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Abstract—With continuing improvements in spatial resolution
of positron emission tomography (PET) scanners, small patient
movements during PET imaging become a significant source of
resolution degradation. This work develops and investigates a
comprehensive formalism for accurate motion-compensated re-
construction which at the same time is very feasible in the context
of high-resolution PET. In particular, this paper proposes an
effective method to incorporate presence of scattered and random
coincidences in the context of motion (which is similarly applicable
to various other motion correction schemes). The overall recon-
struction framework takes into consideration missing projection
data which are not detected due to motion, and additionally,
incorporates information from all detected events, including those
which fall outside the field-of-view following motion correction.
The proposed approach has been extensively validated using
phantom experiments as well as realistic simulations of a new
mathematical brain phantom developed in this work, and the
results for a dynamic patient study are also presented.

Index Terms—Positron emission tomography (PET) iterative re-
construction, motion correction, system response.

I. INTRODUCTION

R ECENT developments in 3-D positron emission tomog-
raphy (PET) systems have enabled the spatial resolution

to reach the 2–4 mm full-width at half-maximum (FWHM)
range. With such improvements in spatial resolution, small
patient movements during PET imaging become a significant
source of resolution degradation.
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Below, we first review correction methods in the literature
that attempt to address the problem of rigid motion. Most of the
existing work on this type of motion has been investigated and
implemented in brain PET imaging, since nonrigid (cardiac and
respiratory) motion, dominant in whole-body and cardiac PET
imaging, is absent in this case.

A. Overview of Motion Compensation Techniques

As a typical PET brain imaging session can last hours, it is
not reasonable to expect a patient to remain motionless during
this time. A number of head restraints may be used, such as ther-
moplastic masks or neoprene caps, which lower the amount of
motion but do not eliminate it. Even with head restraints, typical
translations in the range of 5–20 mm and rotations of 1–4 are
observed,1 depending on the type of mask and the duration of
scan (e.g., see [1], [2], and [3] in which a study of various types
of head movements has been presented).

Methods to correct for patient movements were in the past
largely based on correction of interscan movements. These
(software-based) methods involved the division of a scan into
a number of frames, followed by spatial registration of the
reconstructed images using mathematical algorithms (e.g.,
see [4] and [5]). However, motion correction (MC) strategies
in emission computed tomography that rely exclusively on
emission data itself are inadequate for robust clinical usage,
since 1) they depend on the quality of the scan data including
noise characteristics and 2) they assume the activity distribution
does not significantly change within the frames, whereas the
frames are chosen a priori. More successful methods, explained
next, rely on motion information provided by an external mo-
tion-tracking device (e.g., the Polaris system [3], which was
also used in this work as elaborated in Section III).

Assuming accurate measurement of patient movement during
the scan, a number of approaches to MC have been proposed:

1) One method [6], [2] involves dividing of detected events
into multiple acquisition frames (MAFs). Every time the
displacement of the patient is measured to be larger than a
specified threshold, the PET data are saved in a new frame.
This is then followed by correction of the individually-re-
constructed images of the MAFs, via rotation, and trans-
lation, to compensate for the measured amount of motion
(i.e., this is an image-driven approach).

1Largest translation typically occurs along the transaxial-(x) axis, and largest
rotation around the axial-(z) axis.
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The major limitation of the MAF approach is that by using
a high motion threshold, motion within the frames are ne-
glected; and lowering the motion threshold can instead
result in the acquisition of an increasing number of low-
statistic frames to be reconstructed. This is problematic be-
cause iterative reconstruction algorithms are most typically
prone to exhibit image bias in case of poor statistics (due
to the use of nonnegativity constraints) [7], [8].

2) Another image-driven correction method proposed by
Menke et al. [9] involves postprocessing of the mo-
tion-blurred reconstructed images using deconvolution
operators (whose shape is determined by the measured
motion). This method, however, has not attracted much
attention because the deconvolution process amplifies
the noise in the PET data, and furthermore, when the
movements include significant rotation, spatially-variant
deconvolution filters need to be employed, potentially
introducing other artifacts [9].

3) Another possible approach is to model the effect of motion
in (the image-space component of) the system matrix of the
EM algorithm, which has been proposed and implemented
by Qiao et al. [10] for the case of cardiac- and/or respi-
ratory-gated PET data, wherein the nonrigid motion needs
to be somehow extracted; e.g., using 4-D CT ([12] can be
consulted for comparison of implementation methodolo-
gies). In the present context of motion-contaminated non-
gated data (particularly in brain imaging), the measured
rigid motion can instead be directly measured using ex-
ternal tracking and incorporated2 in the system matrix as
investigated in [13]. In this context however, this method
is only ideal for scanners without the list-mode acquisi-
tion capability (i.e., when the detected events cannot be in-
dividually compensated for motion) as it merely models
the overall motion of the subject and would converge very
slowly.

4) Another approach consists of transforming coordinates
of the lines-of-response (LORs) along which individual
events are measured to where they would have been
measured if the object had not moved [14] (this is an
event-driven approach). The method was elaborated and
implemented by Menke et al. [9]. However in that work,
due to hardware limitations, it was suggested that the
motion-corrected LORs be corrected by normalization
factors for the transformed LORs (as opposed to those
corresponding to the original detector-pairs along which
the events were detected). This normalization mismatch
has been shown to result in artifacts [15].

Alternatively, to solve this problem, one requires a PET
scanner either 1) equipped with more specialized hardware to
achieve accurate on-the-fly normalization correction followed
by LOR-transformation; e.g., see [16], or 2) capable of ac-
quiring data in list-mode format, so that LOR corrections can
be accurately performed post-acquisition; e.g., see [1].

B. Beyond the Purely Event-Driven Approach

The above purely event-driven approach neglects two issues
[17] which we shall refer to as issue-1 and issue-2.

2This is in essence similar to how positron range has been modeled in the
image-space component of the system matrix [37], [38].

Fig. 1. Axial motion can result in (issue-1): a detectable LOR i to fall outside
the FOV (shown as i ), and can also result in (issue-2): an out-of-FOV LOR k

to fall within the FOV (shown as k ). The effect is shown due to translation, but
is equally valid for rotation.

