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The biological-biochemical community has been shocked and delighted by the
remarkable progress that has recently been made on a problem that has consumed
the attention, energy, and resources of many, if not most of the scientists in the field for
the past 50 years. The problem has been to predict the tertiary structure of a protein
merely from its amino acid sequence. Nature does it easily enough, but it has been an
incredibly difficult problem, often considered intractable, for humankind. The
breakthrough has come in the form of two computer-based approaches, AlphaFold2
and RoseTTAFold in conjunction with factors such as the use of vast computing power,
the field of artificial intelligence, and the existence of huge protein sequence databases.
The advancement of these tools depended upon and was stimulated by the last 50 years
of development of smaller and smaller and more and more powerful electronics
components, mainly processors and memory. Along with the problem of protein
folding, determining the function or mechanism of action of proteins has similarly
limped along as did protein folding until the recent breakthroughs. Perhaps
AlphaFold2 and RoseTTAFold can substantially aid in protein mechanistic studies.
Now it is not completely insane to consider what might be the next grand challenge
in biochemistry-biology. We offer several possibilities.
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1 INTRODUCTION

1.1 What Just Happened
Easily stated and understood statements often possess unusual powers of attraction. Hence, for more than
half a century, the objective of predicting the tertiary structure of amino acid sequences has occupied the
position as themost attractive,most researched, andmost interesting problem inBiology andBiophysics. It
is not just the easily understood and articulated objective of predicting structure that has given it such a
prominent position. Another widely quoted and easily understood dictum explains this interest as deriving
from “Structure determines function.” Behind our interest in structure lies our deeper interest, sometimes
explicitly stated, but often implicitly implied. That is, our desire to be able to manipulate and control our
environment and destiny. With respect toMedicine and Biology this means to be able to design drugs and
to be able to design and build proteins that possess reasonable enzymatic or structural properties. Knowing
the structure of existing proteins and being able to accurately predict the structures of hypothetical proteins
has therefore been the major driving force for learning and predicting the structures of proteins. The drive
to determine protein structure led to the development of X-ray determination first of myoglobin by
Kendrew and others (Kendrew et al., 1958) and ultimately to the 185,541 Structures (as of 3 January 2022)
deposited in the Protein Data Bank, PDB (https:www.rcsb.org), which have been laboriously determined
by many hundreds of researchers over the past half century.
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In theory, structure could also be predicted rather than
determined experimentally. Molecular modelling of proteins
with no or little similarity to existing structures (the so-called
ab initio modelling) is a most demanding objective in tertiary
structure prediction. Thus, at the beginning of the XXI century,
the Structural Genomics initiative proposed a large scale effort for
the determination of protein structures, irrespective of whether
their function was known (Mariani 2004). An example of a
project where an attempt was made to determine structure
and function, is provided by a protein termed “Putative Mga
family transcriptional regulator from Enterococcus faecalis” (PDB
3SQN), deposited by Osipiuk et al., in 2011 (Osipiuk, J.; Wu, R.;
Jedrzejczak, R.; Moy, S.; Joachimiak, A., to be published). The
protein is encoded by the enterococcal EF3013 gene and its
potential role in transcriptional control was not determined
until 5 years later, when it was demonstrated to act as a global
transcriptional activator (MafR) of numerous enterococcal genes
(Ruiz-Cruz et al., 2016).

The determination of protein structure by X-ray diffraction
has been augmented by Nuclear Magnetic Resonance (NMR),
and more recently by Cryo-Electron Microscopy (EM). Both
structure determination methods are difficult, lengthy, require
very expensive instruments, and are successful in determining a
protein’s structure only part of the time. Given the difficulty of
determining protein structures, there has been considerable and
growing interest over the past half century in predicting protein
structure.

Over the past 26 years, prediction of protein structure has been
enormously stimulated by the biannual competition, Critical
Assessment of protein Structure Prediction (CASP) organized
by the Protein Structure Prediction Center (https://
predictioncenter.org/). Until fairly recently, progress as
measured in the CASP1 competitions and meetings was
incremental at best. The prediction capabilities for proteins up
to about 110 amino acids slowly rose, reaching an accuracy when
compared to experimentally determined structure of about an
Angstrom for perhaps 70% of proteins attempted (Moult et al.,
2011; Moult et al., 2014).

