Using Observations of HNO₃ and N₂O to Quantify HCl and Ozone Sensitivity to Variability of the Stratospheric Circulation

Anne Douglass, Susan Strahan NASA Goddard Space Flight Center

> **Richard Stolarski** Johns Hopkins University

Why do we care about interannual variability in stratospheric dynamics?

- Interannual variability masks detection of trends
 - a) Masks recovery of chlorine as measured by HCl column amounts
 - b) complicates detection of expected upward trend in total ozone or lower stratospheric ozone due to chlorine change
- On longer time scales, models predict speedup of BDC
 - a) No clear confirmation of these predictions by measurements
 - b) Interannual variability of dynamics masks slow predicted change

Can we find surrogate for dynamical influence on HCl variation?

Deseasonalized HCl Anomalies at 32 hPa for 30-50N Latitude Band

Small Positive Trend

4

Douglass, Strahan and Stolarski: Quadrennial Ozone Symposium 2016

Deseasonalized HCl Anomalies at 32 hPa for 30-50N Latitude Band

Small Positive Trend

No Statistical Significance

Douglass, Strahan and Stolarski: Quadrennial Ozone Symposium 2016

5

Consider altitude profiles of N₂O and HCl from Aura MLS

- N₂O and HCl both respond to dynamical changes through their spatial gradients
- They are anti-correlated at a given latitude and pressure level

Suggests that N₂O variations could be used to model/ remove variability in HCl observations to reveal trend

Monthly mean anomalies of N_2O and HCl from Aura MLS measurements at 32 hPa averaged between latitudes of 30 to 50N.

HCl Anomalies with seasonal cycle and N₂O co-variation removed

Negative Trend

7

Douglass, Strahan and Stolarski: Quadrennial Ozone Symposium 2016

HCl Anomalies with seasonal cycle and N₂O co-variation removed

8

Douglass, Strahan and Stolarski: Quadrennial Ozone Symposium 2016

Fit linear trend to HCl time series at each altitude of reported MLS measurements

- First use simple linear trend model
 HCl = μ + α•trend + β•seasonal + ε
- Then add term for N₂O anomalies HCl = μ + α •trend + β •seasonal + γ •N₂O + ϵ

Trend changes sign with smaller uncertainty

HCl slope from August 2004 through August 2016 from MLS data between 30 and 50 N latitudes. Shaded areas are 2σ uncertainty estimates for trend.

What about O_3 ?

- Using N₂O as fitting term reduces uncertainty in O₃ trend
- Using HNO₃ yields similar results (not shown)
- Calculated trend becomes positive in middle stratosphere as expected, but results are not significant

Accounting for dynamical variability in O₃ trends will be more difficult

 O_3 slope from August 2004 through August 2016 from MLS data between 30 and 50 N latitudes. Shaded areas indicate 2 σ uncertainty estimates of the trend.

Usefullness of dynamical tracer depends on correlations that are determined by gradients

Only correlations < -0.5 and > 0.5 shown

11

Can we do better using column HNO₃ with column O₃?

- Correlation is > 0.5 over entire SH and between 40-60N
- Warrants further examination

Would be very useful as we could extend study back in time using column measurements from NDACC stations

Douglass, Strahan and Stolarski: Quadrennial Ozone Symposium 2016

Conclusions

- Dynamical variability introduces uncertainty into trend analysis of chemical constituents such as O₃ and HCl
- Many studies have used dynamical surrogates such as QBO, ENSO, AMO in trend models to try to remove (explain) this variance
- We propose using constituent correlations to accurately model the "whole dynamical" impact on species variability
- We have shown important example of removing variability in HCl measurements from Aura MLS by using measurements of N₂O

Douglass, Strahan and Stolarski: Quadrennial Ozone Symposium 2016