Silicon Crystal Structure

- diamond lattice
- atoms are bonded tetrahedrally with covalent bonds

- Two-dimensional crystal for sketching

Intrinsic (Pure) Silicon (T>0)

- electron: mobile negative unit charge, concentration $n\left(\mathrm{~cm}^{-3}\right)$
- hole: mobile positive unit charge, concentration $p\left(\mathrm{~cm}^{-3}\right)$

Unit of charge: $q=1.6 \times 10^{-19}$ Couloumbs [C]

Thermal Equilibrium

Generation rate: G units: $\mathrm{cm}^{-3} \mathrm{~s}^{-1} \quad$ (thermal, optical processes)
Recombination rate: $R \propto n \cdot p$

$$
\begin{aligned}
& n=\text { electron concentration } \mathrm{cm}^{-3} \\
& p=\text { hole concentration } \mathrm{cm}^{-3}
\end{aligned}
$$

With the absense of external stimulus, $\quad G_{o}=R_{o}$ subscript " o " indicates thermal equilibrium

$$
n_{o} p_{o}=\text { constant }=n_{i}^{2}=10^{20} \mathrm{~cm}^{-3} \text { at room temperature (approximately) }
$$

Since holes and electrons are created together in intrinsic silicon,

$$
n_{o}=p_{o} \quad \text { which implies that both are equal to } n_{i}=10^{10} \mathrm{~cm}^{-3}
$$

Doping

Donors (group V) donate their $5^{\text {th }}$ valence electron and become fixed positive charges in the lattice. Examples: Arsenic, Phosphorus.

How are the thermal equilibrium electron and hole concentrations changed by doping?
> region is "bulk silicon" -- in the interior of the crystal, away from surfaces
> charge in region is zero, before and after doping:
$\rho=$ charge density $\left(\mathrm{C} / \mathrm{cm}^{3}\right)=0=\underset{\text { electrons }}{\left(-q n_{o}\right)}+\underset{\text { holes }}{\left(q p_{o}\right)}+\underset{\text { donors }}{\left(q N_{d}\right)}$
where the donor concentration is $N_{d}\left(\mathrm{~cm}^{-3}\right)$

Electron Concentration in Donor-Doped Silicon

Since we are in thermal equilibrium, $n_{o} p_{o}=n_{i}^{2}$ (not changed by doping):
Substitute $p_{o}=n_{i}^{2} / n_{o}$ into charge neutrality equation and find that:

$$
0=-q n_{o}+\frac{q n_{i}^{2}}{n_{o}}+q N_{d}
$$

Quadratic formula -->

$$
n_{o}=\frac{N_{d}+\sqrt{N_{d}^{2}+4 n_{i}^{2}}}{2}=\frac{N_{d}}{2}+\frac{N_{d}}{2} \sqrt{1+\frac{4 n_{i}^{2}}{N_{d}^{2}}}
$$

We always dope the crystal so that $N_{d} \gg n_{i} \ldots\left(N_{d}=10^{13}-10^{19} \mathrm{~cm}^{-3}\right)$, so the square root reduces to 1 :

$$
n_{o}=N_{d}
$$

The equilibrium hole concentration is:

$$
p_{o}=n_{i}^{2} / N_{d}
$$

"one electron per donor" is a way to remember the electron concentration in silicon doped with donors.

Numerical Example

Donor concentration: $N_{d}=10^{15} \mathrm{~cm}^{-3}$
Thermal equilibrium electron concentration:

$$
n_{o} \approx N_{d}=10^{15} \mathrm{~cm}^{-3}
$$

Thermal equilibrium hole concentration:

$$
p_{o}=n_{i}^{2} / n_{o} \approx n_{i}^{2} / N_{d}=\left(10^{10} \mathrm{~cm}^{-3}\right)^{2} / 10^{15} \mathrm{~cm}^{-3}=10^{5} \mathrm{~cm}^{-3}
$$

Silicon doped with donors is called n-type and electrons are the majority carriers. Holes are the (nearly negligible) minority carriers.

Doping with Acceptors

Acceptors (group III) accept an electron from the lattice to fill the incomplete fourth covalent bond and thereby create a mobile hole and become fixed negative charges. Example: Boron.

Acceptor concentration is $N_{a}\left(\mathrm{~cm}^{-3}\right)$, we have $N_{a} \gg n_{i}$ typically and so: one hole is added per acceptor:

$$
p_{o}=N_{a}
$$

equilibrium electron concentration is::

$$
n_{o}=n_{i}^{2} / N_{a}
$$

Doping with both Donors and Acceptors: Compensation

- Typical situation is that both donors and acceptors are present in the silicon lattice ... mass action law means that $n_{o} \neq N_{d}$ and $p_{o} \neq N_{a}$!

- Applying charge neutrality with four types of charged species:

$$
\rho=-q n_{o}+q p_{o}+q N_{d}-q N_{a}=q\left(p_{o}-n_{o}+N_{d}-N_{a}\right)=0
$$

we can substitute from the mass-action law $n_{o} p_{o}=n_{i}^{2}$ for either the electron concentration or for the hole concentration: which one is the majority carrier? answer (not surprising): $N_{d}>N_{a} \quad$--> electrons

$$
N_{a}>N_{d} \quad \text {--> } \quad \text { holes }
$$

Compensation

Example shows $N_{d}>N_{a}$

- Applying charge neutrality with four types of charged species:

$$
\rho=-q n_{o}+q p_{o}+q N_{d}-q N_{a}=q\left(p_{o}-n_{o}+N_{d}-N_{a}\right)=0
$$

we can substitute from the mass-action law $n_{o} p_{o}=n_{i}^{2}$ for either the electron concentration or for the hole concentration: which one is the majority carrier?
answer (not surprising): $\quad N_{d}>N_{a} \quad$--> electrons

$$
N_{a}>N_{d} \quad-->\quad \text { holes }
$$

Carrier Concentrations in Compensated Silicon

- For the case where $N_{d}>N_{a}$, the electron and hole concentrations are:

$$
n_{o} \cong N_{d}-N_{a} \text { and } \quad p_{o} \cong \frac{n_{i}^{2}}{N_{d}-N_{a}}
$$

- For the case where $N_{a}>N_{d}$, the hole and electron concentrations are:

$$
p_{o} \cong N_{a}-N_{d} \quad \text { and } \quad n_{o} \cong \frac{n_{i}^{2}}{N_{a}-N_{d}}
$$

Note that these approximations assume that $\left|N_{d}-N_{a}\right| \gg n_{i}$, which is nearly always true.