Fig. 2. Transaxial motion, for scanners with gaps in between the detector heads,
can result in the exact same issues as shown in Fig. 1. The effect is shown due
to translation, but is equally valid for rotation.

Issue-1: An event that would have been otherwise detected
can exit the field-of-view (FOV) because of motion. This results
in a loss of data along the relevant LORs, an effect that is not
modeled by regular reconstruction methods.

Issue-2: An event that is normally not detected, i.e., is not in
the FOV, may fall within the FOV because of motion. There-
fore, following MC some detected events may correspond to no
actual detector pairs.

These two effects can occur in two ways:
1) Along the axial direction of the scanner, via translation (as

shown in Fig. 1) or rotation (not shown).
2) Along the transaxial direction (similarly via translation or

rotation) for scanners with gaps in between the detectors
(an example of this is the high-resolution research tomo-
graph (HRRT) [18] which has an octagonal design with
gaps in-between the heads). This effect is shown in Fig. 2
(for the case of translation).

In particular, Qi and Huesman [19] proposed a list-mode re-
construction approach that addressed both aforementioned is-
sues via modeling of motion into the system matrix of the EM
algorithm. In [17], a feasible framework (leading to very effi-
cient computations of the motion-corrected sensitivity images)
within the contexts of both histogram-mode and list-mode algo-
rithms was developed; methods to additionally incorporate es-
timated randoms and scattered events are further developed in
Section II.

Neglecting issue-1 can produce image artifacts, as demon-
strated by simulation [20], [19], [15] or experimentally [17]. On
the other hand, one may note that neglecting issue-2 should not
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result in image artifacts since the patient should be still sampled
enough by the existing detector pairs; nevertheless, 1) this can
result in a loss of signal-to-noise ratio (SNR) in the images since
some of the measured signal with useful information is simply
discarded;3 furthermore 2) ironically, consideration of these ad-
ditional events can be shown (see Section I-D) to yield a very
useful mathematical property resulting in a very considerable
reduction in the computational task of calculating the sensitivity
correction factors in the EM algorithm (e.g., by a factor of
for the HRRT scanner).

Below, we mention two other approaches that have been pro-
posed in the literature (addressing issue-1 only).

1) The method by Thielemans et al. [21] involves scaling
of motion-corrected sinogram bins in order to correct for
events that were lost due to motion, where the scale factors
are computed by the measured motion information.

2) The method by Buehler et al. [15] similarly involves
scaling the motion-corrected sinogram bins for counts
that were lost due to motion, with the difference that this
method precorrects the detected events by their normal-
ization factors prior to histogramming, whereas in the
former, normalization correction is performed following
motion-corrected histogramming (by a calculated overall
factor).

The above two methods (further compared to our approach at
the end of Section I-C) have a few potential difficulties.

1) Consideration of noise enhancement issues may be re-
quired when dividing the sinogram bins by small scale
factors [21].

2) They are computationally intense (similar to the work in
[19]) since they require calculating the effect of motion
for the entire duration of the scan along all LORs (thus
problematic in the context of high-resolution scanners).

3) They explicitly address issue-1 but not issue-2 as they
simply discard motion-corrected events which do not
correspond to actual detector elements.

Next, following [17], an EM approach addressing the above
issues is elaborated, with the inclusion of terms for randoms and
scattered events: accurate methodology to estimate these terms
within the motion-compensation framework are developed in
Section II.

C. Accurate Motion Corrected EM Reconstruction

Denoting as the activity (i.e., emission rate) in voxel
estimated at the th iteration, and as

the probability of an emission from voxel being detected
along LOR , the ordinary Poisson expectation maximization
(OP-EM) algorithm is given by

(1)

where refers to the number of events detected along LOR
( and denote the estimated random

and scatter count rates expected along the LOR , and
represents the scan duration. The sensitivity correction factor

3For instance, even small amounts of motion result in substantial interaction
with detector gaps in the HRRT which occupy nearly 10% of the entire sino-
gram-space.

Fig. 3. An event that would have been detected along LOR i is detected along
LOR i = Lfig due to motion. In image-space, the effect of motion can be
characterized by a transformation from voxel j to j =Mfjg.

is a summation over all possible measurable
LORs and calculates the probability of an emis-
sion from voxel being detected anywhere.

We first divide a given scan (of duration ) into motion-in-
tervals each with a duration within which
movements remain below a very small threshold4 (e.g., as done
in [6]): in the current work, the motion threshold was set to
a tenth of the scanner resolution, which as described in Sec-
tion III-B, due to the ease of the computation of the motion-cor-
rected sensitivity factors, does not at all pose a noticeable in-
crease in the computation. Following our notation in [17], we
then introduce an invertible operator which models the mo-
tion of the object by transforming the LOR along which an
event would have been detected in the absence of motion, to
the LOR along which the event is detected during interval
(Fig. 3). Motion-compensated sinograms are then obtained by
binning each detected LOR along .

Next, referring to Fig. 3, we note that the time-varying (due to
motion) probability of detecting an event generated during
interval from voxel along LOR (i.e., prior to MC; thus
binned along LOR following MC) is given by5

(2)

wherein the system matrix has been decomposed into geometric
, as well as attenuation and normalization factors,6

and

(3)

4Another downside of the MAF technique is that, unlike the present method,
increasingly small motion thresholds can lead to poor statistics in the individual
frames to be reconstructed, leading to bias as discussed in Section I-A.

5The notation to follow is valid element-by-element; however, the order of
these components would be different in matrix notation.

