen: heldout | train | valid | test | obs
Subsets holding out all triplets WiGen | ISK | LK | L7E | 17K | 68K

. . .. FBGen | 1K 496K | 15K | 15K | 62K
involving a set of test entities
| Model | MR | MRR | Hal | H@3 | HQ10 | = I T e
WNGen | CConv 2286 | .487 | 426 | .527 | .594 & Z>onl N I e
CConv+ | 1359 | .592 | .518 | .647 | .716 | ;e Pribee———| e
TPR., 2127 | 435 | 373 | 476 | 540 | i 5 e
TPRoo+ | 1507 | 514 | 448 | 565 | 624 | "] & [ )
FBGen | CConve, | 378 | .205 | .130 | .225 | .358 | o — -
CCOI]VOO-F 373 .207 .131 .251 .361 " 8 Prnporvo::vlhelé-:ulmo:ktsuseu kio ¥ « * H’ou:ﬂinﬁo(fel:l-auu‘r’i:(etsuxd 9 e

TPR 401 252 | 173 | .299 | .439

TPR.+ | 397 | .263 | .173 | .299 | .439 Performance improves smoothly as more

triplets are added to the observed
Table 5.4: Results on the KBEGEN task. subgraph--system extensibility w/out retraining




Spatial Attention Networks

Tensor Product Representations have an implicit spatial structure defined by
the coordinates of the involved vectors

SAN input structures: 3-way tensor products of entity and relation vectors
= 3d volumes with 3 spatial coordinates

Can this spatial structure be used as an organizing principle for knowledge
representations?

27



Spatial attention modules: Output attention distributions on the TPR components

e [ pl.l pLZ p1.3 01.1 01.2 01.3 al ] ’

TPR

@0000 (000 00000

score (e,,Ie,)

TPR module: The triplet representation 28



Left

Right

Left

Right

Relation: hypernym

Relation: has_part

capitol buksing NN L crurch_tuiding NN 1 preadent_filmone NN_1

dhurch_Suldng NN_1 president_filmore_NN_1

urch_tuidng_NN_1 peesdent_tAmore NK_1

awurch_ulding NN_1 president_filmore_NK_1

capitol church president
building building fillmore

Relation: also_see

Learned Attention Distributions

capitol

napoleon building

church president
building fillmore

Relation: similar_to

napoleon




New dataset

assembled from
WikiData
Model MR MRR Hits@l Hits@3 Hits@10

TPR Base | 1164  .267 197 295 405
SAN 3H 983 .292 .220 -326 421

“ ', Table 6.5: Results on the COMPANIES dataset.
WN18RR (“challenge” subset of WordNet) SAN outperforms TPR on

the Companies dataset

Model MR MRR Hits@l Hits@3 Hits@10

M3GMT [Pinter and Eisenstein, 2018] | 2193  .498 454 . 590

GAAT [Wang et al., 2019 1270 467 424 525 604

Inverse Model [Dettmers et al., 2017b] | 13526  .348 348 348 348 Baseline symbolic
TPR Basg 3858 364  .344 371 398 1o
SAN 2u 3463 376 .353 386 416

Inverse Model+rev 13526 .348  .348 348 348~

TPR BASE+rev 1180 .599 .572  .613  .645 TPR & SAN both
SAN 4H+rev 1656 .605 .580  .619  .644 outperform the

SOTAon WN18RR 39



Spatial arrangement of features

Left queries (-, r, e;) Right queries (e, r, *)
ACCUI'acy (M RR) When pIaC|ng the 3-way TPR 4-Head SAN 3-way TPR 4-Head SAN
searchlight at each point on the
entity1 'entityz gl'id instance_hypermnym

3-way TPR: diffuse & lower accuracy
distribution (highly distributed
representations) L
SAN Network: High accuracy in local
regions. Relation-specific information

tightly localized (semi-localist rep)

member_meronym

verb_group

Lo
o8 (Y]
ce on
a4 s
LY a2
a6 ca
ao o6
e o4
a3 az
a0 on
as

as
ae
03 o
02

o2
a1
as os
L) ]
04 oe
82 o2

anon

Shared color-acc 31
magnitudes



Conclusion

e Explicit binding models provide an implementationalist account of
symbol-processing in neural networks (+ similarity & other properties
tough to capture in a symbolic model)

e When non-compositional processes come in—e.g. interactive
meaning-modulation in coercion/copredication—we can use mechanisms
like Harmony Maximization to modulate the representation

e Each of the models presented operates at the SOTA for knowledge base
representation

e We hope this work brings attention & interest to classical binding models
as candidates for cognitive theories 2



More searchlights

has_part

member_of_domain_region

synset_domain_topic_of

o8

o6

member_of_domain_usage

also_see

derivationally_refated_form

33



HRRs & TPRs (the full pipeline)

QW ks A 5]
ri| [ rife nifs nfa nfs / t1n ti2 t3 tha tis
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M and N minimize the expected difference be- 5 tsa ts52 153 t54 ts55

tween the input tensor and its reconstruction T

E[IT-r®f|]

Unbinding (dot product)
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