Beginning with CASP12 there was a dramatic increase in the
accuracy of predictions (Senior et al., 2020). The use of huge
databases of protein sequences (big data) as well as the use of
advanced deep learning artificial intelligence (AI) techniques
were primarily responsible for this advance (Kryshtafovych
et al., 2019). These permitted testing and then utilizing the
obvious idea that two amino acid changes in a protein, one
which impairs activity and a second which restores activity, result
from amino acids that very likely contact one another or lie very
close to one another in the tertiary structure of a protein. Such
covarying amino acid pairs are found in evolutionarily related
proteins, that is, in a protein’s homologs found in the sequence
databases. Application of structural constraints based on
covarying amino acids dramatically increased both the size of
proteins that could be predicted, and the quality of the
predictions. Nonetheless, prediction of protein structure
remained uncertain and of variable quality.

In light of the very long and slow progress in both
experimental determination and computational prediction of

protein structure, it was therefore both a shock and a delight
to hear of the remarkable advances achieved in CASP13 and
CASP14, where the AI approaches were described first for the
AlphaFold program developed by group of scientists in the Deep
Mind company, with the support of Google and backed by an
enormous amount of computational power (Senior et al., 2020).
The first iteration of AlphaFold was based on a neural network
that predicted the distance between parts of a target protein. Next
we learnt of the tr (transform restrained) RoseTTA program
developed by the laboratory of David Backer (Anishchenko et al.,
2021), later implemented into a server (Du et al., 2021). The
usefulness and accuracy of trRoseTTA was soon demonstrated
for the pneumococcal sigma factor, SigA, protein compared to the
already solved Escherichia coli counterpart (Solano-Collado et al.,
2021). Another interesting approach, also based on neural
networks and termed Recurrent Geometric Networks, was
published and claimed to be faster than the AlfaFold program
although it may be of less accuracy (AlQuraishi 2019). These AI-
based programs fairly routinely predict the structures of new
proteins to unprecedented accuracy (Berg 2021).

After the first giant steps forward, there was the second
version of AlphaFold named, unsurprisingly AlphaFold2. The
development of the advanced deep-learning AlphaFold2
method (CASP14) allowed the construction of three-
dimensional models with an accuracy equal to or superior
to the experimental accuracy (GDT_TS > 90) for about 70% of
the targets, and of a very high accuracy for almost 90% of the
targets. By mid-2021, came the release of the basics of the
network code and the prediction for nearly 250,000 structures
from several model organisms together with the European
Molecular Biology Laboratory’s European Bioinformatics
Institute (EMBL-EBI) in Hinxton, United Kingdom (Jumper
et al., 2021). Not surprisingly, John Jumper who was the first
author, was included in the Nature’s list of ten scientists achieving
key developments in 2021 (https://www.nature.com/immersive/
d41586-021-03621-0/index.html?utm_source=Nature+Briefing&utm_
campaign=f5ce3c484a-briefing-dy-20211216&utm_medium=
email&utm_term=0_c9dfd39373-f5ce3c484a-46322698#section-
7cgEBpkV9L).

Finally, and included within the breakthrough articles of the
journal Science for 2021, there was the article by the Baker and
Cong laboratories in which a version of the rapidly computable
RoseTTAFold was combined with the AlphaFold programs
(Humphreys et al., 2021). The approach used co-evolutional
protein-protein interactions to study 8.3 million pairs of yeast
proteins. A total of 106 previously unidentified assemblies and
806 that were structurally uncharacterized was the result of this
powerful approach, extending the range of deep learning based
structural protein modelling. The Baker laboratory has
implemented the very busy Robetta on-line server (https://
robetta.bakerlab.org/), based on RoseTTAFold, that allows the
unexperienced user to obtain predicted three-dimensional
models of any given protein starting from the amino acid
sequence of a protein.

