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These experiments show that the majority of the protein found associated with
the RNA synthesized in the presence of chloramphenicol is nonribosomal protein
existing in the cells at the time of addition of the drug and hence that chlor-
amphenicol particles are not incomplete ribosomes. The experiments are the
following:

(a) The pool of free ribosomal protein as measured kinetically in normally
growing cells is too small to provide the protein found on chloramphenicol
particles, showing the chloramphenicol particle protein cannot derive solely from
a pool of free ribosomal protein.

(b) The speecific activity of chloramphenicol particle protein is independent of
the time between a pulse labeling of cellular protein and the addition of the drug,
showing that the protein found on chloramphenicol particles is not normally incor-
porated into some cellular structure from which it is unavailable to form the
particles.

(¢) The amount of protein which is synthesized in 90 minutes of chlor-
amphenicol treatment is less than 39, of the protein found on chloramphenicol
particles, showing that nearly all of the protein of the particles must have been
synthesized before the drug was added.

(d) The specific activity of chloramphenicol particle protein parallels the
specific activity of soluble protein and not ribosomal protein when the particles
are prepared in cultures with different relative specific activities of ribosomal
and non-ribosomal protein.

(e} Upon removal of chloramphenicol, the RNA of the chloramphenicol
particles is matured to ribosomes while the protein previously sedimenting with
this RNA is not found on mature ribosomes.

1. Introduction

The addition of chloramphenicol to exponentially growing Escherichia coli cultures
can reduce the rate of protein synthesis more than a hundredfold; but initially, RNA
synthesis is scarcely affected by the drug, and the RNA content per cell approximately
doubles during 90 minutes of CM} treatment. Much of the RNA synthesized in the
presence of the drug is found associated with protein in particles that sediment at
18 to 258 and are called chloramphenicol particles. RNA extracted from these
particles sediments at 16 s and 23 s, like the RNA extracted from mature ribosomes,
and the current assumption is that CM particles are incomplete ribosomes and
that the protein associated with them is drawn from a pool of free ribosomal protein
existing in the cell at the time of addition of chloramphenicol (Hosokawa & Nomura,

t Present address: Biological Laboratories, Harvard University, Cambridge, Mass. 02138,
U.S.A.
} Abbreviation used: CM, chloramphenicol.
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1965). This hypothesis predicts that a sizeable
normally growing cells. However, ki
free ribosomal protein is very small (Schleif,
are interpreted as showing that the ma

ribosomal, but soluble protein present in the cells at the time of additi

and hence that CM particles most probably are not immature ribosomes.

through a high-density D,0-sucrose gradient,

2. Materials and Methods

(a) Cell growth and preparation of extracts

E. coli B/r was grown on a minimal mineral salts medium with

present at 0-29,—giving doubling times of 50 and 100 min,
minimal medium, the doubling time was 35 min. After addi
0-2%; adenine, guanine, cytosine and uracil were each 40 i
and the concentrations of 18 other amino acids were i
in . cols protein (Roberts, Abelson, Cowie, Bolton & Britt
to allow its use as a radicactive label. Cells were grown exp
lings before an experiment.

For the standard 90-min chloramphenicol treatment of cells,
phenicol was added to give a concentration of 100 ug/ml. Media,
through 0-45 Millipore filters that had been washed with
plasticizers. In preparation of cell extracts, 100 ml. of culture w
washed 3 times in TM buffer (0-005 M-Tris-HCl (pH 7-2), 0-0001 M-magnesium acetate),
and concentrated to 0-3 ml. before adding 10 ©g lysozyme, 1 #g DNase, freezing in dry
ice mixed with ethanol and thawing 5 min at 37°C for g total of four cycles, This treatment

degrade the CM particles,
Y centrifugation at 10,000 g
rupted by sonication, giving
train B/r is not very sensitive
extract was centrifuged un-
nts of the ratio of radioactive

boiling water to remove
ore concentrated to 2 ml.,

for 15 min. Cells not treated with chloramphenicol were dig
greater than 99-99/ disruption (without the CM treatment, s
to lysis by the freeze—thaw procedure), and the resulting
fractionated through the D,0-sucrose gradients. Measureme
proline in ribosomes to total collular protein made on cult
by lysozyme—freeze—thaw show that the fragments of cell w.
and thawing which are pelleted by centrifugation at
imately 209, of the cellular protein.