6Note that the normalization factor for an LOR i along which an event is
detected is given by the value of N for the LOR itself, whereas for attenuation
correction (due to motion of the object relative to its initial position), the factor
at time t along i is given by the measured attenuation factor at t = 0 along i;
i.e., A (the reference time t = 0 is best taken to be the time of the transmission
scan in order to correct for misalignments taking place between this time and
the beginning of the emission scan).
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is used to denote whether or not the LOR corresponds to phys-
ical detector-pairs. We next note that the overall probability
of detecting an event generated at voxel anytime during the
scan and binned along an LOR (after MC) can
be written as

(4)

Combining (2) and (4), the overall system matrix can be written
as

(5)

Next, we define

(6)

which can be thought of as the time-averaged detection-effi-
ciency of the LORs that contribute to an LOR upon MC, and
using the substitution of (5) into (1), we arrive at

(7)

where

(8)

It is worth noting (as implied by the present framework) that
in (7) is the number of events placed (and not necessarily

detected) along LOR following motion compensation.
Observation (in comparison with works [21] and [15]): It is

worth noting that in our own notation, after careful review, one
is able to show that the method introduced by Thielemans et
al. [21] actually corresponds to precorrecting each motion-cor-
rected sinogram bin by the overall normalization correction
factor . By contrast, the method
implemented by Buehler et al. [15] first precorrects each de-
tected event along an LOR by the corresponding normaliza-
tion factor , followed by motion-corrected histogramming
(i.e., into bin ). This is then followed by dividing the sinogram
bins by the factor which simply represents the
fraction of time an LOR was in the FOV (i.e., passed through
scanner detectors).

On the other hand, the method investigated in this work: 1)
does not have the potential problem of noise amplification as
encountered in the aforementioned two precorrection schemes;
2) furthermore, as seen next, it can be accurately simplified to
a form that is not burdened with the computationally-intense
tasks of calculating the expressions or

.

D. Calculation of Sensitivity Factors

A number of possible (though not necessarily accurate)
methods may be considered in order to simplify the computa-
tional complexity of expressions (6) or (8).

1) By increasing the motion threshold, movements below
which are neglected; thus resulting in fewer motion frames.
However, this approach is bound to introduce resolution
degradation and is therefore not optimal.

2) By application of the compression method in [15] in
which neighboring LORs are grouped together. This
method is also an approximation and can potentially result
in inaccuracies.

3) Via backprojection [in (8)] of only a randomized subset of
the projection-space as proposed by Carson et al. [22]. Qi
and Huesman [23] have shown that the particular random-
ization method is very critical in the accuracy of the esti-
mated sensitivity factors, especially as inaccuracies will be
amplified in subsequent iterations of the EM algorithm, and
more accurate (yet more time-consuming) Monte Carlo
randomization techniques have been proposed [24].

Our approach: Alternatively, we are able to show [17] that an
accurate, nonrandomized and considerably fast method is pos-
sible, if the data are precorrected for attenuation. This is ob-
tained by first noting that instead of modeling motion in the
LOR-domain using the operator , one can instead map the
trajectory of the image voxels using an operator such that

represents the position of a voxel during interval
, as depicted in Fig. 3.

Next we note that if performing attenuation precorrection of
the sinogram bins, the algorithm (7) is instead written as

(9)

where the sensitivity term is given by

(10)

It can then be shown [17] that

(11)

where is the conventional sensitivity correc-
tion factor. The important result is that for any voxel , the term

may be evaluated by motion-interval weighting of conven-
tional sensitivity factors evaluated along the trajectory

of a voxel as it undergoes motion. In other words, the
time-consuming motion-averaging in the projection-space (10)
can instead be performed in the image-space. This idea is illus-
trated in Fig. 4.

As an example, for a typical HRRT-scanner acquisition (span
3, maximum ring difference 67), the proposed image-space ap-
proach can result in a factor of speedup in the calculation
of the sensitivity factors (the sinogram-size for a single frame is

M, compared to only M voxels in the image-space).
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Fig. 4. The motion-compensated overall sensitivity correction factor �s for a
particular voxel j can be calculated in image-space by (�T )=(T )-weighted
evaluation of the conventional sensitivity term along the trajectory j = j (t)
of the voxel as measured by the tracking device [in accordance with (11)].

II. ACCURATE CORRECTIONS FOR SCATTERED EVENTS

AND RANDOMS

In this section, we elaborate on a methodology to accurately
incorporate corrections for scattered events and randoms in the
presence of motion. It must be noted that the proposed approach
is generally applicable for estimation of scattered events and
randoms in other analytic and iterative reconstruction tasks and
as such can be similarly applied within other MC schemes.

A. Calculation of the Scatter Term

We propose that the term in (9) can be simplified. In
this work, we have used the Watson Single Scatter Simulation
(SSS) technique [25]. The method has the property that instead
of calculating the expected rate of scattered events detected
along each LOR , it first calculates the term defined such
that it relates to via

(12)

wherein is thus effectively the expected rate of incident scat-
tered events.7 As noted by Watson [25], calculation of

involves ratios of detector efficiencies, which can be es-
timated more accurately than the efficiencies themselves.

We shall argue in this section that the term in (9) can be
replaced by . Let us first consider the case without motion. As
shown in Fig. 5, for a coincidence event detected at detectors
and (defining an LOR the expected rate of scattered events

is given by an integral over the scattering volume ; i.e.,
for all positions 1) at which Compton scattering could have
occurred, and 2) leading to coincidence detection by detectors

and . For the case when the scattered event is detected at ,
the integral can be written as [25]

(13)

7Note that ~S is not, strictly speaking, the rate of incident scattered coinci-
dences, since a scattered coincidence consists of two gamma rays arriving from
a wide range of potential angles, thus having different normalizations than the
trues normalization N ; nevertheless, in order to intuitively suppose ~S , as de-
fined by S =N , as the rate of incident scattered coincidences, while we make
no approximations, we imagine a scattered event along an LOR i in a very sim-
ilar sense as a true event along i.

Fig. 5. A depiction of the effect of scattering at a position X resulting in a
scattered event i detected along detectors A and B.

where and denote crystal efficiencies for events inci-
dent along and (hatted indicates detector efficiency
at the scattered photon’s energy), and are the detector
geometric cross sections (while the distances from the scattering
point to detectors and are denoted by and ,
and finally is used to denote (aside from detection
efficiency considerations modeled in the previous two brack-
eted terms) the expected rate of events generated along the path
defined by AXB and contains terms related to the distribution
of density and activity in the object as well as Compton
scattering probabilities. An additional integral is also needed to
model the scattered event being instead detected at detector
(which we drop from here on for convenience).

