Atmospheric Chemistry Lecture 15 #### **Sources of Atmospheric Methane** ## Methane is produced by anaerobic decomposition of organic matter # **Sources of Methane: Natural Gas Deposits** ## Sources of Methane: Clathrates or Natural Gas Hydrates # CO₂ and CH₄ exhibit similar behavior over ice-age time scales ## Global Distribution of Atmospheric Methane NOAA ESRL GMD Carbon Cycle Three dimensional representation of the latitudinal distribution of atmospheric methane in the marine boundary layer. Data from the GMD cooperative air sampling network were used. The surface represents data smoothed in time and latitude. Contact: Dr. Ed Diugokencky, NOAA ESRL GMD Carbon Cycle, Boulder, Colorado, (303) 497-6228 (ed.diugokencky@noaa.gov, http://www.cmdl.noaa.gov/ecgg). #### **Basic Oxidation of Methane** $$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$ But, CH₄ in a container with O₂ will not burn unless ignited What starts the "burning" in the free atmosphere? $$CH_4 + OH \rightarrow CH_3 + H_2O$$ Hydrogen abstraction by the free radical OH #### **Methane Oxidation (continued)** Methyl radical adds an O₂ to make methyl peroxy $$CH_3 + O_2 + M \rightarrow CH_3O_2 + M$$ Two things can happen to methyl peroxy $$CH_3O_2 + NO \rightarrow CH_3O + NO_2$$ or $CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$ #### **Methane Oxidation (continued)** Ignore second channel to CH₃OOH for the time being: CH₃O reacts rapidly with O₂ to lose another hydrogen atom $$CH_3O + O_2 \rightarrow CH_2O + HO_2$$ CH₂O is a relatively stable molecule, formaldehyde #### Summarizing thus far $$CH_4 + OH \rightarrow CH_3 + H_2O$$ $CH_3 + O_2 + M \rightarrow CH_3O_2 + M$ $CH_3O_2 + NO \rightarrow CH_3O + NO_2$ $CH_3O + O_2 \rightarrow CH_2O + HO_2$ $CH_4 + OH + 2O_2 + NO \rightarrow CH_2O + HO_2 + NO_2 + H_2O$ #### What happens to formaldehyde? **Several pathways** **Photolysis** $$CH_2O + hv \rightarrow CHO + H$$ $CH_2O + hv \rightarrow CO + H_2$ or reaction with OH $$CH_2O + OH \rightarrow CHO + H_2O$$ CHO reacts with O₂ to form CO $$CHO + O_2 \rightarrow CO + HO_2$$ # Carbon monoxide, CO is a product of the oxidation of methane All channels led to the formation of CO: depending on pathway, either H₂ was formed or 2 HO₂ CO the reacts with OH to form CO₂ $$CO + OH \rightarrow CO_2 + H$$ and we have completely oxidized the carbon atom # Summarizing the second part of the oxidation (from formaldehyde) $$CH_2O + hv \rightarrow CHO + H$$ $$CHO + O_2 \rightarrow CO + HO_2$$ $$CO + OH \rightarrow CO_2 + H$$ $$2x: H + O_2 + M \rightarrow HO_2 + M$$ ----- $$CH_2O + 3O_2 + OH \rightarrow CO_2 + 3HO_2$$ $$CH_2O + hv \rightarrow CO + H_2$$ $$CO + OH \rightarrow CO_2 + H$$ $$H + O_2 + M \rightarrow HO_2 + M$$ ----- $$CH_2O + O_2 + OH \rightarrow CO_2 + HO_2 + H_2$$ $$CH_2O + OH \rightarrow CHO + H_2O$$ $$CHO + O_2 \rightarrow CO + HO_2$$ $$CO + OH \rightarrow CO_2 + H$$ $$H + O_2 + M \rightarrow HO_2 + M$$ _____ $$CH_2O + 2O_2 + 2OH \rightarrow CO_2 + H_2O + 2HO_2$$ The net HO_x formed will eventually combine via $OH + HO_2 \rightarrow H_2O + O_2$ #### What have we done? $$CH_4 + OH + 2O_2 + NO \rightarrow CH_2O + HO_2 + NO_2 + H_2O$$ $$CH_2O + 2O_2 + 2OH \rightarrow CO_2 + H_2O + 2HO_2$$ _____ $$CH_4 + 4O_2 + 3OH + NO \rightarrow CO_2 + 2H_2O + 3HO_2 + NO_2$$ Oxidized methane to CO₂ and 2H₂O plus used an extra 2 oxygen molecules to convert OH to HO₂ and NO to NO₂. Note that NO₂ photolyses easily to NO + O and the O atom forms ozone #### What have we done? $$CH_4 + OH + 2O_2 + NO \rightarrow CH_2O + HO_2 + NO_2 + H_2O$$ $$CH_2O + O_2 + OH \rightarrow CO_2 + 3HO_2$$ _____ $$CH_4 + 4O_2 + 2OH + NO \rightarrow CO_2 + H_2O + 4HO_2 + NO_2$$ Oxidized CH₄ to CO₂ and one H₂O. Have created 2 HO_x that will eventually recombine to form the second H₂O. The NO₂ will photolyze to form O atoms and then ozone #### What have we done? $$CH_4 + OH + 2O_2 + NO \rightarrow CH_2O + HO_2 + NO_2 + H_2O$$ $$CH_2O + O_2 + OH \rightarrow CO_2 + HO_2 + H_2$$ $$CH_4 + 3O_2 + 2OH + NO \rightarrow CO_2 + H_2O + H_2 + 2HO_2 + NO_2$$ Oxidized CH₄ to CO₂ and one H₂O plus one H₂. Have converted 2OH to 2HO₂. The NO₂ will photolyze to form O atoms and then ozone #### What about the other channel for CH₃O₂ reaction? $$CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$$ This can be followed by $$CH_3OOH + hv \rightarrow CH_3O + OH$$ which takes us back to the original chain reforming the O_2 that was used and converting HO_2 to OH, or it can be followed by $$CH_3OOH + OH \rightarrow CH_3O_2 + HO_2$$ This second channel forms a catalytic cycle that converts HO_x back to H₂O #### What about the other channel for CH₃O₂ reaction? $$CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$$ $$CH_3OOH + OH \rightarrow CH_3O_2 + H_2O$$ $$HO_2 + OH \rightarrow H_2O + O_2$$ This HO_x destruction can counteract the HO_x production in one of the above steps. The net effect depends on the ratio of the reaction rate of CH_3O_2 with NO to that with HO_2 and depends on the ratio of photolysis rate of CH_3OOH to the reaction rate with OH. #### **Summarizing Methane Oxidation** - Produces CO₂ + 2H₂O with a minor channel that produces H₂ instead of the second H₂O - Produces formaldehyde, CH₂O and carbon monoxide, CO as part of the degradation chain - Can oxidize NO to NO₂ leading to O atom production and hence ozone production - Can produce HO_x radicals or destroy them depending on conditions