CONTENTS

1 Nengo Tutorial
 1.1 One-Dimensional Representation ... 3
 1.2 Linear Transformations ... 8
 1.3 Non-Linear Transformations .. 19
 1.4 Feedback and Dynamics ... 24
 1.5 Cognitive Models .. 30

2 Nengo Demos
 2.1 Introductory Demos ... 39
 2.2 Simple Transformations ... 43
 2.3 Dynamics ... 50
 2.4 Basal Ganglia Based Simulations ... 54
 2.5 Learning .. 65
 2.6 Miscellaneous .. 71

3 Nengo Scripting
 3.1 Scripting Interface ... 81
 3.2 Scripting Basics .. 82
 3.3 Configuring Neural Ensembles ... 84
 3.4 Saving Time with the Quick Option 86
 3.5 Adding Arbitrary Code to a Model .. 87
 3.6 Scripting Tips ... 89
 3.7 List of Classes .. 93

4 Advanced Nengo Usage
 4.1 Interactive Plots Layout Files ... 105
 4.2 Creating a Drag And Drop Template 106

5 Java API Documentation .. 109
Nengo (http://nengo.ca) is a software package for simulating large-scale neural systems.

To use it, you define groups of neurons in terms of what they represent, and then form connections between neural groups in terms of what computation should be performed on those representations. Nengo then uses the Neural Engineering Framework (NEF) to solve for the appropriate synaptic connection weights to achieve this desired computation. This makes it possible to produce detailed spiking neuron models that implement complex high-level cognitive algorithms.
CHAPTER ONE

NENGO TUTORIAL

1.1 One-Dimensional Representation

1.1.1 Installing and Running Nengo

- Nengo runs on Linux, OS X, and Windows. The only requirement is that you have Java (http://java.com) already installed on your computer. Most computers already do have this installed.
- To download Nengo, download the file from http://nengo.ca
- To install Nengo, just unzip the file.
- To run Nengo, either:
 - Double-click on nengo.bat (in Windows)
 - run ./nengo (in OS X and Linux)

1.1.2 Creating Networks

- When creating an NEF model, the first step is to create a Network. This will contain all of the neural ensembles and any needed inputs to the system.
 - File->New Network
– Give the network a name

You can create networks inside of other networks. This can be useful for hierarchical organization of models.

1.1.3 Creating an Ensemble

– Ensembles must be placed inside networks in order to be used
– Right-click inside a network
 – Create New->NEF Ensemble

Here the basic features of the ensemble can be configured
 – Name
 – Number of nodes (i.e. neurons)
 – Dimensions (the number of values in the vector encoded by these neurons; leave at 1 for now)
 – Radius (the range of values that can be encoded; for example, a value of 100 means the ensemble can encode numbers between -100 and 100)

– Node Factory (the type of neuron to use)
• For this tutorial (and for the majority of our research), we use LIF Neuron, the standard Leaky-Integrate-and-Fire neuron. Clicking on Set allows for the neuron parameters to be configured:

- **tauRC**: (RC time constant for the neuron membrane; usually 0.02)
- **tauRef**: (absolute refractory period for the neuron; usually 0.002)
- **Max rate**: (the maximum firing rate for the neurons; each neuron will have a maximum firing rate chosen from a uniform distribution between low and high)
- **Intercept**: (the range of possible x-intercepts on the tuning curve graph; normally set to -1 and 1)

• Because there are many parameters to set and we often choose similar values, Nengo will remember your previous settings. Also, you can save templates by setting up the parameters as you like them and clicking on New in the Templates box. You will then be able to go back to these settings by choosing the template from the drop-down box.

• You can double-click on an ensemble to view the individual neurons within it.
1.1.4 Plotting Tuning Curves

- This shows the behaviour of each neuron when it is representing different values (i.e. the tuning curves for the neurons)
- Right-click on the ensemble, select Plot->Constant Rate Responses

- tauRC affects the linearity of the neurons (smaller values are more linear)
- Max rate affects the height of the curves at the left and right sides
- Intercept affects where the curves hit the x-axis (i.e. the value where the neuron starts firing)

1.1.5 Plotting Representation Error

- We often want to determine the accuracy of a neural ensemble.
- Right-click on the ensemble, select Plot->Plot Distortion:X
• Mean Squared Error (MSE) is also shown (at the top)
 • MSE decreases as the square of the number of neurons (so RMSE is proportional to 1/N)
 • Can also affect representation accuracy by adjusting the range of intercepts. This will cause the system to be more accurate in the middle of the range and less accurate at the edges.

1.1.6 Adjusting an Ensemble

• After an ensemble is created, we can inspect and modify many of its parameters
 • Right-click on an ensemble and select Configure

• neurons (number of neurons; this will rebuild the whole ensemble)
 • radii (the range of values that can be encoded; can be different for different dimensions)
 • encoders (preferred direction vectors for each neuron)

1.1.7 The Script Console

• Nengo also allows users to interact with the model via a scripting interface using the Python language. This can be useful for writing scripts to create components of models that you use often.
 • You can also use it to inspect and modify various aspects of the model.
 • Press Ctrl-P or choose View->Toggle Script Console to show the script interface
 – The full flexibility of the Python programming language is available in this console. It interfaces to the underlying Java code of the simulation using Jython, making all Java methods available.
 • If you click on an object in the GUI (so that it is highlighted in yellow), this same object is available by the name that in the script console.
- Click on an ensemble
- Open the script console
- type `print that.neurons`
- type `that.neurons=50`

- You can also run scripts by typing `run [scriptname.py]`

1.2 Linear Transformations

1.2.1 Creating Terminations

- Connections between ensembles are built using Origins and Terminations. The Origin from one ensemble can be connected to the Termination on the next ensemble.
- Create two ensembles. They can have different neural properties and different numbers of neurons, but for now make sure they are both one-dimensional.
- Right-click on the second ensemble and select Add Decoded Termination
 - Provide a name (for example, `input`)
 - Set the input dimension to 1 and use Set Weights to set the connection weight to 1
 - Set tauPSC to 0.01 (this synaptic time constant differs according to which neurotransmitter is involved. 10ms is the time constant for AMPA (5-10ms).}
1.2.2 Creating Projections

- We can now connect the two neural ensembles.
- Every ensemble automatically has an origin called X. This is an origin suitable for building any linear transformation. In Part Three we will show how to create origins for non-linear transformations.

- Click and drag from the origin to the termination. This will create the desired projection.
1.2.3 Adding Inputs

- In order to test that this projection works, we need to set the value encoded by the first neural ensemble. We do this by creating an input to the system. This is how all external inputs to Nengo models are specified.

- Right-click inside the Network and choose Create New->Function Input.

- Give it a name (for example, external input)

- Set its output dimensions to 1

- Press Set Function to define the behaviour of this input

- Select Constant Function from the drop-down list and then press Set to define the value itself. For this model, set it to 0.5.
- Add a termination on the first neural ensemble and create a projection from the new input to that ensemble.

1.2.4 Interactive Plots

- To observe the performance of this model, we now switch over to Interactive Plots. This allows us to both graph the performance of the model and adjust its inputs on-the-fly to see how this affects behaviour.
- Start Interactive Plots by right-clicking inside the Network and selecting Interactive Plots.
The text shows the various components of your model, and the arrows indicate the synaptic connections between them.

- You can move the components by left-click dragging them, and you can move all the components by dragging the background.
- You can hide a component by right-clicking on it and selecting “hide.”
- To show a hidden component, right click on the background and select the component by name.

The bottom of the window shows the controls for running the simulation.

- The simulation can be started and stopped by pressing the Play or Pause button at the bottom right. Doing this right now will run the simulation, but no data will be displayed since we don’t have any graphs open yet!
- The reset button on the far left clears all the data from the simulation and puts it back to the beginning.
- In the middle is a slider that shows the current time in the simulation. Once a simulation has been run, we can slide this back and forth to observe data from different times in the simulation.

Right-clicking on a component also allows us to select a type of data to show about that component.

- Right-click on A and select “value.” This creates a graph that shows the value being represented by the neuron in ensemble A. You can move the graph by left-click dragging it, and you can resize it by dragging near the corners or using a mouse scroll wheel.
- Press the Play button at the bottom-right or the window and confirm that this group of neurons successfully represents its input value, which we previously set to be 0.5.
• Now let us see what happens if we change the input. Right-click on the input and select “control”. This lets us vary the input while the simulation is running.