Next, noting that the normalization term for the nonscat-
tered true events detected along (corresponding to detectors
and ) has the relation [25]:

(14)

where and represent the detector efficiencies and geo-
metric cross sections for a true event detected along
denotes the separation of the detectors). Defining

(15)

as the corresponding overall efficiency for detection of scattered
events along LOR (scattered at ), then referring to (13) it is
easy to see that the term in (12) can be written as

(16)

Effect of motion: Defining as the expected rate of scat-
tered events detected along LOR at time interval [therefore
binned along LOR ], we note that in (9), which
represents the overall rate of detected scattered events binned
along LOR , can be expressed as

(17)
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Next, similar to the definition of in the expression (12), we
define such that

(18)

wherein is effectively the expected rate of scattered
events incident along LOR at time interval , and wherein
using we have noted cases when will be zero since
is not in the FOV. Additionally, very similarly to (16),
can be expressed as

(19)

where the primed quantities indicate the effect of motion trans-
formation of the scattering volume at time interval .

At this stage, we shall argue that expression (19) for
is nearly equivalent to the conventionally computed scatter term

as given by (16). To proceed, we will assume the following.
The motion operator applied to true-coincidence LORs

is similarly applicable to modeling the motion of scattered-event
LORs. This assumption is not strictly true [26] in cases when
motion results in significant change in the relation between the
object and the scanner (e.g., see Fig. 6). However, given realistic
amounts of motion and the smooth nature of the scattering distri-
bution, one may assume that this is the case, and that therefore,
the relation of with respect to the attenuation and emission

distributions remains nearly the same, and therefore

(20)

While the absolute efficiency of detection certainly
varies with motion and is taken into account in this work, the rel-
ative detection efficiencies between the scattered and true events
are nearly preserved with motion; i.e.,

(21)

This is effectively true given the wide-range of angles/positions
from which scattered events contribute to an LOR.

Combining (16), (19), (20), and (21), one arrives at the intu-
itively appealing result

(22)

where , in this work, is obtained using the standard Watson
single scatter simulation (SSS) method [25] (on motion cor-
rected sinograms). Combining (17), (18), and (22), it then fol-
lows that

(23)

where we have used the definition (6) for . This gives a very
intuitive picture: the overall rate of detected scattered events
binned along an LOR is given by the rate of such events
normally incident (i.e., in the absence of any motion) along the
LOR, multiplied by the motion-weighted normalization factor

. As a result, the expression in (9) can be simply re-
placed by the regularly calculated expression .

Fig. 6. A depiction of the potential effect of considerable motion on changing
the relation of the scattering volume and the detection geometry: in this example,
a large translation of the scattering volume has resulted in a non-similar trans-
formation of the scattered event i to i (which now involves both translation and
rotation).

B. Calculation of the Random Term

We begin by noting that, similar to (17), the overall expected
rate of random coincidences binned along LOR can be
written as

(24)

where denotes the expected rate of random events de-
tected along LOR at time interval (therefore binned
along LOR ).

Next, we note that ordinarily, unlike analytic calculations for
expected scatter counts, the expected random counts can be
more directly obtained using either the measured single count
rates or smoothed delayed coincidences. As such, the term
can be directly obtained from motion corrected singles or de-
layed coincidences. Therefore, the expression in (9) can
in principle be calculated.

However, 1) the task of computing remains a computation-
ally intense one, and 2) MC binning of delayed coincidences,
and especially singles counts (which arrive from different ori-
entations), may not be feasible. As such, we have pursued an
alternative, more practical approach.

First, similar to (18), we define such that

(25)

wherein effectively8 denotes the rate of random events
incident along an LOR at time interval .

At this stage, we make the following simplifying approxi-
mation: due to the very broad nature of random contributions
compared to realistic amounts of motion, we assume that mo-
tion does not alter the rate of randoms incident along an LOR
(i.e., is a constant in time), and that incident randoms
along any LOR and its motion-transformed LOR
are nearly the same (i.e., . We summarize
this by writing

(26)

8See footnote 7, noting that a random coincidence, just as a scattered coin-
cidence, consists of two gamma rays arriving from a wide range of potential
angles.
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wherein is introduced to emphasize time/motion-indepen-
dence of . One can then rewrite (25) as

(27)

from which we conclude that is nearly a con-
stant in time, and is simply given by the overall mean rate of
random coincidences detected along any LOR , as ordinarily
computed in PET imaging applications.

Furthermore, combining (24), (25), and (26), one arrives at

(28)

It then follows that, considering the above two equations, for
LORs within the FOV (i.e., )

(29)

In other words, for binned LORs that are inside the FOV
, the expression in the overall EM algorithm (9) may

be replaced with .
Nevertheless, for motion-compensated events that are out-

side the FOV (i.e., ), it is not possible to extract the
incident random rates (and therefore from (27). As
such, for these LORs, given the broad nature of the randoms
distribution, we have used the values obtained by extrapo-
lating to nearby LORs in the FOV, which we shall refer to as

. Thus, redefining

(30)

in relation to (29), we finally arrive at the estimation

(31)

Subsequently, we may replace the expression in (9) by
as given by (30).

Final Result: Combining results of Sections I-D, II-A, and
II-B [(11), (23), and (31) respectively], the motion-compensated
EM algorithm (9) can be written in the final form

(32)

wherein is the conventional (normalization-wighted) sen-
sitivity term evaluated at the motion-trajectory
(Fig. 4), is the standard scatter estimate obtained using the
single scatter simulation (SSS) method (on motion corrected
sinograms), and is given by (30). It is worth emphasizing
that the summation in above equation takes place over
all LORs along which events are binned (following MC), in-
cluding those that exit the FOV.

C. Scatter/Random Corrections in List-Mode Reconstruction

The direct list-mode reconstruction approach has a number
of potential advantages over histogram-mode methods [29],

including, within the present context, the inherent advantage
of naturally incorporating all detected events thus avoiding the
burden of extending the sinogram-space in histogram-mode
methods (as needed to allow binning of motion-corrected
events that are out of the FOV).