At the time that this manuscript was being handled by the
Editorial Office, the online access to the AlphaFold2 Database,
linked to the EMBL-EBI website (https://alphafold.ebi.ac.uk/)

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8484442

Schleif and Espinosa Where to From Here?

https://predictioncenter.org/
https://predictioncenter.org/
https://www.nature.com/immersive/d41586-021-03621-0/index.html?utm_source=Nature+Briefing&utm_campaign=f5ce3c484a-briefing-dy-20211216&utm_medium=email&utm_term=0_c9dfd39373-f5ce3c484a-46322698
https://www.nature.com/immersive/d41586-021-03621-0/index.html?utm_source=Nature+Briefing&utm_campaign=f5ce3c484a-briefing-dy-20211216&utm_medium=email&utm_term=0_c9dfd39373-f5ce3c484a-46322698
https://www.nature.com/immersive/d41586-021-03621-0/index.html?utm_source=Nature+Briefing&utm_campaign=f5ce3c484a-briefing-dy-20211216&utm_medium=email&utm_term=0_c9dfd39373-f5ce3c484a-46322698
https://www.nature.com/immersive/d41586-021-03621-0/index.html?utm_source=Nature+Briefing&utm_campaign=f5ce3c484a-briefing-dy-20211216&utm_medium=email&utm_term=0_c9dfd39373-f5ce3c484a-46322698
https://www.nature.com/immersive/d41586-021-03621-0/index.html?utm_source=Nature+Briefing&utm_campaign=f5ce3c484a-briefing-dy-20211216&utm_medium=email&utm_term=0_c9dfd39373-f5ce3c484a-46322698
https://robetta.bakerlab.org/
https://robetta.bakerlab.org/
https://alphafold.ebi.ac.uk/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


was accessible (Varadi et al., 2022). The output has an impressive
predicted structure in milliseconds with the (in our opinion)
drawback of not being yet linked to the NCBI database. Nearly at
the same time (January, 11th, 2022), the journal Nature Methods
published an editorial and two adjoining papers declaring the
Protein Structure Prediction as the Method of the Year 2021
(Editorial 2022).

2 WHERE WE NOW STAND

Without a doubt, we cannot fully understand the mechanism of
action of a protein without knowledge of its structure. On the
other hand, and up to now, knowledge of the structure of a
protein has only rarely told us how the protein works. That is to
say that while the structures of many proteins (alone or
complexed with their targets) have been solved, in the great
majority of the cases, examination of the structure alone has
proved to be insufficient to reveal the critical details of the
proteins’ mechanism of action. A clear example is provided by
some instruments or gadgets that, even though we can see and
analyze them, most of us cannot provide an explanation for what
they do. Figure 1 shows an example of such a gadget. It is worth
pointing out the distinction between possessing a long list of facts
about the behaviour of a protein and actually possessing an
understanding of the protein’s action.

One way of characterizing our current level of understanding
protein structure and functions is to compare “external” and
“internal” events. Currently used technology allows us to learn a
considerable amount what other proteins a particular protein
interacts with, the strengths of these interactions, and sometimes

the physiological consequences of damaging these interactions.
However, we know much less about the “internal” events in
protein function. Not only must proteins fold, and refold if they
have suffered a fluctuation and partially unfolded, but they
usually must bind one or more small molecule ligands or
macromolecular targets. Proteins must do this with high
specificity and with kinetics appropriate to the time scales
dictated by intracellular conditions and cell growth. Finally, a
good many of proteins must also undergo a conformational
change in response to binding a target molecule and in the
altered conformation, must possess an altered binding activity
for another molecule. This phenomenon is generally referred to
as an allosteric change, and allosterism is a key component not
only in gene regulatory proteins, but also in proteins that control
the flow of metabolites down biosynthetic and degradation, or
perhaps catabolic and anabolic pathways.

