Headlines at Hopkins: news releases from across
university Headlines
News by Topic: news releases organized by subject News by Topic
News by School: news releases organized by the 
university's 9 schools & divisions News by School
Events Open to the Public (campus-wide) Events Open
to the Public
Blue Jay Sports: Hopkins Athletic Center Blue Jay Sports
Search News Site Search the Site

Contacting the News Staff: directory of university 
press officers Contacting
News Staff
Receive News Via Email (listservs) Receive News
Via Email
Resources for Journalists Resources for Journalists

Virtually Live@Hopkins: audio and video news Virtually
Hopkins in the News: news clips about Hopkins Hopkins in
the News

Faculty Experts: searchable resource organized by 
topic Faculty Experts
Faculty and Administrator Photos Faculty and
Faculty with Homepages Faculty with Homepages

JHUNIVERSE Homepage JHUniverse Homepage
Headlines at Hopkins
News Release

Office of News and Information
Johns Hopkins University
901 South Bond Street, Suite 540
Baltimore, Maryland 21231
Phone: 443-287-9960 | Fax: 443-287-9920

May 15, 2002
CONTACT: Phil Sneiderman
(410) 516-7907

Whitewater Death Inspires Students to Create Safer Helmet
Undergraduate Engineers Use Inexpensive Materials,
Improved Design to Boost Protection

With support from a grieving father and injury prevention researchers, two Johns Hopkins engineering students have designed and fabricated a new whitewater recreation helmet to better protect rafters and kayakers from life-threatening head injuries. The prototype and specifications will be patented by a nonprofit foundation that plans to mass-produce and sell the headgear at cost. Injury prevention experts also hope the project will bolster efforts to adopt stronger safety standards for whitewater helmets, similar to those in place for bicycle helmets and other sports gear.

The issue was brought to the attention of Johns Hopkins by Gil Turner, a Park City, Utah, resident whose 22-year-old son, Lucas Brandon Turner, died in 1998 while kayaking on the Payette River in Idaho. "He was an expert whitewater kayaker, but somehow he was thrown into the river," Turner said. "The force of the water pushed him head-first into a large boulder. He would have survived if his helmet had stayed in place, but it slipped backward and exposed his forehead. He sustained a fatal blow to the center of his forehead." The incident led Turner, a retired businessman, to found the Whitewater Research and Safety Institute, which co-funded the safer helmet development project with the Center for Injury Research and Policy at The Johns Hopkins University Bloomberg School of Public Health.

The job of designing and fabricating the whitewater helmet was handed to two seniors enrolled in the Department of Mechanical Engineering's Senior Design Project course: Michael Cordeiro, a 21-year-old mechanical engineering major from Easton, Md., and Chang Lee, 22, of Atlanta, who was completing a dual major in biomedical engineering and engineering mechanics.

Photo A: Undergraduates Michael Cordeiro and Chang Lee spent two semesters designing and assembling a prototype for a whitewater recreation helmet that may provide better protection that existing models.
Photo by Will Kirk

The undergraduates were asked to study head injuries that occurred in whitewater sports and to design a helmet that would better absorb shocks and prevent injuries. The helmet had to be lightweight (less than 30 ounces), buoyant in water and durable enough to survive repeated collisions with hard objects. It required straps that would hold the helmet in place even in fast-moving water. It had to cost less than $30 per helmet to manufacture and be comfortable and aesthetically pleasing enough to appeal to whitewater enthusiasts.

The yearlong project concluded this month when Cordeiro and Lee unveiled a prototype helmet and subjected it to several tests designed to replicate whitewater conditions. The undergraduates attached the helmet to a dummy head, marked its position, then blasted it with a high-pressure fire hose that unleashed water moving at about 30 mph. The straps held the helmet firmly in place, indicating it should continue to protect a wearer's head, even in a fast-moving river. The students also assembled an impact-test apparatus to mimic a high-speed collision between the helmet and a rock. Their test indicated the prototype helmet should absorb enough energy to prevent a serious head injury.

Photo B: The student-designed whitewater helmet has three layers of foam inside the shell to help reduce injuries.
Photo by Will Kirk

Much of the helmet's protective power comes from three layers of EVA foam installed inside the shell. Each layer consists of a different density of closed-cell material, which will not absorb water if the wearer falls into a stream. The shell is made of rugged ABS plastic. Plastic head coverings are usually produced through an expensive molding process. But Cordeiro and Lee dramatically reduced the cost of their prototype helmet by using a high-tech rapid prototyping machine, which applies the plastic in a computer-guided shape through a process that resembles three-dimensional ink-jet printing. Ultimately, they spent only $5,400 to design, fabricate and test their prototype helmet.

"It was really rewarding to see it come together," said Lee. "We got what we were looking for, what we were designing for." Added Cordeiro: "This was a research project where we actually got to see something important come out of it -- a product that could save people's lives."

Currently no industry nor government safety standards exist for whitewater helmets in the United States, said Michael Ho, a Center for Injury Research and Policy staff member who monitored the students' efforts. "Our center co- sponsored this project because we wanted to show that it is possible to design and construct a helmet for whitewater use that adhered to standards that we asked the students to develop through their research," Ho said. "The statistics related to whitewater injuries are unreliable, but we do know that among the fatal cases, the mechanism of death tends to be a combination of impact to the head and drowning. The whitewater industry and the people who enjoy these sports need to begin talking about standards for a helmet that could do a better job of preventing such injuries."

Photo C: The helmet project was inspired by the death of kayaker Lucan Brandon Turner, pictured above, who died in 1998 when his helmet slipped, exposing his forehead to a fatal rock injury.
Photo courtesy of Gil Turner

The safer whitewater helmet was one of 11 Johns Hopkins projects completed this year by undergraduates in the Senior Design Project course. The class is taught by Andrew F. Conn, a Johns Hopkins graduate with more than 30 years of experience in public and private research and development. Each team of two or three students, working within budgets of up to $10,000, had to design a device, purchase or fabricate the parts, and assemble the final product. Corporations, government agencies and nonprofit groups provided the assignments and funding. The course is traditionally a well-received hands-on engineering experience for Johns Hopkins undergraduates.

Video footage and color photos of helmet tests and students available; contact Phil Sneiderman

Follow this link to more pictures of the whitewater recreation helmet.

Follow this link to watch a video about the development and testing of the whitewater helmet.

Related Web Sites

Johns Hopkins Department of Mechanical Engineering
Center for Injury Research & Policy

Johns Hopkins University news releases can be found on the World Wide Web at http://www.jhu.edu/news_info/news/
   Information on automatic e-mail delivery of science and medical news releases is available at the same address.

Go to Headlines@HopkinsHome Page