Building on the work of Parra and Barrett [27], we have elab-
orated the derivation of the motion-compensated list-mode EM
algorithm elsewhere (Appendix I of [17]), aside from scatter and
random coincidence considerations. Using to denote the LOR
along which the th list-mode event is detected
and to define the time-varying probability that an event gen-
erated from voxel during interval is detected along LOR ,
the resulting algorithm can be written as

(33)

where

(34)

is the overall probability for an event generated anytime at voxel
being detected anywhere. Next, we make the following notes

and observations.
1) In contrast to the histogram-mode EM algorithm (1),

the list-mode algorithm (33) appears different in that
the former employs overall (time/motion-weighted)
probability elements whereas the latter includes
time/motion-varying probability elements9 . Similarly,
including time/motion-varying random and scatter terms,
one can write (using instead of for convenience)

(35)

wherein and (Sections II-A and II-B)
denote expected randoms and scattered coincidence events
detected along an LOR during interval . A similar
difference, as explained above, exists between these
time-varying terms and the overall random and scatter
coincidence terms and used in the histogram-mode
approach,10 though as we shall see shortly, the two
list-mode and histogram-mode algorithms will be seen
to be very similar, except for the inherent difference by
which the events are considered.

2) If the data are precorrected for attenuation, the system ma-
trix can be written as

(36)

where is used to denote the motion-corrected LOR, and
denotes the geometric probability (very similar to

in histogram-mode reconstruction) which is written dif-
ferently to emphasize the ability to take into account con-
tinuous motion-compensated LOR coordinates

9The two probability terms p and P are related as expressed in (4) and
are not identical in the presence of motion.

10These terms are related via (17) and (24).
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as the list-mode events are motion-corrected and projected
one-by-one.

Now, since no motion corrected event is discarded in the nat-
ural list-mode approach, one is able to show [17], very similar
to the approach in Section I-D, that the sensitivity term reduces
to

(37)

as similarly given by (11), where is the
conventional sensitivity term, while follows the
(image-based) trajectory of voxel at each time . Therefore, as
depicted in Fig. 4, the sensitivity term may be motion-averaged
in image-space, as opposed to time-consuming LOR-space
computations. We have therefore used the following list-mode
algorithm:

(38)

with (where is the LOR along which the
th event is detected), and the sensitivity term is given by

(37). For simplicity of notation, in the attenuation, normaliza-
tion, scatter, and random terms, the subscripts and , instead of

and , have been used.
Similar to the term in the histogram-mode algorithm

(9), the term in the above list-mode algorithm (38)
can also be seen to essentially estimate the expected rates of
scatter coincidences incident along an LOR at time (there-
fore, along LOR following MC). More rigorously,
for a detected LOR (i.e., prior to MC; and ), one may
combine (18), (22), and (23), to arrive at

(39)

Within the framework of Section II-B, a very similar relation
exists for random coincidences; combining (25), (26), and (28),
one arrives at

(40)

wherein and both estimate the average rate
of random events incident along an LOR (therefore along

following MC). Using the aforementioned two relations,
algorithm (38) can be written in the final form

(41)

wherein, similarly to the histogram-mode counterpart (32),
is the conventional sensitivity term evaluated at the motion-tra-
jectory (Fig. 4), is the standard scatter estimate

obtained using the single scatter simulation (SSS) method (on
motion corrected data), and is given by (30).

III. METHODS

A. Tomograph

Data were acquired on the second generation high reso-
lution research tomograph (HRRT) [31]. The detector heads
in the octagonal design consist of a double 10-mm layer of
LSO/LYSO for a total of 119, 808 detector crystals (crystal
size 2.1 2.1 10 mm . The total number of possible LORs
is .

B. Motion-Tracking/Calibration

Collection of motion data was carried out using a Polaris
motion tracking system (Northern Digital Inc., Waterloo, ON,
Canada) [3]. This system uses an infrared signal to track a
small tool consisting of four retro-reflective spheres attached
to a plastic plate. The Polaris was mounted approximately 1 m
from the rear of the scanner. Calibration of the Polaris frame
of reference to that of the tomograph was achieved via a series
of simultaneous Polaris and transmission scan measurements
[15]. The Polaris tool was placed in a static position within
the scanner, and the coordinates of its center as well as the
orientation of the tool (translation and quaternion) were deter-
mined using the Polaris, allowing one to extract 3-D positions
of the four individual spheres (given knowledge of their relative
positions). During this time, a 10-min transmission scan of the
tool was obtained. From the reconstructed transmission image
the coordinates of each tracking sphere were determined by
first isolating (in the image) the spheres from the plate, and then
fitting a 3-D Gaussian to the center of each sphere. This resulted
in four sets of paired coordinates. The entire process was re-
peated five times to increase the accuracy of the calibration. To
determine the transformation between the two frames a direct
least squares method was employed [32]. This transformation
was later applied when calculating the corrections to be made
to compensate for motion during image reconstruction.

Motion data was recorded using a modified version of the
open source code provided by the Polaris manufacturer. Each
motion measurement (quaternion and translation) was output in
binary format with a time stamp that was synchronized to the
HRRT acquisition PC using a common time server.

The motion threshold (below which motion is considered
negligible) was set to a tenth of the resolution (2.5 mm) of the
HRRT scanner. In fact, having a very high number of motion
intervals , does not pose any noticeable increase to the
computation, primarily because this makes a difference only in
the number of image-space motion-averages of the sensitivity
image [see (41)] which are very efficiently computed, and only
once per dataset (at 1.4 s per motion on a 2.6 GHz dual-pro-
cessor computer). Therefore, it is fully practical to incorporate
effectively continuous motion in the proposed formalism.

C. Phantom Study

An elliptical contrast phantom (3.2 L) was used containing
hot (31 mL) and cold (13 mL) spheres inserted in a background.
The phantom was filled with a total F-18 activity of 1.047 mCi
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TABLE I
TABLE OF APPLIED PHANTOM MOVEMENTS (WITH RESPECT TO TIME=0).

INDICATED AXES ARE WITH RESPECT TO THE SCANNER

(resulting in initial prompts and randoms rates of 267 kcps and
27 kcps), while the hot/background ratio was 4.77. An elabo-
rate motion study was performed, which involved a number of
distinct movements (summarized in Table I) with respect to the
position and orientation of the phantom at the time origin. The
movements were applied at the very beginning of each indicated
time interval. The applied movement protocal is shown, and was
monitored accurately using the motion tracking device.

D. Simulations of a New Mathematical Brain Phantom

Our emphasis in this work has been to compare and validate
MC methods under realistic imaging scenarios. The tools devel-
oped in this regard have been two-fold.