(b) Purification of ribosomes and chloramphenicol particles

Cell extracts were centrifuged through § to 20%,
solutions with density varying linearly from p =12
in all gradients wore the same as in TM buffer. The ine

sucrose gradients or D,0O-sucrose
0 to 1-30. The ion concentrations
reased density of the D,0 gradients

Drops from the centrifuge tube were collected directly in scintillation vialg and counted.
The masses of CM particles and ribosomes were estimated in analytical centrifugation by
measuring areas under the peaks produced by schlieren optics in velocity runs (Nomura
& Watson, 1959). Compared to the ribosomes, the CM particles were not more stable when
the RNase I minus strain D10 (Gesteland, 1966) was used instead of strain B/r. Therefore,

for comparison with previous studies, strain B/r was used for all measurements. For addi-
tional details see Schleif (19675).
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3. Results and Conclusions

(8) Cells contain insufficient quantities of free ribosomal
(i) Amount of protein in OM particles

To measure the amount of protein in the CM

heen treated for 90 minutes with chlora

eentrifuge. Ribosomes synthesized during normal growth are not degraded in the
presence of chloramphenicol, since all th

e radioactive uracil, or proline, incorporated
into ribosomes sediments in ribosomal su

bunits, at 30 s and 50 8, even after treatment
with 100 g of CM/ml. for 90 minutes. The total protein on CM particles can there-

- * was more than half of the mass of ribosomes in the cell extract. Per unit of RNA, the
CM particles seem to contain about half the protein found in ribosomes (Nomura &

Watson, 1959); hence the quantity of protein associated with the CM particles in the
extract is about 259, of the total ribosomal protein.

(ii) Amount of free ribosomal Dprotein in growing cells

A previous measurement on cells growing exponentially under the conditions used
hers showed that there is a very small poo

1 of free ribosomal protein. The kinetics of
sppearance of radioactive proline in the protein of mature ribosomes following a
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F16. 1. Measured kinetics of appearance of label i
time of a chase beginning 1 min after addition of a pulse label (®). The two curves show the

expected kinetics of label entry if the pool contained 4% (upper curve) and 209, (lower eurve) of
the amount of protein already present in mature ribosomes.

n mature ribosomal subunits as a function of

one-minute pulse labeling are shown in Figure 1. Also shown are the expected kineties
if the pool contained either 4% or 209, of the amount of protein already present in
mature ribosomes (Schleif, 1967a). Thus it is clear that if all ribosomal proteins pass
through a pool (or if each of the 35+ proteins were to Ppass through its own pool) of
free protein before being incorporated into a ribosome, then the pool (or pools)
eertainly contain less than 4% n toto of the amount of protein already present on

mature ribosomes. Conceivably, some of the proteins pass through very small pools
while the rest pass through pools

that the kinetics shown in Figure
8% of the protein in mature ribosomes (Schleif, 1967a).

proteins to supply OM particles
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(b) Non-transient pool of CM particle protein

If the protein of the CM particles were drawn from a pool which normally supplies
protein to stable structures, including the ribosomes, then the greater the time between
pulse labeling of cellular protein and the addition of chloramphenicol, the lower would
be the specific activity of the CM particles. In fact, the specific activity of CM particles
was found to be independent of the time between pulse labeling and addition of
chloramphenicol, indicating that the protein labeled at a given time remains available
indefinitely for incorporation into CM particles. The plan of this experiment is shown in
Figure 2, where T was the variable. The RNA of the CM particles was labeled with
[*HTuracil to assay the recovery of CM particles. The radioactivity of CM particle
protein was accurately measured as the ratio of [**C]proline to [*H]uracil in purified
particles, obtained by centrifuging cell extracts through 5 to 209, sucrose gradients
(107,000 g, 3 hr, 20°C), taking out a CM particle fraction, as shown in Figure 3, and
centrifuging this through linear D,O-sucrose gradients for 24 hours. The recovery of
radioactivity from each centrifugation was better than 759.