• Drag the slider up and down while the simulation is running (press Play again if it is paused). The neurons in ensemble A should be able to successfully represent the changing values.

• We can also view what the individual neurons are doing during the simulation. Right-click on A and choose “spike raster”. This shows the individual spikes coming from the neurons. Since there are 100 neurons in ensemble A, the spikes from only a sub-set of these are shown. You can right-click on the spike raster graph and adjust the proportion of spikes shown. Change it to 50%.

• Run the simulation and change the input. This will affect the neuron firing patterns.

• We can also see the voltage levels of all the individual neurons. Right-click on A and choose “voltage grid”. Each neuron is shown as a square and the shading of that square indicates the voltage of that neuron’s cell membrane, from black (resting potential) to white (firing threshold). Yellow indicates a spike.

• The neurons are initially randomly ordered. You can change this by right-clicking on the voltage grid and selecting “improve layout”. This will attempt to re-order the neurons so that neurons with similar firing patterns are near each other, as they are in the brain. This does not otherwise affect the simulation in any way.

• Run the simulation and change the input. This will affect the neuron voltage.
• So far, we have just been graphing information about neural ensemble A. We have shown that these 100 neurons can accurately represent a value that is directly input to them.

• For this to be useful for constructing cognitive models, we need to also show that the spiking output from this group of neurons can be used to transfer this information from one neural group to another.
 – In other words, we want to show that B can represent the same thing as A, where B’s only input is the neural firing from group A. For this to happen, the correct synaptic connection weights between A and B (as per the Neural Engineering Framework) must be calculated.
 – Nengo automatically calculates these weights whenever an origin is created.

• We can see that this communication is successful by creating graphs for ensemble B.
 – Do this by right-clicking on B and selecting “value”, and then right-clicking on B again and selecting “voltage grid”.
 – To aid in identifying which graph goes with which ensemble, right click on a graph and select “label”.
 – Graphs can be moved (by dragging) and resized (by dragging near the edges and corners or by the mouse scroll wheel) as desired.

• Notice that the neural ensembles can be representing the same value, but have a different firing pattern.

• Close the Interactive Plots when you are finished.

1.2.5 Adding Scalars

• If we want to add two values, we can simply add another termination to the final ensemble and project to it as well.
• Create a termination on the second ensemble called input 2.
• Create a new ensemble.
• Create a projection from the X origin to input 2.

• Create a new Function input and set its value to -0.7.
• Add the required termination and projection to connect it to the new ensemble.

• Switch to Interactive Plots.
• Show the controls for the two inputs.
• Create value graphs for the three neural ensembles.
• Press Play to start the simulation. The value for the final ensemble should be 0.5-0.7=-0.2.
• Use the control sliders to adjust the input. The output should still be the sum of the inputs.
• This will be true for most values. However, if the sum is outside of the radius that was set when the neural group was formed (in this case, from -1 to 1), then the neurons may not be able to fire fast enough to represent that value (i.e. they will saturate). Try this by computing 1+1. The result will only be around 1.3.

• To accurately represent values outside of the range -1 to 1, we need to change the radius of the output ensemble. Return to the standard black editing mode and right-click on ensemble B. Select “Configure” and change its radii to 2. Now return to the Interactive Plots. The network should now accurately compute that 1+1=2.

1.2.6 Adjusting Transformations

• So far, we have only considered projections that do not adjust the values being represented in any way. However, due to the NEF derivation of the synaptic weights between neurons, we can adjust these to create arbitrary linear transformations (i.e. we can multiply any represented value by a matrix).

• Each termination in Nengo has an associated transformation matrix. This can be adjusted as desired. In this case, we will double the weight of the original value, so instead of computing x+y, the network will compute 2x+y.

• Right-click on the first termination in the ensemble that has two projections coming into it. Select Configure. Double-click on transform.

• Double-click on the 1.0 and change it to 2.0

• Click on OK and then Done

• Now run the simulation. The final result should be 2(0.5)-0.7=0.3
1.2.7 Multiple Dimensions

- Everything discussed above also applies to ensembles that represent more than one dimension.
- To create these, set the number of dimensions to 2 when creating the ensemble.

- When adding a termination, the input dimension can be adjusted. This defines the shape of the transformation matrix for the termination, allowing for projections that change the dimension of the data.

- For example, two 1-dimensional values can be combined into a single two-dimensional ensemble. This would be done with two terminations: one with a transformation (or coupling) matrix of \([1 \, 0]\) and the other with \([0 \, 1]\). If the two inputs are called \(a\) and \(b\), this will result in the following calculation:

 \[
 a \cdot [1 \, 0] + b \cdot [0 \, 1] = [a \, 0] + [0 \, b] = [a \, b]
 \]

 - This will be useful for creating non-linear transformations, as discussed further in the next section.

- There are additional ways to view 2D representations in the interactive plots:
 - Including plotting the activity of the neurons along their preferred direction vectors
 - Plotting the 2D decoded value of the representation
1.2.8 Scripting

• Along with the ability to construct models using this point-and-click interface, Nengo also provides a Python scripting language interface for model creation. These examples can be seen in the “demo” directory.

• To create the communication channel through the scripting interface, go to the Script Console (Ctrl-P) and type:

```python
run demo/communication.py
```

• The actual code for this can be seen by opening the communication.py file in the demo directory:

```python
import nef

net=nef.Network('Communications Channel')
input=net.make_input('input',[0.5])
A=net.make('A',100,1)
B=net.make('B',100,1)
net.connect(input,A)
net.connect(A,B)
net.add_to(world)
```

• The following demo scripts create models similar to those seen in this part of the tutorial:

 - demo/single neuron.py shows what happens with an ensemble with only a single neuron on it (poor representation)
 - demo/two neurons.py shows two neurons working together to represent
 - demo/many neurons.py shows a standard ensemble of 100 neurons representing a value
 - demo/communication.py shows a communication channel
 - demo/addition.py shows adding two numbers
 - demo/2d representation.py shows 100 neurons representing a 2-D vector
 - demo/combining.py shows two separate values being combined into a 2-D vector
1.3 Non-Linear Transformations

1.3.1 Functions of one variable

- We now turn to creating nonlinear transformations in Nengo. The main idea here is that instead of using the X origin, we will create a new origin that estimates some arbitrary function of X. This will allow us to estimate any desired function.
 - The accuracy of this estimate will, of course, be dependent on the properties of the neurons.
- For one-dimensional ensembles, we can calculate various 1-dimensional functions:
 - \(f(x) = x^2 \)
 - \(f(x) = \theta(x) \) (thresholding)
 - \(f(x) = \sqrt{x} \)
- To perform a non-linear operation, we need to define a new origin
 - The X origin just uses \(f(x) = x \).
 - Create a new ensemble and a function input. The ensemble should be one-dimensional with 100 neurons and a radius of 1. Use a Constant Function input set two 0.5.
 - Create a termination on the ensemble and connect the function input to it
 - Now create a new origin that will estimate the square of the value.
 - Right-click on the combined ensemble and select Add decoded origin
 - Set the name to square
 - Click on Set Functions
 - Select User-defined Function and press Set
 - For the Expression, enter \(x0 \times x0 \). We refer to the value as \(x0 \) because when we extend this to multiple dimensions, we will refer to them as \(x0, x1, x2, \) and so on.
 - Press OK, OK, and OK.
 - You can now generate a plot that shows how good the ensemble is at calculating the non-linearity. Right-click on the ensemble and select Plot->Plot distortion:square.

- Start Interactive Plots.
- Create a control for the input, so you can adjust it while the model runs (right-click on the input and select “control”)
• Create a graph of the “square” value from the ensemble. Do this by right-clicking on the ensemble in the Interactive Plots window and selecting “square->value”.

• For comparison, also create a graph for the standard X origin by right-clicking on the ensemble and selecting “X->value”. This is the standard value graph that just shows the value being represented by this ensemble.

• Press Play to run the simulation. With the default input of 0.5, the squared value should be near 0.25. Use the control to adjust the input. The output should be the square of the input.

![Graphs showing the ensemble's square and standard X origin values.]

• You can also run this example using scripting:

```
run demo/squaring.py
```

1.3.2 Functions of multiple variables

• Since X (the value being represented by an ensemble) can also be multidimensional, we can also calculate these sorts of functions

 - \(f(x) = x_0 \times x_1 \)

 - \(f(x) = \max(x_0, x_1) \)

• To begin, we create two ensembles and two function inputs. These will represent the two values we wish to multiply together.