1) Mathematical Brain Phantom: Voxelized phantoms are
problematic in that they are fixed to a particular spatial resolu-
tion, and also result in interpolation errors when modeling mo-
tion (e.g., the volume of a voxelized object may not be conserved
after rotation). Alternatively, a mathematical brain phantom was
developed, containing continuous structures and thus avoiding
the need for interpolations when introducing motion, as depicted
in Fig. 7. The brain phantom was constructed using subdivision
surfaces [33]. Subdivision surfaces can be used to efficiently
model structures with an arbitrary topological type, such as the
brain, skull, muscle tissue, and vasculature. Surfaces were mod-
eled based on a segmented MRI dataset of a normal subject. The
dataset consisted of 181 slices of the brain (pixel-sizes/slice-
widths of 1.0 mm). One-hundred structures in the brain were
identified. A software application was written using the Visual-
ization Toolkit (VTK) [34] to create 3-D polygon surfaces. The
VTK marching cubes algorithm was first used to create an initial
polygon model for each structure. The polygon model was then
optimized using the mesh optimization and smoothing routines
of the VTK software.

2) PET Simulations: We used a novel simulation technique
[35] involving combination of two powerful and well-validated
Monte-Carlo codes, SimSET and GATE. The method takes ad-
vantage of the shorter simulation times for photon propagation
inside a digital phantom using SimSET as compared to GATE.
The histories of all photons, single and coincidence, escaping
from the phantom are stored in a file which serves as the input

Fig. 7. (a) New Mathematical Brain Phantom. (b)–(d) Transaxial, coronal, and
sagittal slices through a particular study simulated in this work.

Fig. 8. Geometry of the second generation HRRT scanner used in the combined
SimSET/GATE simulation approach in this work.

to GATE. The total simulation times using the new technique
are about 12 times faster with nearly similar accuracy [35]. We
used the design parameters and the geometry of the second gen-
eration HRRT scanner, as depicted in Fig. 8. In this work, move-
ment of the patient in-between three positions were simulated,
each moved with respect to one another by 4.6, 4.6, and 7.0 mm
in the x (horizontal), y (vertical), and z (axial) directions, re-
spectively, consistent with actually observed amounts of mo-
tion. Simulations involving 32, 77, and 209 M detected events
were considered.

E. Reconstructions

Phantom and simulated data for the HRRT were recon-
structed directly from the list-mode data ([28], [29] should
be consulted for details) with a span11 of 9, a maximum ring
difference of 67, and using 32 subsets (which are time-based
in list-mode reconstruction [29]). Throughout this work, reso-
lution modeling has been used in the reconstructions (via the

11In list mode, we still use the concept of spanning to reorient the detected
LORs as one would do in histogramming in order to allow one to make use of
histogram-based normalization sinograms [36].
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inclusion of an experimental model of spatial resolution in the
EM algorithm [36]). The scatter term was computed using
the single scatter simulation technique [25] on motion compen-
sated sinograms, as elaborated in Section II, and the randoms
term [also used to obtain in (30)] was obtained by
variance reduction of the delayed coincidence data12 [39].

Five reconstruction scenarios were considered: 1) no motion
(with matched statistics), 2) motion with no MC, 3) purely
LOR-driven compensation (MC Method 1); i.e., method that
performs MC reconstruction via mere correction of LOR
coordinates of the detected events given the motion infor-
mation, 4) MC method proposed in [17] which additionally
incorporated motion-averaging of sensitivity factors, but does
not include scatter compensation and only performs simple
random-subtraction (MC Method 2), 5) the proposed accurate
MC algorithm (41) incorporating appropriate overall modeling
of motion. In Methods 1 and 2, non-MC scatter and random
terms were included as is commonly done in the OP-OSEM
algorithm [29]), while Methods 3 and 5 incorporated the scatter
and random correction methods proposed in this work.

Additionally, we note that attenuation was modeled in the
system matrix for Methods 1–3, as is commonly the case, while
the data were precorrected in Methods 4 and 5 as mathemat-
ically required by our methodology. It is predicted (and veri-
fied next) that MC Method 2 outperforms MC Method 1 qual-
itatively (as it models sensitivity variation due to motion) but
performs poorly quantitatively due to lack of consideration of
scatter correction.

F. Quantitative Metrics

1) Phantom Study: Hot and cold contrast were estimated fol-
lowing approximately the NEMA NU 2001 protocol. Defining

, and as average measured counts in regions of in-
terest (ROIs) placed in hot, cold, and background regions, re-
spectively, the cold percent contrast was measured using

% (42)

while the hot percent contrast was calculated using

% (43)

where is the actual concentration ratio between the
hot and background regions (measured to be 4.77). The per-
cent noise (standard deviation/mean 100%) was calculated for
a large background ROI.

2) Simulations: Different areas in the brain (caudate,
putamen, grey, white, cerebellum and brain stem) were quan-
titatively analyzed: ROIs were drawn on exact boundaries

12In the HRRT scanner, singles are measured only at the block level; thus,
the standard method employed [39] involves a generalization of the Casey 3-D
random-smoothing technique [40] in which the crystal singles rates are first es-
timated from the delayed-coincidence measurements, followed by a standard
calculation of the random rates.

of these regions, and region bias for each ROI was
calculated using

(44)

where ( ranged from 1 to ) denotes the reconstructed
activities over each ROI , while denotes the activities used
as (true) reference in each ROI as obtained using 20 iterations
of a static, high-statistic (300 M events) simulation of the same
brain phantom.13 The aforementioned RB values for each ROI
were plotted against the normalized standard deviation NSD for
each ROI, as calculated using

(45)

where denotes the reconstructed value at voxel , and is
the number of voxels defining ROI .

The overall bias was also measured using an ROI-based nor-
malized mean squared error (NMSE) metric given by

(46)

We have adopted such an ROI-based definition for NMSE over
the common voxel-based definition, as we believe it should min-
imize the effect of voxel noise on this bias-measuring metric.
The NMSE values were subsequently plotted against the av-
erage NSD values; i.e., .