The first centrifugation separated CM particles from 30 s subunits, and the second
separated CM particles from other cell protein. The profile of the D,0 gradient is

.
A~ —
%

!

/

[“ClProline  Non-radioactive CM [*HlUracil Begin washing
t=~T proline =0 t=45 =90

Fia. 2. Plan for kinetic measurement of pool size of CM particle protein.

To six identical 50-ml. cultures CM was added to make a concentration of 100 ug/ml.; 45 min
later 5 pc of [*HJuracil was added in a quantity that would be completely incorporated in less
than 5 min. At various times, 7T, before drug addition, 1 uc of [*4C]proline had been added in such a
quantity that it was estimated would be just incorporated into the earliest labeled sample in 1 min,

"
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N
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Fraction no.

Fia. 3. A typical profile from a preparative gradient centrifugation.

0-2 ml. of the extract prepared from cells labeled 40 min before addition of CM was layered
on a 4-5-ml. linear 5 to 209, sucrose gradient and spun at 107,000 g, 3 hr, 20°C. 0-01-ml. samples
from each 3-drop fraction were counted. The graph shows the 3H profile (—@—@—) and the
fraction (O) which was layered on the D;O gradient.
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incomplete utilization of the added proline; cf. legend to Figure 2, which shows that
the earlier the pulse the lower the cell density during incorporation.

This is more easily understood by the following hypothetical situation. Suppose the
sample labeled with proline at the largest 7' (earliest sample before CM addition) had
taken up only a small fraction of the radioactive proline before further incorporation
had been stopped by the addition of excess non-radioactive proline. At the end of the
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(e) Origin of CM particle protein

Since it has been shown that CM particle protein does not derive from a pool of free
ribosomal protein, we are left with four a priori possibilities: (a) the CM particle protein
could be ribosomal or non-ribosomal protein synthesized in the presence of chloram-
phenicol; (b) it could be ribosomal protein from ribosomes degraded in the presence of
chloramphenicol; (¢) it could be non-ribosomal protein existing in the cells at the time
of addition of chloramphenicol; or (d) it could derive from a combination of these
sources.

Suggestion (a) can be rejected, since addition of 100 ug of chloramphenicol/ml.
reduces the rate of protein synthesis under the conditions used by 200-fold, as measured
by uptake of radioactive proline and leucine. At this rate less than 39, of the protein
found on CM particles would be produced in 90 minutes, even if nothing but this type
of protein were synthesized. In fact, one-third of the leakage synthesis is ribosomal
protein. This was measured by adding chloramphenicol at time zero and the radio-
active proline 10 minutes later. The proline and chloramphenicol were removed by
separate filtrations at 50 and at 65 minutes, respectively, after which the culture was
allowed to double in optical density before measuring the radioactivity in ribosomes
and in total protein.

If all or most of the CM particle protein derived from ribosomes degraded in the
presence of CM (suggestion (b)), then the specific activity of CM proteins in cells
labeled with [*#C]proline before the addition of chloramphenicol would be the same as
the specific activity of ribosomal protein at the time of addition of the drug. The
relative specific activities of ribosomal and soluble protein were varied over a ten-fold
range in these experiments, and it was found that the specific activity of CM particle
protein followed more closely that of the soluble protein.

The specific activity of the ribosomal protein was varied relative to that of the
soluble proteins by labeling the cells during growth at different rates. The rate of
synthesis of ribosomss relative to soluble protein is high in a medium supporting
rapid growth. Thus short-tima labeling with [**C]proline during rapid growth and sub-
sequent balanced growth at a much lower rate give ribosomes the proteins of which
have a higher specific activity than the soluble proteins (30% of label enters ribo-
somes). Conversely, labeling during a period when the relative rate of ribosome
synthesis is almost zero—e.g. shortly after shift of cells from rapid to slow growth—
and subsequent balanced growth at a high rate, give ribosomes with a relatively low
specific activity (3% of label enters ribosomes). Using cells in balanced, exponential
growth in glucose minimal medium, but having (i) 0-03 and (ii) 0-30 of the total
incorporated radioactive material in the proteins of the mature ribosomes (achieved
by the method outlined above, and shown explicitly in Fig. 6), it was found that the
specific activity of the proteins of CM particles subsequently produced paralleled
that of soluble protein and not ribosomal protein.