 - The ensembles should be one-dimensional, use 100 neurons and have a radius of 10 (so they can represent values between -10 and 10)

 - The two function inputs should be constants set to 8 and 5

 - The terminations you create to connect them should have time constants of 0.01 (AMPA)
• Now create a two-dimensional neural ensemble with a radius of 15 called Combined
 - Since it needs to represent multiple values, we increase the number of neurons it contains to 200

• Add two terminations to Combined
 - For each one, the input dimensions are 1
 - For the first one, use Set Weights to make the transformation be \([1 \ 0]\)
 - For the second one, use Set Weights to make the transformation be \([0 \ 1]\)

• Connect the two other ensembles to the Combined one

• Next, create an ensemble to store the result. It should have a radius of 100, since it will need to represent values from -100 to 100. Give it a single one-dimensional termination with a weight of 1.
Now we need to create a new origin that will estimate the product between the two values stored in the combined ensemble.

- Right-click on the combined ensemble and select Add decoded origin.
- Set the name to product
- Set Output dimensions to 1

- Click on Set Functions
- Select User-defined Function and press Set.

- For the Expression, enter $x_0 \times x_1$

- Press OK, OK, and OK to finish creating the origin
• Connect the new origin to the termination on the result ensemble

• Add a probe to the result ensemble and run the simulation
• The result should be approximately 40.
• Adjust the input controls to multiple different numbers together.

• You can also run this example using scripting:

```python
run demo/multiplication.py
```

1.3.3 Combined Approaches

• We can combine these two approaches in order to compute more complex functions, such as x^2y
 – Right-click on the ensemble representing the first of the two values and select Add decoded origin.
 – Give it the name “square”, set its output dimensions to 1, and press Set Functions.
 – As before, select the User-defined Function and press Set.
 – Set the Expression to be “x0*x0”.
 – Press OK, OK, and OK to finish creating the origin.
This new origin will calculate the square of the value represented by this ensemble.

If you connect this new origin to the Combined ensemble instead of the standard X origin, the network will calculate $x^2 y$ instead of xy.

1.4 Feedback and Dynamics

1.4.1 Storing Information Over Time: Constructing an Integrator

- The basis of many of our cognitive models is the integrator. Mathematically, the output of this network should be the integral of the inputs to this network.
 - Practically speaking, this means that if the input to the network is zero, then its output will stay at whatever value it is currently at. This makes it the basis of a neural memory system, as a representation can be stored over time.
 - Integrators are also often used in sensorimotor systems, such as eye control

- For an integrator, a neural ensemble needs to connect to itself with a transformation weight of 1, and have an input with a weight of τ, which is the same as the synaptic time constant of the neurotransmitter used.

- Create a one-dimensional ensemble called Integrator. Use 100 neurons and a radius of 1.

- Add two terminations with synaptic time constants of 0.1s. Call the first one input_A and give it a weight of 0.1. Call the second one feedback_B and give it a weight of 1.

- Create a new Function input using a Constant Function with a value of 1.

- Connect the Function input to the input termination

- Connect the X origin of the ensemble back to its own feedback termination.
• Go to Interactive Plots. Create a graph for the value of the ensemble (right-click on the ensemble and select “value”).

• Press Play to run the simulation. The value stored in the ensemble should linearly increase, reaching a value of 1 after approximately 1 second.
 – You can increase the amount of time shown on the graphs in Interactive Plots. Do this by clicking on the small downwards-pointing arrow at the bottom of the window. This will reveal a variety of settings for Interactive Plots. Change the “time shown” to 1.

1.4.2 Representation Range

• What happens if the previous simulation runs for longer than one second?

• The value stored in the ensemble does not increase after a certain point. This is because all neural ensembles have a range of values they can represent (the radius), and cannot accurately represent outside of that range.
• Adjust the radius of the ensemble to 1.5 using either the Configure interface or the script console (that.radii=[1.5]). Run the model again. It should now accurately integrate up to a maximum of 1.5.

1.4.3 Complex Input

• We can also run the model with a more complex input. Change the Function input using the following command from the script console (after clicking on it in the black model editing mode interface). Press Ctrl-P to show the script console:

```
that.functions=[ca.nengo.math.impl.PiecewiseConstantFunction([0.2,0.3,0.44,0.54,0.8,0.9],[0,5,0,-10,0,5,0])]
```

• You can see what this function looks like by right-clicking on it in the editing interface and selecting “Plot”.

```
1.4.4 Adjusting Synaptic Time Constants

- You can adjust the accuracy of an integrator by using different neurotransmitters.
- Change the input termination to have a tau of 0.01 (10ms: GABA) and a transform to be 0.01. Also change the feedback termination to have a tau of 0.01 (but leave its transform at 1).

- By using a shorter time constant, the network dynamics are more sensitive to small-scale variation (i.e. noise).
- This indicates how important the use of a particular neurotransmitter is, and why there are so many different types with vastly differing time constants.
- AMPA: 2-10ms
- GABA: 10-20ms
- NMDA: 20-150ms

The actual details of these time constants vary across the brain as well. We are collecting empirical data on these from various sources at http://ctn.uwaterloo.ca/~cnrglab/?q=node/505

- You can also run this example using scripting:

  run demo/integrator.py

### 1.4.5 Controlled Integrator

- We can also build an integrator where the feedback transformation (1 in the previous model) can be controlled.
  - This allows us to build a tunable filter.
- This requires the use of multiplication, since we need to multiply two stored values together. This was covered in the previous part of the tutorial.
- We can efficiently implement this by using a two-dimensional ensemble. One dimension will hold the value being represented, and the other dimension will hold the transformation weight.
- Create a two-dimensional neural ensemble with 225 neurons and a radius of 1.5.
- Create the following three terminations:
  - input: time constant of 0.1, 1 dimensional, with a transformation matrix of \([0, 1, 0]\). This acts the same as the input in the previous model, but only affects the first dimension.
  - control: time constant of 0.1, 1 dimensional, with a transformation matrix of \([0, 1]\). This stores the input control signal into the second dimension of the ensemble.
  - feedback: time constant of 0.1, 1 dimensional, with a transformation matrix of \([1, 0]\). This will be used in the same manner as the feedback termination in the previous model.
- Create a new origin that multiplies the values in the vector together
  - This is exactly the same as the multiplier in the previous part of this tutorial.
  - This is a 1 dimensional output, with a User-defined Function of \(x_0 \times x_1\)
- Create two function inputs called input and control. Start with Constant functions with a value of 1
  - Use the script console to set the input function by clicking on it and entering the same input function as used above:

    ```python
that.functions=[ca.nengo.math.impl.PiecewiseConstantFunction([0.2, 0.3, 0.44, 0.54, 0.8, 0.9], [0, 0, 0, 0, 0, 0, 0])]
    ```

- Connect the input function to the input termination, the control function to the control termination, and the product origin to the feedback termination.
• Go to Interactive Plots and show a graph for the value of the ensemble (right-click->X->value). If you run the simulation, this graph will show the values of both variables stored in this ensemble (the integrated value and the control signal). For clarity, turn off the display of the control signal by right-clicking on the graph and removing the checkmark beside “v[1]”.

• The performance of this model should be similar to that of the non-controlled integrator.

• Now adjust the control input to be 0.3 instead of 1. This will make the integrator into a leaky integrator. This value adjusts how quickly the integrator forgets over time.
• You can also run this example using scripting:

run demo/controlledintegrator.py

1.5 Cognitive Models

1.5.1 Larger Systems

• So far, we’ve seen how to implement the various basic components
  – representations
  – linear transformation
  – non-linear transformation
  – feedback

• The goal is to use these components to build full cognitive models using spiking neurons
  – Constrained by the actual properties of real neurons in real brains (numbers of neurons, connectivity, neurotransmitters, etc)
  – Should be able to produce behavioural predictions in terms of timing, accuracy, lesion effects, drug treatments, etc

• Some simple examples
  – Motor control
    * take an existing engineering control model for what angles to move joints to to place the hand at a particular position:

run demo/armcontrol.py

– Braitenberg vehicle

  * connect range sensors to opposite motors on a wheeled robot:

run demo/vehicle.py
1.5.2 Binding Semantic Pointers (SPs)

- We want to manipulate sophisticated representational states (this is the purpose of describing the semantic pointer architecture (SPA))
- The main operation to manipulate representations in the SPA is circular convolution (for binding)
- Let’s explore a binding circuit for semantic pointers
- Input: Two semantic pointers (high-dimensional vectors)
- Output: One semantic pointer (binding the original two)
- Implementation: element-wise multiplication of DFT (as described in slides):
  
  ```
 run demo/convolve.py
  ```

- To deal with high-dimensional vectors, we don’t want to have to set each individual value for each vector
  - would need 100 controls to configure a single 100-dimensional vector
- Nengo has a specialized “semantic pointer” graph for these high-dimensional cases
  - Instead of showing the value of each element in the vector (as with a normal graph), it shows the similarity between the currently represented vector and all the known vectors
  - “How much like CAT is this? How much like DOG? How much like RED? How much like TRIANGLE?”
  - You can configure which comparisons are shown using the right-click menu
You can also use it to _set_ the contents of a neural group by right-clicking and choosing “set value”. This will force the neurons to represent the given semantic pointer. You can go back to normal behaviour by selecting “release value”.

• Use the right-click menu to set the input values to “a” and “b”. The output should be similar to “a*b”.

  • This shows that the network is capable of computing the circular convolution operation, which binds two semantic pointers to create a third one.

• Use the right-click menu to set the input values to “a” and “~a*b”. The output should be similar to “b”.

  • This shows that convolution can be used to transform representations via binding and unbinding, since “a*(~a*b)” is approximately “b”.

### 1.5.3 Control and Action Selection: Basal Ganglia

• Pretty much every cognitive model has an action selection component

  • Out of many possible things you could do right now, pick one

  • Usually mapped on to the basal ganglia

  • Some sort of winner-take-all calculation based on how suitable the various possible actions are to the current situation

• Input: A vector representing how good each action is (for example, [0.2, 0.3, 0.9, 0.1, 0.7])

• Output: Which action to take ([0, 0, 1, 0, 0])

  • Actually, the output from the basal ganglia is inhibitory, so the output is more like [1, 1, 0, 1, 1]

• Implementation

  • Could try doing it as a direct function

    * Highly non-linear function

    * Low accuracy

  • Could do it by setting up inhibitory interconnections

    * Like the integrator, but any value above zero would also act to decrease the others

    * Often used in non-spiking neural networks (e.g. PDP++) to do k-winner-take-all

    * But, you have to wait for the network to settle, so it can be rather slow

  • Gurney, Prescott, & Redgrave (2001)

    * Model of action selection constrained by the connectivity of the basal ganglia
Each component computes the following function:

\[
\begin{align*}
    f(x) &= \begin{cases} 
    0 & \text{if } x < e \\
    \frac{m(x-e)}{x} & \text{if } x \geq e
    \end{cases}
\end{align*}
\]

Their model uses unrealistic rate neurons with that function for an output.

We can use populations of spiking neurons and compute that function.

We can also use correct timing values for the neurotransmitters involved:

```
run demo/basalganglia.py
```

- Adjust the input controls to change the five utility values being selected between.
- Graph shows the output from the basal ganglia (each line shows a different action).
- The selected action is the one set to zero.

Comparison to neural data:

- Ryan & Clark, 1991
- Stimulate regions in medial orbitofrontal cortex, measure from GPi, see how long it takes for a response to occur.
• To replicate

  – Set the inputs to \([0, 0, 0.6, 0, 0]\)
  – Run simulation for a bit, then pause it
  – Set the inputs to \([0, 0, 0.6, 1, 0]\)
  – Continue simulation
  – Measure how long it takes for the neurons for the fourth action to stop firing

  – In rats: 14-17ms. In model: 14ms (or more if the injected current isn’t extremely large)

1.5.4 Sequences of Actions

• To do something useful with the action selection system we need two things

  – A way to determine the utility of each action given the current context
  – A way to take the output from the action selection and have it affect behaviour

• We do this using the representations of the semantic pointer architecture

  – Any cognitive state is represented as a high-dimensional vector (a semantic pointer)
  – Working memory stores semantic pointers (using an integrator)
  – Calculate the utility of an action by computing the dot product between the current state and the state for the action (i.e. the IF portion of an IF-THEN production rule)

    * This is a linear operation, so we can directly compute it using the connection weights between the cortex and the basal ganglia
The THEN portion of a rule says what semantic pointers to send to what areas of the brain. This is again a linear operation that can be computed on the output of the thalamus using the output from the basal ganglia.

**Simple example:**

- Five possible states: A, B, C, D, and E
- Rules for IF A THEN B, IF B THEN C, IF C THEN D, IF D THEN E, IF E THEN A
- Five production rules (semantic pointer mappings) cycling through the five states:

```
run demo/sequence.py
```

- Can set the contents of working memory in Interactive Plots by opening an SP graph, right-clicking on it, and choosing “set value” (use “release value” to allow the model to change the contents).
- Cycle time is around 40ms, slightly faster than the standard 50ms value used in ACT-R, Soar, EPIC, etc.
  - This depends on the time constant for the neurotransmitter GABA.

### 1.5.5 Routing of Information

**What about more complex actions?**

- Same model as above, but we want visual input to be able to control where we start the sequence.
- Simple approach: add a visual buffer and connect it to the working memory:

```
run demo/sequencenogate.py
```
• Problem: If this connection always exists, then the visual input will always override what’s in working memory. This connection needs to be controllable.

• Solution

  – Actions need to be able to control the flow of information between cortical areas.
  – Instead of sending a particular SP to working memory, we need “IF X THEN transfer the pattern in cortex area Y to cortex area Z”?
  – In this case, we add a rule that says “IF it contains a letter, transfer the data from the visual area to working memory”
  – We make the utility of the rule lower than the utility of the sequence rules, so that it will only transfer that information (open that gate) when no other action applies:

    ```
 run demo/sequencerouted.py
    ```

• The pattern in the visual buffer is successfully transferred to working memory, then the sequence is continued from that letter.
1.5.6 Question Answering

- The control signal in the previous network can also be another semantic pointer that binds/unbinds the contents of the visual buffer (instead of just a gating signal)
  - This more flexible control does not add processing time
  - Allows processing the representations while routing them
- This allows us to perform arbitrary symbol manipulation such as “take the contents of buffer X, unbind it with buffer Y, and place the results in buffer Z”
- Example: Question answering
  - System is presented with a statement such as “red triangle and blue circle”
    - a semantic pointer representing this statement is placed in the visual cortical area
    - \texttt{statement+red\_triangle+blue\_circle}
  - Statement is removed after a period of time
  - Now a question is presented, such as “What was Red?”
    - \texttt{question+red} is presented to the same visual cortical area as before
  - Goal is to place the correct answer in a motor cortex area (in this case, “triangle”)
- This is achieved by creating two action rules:
  - If a statement is in the visual area, move it to working memory (as in the previous example)
  - If a question is in the visual area, unbind it with working memory and place the result in the motor area
- This example requires a much larger simulation than any of the others in this tutorial (more than 50,000 neurons). If you run this script, Nengo may take a long time (hours!) to solve for the decoders and neural connection weights needed. We have pre-computed the larger of these networks for you, and they can be downloaded at http://ctn.uwaterloo.ca/~cnrglab/f/question.zip:
  ```
 run demo/question.py
  ```
This section describes the collection of demos that comes with Nengo. To use any of these demo scripts in Nengo, do the following:

- **Open** Open any `<demo>.py` file by clicking on the icon (or going to File->Open from file in the menu) and selecting the file from `demos` directory in your Nengo installation.

- **Run** Run the demo by selecting the network created in the previous step and then clicking the icon in the upper right corner of the Nengo main window. Alternatively, right-click on the network and select ‘Interactive Plots’. Click the arrow to start the simulation.

  **Note:** You don’t need to select the network if there is only one available to run.

- **Delete** Remove the demo network after using it by right clicking and selecting ‘Remove model’.

  **Note:** You don’t need to remove a model if you reload the same script again, it will automatically be replaced.

More sophisticated examples can be found in the Model Archive at [http://models.nengo.ca](http://models.nengo.ca).

### 2.1 Introductory Demos

#### 2.1.1 A Single Neuron

*Purpose:* This demo shows how to construct and manipulate a single neuron.

*Comments:* This leaky integrate-and-fire (LIF) neuron is a simple, standard model of a spiking single neuron. It resides inside a neural ‘population’, even though there is only one neuron.

*Usage:* Grab the slider control and move it up and down to see the effects of increasing or decreasing input. This neuron will fire faster with more input (an ‘on’ neuron).

*Output:* See the screen capture below
import nef

net=nef.Network('Single Neuron')  # Create the network object
input=net.make_input('input', [-0.45])  # Create a controllable input function
    # with a starting value of -.45
neuron=net.make('neuron', 1, 1, max_rate=(100,100), intercept=(-0.5,-0.5),
    encoders=[[1]], noise=3)  # Make 1 neuron, 1 dimension, a max firing
    # rate evenly distributed between 100 and 100,
    # an x-intercept evenly distributed between -.5
    # and -.5, an encoder of 1 and noise at every
    # step with a variance of 3
net.connect(input,neuron)  # Connect the input to the neuron
net.add_to_nengo()

2.1.2 Two Neurons

Purpose: This demo shows how to construct and manipulate a complementary pair of neurons.

Comments: These are leaky integrate-and-fire (LIF) neurons. The neuron tuning properties have been selected so there is one ‘on’ and one ‘off’ neuron.

Usage: Grab the slider control and move it up and down to see the effects of increasing or decreasing input. One neuron will increase for positive input, and the other will decrease. This can be thought of as the simplest population to give a reasonable representation of a scalar value.

Output: See the screen capture below
import nef

net=nef.Network('Two Neurons')  # Create the network object
input=net.make_input('input', [-0.45])  # Create a controllable input function
    # with a starting value of -.45
neuron=net.make('neuron', 2, 1, max_rate=(100, 100), intercept=(-0.5, -0.5),
    encoders=[[1], [-1]], noise=3)  # Make 2 neurons, 1 dimension, max firing
    # rates evenly distributed between 100 and
    # 100, x-intercepts evenly distributed
    # between -.5 and -.5, encoders of 1 and
    # -1 and noise at every step with a
    # variance of 3

net.connect(input, neuron)  # Connect the input to the neurons
net.add_to_nengo()

2.1.3 Population of Neurons

Purpose: This demo shows how to construct and manipulate a population of neurons.

Comments: These are 100 leaky integrate-and-fire (LIF) neurons. The neuron tuning properties have been randomly selected.

Usage: Grab the slider control and move it up and down to see the effects of increasing or decreasing input. As a population, these neurons do a good job of representing a single scalar value. This can be seen by the fact that the input graph and neurons graphs match well.

Output: See the screen capture below
Code:

```python
import nef

net=nef.Network('Many Neurons') #Create the network object
input=net.make_input('input', [-0.45]) #Create a controllable input function
 #with a starting value of -.45
neuron=net.make('neurons',100,1,noise=1,
 quick=True) #Make a population with 100 neurons, 1 dimensions, and noise
 #variance of 1 (added at every step)
net.connect(input,neuron) #Connect the input to the population
net.add_to_nengo()
```

### 2.1.4 2D Representation

**Purpose:** This demo shows how to construct and manipulate a population of 2D neurons.

**Comments:** These are 100 leaky integrate-and-fire (LIF) neurons. The neuron tuning properties have been randomly selected to encode a 2D space (i.e. each neuron has an encoder randomly selected from the unit circle).

**Usage:** Grab the slider controls and move them up and down to see the effects of shifting the input throughout the 2D space. As a population, these neurons do a good job of representing a 2D vector value. This can be seen by the fact that the input graph and neurons graphs match well.

**Output:** See the screen capture below. The ‘circle’ plot is showing the preferred direction vector of each neuron multiplied by its firing rate. This kind of plot was made famous by Georgopoulos et al.
import nef
net=nef.Network('2D Representation') #Create the network object
input=net.make_input('input', [0,0]) #Create a controllable input function
#with a starting value of 0 and 0 in #the two dimensions
neuron=net.make('neurons',100,2,quick=True) #Make a population with 100 #neurons, 2 dimensions
net.connect(input,neuron) #Connect the input object to the neuron object,
#with an identity matrix by default
net.add_to_nengo()

2.2 Simple Transformations

2.2.1 Communication Channel

Purpose: This demo shows how to construct a simple communication channel.

Comments: A communication channel attempts to take the information from one population and put it in the next one. The ‘transformation’ is thus the identity $f(x) = x$.

Notably, this is the simplest ‘neural circuit’ in the demos. This is because the connection from the first to second population is only connection weights that are applied to postsynaptic currents (PSCs) generated by incoming spikes.

Usage: Grab the slider control and move it up and down to see the effects of increasing or decreasing input. Both populations should reflect the input, but note that the second population only gets input from the first population through synaptic connections.

Output: See the screen capture below
Code:

```python
import nef

net=nef.Network('Communications Channel') #Create the network object
input=net.make_input('input',[0.5]) #Create a controllable input function
 #with a starting value of 0.5
A=net.make('A',100,1,quick=True) #Make a population with 100 neurons,
 #1 dimensions
B=net.make('B',100,1,quick=True,
 storage_code='B') #Make a population with 100 neurons, 1 dimensions
 #(storage codes work with 'quick' to load already made
 #populations if they exist
net.connect(input,A) #Connect all the relevant objects
net.connect(A,B)
net.add_to_nengo()
```

### 2.2.2 Squaring the Input

**Purpose:** This demo shows how to construct a network that squares the value encoded in a first population in the output of a second population.

**Comments:** This is a simple nonlinear function being decoded in the connection weights between the cells. Previous demos are linear detections.

**Usage:** Grab the slider control and move it up and down to see the effects of increasing or decreasing input. Notice that the output value does not go negative even for negative inputs. Dragging the input slowly from -1 to 1 will approximately trace a quadratic curve in the output.

**Output:** See the screen capture below
2.2.3 Addition

**Purpose:** This demo shows how to construct a network that adds two inputs.

**Comments:** Essentially, this is two communication channels into the same population. Addition is thus somewhat 'free', since the incoming currents from different synaptic connections interact linearly (though two inputs don’t have to combine in this way: see the combining demo).

**Usage:** Grab the slider controls and move them up and down to see the effects of increasing or decreasing input. The C population represents the sum of A and B representations. Note that the ‘addition’ is a description of neural firing in the decoded space. Neurons don’t just add all the incoming spikes (the NEF has determined appropriate connection weights to make the result in C interpretable (i.e., decodable) as the sum of A and B).

**Output:** See the screen capture below

---

**Code:**

```python
import nef

net=nef.Network('Squaring') #Create the network object
input=net.make_input('input',[0]) #Create a controllable input function
 #with a starting value of 0
A=net.make('A',100,1,quick=True) #Make a population with 100 neurons,
 #1 dimensions
B=net.make('B',100,1,quick=True,storage_code='B') #Make a population with
 #100 neurons, 1 dimensions
net.connect(input,A) #Connect the input to A
net.connect(A,B,func=lambda x: x[0]*x[0]) #Connect A and B with the
 #defined function approximated
 #in that connection

net.add_to_nengo()
```
2.2.4 Combining 1D Representations into a 2D Representation

**Purpose:** This demo shows how to construct a network that combines two 1D inputs into a 2D representation.

**Comments:** This can be thought of as two communication channels projecting to a third population, but instead of combining the input (as in addition), the receiving population represents them as being independent.

**Usage:** Grab the slider controls and move them up and down to see the effects of increasing or decreasing input. Notice that the output population represents both dimensions of the input independently, as can be seen by the fact that
each input slider only changes one dimension in the output.

*Output:* See the screen capture below

```python
import nef

net=nef.Network('Combining') # Create the network object
inputA=net.make_input('inputA', [0]) # Create a controllable input function with a starting value of 0
inputB=net.make_input('inputB', [0]) # Create another controllable input function with a starting value of 0
A=net.make('A', 100, 1, quick=True) # Make a population with 100 neurons, 1 dimensions
B=net.make('B', 100, 1, quick=True, storage_code='B') # Make a population with 100 neurons, 1 dimensions (storage codes work with 'quick' to load already made populations if they exist
C=net.make('C', 100, 2, quick=True, radius=1.5) # Make a population with 100 neurons, 2 dimensions, and set a larger radius (so 1,1 input still fits within the circle of that radius)

net.connect(inputA, A) # Connect all the relevant objects (default connection is identity)
net.connect(inputB, B)
net.connect(A, C, transform=[1, 0]) # Connect with the given 1x2D mapping matrix
net.connect(B, C, transform=[0, 1])
net.add_to_nengo()
```

### 2.2.5 Performing Multiplication

*Purpose:* This demo shows how to construct a network that multiplies two inputs.
**Comments:** This can be thought of as a combination of the combining demo and the squaring demo. Essentially, we project both inputs independently into a 2D space, and then decode a nonlinear transformation of that space (the product of the first and second vector elements).

Multiplication is extremely powerful. Following the simple usage instructions below suggests how you can exploit it to do gating of information into a population, as well as radically change the response of a neuron to its input (i.e. completely invert its ‘tuning’ to one input dimension by manipulating the other).

**Usage:** Grab the slider controls and move them up and down to see the effects of increasing or decreasing input. The output is the product of the inputs. To see this quickly, leave one at zero and move the other. Or, set one input at a negative value and watch the output slope go down as you move the other input up.

**Output:** See the screen capture below