G. Patient Study

We examined a patient data set acquired from a subject with
Parkinson’s disease (age 67, male, disease duration or 14 years,
moderate disease severity) on the Siemens HRRT. The Polaris
tool (Section III-B) was attached to the subject using a thin
neoprene surf cap [1]. Following injection of C-raclopride,
the subject was scanned for 60 min and 16 dynamic frames
were considered (4 1 min, 3 2 min, 8 5 min, 1 10 min).
The data were reconstructed using 1) no MC, 2) the purely
LOR-driven method, and 3) the proposed accurate method.
Time-activity curves (TACs) and binding potential (BP) values
were derived from regions of interest (ROI) in the striatum.
Eight circular ROIs were placed on the striatum bilaterally; i.e.,
right and left caudate (C), anterior putamen (P1), intermediate
putamen (P2), and posterior putamen (P3). BPs were calculated
using a tissue input Logan analysis with the cerebellum as the
reference region.

IV. RESULTS AND DISCUSSION

Phantom Study: First, we explicitly investigated the accu-
racy of the approximations regarding scattered and random
events (Section II): these results are best summarized by (22)
and (26). In the case of scatter, a validation method for (22)

13The aforementioned reconstructed reference image is more appropriate as
compared to direct use of the true values used in the simulation, since the latter
does not take into account the partial volume effect (PVE), and as such the mea-
sured bias values would not directly/visibly compare the various MC schemes.
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Fig. 9. Images of motion-corrected incident-scatter ~S sinograms shown for
segment 0 (i.e., azimuthal angle � = 0). Different pairs of radial r, transaxial
angle � and axial z are shown. (top) Reference frame 0, (bottom) frame 7 (see
Table I). Plots across the two images are also shown for comparison purposes
(shifted).

would be to compare the scattered events incident along the
LORs for various motion frames and compare these values for
those LORs that correspond to one another given the measured
motion. A simple approach to this (not requiring lengthy sim-
ulations in which scattered events are tagged) was to use the
Watson method; i.e., the scattered term for various motion
frames were separately calculated followed by motion correc-
tion to the first frame, and compared with the results of the first
frame.14 A typical comparison is shown in Fig. 9, showing high
correspondence (some artifacts were still detected which we
attribute to nearest-neighbor interpolation errors, which in the
future, we intend to minimize via use of better interpolations).
We found that for voxels 5 cm away from the axial edges15

of the FOV, and as long as the applied motion did not exceed
15 mm, the sinograms agreed within 10% for 4 4 ROIs and
within 2% for 20 20 ROIs (radial -steps of 1.2 mm and
angular -steps of 0.6 .

With regards to the randoms terms, (26) predicts nearly sim-
ilar sinograms for different motion frames independent of
motion (unlike above, the sinograms are not motion-corrected
with respect to another). Fig. 10 depicts images of the measured
randoms (depicting strong detector and gap streaks), as
well as incident-randoms as obtained using (30) for two sepa-
rate frames. We thus compared such estimated incident-random

14The scatter method does take the shape of the gantry into account [25] and
as such could be used to validate both assumptions (20) and (21).

15We avoid edges of the FOV, since the Watson method performs planar
scaling that can be particularly problematic near the edges.

Fig. 10. Images of (top) measured randomsR , compared with those of inci-
dent-random ~R sinograms shown for (middle) reference frame 0 and (bottom)
frame 7 (see Table I). The strong detector and gap streaks are absent from the
latter two images. Additionally, plots across the latter two images (with a profile
thickness of 5 bins) are shown for comparison purposes (shifted).

sinograms for various motion frames. In the current work, the
constrained Fourier-space method of Karp et al. [41] was used
for the task of gap-filling: in our current studies, use of this ap-
proach resulted in reasonable results, but we wish to empha-
size that this method was originally developed for gap-filling of
emission sinograms, and therefore ideally, dedicated methods
of gap-filling for randoms sinograms may have to be developed
in the future. Similar to the case of scattered events, we found
that as long as the applied motion did not exceed 15 mm, the
sinograms agreed within 13% for 4 4 ROIs and within 3% for
20 20 ROIs.

Fig. 11 shows typical transaxial and coronal slices for the ref-
erence (no motion) frame 1 (Table I) compared with reconstruc-
tions of another motion frame for cases of 1) no MC, 2) MC
Method 1 (purely LOR-driven correction), and 3) MC Method 2
(method proposed in [17] not involving scatter correction or ap-
propriate random correction), and 4) proposed MC method. Un-
like the proposed approach, clear visual artifacts are observed
for the purely LOR-driven MC Method 1.

To better understand this effect, a normalized sensitivity
image (obtained by simple back-projection of projection bins
which are set to 0 along detector gap, and 1 otherwise) is
depicted in Fig. 12 for the entire FOV (boxes depict region
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Fig. 11. Reconstructed images of (column 1) reference (no motion) frame 1 (see Table I) after 2 iterations (32 subsets), compared with reconstructions of frame 8
with (column 2) No MC, (column 2) MC Method 1, (column 3) MC Method 2, (column 4) proposed MC. Transaxial and coronal slices are shown in the first and
second rows, respectively.

Fig. 12. Typical (top) transaxial and (bottom) coronal slices through the nor-
malized sensitivity image (see text) shown for the entire FOV (the area depicted
in Fig. 11 is indicated by the solid boxes). Strong line streaks are readily seen,
attributed to detectors gaps. Furthermore, along the coronal direction, image
values decrease as one approaches edges of the FOV.

depicted in Fig. 11). The visible line streaks are due to the pres-
ence of gaps in the octagons design of the HRRT. This explains
the artifacts seen in Fig. 11 as obtained by MC method 1, which
does not take the presence of gaps into account. Additionally,
this explains why this effect has not been noted in some pre-
vious studies (e.g., see [1]) due to absence of noticeable gaps
in scanners used. It must still be noted that even for a scanner
without detector gaps, not considering the axial gradient in the
sensitivity image (see bottom plot in Fig. 12 which is caused
by LORs exiting the FOV axially, as seen in Fig. 1) is expected
to result in issues with quantitation.

For a quantitative comparison of phantom reconstructions,
Fig. 13(a) and (b) shows plots of cold and hot percent
contrasts versus percent noise for frame 1 (which was used as
the reference “no motion” frame with respect to which other
frames were motion-corrected) along with motion frames 3, 8,
and 10 (see Table I), with different number of iterations into the
data. In line with frame 1, it is clearly seen that plots obtained
using the proposed MC method outperform other approaches.
Furthermore, we see that MC Method 2, though resulting in
qualitatively superior images compared to MC Method 1, re-
sults in an inferior quantitative performance.

