Headlines at Hopkins: news releases from across
university Headlines
News by Topic: news releases organized by subject News by Topic
News by School: news releases organized by the 
university's 9 schools & divisions News by School
Events Open to the Public (campus-wide) Events Open
to the Public
Blue Jay Sports: Hopkins Athletic Center Blue Jay Sports
Search News Site Search the Site

Contacting the News Staff: directory of university 
press officers Contacting
News Staff
Receive News Via Email (listservs) Receive News
Via Email
Resources for Journalists Resources for Journalists

Virtually Live@Hopkins: audio and video news Virtually
Hopkins in the News: news clips about Hopkins Hopkins in
the News

Faculty Experts: searchable resource organized by 
topic Faculty Experts
Faculty and Administrator Photos Faculty and
Faculty with Homepages Faculty with Homepages

JHUNIVERSE Homepage JHUniverse Homepage
Headlines at Hopkins
News Release

Office of News and Information
Johns Hopkins University
3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: (410) 516-7160 | Fax (410) 516-5251

October 31, 2000
CONTACT: Phil Sneiderman
prs@jhu.edu, (410) 516-7907

Tracking a Microscopic 'Rocket' by Its Tail
Laser Device Lets Researchers See How Bacteria Spread Between Cells

Using a laser device that allows them to view microscopic movement, biomedical engineering researchers at The Johns Hopkins University have produced startling new findings about how deadly bacteria spread infection between neighboring cells. Writing in the October 26 issue of Nature, Scot C. Kuo and James L. McGrath describe how Listeria monocytogenes--a common source of poisoning in processed foods--exhibit an unusual stutter-step motion while building rocketlike "tails" that propel them from one living host cell to another. The engineers' discovery contradicts a widely held belief that filaments in these tails grow and push in a smooth continuous motion.

Biomedical researchers James McGrath and Scot Kuo used this laser tracking device to study the "tails" that propel deadly Lysteria microbes.
Photo by Jay Van Rensselaer.

To study the rocketlike motion of Listeria, the researchers used an innovative tracking device developed by Kuo. The instrument--a laser built into an optical microscope--allowed them to peer inside living cells and record the motion of Listeria microbes, the potentially fatal pathogens that have triggered a number of major processed food recalls in recent years.

Scientists already knew that Listeria evade detection by white blood cells--the body's key defense system--by hiding inside living intestinal cells. Inside each host cell, the pathogen feeds and multiplies until it causes the cell to burst and die. But before this happens, the bacteria causes molecules of a protein called actin to assemble into filaments to form rocketlike tails that can "thrust" bacteria from the infected cell toward a healthy neighboring cell. Scientists know that these filaments grow only near the bacterium but disassemble throughout the tail. The balance of growth and disassembly gives the appearance of a rocket "plume" of constant length.

Scot Kuo is an assistant professor in the Department of Biomedical Engineering.
Photo by Jay Van Rensselaer.

Prior to beginning their project, Kuo and McGrath expected to confirm a theory that filament growth nudges a bacterium toward its next target in a smooth, continuous manner. Instead, Kuo and McGrath detected a series of steplike motions along the filaments. "We shouldn't have seen that. The fact that we can see these step-like motions means that the existing theories are missing a really fundamental feature," says Kuo, an assistant professor in the Johns Hopkins Department of Biomedical Engineering. His co-author, McGrath, is a postdoctoral fellow in his laboratory.

"Each bacterium is not just 'surfing' ahead of these tails as the filaments grow within the infected host cell," says Kuo. "Instead, the bacteria appear to hold onto some of these strands to control the locomotion process as new protein building blocks are incorporated into the tails. The step-like motion we observed could correspond to each addition of a building block."

The molecular-scale steps of Listeria are reminiscent of "motor" proteins, which haul "cargo" by a walking motion within cells. "Our data are the first indication that Listeria might use molecular motors," Kuo says.

James McGrath is a postdoctoral fellow in Kuo's lab.
Photo by Jay Van Rensselaer.

Although their experiments focused on Listeria, Kuo and McGrath believe their findings could also shed light on the movement of related pathogens that cause ailments such as Rocky Mountain spotted fever, Shigella and vaccinia virus (a relative of smallpox).

Learning how these bacteria make use of their microscopic tails may not immediately lead to new treatments for these infections. But Kuo says these findings "add significantly to our basic understanding of how cells crawl and control their shape."

Color images available of Scot Kuo and James McGrath; contact Phil Sneiderman

Related Web Sites

Scot Kuo's Web Page

Johns Hopkins Department of Biomedical Engineering

Johns Hopkins University news releases can be found on the World Wide Web at http://www.jhu.edu/news_info/news/
   Information on automatic e-mail delivery of science and medical news releases is available at the same address.

Go to Headlines@HopkinsHome Page