Atmospheric Chemistry

Lecture 17

Oxidizing Capacity of the Troposphere

- Atmosphere is an oxidizing medium; trace gases are removed by being oxidized (e.g. CH₄, CO, HCFCs, etc.)
- Most abundant oxidants are O₂ and O₃; but have significant bond energies and are reactive only towards radicals
- Most important oxidizers are OH and H₂O₂ (hydrogen peroxide)
- We will begin by focusing on the hydroxyl radical, OH, which
 is particularly reactive to hydrogen-containing compounds
 through H-abstraction reactions to form water vapor

Production of OH in the troposphere

hv + O₃
$$\rightarrow$$
 O(¹D) + O₂
O(¹D) + H₂O \rightarrow OH + OH
O(¹D) + M \rightarrow O(³P) + M

$$\begin{split} P(OH) &= 2 \ k_{O1D,H2O} \ [O^1D] \ [H_2O] \\ &= 2 \ k_{O1D,H2O} \ [O^1D]/[O_3] \ [O_3] \ [H_2O] \\ &= 2 \ k_{O1D,H2O} \ J_{O3 \to O1D}/(k_{O1D,H2O} [H_2O] + k_{O1D,M} [M]) \ [O_3] \ [H_2O] \\ &\cong 2 \ k_{O1D,H2O} \ J_{O3 \to O1D}/(k_{O1D,M} [M]) \ [O_3] \ [H_2O] \end{split}$$

How much O(1D) is there in the troposphere?

$$P(O^{1}D) = J_{O3 \to O1D} [O_{3}]$$

 $L(O^{1}D) = k_{O1D,M} [O(^{1}D)] [M]$

$$P=L \rightarrow [O(^{1}D)]/[O_{3}] = J_{O3 \rightarrow O1D}/(k_{O1D,M}[M])$$

near surface:
$$[O(^{1}D)]/[O_{3}] = 10^{-4}/(3x10^{-11} 2.5x10^{19}) \approx 10^{-13}$$

 $[O_{3}] \approx 10^{12} \text{ cm}^{-3} \rightarrow [O(^{1}D)] \approx 0.1 \text{ cm}^{-3}$

Very small concentration of O¹D is key to initiating production of OH in the troposphere

The OH titration problem

- OH is the key oxidant to start hydrocarbon oxidation
- Initial production of OH requires O(¹D) that comes from O₃ photolysis
- What produces the O₃?
 - Transported from the stratosphere
 - Flux can be calculated to reasonable accuracy
 - Thus, an upper limit to the rate of formation of OH can be calculated
- OH is converted to HO₂ during oxidation of CO and CH₄
- Flux of CO from surface sources is greater than flux of O₃ from the stratosphere
- Thus, CO (and CH₄) could titrate the OH to HO₂ and reduce the loss of both CO and CH₄ such that they would build up large concentrations in the atmosphere

CO oxidation to CO₂

$$CO + OH \rightarrow CO_2 + H$$

$$H + O_2 + M \rightarrow HO_2 + M$$

$$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$$

Two paths for H₂O₂ loss

 $H_2O_2 + hv \rightarrow 2OH$; regenerates OH

 $H_2O_2 + OH \rightarrow HO_2 + H_2O$; consumes OH

But reaction of HO_2 with NO regenerates OH $HO_2 + NO \rightarrow OH + NO_2$

Rescues us from the OH titration problem

Net result for CO oxidation

$$CO + OH \rightarrow CO_2 + H$$

$$H + O_2 + M \rightarrow HO_2 + M$$

$$HO_2 + NO \rightarrow OH + NO_2$$

$$NO_2 + hv \rightarrow NO + O$$

$$O + O_2 + M \rightarrow O_3 + M$$

$$CO + 2O_2 \rightarrow CO_2 + O_3$$

Summary points on atmospheric chemistry

- We can make a large list of chemical reactions
- Which ones are important is dependent on conditions
 - Temperature
 - Pressure
 - Sources
 - Surfaces
 - Sunlight available
 - Mixing/transport