Simulations: Figs. 14 and 15 depict typical transaxial and
coronal slices for reconstructions in the cases of 1) no motion,
2) motion with no MC, 3) MC method 1, 4) MC Method 2, and
5) the proposed MC method, for 209 M and 32 M simulated

Fig. 13. Plots of (a) cold percent contrastQ and (b) hot percent contrastQ
(versus percent noise) for frame 1 (reference: referred to as “no motion”) as
well as frames 3, 8, and 10 (Table I) for Method 1 (dotted), Method 2 (- -) and
proposed (solid) MC schemes.

events. It is observed that, compared to the case of no motion,
purely LOR-driven corrections (MC method 1) can lead to some
artifacts (especially see transaxial slices in the figures).

In addition to observed differences, in order to more quantita-
tively study the proposed approach, Fig. 16 shows plots of NSD
(noise) versus NMSE (bias), as defined in the previous section,
for different statistics with the points in each curve generated
with varying the number of iterations (to better capture noise
versus bias trade-off curves, different number of iterations were
used for different simulated count levels). It is seen that the pro-
posed MC method poses noticeable improvements compared to
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Fig. 14. Simulation contained 209 M detected events. Reconstructed images
after 3 iterations (32 subsets); (column 1) no motion, (column 2) no MC,
(column 3) MC Method 1, (column 4) MC Method 2, (column 5) proposed
MC. Transaxial and coronal slices are shown in the first and second rows,
respectively.

Fig. 15. Simulation contained 32 M detected events. Reconstructed images
after 3 iterations (32 subsets); (column 1) no motion, (column 2) no MC,
(column 3) MC Method 1, (column 4) MC Method 2, (column 5) proposed
MC. Transaxial and coronal slices are shown in the first and second rows,
respectively.

other approaches (relative to the case with no motion). For var-
ious regions in the brain (caudate, putamen, grey, white, cere-
bellum, and brain stem), typical plots of NSD (noise) versus RB
(region bias) are depicted in Fig. 17 (209 M events): it was ob-
served that the proposed algorithm typically performs favorably
relative to MC method 1 (shown) and MC method 2 (not shown),
with reference to simulations involving no motion.

Patient Study: Having established the accuracy of the pro-
posed method using phantom and simulation studies, we then
turned our attention to a patient study (elaborated in Sec-
tion III-G). The measured movements of the particular patient
under study are shown in Fig. 18. Also, Fig. 19 depicts slices
across the striatum (frames 7–13: 10–45 min) reconstructed
using 1) no MC, 2) the purely LOR-driven method, and 3) the
proposed accurate method (prop. MC). Data reconstructed
using the purely LOR driven method, as also observed before,
resulted in some image artifacts (and were not considered
further). BP values for the right and left caudate (C), ante-
rior putamen (P1), intermediate putamen (P2) and posterior
putamen (P3) are plotted in Fig. 20, and are seen to relatively
increase, with respect to no MC, for the proposed MC method.
This can be attributed to the increased effective resolution of
the scanner due to motion correction. This is very similar in
essence to BP increases one observes when higher resolution
scanners [45], reconstruction methods with resolution recovery
[36] and/or partial volume correction methods [43], [44] are
considered.

Fig. 16. Plots of NSD (noise) versus NMSE (bias) for the cases of (a) 209 M,
(b) 77 M, and (c) 32 M simulated events: points in each curve are generated with
varying the number of iterations (to better capture noise versus bias trade-off
curves, different number of iterations were used for different simulated count
levels). Compared to the case of no motion, the proposed method outperforms
the other schemes.

Ongoing work includes investigation of the effect of motion
correction on BP as well as dopamine release (DAR) values ob-
tained from baseline/drug back-to-back studies across a wide
range of patient data. Preliminary results indicate enhanced re-
producibility in BP estimation, as also reported in [42], also
accompanied according to our observations with significant in-
creases in BP values especially in the intermediate and posterior
putamen (P2 and P3). These results are even more significant for
those patients (over 50% of sample population) reaching move-
ment amplitudes greater than the resolution of the scanner.
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Fig. 17. Plots of (y-axis) NSD versus (x-axis) RB for various regions in the
brain with increasing iterations. 209 M events were simulated. The proposed
method outperforms the purely LOR-driven approach.

Fig. 18. Measured motion information: six degrees of motion are depicted
(shown for the strait um region). X, Y, and Z axes refer the horizontal
(transaxial), vertical (transaxial), and axial directions, respectively.

Fig. 19. Transaxial (first row), coronal (second row), and sagittal (third row)
slices across the striatum (frames 7–13: 10–45 min), reconstructed with different
MC schemes. Clear artifacts can be seen with the purely LOR-driven approach
(MC Method 1). Proposed MC results in better visual separation of caudate and
putamen.

Fig. 20. BP values with no MC and with the proposed accurate MC for a
number of ROIs: right and left caudate (C), anterior putamen (P1), intermediate
putamen (P2) and posterior putamen (P3).

V. CONCLUSION

We have proposed and investigated a formalism for accu-
rate motion-compensated EM reconstruction, including elabo-
rate consideration of randoms and scattered events, which is
particularly feasible in the context of high-resolution PET. The
method takes into consideration presence of motion-induced in-
teractions between LORs within and outside the FOV, and accu-
rately incorporates all detected events, including those, for in-
stance, which exit the scanner axially or pass through detector
gaps following motion correction. As an example, for a typical
HRRT-scanner acquisition, the proposed image-space (versus
projection-space) accurate calculation of the sensitivity factors
can result in a factor of 30 speedup in this task.

The method has been furthermore extensively tested using
phantom measurements as well as simulation studies (involving
a new mathematical brain phantom and a novel combination
of SimSET and GATE simulation packages). It has been
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demonstrated that, in comparison to reconstructions of data
with matched statistics involving no motion, the proposed
method removes qualitative artifacts as well as quantitative
inferiorities of purely event-driven correction methods. Having
established the accuracy of the proposed method using phantom
and simulation data, we are currently investigating the effects
of motion correction on actual patient data. An example of this
was presented in this work.
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