As expected from our relatively high level of “external”
knowledge of proteins, the past 50 years has seen the
development of many powerful techniques for the
acquisition of such knowledge. Techniques for the study of
“internal” protein events are much less well developed,
although a number of techniques can be listed, such as
structure determination by X-ray crystallography or NMR
or Cryo-EM followed by computational approaches,
molecular dynamics, fluorescence studies, etc. While these
techniques can yield much information, their application has
required specialized training and experience that is not
available to every laboratory interested in a given protein
or family of proteins. Conversely, structuralists may lack of
interest or skills required to use their techniques to learn
much about protein function.

Another way of describing the bottlenecks to advancement is
that the development of Molecular Biology allowed physiological
observations made on populations of cells to be explained in
terms of molecules within the cell. That is, understanding has
been brought to the molecular level by determining what
macromolecules exist and what they do. Unfortunately,
progress in understanding by working from the top down has
slowed.

It is also possible to work from the bottom up. Quantum
mechanics determines chemistry, which in turn determines
biochemistry. Alas, an impasse is also reached in this
approach. Specifically, we can predict from basic principles
the structures and properties of molecules containing perhaps
as many as 25 atoms, but biological macromolecules contain
tens of thousands of atoms. Thus, the “bottom up” approach
cannot tell us, up to now, about internal events in proteins,
and hence cannot yet aid us in understanding or in
engineering proteins. Ultimately, of course, the top down
and bottom up approaches must fuse. Likely the fusion will
be at the level of the action of bio-macromolecules. This
should provide us with a complete understanding of
biological phenomena at the molecular level as well as the
ability to design macromolecules that will perform desired
and valuable functions. Upon the fusion, biology will cease
being an archeological or geological exploration and instead,
will become more of an engineering discipline.

FIGURE 1 | Image of a tool whose function is not obvious from its
structure. Its name and function are given in the bottom right corner as a
horizontal reflection.
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3 WHERE NEXT

After these recent advances, we could ask whether the
experimental protein structure determination industry thus
been rendered obsolete with a couple of strokes? We think
that the answer is “Largely yes”. Of course, one will still seek
verification of predicted structure. And, of course, we would like
to replace black box prediction schemes with deeper
understandings of the physical laws that underlie the ability of
a polypeptide chain to fold into a defined tertiary structure. Thus
we agree that the prediction programs must be further developed
(Tong et al., 2021), and some proposals have been made on how
to proceed beyond AlphaFold2 (Bagdonas et al., 2021; Buel and
Walters 2022).

Whatever the further developments, what next? Much yet
remains in the area of prediction, for example, predicting
structure for unusual environments or temperatures. Still, the
thrust of research on proteins should, and eventually will, shift to
determinations of mechanisms and the predictions and
understandings of the role of protein dynamics and flexibility
in the activities of proteins. While it would be nice to be able to
design drugs based on the (predicted) structures of target
proteins, we are still some distance from this goal, with
protein and ligand flexibility one of the obstacles in our way.
Another may be insufficiently precise knowledge of the
interatomic forces involved in protein-ligand binding.
Research will also shift to these important questions.

We are also still very far from being able to discern, predict,
understand, or knowledgeably alter the properties of some classes
of proteins. For example, the determination of the mechanisms by
which their small molecule effectors alter the DNA binding
affinity of the bacterial proteins, Lac repressor, cAMP receptor,
and AraC have come to be largely, but not completely understood
as the result of many hundreds of person years—and this effort
was required after the relevant tertiary structures had been

determined. It remains to be seen if AlphaFold2 and
RoseTTAFold can be used directly to accelerate mechanistic
studies of other proteins with complex behaviors. More likely,
additional dramatic developments in computational
biochemistry will be required.

At this point it is impossible to predict what objective might
follow the half-century quest to accurately predict protein
structure from amino acid sequence. Several projects come to
mind: as stated earlier, to be able to design and build a protein
with nearly any desired physically possible properties, to be able
to determine all the properties of a protein from its structure (or
equivalently, its amino acid sequence), most notably, its biological
function, and finally, to be able to design small molecule
inhibitors and activators of the biological activity of most
proteins found in nature or designed for specific purposes.
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