```python
import nef
net=nef.Network('Multiply') #Create the network object
inputA=net.make_input('inputA',[8]) #Create a controllable input function
 #with a starting value of 8
inputB=net.make_input('inputB',[5]) #Create a controllable input function
 #with a starting value of 5
A=net.make('A',100,1,radius=10,quick=True) #Make a population with 100 neurons,
 #1 dimensions, a radius of 10
 #(default is 1)
B=net.make('B',100,1,radius=10,quick=True,
 storage_code='B') #Make a population with 100 neurons, 1 dimensions, a
 #radius of 10 (default is 1), storage_code works with
 #quick to reuse an appropriate population if created
 #=>before
C=net.make('Combined',225,2,radius=15,
```
quick=True)  #Make a population with 225 neurons, 2 dimensions, and set a
diameter larger radius (so 10,10 input still fits within the circle  
of that radius)
D=net.make('D',100,1,radius=100,quick=True,  
storage_code='D')  #Make a population with 100 neurons, 1 dimensions, a
#radius of 10 (default is 1)
net.connect(inputA,A)  #Connect all the relevant objects
net.connect(inputB,B)
net.connect(A,C,transform=[1,0])  #Connect with the given 1x2D mapping matrix
net.connect(B,C,transform=[0,1])
def product(x):  
    return x[0]*x[1]
net.connect(C,D,func=product)  
    #Create the output connection mapping the
    #1D function `product`
net.add_to_nengo()

2.2.6 Circular Convolution

**Purpose:** This demo shows how to exploit the hrr library to do binding of vector representations.

**Comments:** The binding operator we use is circular convolution. This example is in a 10-dimensional space.

This (or any similar) binding operator (see work on vector symbolic architectures (VSAs)) is important for cognitive models. This is because such operators lets you construct structured representations in a high-dimensional vector space.

**Usage:** The best way to change the input is to right-click the ‘semantic pointer’ graphs and choose ‘set value’ to set the value to one of the elements in the vocabulary (defined as a, b, c, d, or e in the code) by typing it in. Each element in the vocabulary is a randomly chosen vector. Set a different value for the two input graphs.

The ‘C’ population represents the output of a neurally-computed circular convolution (i.e., binding) of the ‘A’ and ‘B’ input vectors. The label above each semantic pointer graph displays the name of the vocabulary vectors that are most similar to the vector represented by that neural ensemble. The number preceding the vector name is the value of the normalized dot product between the two vectors (i.e., the similarity of the vectors).

In this simulation, the ‘most similar’ vocabulary vector for the ‘C’ ensemble is ‘a*b’. The ‘a*b’ vector is the analytically-calculated circular convolution of the ‘a’ and ‘b’ vocabulary vectors. This result is expected, of course. Also of note is that the similarity of the ‘a’ and ‘b’ vectors alone is significantly lower. Both of the original input vectors should have a low degree of similarity to the result of the binding operation. The ‘show pairs’ option controls whether bound pairs of vocabulary vectors are included in the graph.

**Output:** See the screen capture below
Code:

```python
import nef
import nef.convolution
import hrr

D=10
vocab=hrr.Vocabulary(D, include_pairs=True)
vocab.parse('a+b+c+d+e')

net=nef.Network('Convolution') #Create the network object
A=net.make('A',300,D,quick=True) #Make a population of 300 neurons and
#10 dimensions
B=net.make('B',300,D,quick=True)
C=net.make('C',300,D,quick=True)
conv=nef.convolution.make_convolution(net,'*',A,B,C,100,
 quick=True) #Call the code to construct a convolution network using
#the created populations and 100 neurons per dimension

net.add_to_nengo()
```

2.3 Dynamics

2.3.1 A Simple Integrator

*Purpose:* This demo implements a one-dimensional neural integrator.

*Comments:* This is the first example of a recurrent network in the demos. It shows how neurons can be used to implement stable dynamics. Such dynamics are important for memory, noise cleanup, statistical inference, and many other dynamic transformations.
Usage: When you run this demo, it will automatically put in some step functions on the input, so you can see that the output is integrating (i.e., summing over time) the input. You can also input your own values. Note that since the integrator constantly sums its input, it will saturate quickly if you leave the input non-zero. This reminds us that neurons have a finite range of representation. Such saturation effects can be exploited to perform useful computations (e.g., soft normalization).

Output: See the screen capture below

Code:

```python
import nef

net=nf.Network('Integrator') # Create the network object
input=net.make_input('input',[0]) # Create a controllable input function
 # with a starting value of 0
input.functions=[ca.nengo.math.impl.PiecewiseConstantFunction(
 [0.2,0.3,0.44,0.54,0.8,0.9],
 [0,5,0,-10,0,5,0])] # Change the input function (that was 0) to this
 # piecewise step function
A=net.make('A',100,1,quick=True) # Make a population with 100 neurons,
 # 1 dimensions
net.connect(input,A,weight=0.1,pstc=0.1) # Connect the input to the integrator,
 # scaling the input by .1; postsynaptic
 # time constant is 10ms
net.connect(A,A,pstc=0.1) # Connect the population to itself with the
 # default weight of 1
net.add_to_nengo()
```

2.3. Dynamics 51
2.3.2 Controlled Integrator

Purpose: This demo implements a controlled one-dimensional neural integrator.

Comments: This is the first example of a controlled dynamic network in the demos. This is the same as the integrator circuit, but we now have introduced a population that explicitly affects how well the circuit ‘remembers’ its past state. The ‘control’ input can be used to make the integrator change from a pure communication channel (0) to an integrator (1) with various low-pass filtering occurring in between.

Usage: When you run this demo, it will automatically put in some step functions on the input, so you can see that the output is integrating (i.e. summing over time) the input. You can also input your own values. It is quite sensitive like the integrator. But, if you reduce the ‘control’ input below 1, it will not continuously add its input, but slowly allow that input to leak away. It’s interesting to rerun the simulation from the start, but decreasing the ‘control’ input before the automatic input starts to see the effects of ‘leaky’ integration.

Output: See the screen capture below

```
import nef
net=nef.Network('Controlled Integrator') #Create the network object
input=net.make_input('input',0) #Create a controllable input function with
 #a starting value of 0
input.functions=[ca.nengo.math.impl.PiecewiseConstantFunction(
 [0,0.2,0.3,0.44,0.54,0.8,0.9],
 [0,5,0,-10,0,5,0])]
 #Change the input function (that was 0) to this
 #piecewise step function
control=net.make_input('control',1) #Create a controllable input function
 #with a starting value of 1
A=net.make('A',225,2,radius=1.5,
 quick=True) #Make a population with 225 neurons, 2 dimensions, and a
 #larger radius to accommodate large simultaneous inputs
net.connect(input,A,transform=[0.1,0],pstc=0.1) #Connect all the relevant
```
2.3.3 A Simple Harmonic Oscillator

**Purpose:** This demo implements a simple harmonic oscillator in a 2D neural population.

**Comments:** This is more visually interesting on its own than the integrator, but the principle is the same. Here, instead of having the recurrent input just integrate (i.e. feeding the full input value back to the population), we have two dimensions which interact. In Nengo there is a ‘Linear System’ template which can also be used to quickly construct a harmonic oscillator (or any other linear system).

**Usage:** When you run this demo, it will sit at zero while there is no input, and then the input will cause it to begin oscillating. It will continue to oscillate without further input. You can put inputs in to see the effects. It is very difficult to have it stop oscillating. You can imagine this would be easy to do by either introducing control as in the controlled integrator demo, or by changing the tuning curves of the neurons (hint: so none represent values between -.3 and 3, say).

**Output:** See the screen capture below. You will get a sine and cosine in the 2D output.
**Code:**