Figure 7 shows tho radioactive profiles from the extracts of cells (i) and (ii) above.
The [*4Cluracil profiles indicate that the RNA synthesized after addition of CM is
similar in the two frames. Not shown, but also similar, would be the profiles of ribo-
somes and soluble protein. In Figure 7 (i), it is seen that almost all the [3H]proline
label has entered non-ribosomal protein, whereas in Figure 7 (ii) a large fraction of the
[*H]proline is in the ribosomes.

Since the cultures represented by frames (i) and (i) of Figure 7 were growing
exponentially in identical media, and thus contained the same quantities per cell
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of ribosomal, as well as non-ribosomal, protein, the specific activity of non-ribosomal
protein, relative to that of ribosomal protein, is higher in case (i) than in case (ii).
Examining the CM particle regions, indicated by the [14Cluracil counts, it is seen that
similar amounts of radioactive proline entered that region in the two cases, despite
the fact that the specific activity of the ribosomal protein was about ten times less in
cage (i) than in case (ii).

This experiment was designed to show that CM particle protein originates largely
from non-ribosomal protein. The method of demonstration used was to show that
increasing the specific activity of ribosomal proteins synthesized before addition of
CM would not significantly alter the amount of radioactive amino acids subsequently
found in CM particles. Thus it appears from Figure 7 (i) and (ii) that the 10-fold
increase in ribosomal protein specific activity was not matched by a corresponding
10-fold increase in CM particle specific activity. There are several limitations to
absolute quantitation of the data. The first is apparent in Figure 7 (i), where it can be
seen that there was not complete correspondence between the uracil activity marking
the location of CM particles and the protein of CM particles. This most probably
originates from the heterogeneity of the CM particles, which will be discussed later.
It is also possible that during the extended centrifugation of 21 hours at 20°C some of
the CM particle protein was released from the RNA. Another fact which prevents
absolute quantitation is the presence of proteins which are neither ribosomal nor
chloramphenicol particles in origin and which would decrease the magnitude of the
difference in chloramphenicol particle activities seen in Figure 7 (i) and (ii). It was
necessary to use the high-density D,0 gradients to overcome this difficulty, for with
the usual sucrose gradients the amount of protein, predominantly cell wall, was too
high to resolve adequately ribosome peaks (Schleif, 1967a,b). Even with these pre-
cautions, the possibility of an impurity in the CM particle region of up to 209, of the
amount of chloramphenicol particle protein cannot be excluded.

A direct proof that CM particle protein is not ribosomal protein would be to show
that, upon removal of chloramphenicol and subsequent disappearance of the CM
particles, their protein returns to the class of soluble protein rather than entering
mature ribosomes (suggested by Gunther Stent). Figure 7 shows that the radio-
activity in the CM particle proteins is most easily measured when the specific activity
of ribosomal protein is low compared to soluble protein. For this reason cells were
grown and labeled as in Figure 6 (i). The sample taken just before addition of chlor-
amphenicol to the remainder had about 0-03 of the label in ribosomes. The sample
taken for analysis after 90 minutes of chloramphenicol treatment contained approxi-
mately 0-07 of the protein label in ribosomes and CM particles. After taking the
second sample, the remaining third of the cells was filtered away from the chlor-
amphenicol and resuspended in glucose minimal medium. After two hours of growth,
their optical density was increasing exponentially and the third sample was taken.
This contained approximately 0-03 of the protein label in ribosomes. Figure 8 shows
the gradient profiles discussed and the uracil profiles which indicate the position of the
CM particles and the mature ribosomes. There is clearly contaminating protein in the
ribosome region, although it can be roughly estimated. After such an estimation, the
corrected data are presented in Figure 9, which shows the protein activities of ribosomal
protein before, during and after treatment with chloramphenicol. Figure 9 (lower)
shows the specific activities, relative to total protein specific activity, of the proteins

in question.
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Fia. 8. (i) [*H]Proline profile of cells after the treatment shown in Fig. 6 (i).

This sample was taken just before addition of CM. The amount of non-ribosomal protein
contaminating the ribosomal region has been estimated in this and (ii) and (iii) by eye. The
numbers shown represent the areas under the respective curves, and there is a scale change by a
factor of 10 for proline counts in the middle of all three gradients. The fraction, of radioactivity in
ribosomes is estimated as 0-09/365 = 0-025.

(ii) PH]Proline (— @—@—) and [**Cluracil (-~ O——— O —-) profiles taken after 90 min of CM
treatment as shown in Fig. 6 (i). The position of CM particles is shown by the uracil incorporated
during the drug treatment. In the calculation of the fraction of radioactive material in ribosomes
or chloramphenicol particles, the correction discussed in Materials and Methods for cell wall spun,
out with unbroken cells was applied. The fraction of radioactive material in ribosomes in this case
was 0-065.

(iii) After the 90-min CM treatment, the remainder of the culture was filtered and resuspended in
glucose minimal medium. 2 hr after resuspension the cells were growing normally and they were
harvested for the profile shown here. The RNA labeled during the CM treatment (—— O ——— O —~)
has entered ribosomes, and despite the contaminating non-ribosomal proteins, it can be seen that
the activity of ribosomal protein (—@—@—) is approximately 0-024. The non-ribosomal protein
can be estimated, since the ribosomal protein must parallel the ribosomal RNA profile.
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F16. 9. Activity and specific activity relative to total protein specific activity of ribosomes and
CM particles before treatment, after 90 min of CM treatment, and 2 hr after removing CM.

The specific activities relative to total cell protein were calculated as follows: for ribosomal
protein before and after CM treatment, 0-025 of their activity divided by 0-159, their fraction of
cellular protein (Schleif, 1967a,b); for non-ribosomal protein, 0-97 of its activity divided by 0-85
fraction of its cell protein, and for CM particle protein, 0-04 of its activity divided by its estimated
value, 0-06, of cellular protein in this case (roughly half the amount of ribosomal protein)

These experiments are interpreted as showing that the majority, more than 809,
of the proteins of CM particles is derived from pools of pre-existing non-ribosomal
protein; and hence that CM particles are not a defined stage of ribosome maturation,
with only a subclass of ribosomal proteins bound to ribosomal RNA. Instead they
appear to be formed by association predominantly of non-ribosomal protein with the
RNA synthesized during chloramphenicol treatment.

As the CM particles appear not to be a defined stage in ribosome maturation, but
the result of association between their ribosomal RNA and non-ribosomal protein, it is
expected that they would not be a homogeneous class. This expectation is fulfilled, for
as shown by Hosokawa & Nomura (1965), the CM particles are heterogeneous and
contain particles with a spread in their protein to RNA ratio.

The protein likely to associate with the RNA synthesized during chloramphenicol
treatment would most probably be basic and resemble ribosomal protein in some
physical properties. Therefore it is not surprising that gel electrophoresis of CM
particle protein (Kaji & Nakada, 1967) or RC particle protein (subribosomal particles
formed in a relaxed strain during amino acid starvation (Nakada, 1967)) shows the
presence of basic proteins. The apparent identity, however, of several proteins from
the subribosomal particles to proteins from mature ribosomes suggests that the CM or
RC particles might contain several proteins also found on mature ribosomes. Nakada
(1967) showed that the proteins of RC particles are synthesized before amino acid
starvation, but concluded on the basis of similarity in electrophoretic patterns of
ribosomal and RC proteins, that they were predominantly ribosomal proteins. In
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addition to the expected similarity of ribosomal and chloramphenicol particle
proteins, further possible sources for this discrepancy are that only a subclass of RC
particle protein is shown in protein bands of the electrophoretic separation, with the
rest being spread over the gel or lost before electrophoresis.

Previous studies on the relationship between CM particles (Lerman, Zimmerman,
Gavrilova & Spirin, 1967) or RC particles (Nakada & Unowsky, 1966) and ribosomes
have not explored extensively the possiblity that the particles in question are not
ribosome precursors. The conclusion that CM particles could be directly matured to
ribosomes without replacement of the CM particle protein is incompatible with the
data presented here, as is the analogous conclusion for RC particles, if we assume that

RC particles are similar to CM particles.
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