```python
import nef

net=nef.Network('Oscillator') #Create the network object
input=net.make_input('input',[1,0],
 zero_after_time=0.1) #Create a controllable input function with a
 #starting value of 1 and zero, then make it go
 #to zero after .1s
A=net.make('A',200,2) #Make a population with 200 neurons, 2 dimensions
net.connect(input,A)
net.connect(A,A,[[1,1],[-1,1]],pstc=0.1) #Recurrently connect the population
 #with the connection matrix for a
 #simple harmonic oscillator mapped
 #to neurons with the NEF

net.add_to_nengo()
```

### 2.4 Basal Ganglia Based Simulations

#### 2.4.1 Basal Ganglia

**Purpose:** This demo introduces the basal ganglia model that the SPA exploits to do action selection.

**Comments:** This is just the basal ganglia, not hooked up to anything. It demonstrates that this model operates as expected, i.e. supressing the output corresponding to the input with the highest input value.

This is an extension to a spiking, dynamic model of the Redgrave et al. work. It is more fully described in several CNRG lab publications. It exploits the 'nps' class from Nengo.

**Usage:** After running the demo, play with the 5 input sliders. The highest slider should always be selected in the output. When they are close, interesting things happen. You may even be able to tell that things are selected more quickly for larger differences in input values.

**Output:** See the screen capture below.
import nef
import nps

D=5
net=nef.Network('Basal Ganglia')  #Create the network object
input=net.make_input('input',[0]*D)  #Create a controllable input function
        #with a starting value of 0 for each of D
        #dimensions
output=net.make('output',1,D,mode='direct',quick=True)  
        #Make a population with 100 neurons, 5 dimensions, and set
        #the simulation mode to direct
nps.basalganglia.make_basal_ganglia(net,input,output,D,same_neurons=False,N=50)  
        #Make a basal ganglia model with 50 neurons per action
net.add_to_nengo()

2.4.2 Cycling Through a Sequence

Purpose: This demo uses the basal ganglia model to cycle through a 5 element sequence.

Comments: This basal ganglia is now hooked up to a memory. This allows it to update that memory based on its current input/action mappings. The mappings are defined in the code such that A->B, B->C, etc. until E->A completing a loop. This uses the ‘spa’ module from Nengo.

The ‘utility’ graph shows the utility of each rule going into the basal ganglia. The ‘rule’ graph shows which one has been selected and is driving thalamus.

Usage: When you run the network, it will go through the sequence forever. It’s interesting to note the distance between the ‘peaks’ of the selected items. It’s about 40ms for this simple action. We like to make a big deal of this.

Output: See the screen capture below.
Code:

```python
from spa import *

D=16

class Rules: # Define the rules by specifying the start state and the desired next state
 def A(state='A'): # e.g. If in state A
 set(state='B') # then go to state B
 def B(state='B'):
 set(state='C')
 def C(state='C'):
 set(state='D')
 def D(state='D'):
 set(state='E')
 def E(state='E'):
 set(state='A')

class Sequence(SPA): # Define an SPA model (cortex, basal ganglia, thalamus)
 dimensions=16
```
state=Buffer()  # Create a working memory (recurrent network) object:
               # i.e. a Buffer
BG=BasalGanglia(Rules())  # Create a basal ganglia with the pre-specified
                         # set of rules
thal=Thalamus(BG)  # Create a thalamus for that basal ganglia (so it
                   # uses the same rules)

input=Input(0.1, state='D')  # Define an input; set the input to
                            # state D for 100 ms

seq=Sequence()

2.4.3 Routed Sequencing

Purpose: This demo uses the basal ganglia model to cycle through a 5 element sequence, where an arbitrary start can be presented to the model.

Comments: This basal ganglia is now hooked up to a memory and includes routing. The addition of routing allows the system to choose between two different actions: whether to go through the sequence, or be driven by the visual input. If the visual input has its value set to LETTER+D (for instance), it will begin cycling through at D->E, etc.

The ‘utility’ graph shows the utility of each rule going into the basal ganglia. The ‘rule’ graph shows which one has been selected and is driving thalamus.

Usage: When you run the network, it will go through the sequence forever, starting at D. You can right-click the SPA graph and set the value to anything else (e.g. ‘LETTER+B’) and it will start at the new letter and then begin to sequence through. The point is partly that it can ignore the input after its first been shown and doesn’t perseverate on the letter as it would without gating.

Output: See the screen capture below.

Code:
from spa import *

D=16

class Rules: #Define the rules by specifying the start state and the desired next state
def start(vision='LETTER '):
    set(state=vision)
def A(state='A '): #e.g. If in state A
    set(state='B ')# then go to state B
def B(state='B '):
    set(state='C ')
def C(state='C '):
    set(state='D ')
def D(state='D '):
    set(state='E ')
def E(state='E '):
    set(state='A ')

class Routing(SPA): #Define an SPA model (cortex, basal ganglia, thalamus)
dimensions=16

state=Buffer() #Create a working memory (recurrent network)
    #object: i.e. a Buffer
vision=Buffer(feedback=0) #Create a cortical network object with no
    #recurrence (so no memory properties, just
    #transient states)
BG=BasalGanglia(Rules) #Create a basal ganglia with the prespecified
    #set of rules
thal=Thalamus(BG) # Create a thalamus for that basal ganglia (so it
    # uses the same rules)
inpu\nt=Input(0.1,vision='LETTER+D') #Define an input; set the input
    #to state LETTER+D for 100 ms

model=Routing()

### 2.4.4 A Question Answering Network

**Purpose:** This demo shows how to do question answering using binding (i.e. see the convolution demo).

**Comments:** This example binds the A and B inputs to give C. Then the E input is used to decode the contents of C and the result is shown in F. Essentially showing unbinding gives back what was bound.

Note: The b/w graphs show the decoded vector values, not neural activity. So, the result in F should visually look like the A element if B is being unbound from C.

**Usage:** When you run the network, it will start by binding ‘RED’ and ‘CIRCLE’ and then unbinding ‘RED’ from that result, and the output will be ‘CIRCLE’. Then it does the same kind of thing with BLUE SQUARE. You can set the input values by right-clicking the SPA graphs and setting the value by typing somethign in. If you type in a vocabulary word that is not there, it will be added to the vocabulary.

**Output:** See the screen capture below.
Code:

D=16
subdim=4
N=100
seed=7

import nef
import nef.convolution
import hrr
import math
import random

random.seed(seed)

vocab=hrr.Vocabulary(D,max_similarity=0.1)

net=nef.Network('Question Answering')  #Create the network object
A=net.make('A',1,D,mode='direct')  #Make some pseudo populations (so they
    #run well on less powerful machines):
    #1 neuron, 16 dimensions, direct mode
B=net.make('B',1,D,mode='direct')
C=net.make_array('C',N,D/subdim,dimensions=subdim,quick=True,radius=1.0/math.sqrt(D),storage_code='
    #array element and D/subdim elements in the array
    #each with subdim dimensions, set the radius as
    #appropriate for multiplying things of this
    #dimension
E=net.make('E',1,D,mode='direct')
F=net.make('F',1,D,mode='direct')

conv1=nef.convolution.make_convolution(net,'*',A,B,C,N,
    quick=True)  #Make a convolution network using the construct populations
conv2=nef.convolution.make_convolution(net,'/',C,E,F,N,
invert_second=True, quick=True) # Make a 'correlation' network (by using convolution, but inverting the second input)

CIRCLE=vocab.parse('CIRCLE') # Add elements to the vocabulary to use
BLUE=vocab.parse('BLUE')
RED=vocab.parse('RED')
SQUARE=vocab.parse('SQUARE')
ZERO=[0]*D

class Input(nef.SimpleNode): # Make a simple node to generate interesting input for the network
  def origin_A(self):
    t=(self.t_start)%1.0
    if 0<t<0.5: return RED.v
    if 0.5<t<1: return BLUE.v
    return ZERO
  def origin_B(self):
    t=(self.t_start)%1.0
    if 0.0<t<0.5: return CIRCLE.v
    if 0.5<t<1: return SQUARE.v
    return ZERO
  def origin_E(self):
    t=(self.t_start)%1.0
    if 0.2<t<0.35: return CIRCLE.v
    if 0.35<t<0.5: return RED.v
    if 0.7<t<0.85: return SQUARE.v
    if 0.85<t<1: return BLUE.v
    return ZERO

input=Input('input')
net.add(input)
net.connect(input.getOrigin('A'), A) # Connect the origins in the simple node to the populations they are input to
net.connect(input.getOrigin('B'), B)
net.connect(input.getOrigin('E'), E)

net.add_to_nengo()

### 2.4.5 A Question Answering Network with Memory

**Purpose:** This demo performs question answering based on storing items in a working memory.

**Comments:** This example is very much like the question answering demo (it would be good to read that). However, it answers questions based on past input, not the immediate input.

**Usage:** When you run the network, it will start by binding ‘RED’ and ‘CIRCLE’ and then binding ‘BLUE’ and ‘SQUARE’ so the memory essentially has RED*CIRCLE + BLUE*SQUARE. The input from A and B is turned off, and E is then run through the vocabulary. The appropriately unbound element for each vocabulary word shows up in F as appropriate.

**Output:** See the screen capture below.
Code:

```python
D=16
subdim=4
N=100
seed=7

import nef
import nef.convolution
import hrr
import math
import random

random.seed(seed)

vocab=hrr.Vocabulary(D,max_similarity=0.1)

net=nef.Network('Question Answering with Memory') #Create the network object
A=net.make('A',1,D,mode='direct') #Make some pseudo populations (so they run
#well on less powerful machines): 1 neuron,
#16 dimensions, direct mode
B=net.make('B',1,D,mode='direct')
C=net.make_array('C',N,D/subdim,dimensions=subdim,quick=True,radius=1.0/math.sqrt(D),storage_code='%d') #Make a real population, with 100 neurons per
#array element and D/subdim elements in the array
#each with subdim dimensions, set the radius as
#appropriate for multiplying things of this
#dimension
E=net.make('E',1,D,mode='direct')
F=net.make('F',1,D,mode='direct')

conv1=nef.convolution.make_convolution(net,'*',A,B,C,N,quick=True) #Make a convolution network using the construct populations
conv2=nef.convolution.make_convolution(net,'/',C,E,F,N,
```

2.4. Basal Ganglia Based Simulations
invert_second=True, quick=True)  # Make a ‘correlation’ network (by using convolution, but inverting the second input)
net.connect(C,C,pstc=0.4)  # Recurrently connect C so it acts as a memory
CIRCLE=vocab.parse('CIRCLE')  # Create a vocabulary
BLUE=vocab.parse('BLUE')
RED=vocab.parse('RED')
SQUARE=vocab.parse('SQUARE')
ZERO=[0]*D

class Input(nef.SimpleNode):  # Make a simple node to generate interesting input for the network
    def origin_A(self):
        t=(self.t_start)
        if 0<t<0.25: return RED.v
        if 0.25<t<0.5: return BLUE.v
        return ZERO
    def origin_B(self):
        t=(self.t_start)
        if 0.0<t<0.25: return CIRCLE.v
        if 0.25<t<0.5: return SQUARE.v
        return ZERO
    def origin_E(self):
        t=self.t_start
        if t<0.5: return ZERO
        t=t%0.5
        if 0.0<t<0.1: return CIRCLE.v
        if 0.1<t<0.2: return RED.v
        if 0.2<t<0.3: return SQUARE.v
        if 0.3<t<0.4: return BLUE.v
        return ZERO

input=Input('input')
net.add(input)
net.connect(input.getOrigin('A'),A)  # Connect the origins in the simple node to the populations they are input to
net.connect(input.getOrigin('B'),B)
net.connect(input.getOrigin('E'),E)

net.add_to_nengo()

2.4.6 A Controlled Question Answering Network

Purpose: This demo performs question answering based on storing items in a working memory, while under control of a basal ganglia.

Comments: This example is very much like the question answering with memory demo (it would be good to read that). However, both the information to bind and the questions to answer come in through the same visual channel. The basal ganglia decides what to do with the information in the visual channel based on its content (i.e. whether it is a statement or a question).

Usage: When you run the network, it will start by binding ‘RED’ and ‘CIRCLE’ and then binding ‘BLUE’ and ‘SQUARE’ so the memory essentially has RED*CIRCLE + BLUE*SQUARE. It does this because it is told that
RED*CIRCLE is a STATEMENT (i.e. RED*CIRCLE+STATEMENT in the code) as is BLUE*SQUARE. Then it is presented with something like QUESTION+RED (i.e., ‘What is red?’). The basal ganglia then reroutes that input to be compared to what is in working memory and the result shows up in the motor channel.

Output: See the screen capture below.

![Screen capture showing simulation](image)

### Code:
```
D=16
subdim=4
N=100
seed=3

import nef
import nps
import nef.convolution
import hrr
import math
import random

random.seed(seed)

net=nef.Network('Question Answering with Control') # Create the network object

for i in range(50): # This is here to create a vocabulary with sufficient
 # lack of similarity in the items so we can work in such
 # a low dimensional space; for high dimensional spaces
 # this can be skipped
 vocab=hrr.Vocabulary(D,max_similarity=0.05)
 vocab.parse('CIRCLE+BLUE+RED+SQUARE')
 a=vocab.parse('(RED*CIRCLE+BLUE*SQUARE)*~(RED)').compare(
 vocab.parse('CIRCLE'))
 b=vocab.parse('(RED*CIRCLE+BLUE*SQUARE)*~(SQUARE)').compare(
 vocab.parse('BLUE'))
```

2.4. Basal Ganglia Based Simulations
```python
if min(a,b) > 0.65:
 break

class Input(nef.SimpleNode):
 # Make a simple node to generate interesting input for the network
 def __init__(self,name):
 self.zero=[0]*D
 nef.SimpleNode.__init__(self,name)
 self.v1=vocab.parse('STATEMENT+RED+CIRCLE').v
 self.v2=vocab.parse('STATEMENT+BLUE+SQUARE').v
 self.v3=vocab.parse('QUESTION+RED').v
 self.v4=vocab.parse('QUESTION+SQUARE').v
 def origin_x(self):
 t=self.t_start
 if t<0.5:
 if 0.1<self.t_start<0.3:
 return self.v1
 elif 0.35<self.t_start<0.5:
 return self.v2
 else:
 return self.zero
 else:
 t=(t-0.5)%0.6
 if 0.2<t<0.4:
 return self.v3
 elif 0.4<t<0.6:
 return self.v4
 else:
 return self.zero

inv=Input('inv')
net.add(inv)

prods=nps.ProductionSet() # This is an older way of implementing an SPA
 # (see SPA routing examples), using the nps code directly
 prods.add(dict(visual='STATEMENT'),dict(visual_to_wm=True))
 prods.add(dict(visual='QUESTION'),dict(wm_deconv_visual_to_motor=True))

model=nps.NPS(net,prods,D,direct_convolution=False,direct_buffer=['visual'],
 neurons_buffer=N/subdim,subdimensions=subdim)
model.add_buffer_feedback(wm=1,pstc=0.4)

net.connect(inv.getOrigin('x'),'buffer_visual')

Rename objects for display purposes
 net.network.getNode('prod').name='thalamus'
 net.network.getNode('buffer_visual').name='visual'
 net.network.getNode('buffer_wm').name='memory'
 net.network.getNode('buffer_motor').name='motor'
 net.network.getNode('channel_visual_to_wm').name='channel'
 net.network.getNode('wm_deconv_visual_to_motor').name='x'
 net.network.getNode('gate_visual_wm').name='gate1'
 net.network.getNode('gate_wm_visual_motor').name='gate2'

net.add_to_nengo()
```

---

**Chapter 2. Nengo Demos**

---
2.5 Learning

2.5.1 Learning a Communication Channel

*Purpose:* This is the first demo showing learning in Nengo. It learns the same circuit constructed in the Communication Channel demo.

*Comments:* The particular connection that is learned is the one between the ‘pre’ and ‘post’ populations. This particular learning rule is a kind of modulated Hebb-like learning (see Bekolay, 2011 for details).

Note: The red and blue graph is a plot of the connection weights, which you can watch change as learning occurs (you may need to zoom in with the scroll wheel; the learning a square demo has a good example). Typically, the largest changes occur at the beginning of a simulation. Red indicates negative weights and blue positive weights.

*Usage:* When you run the network, it automatically has a random white noise input injected into it. So the input slider moves up and down randomly. However, learning is turned off, so there is little correlation between the representation of the pre and post populations.

Turn learning on: To allow the learning rule to work, you need to move the ‘switch’ to +1. Because the learning rule is modulated by an error signal, if the error is zero, the weights won’t change. Once learning is on, the post will begin to track the pre.

Monitor the error: When the switch is 0 at the beginning of the simulation, there is no ‘error’, though there is an ‘actual error’. The difference here is that ‘error’ is calculated by a neural population, and used by the learning rule, while ‘actual error’ is computed mathematically and is just for information.

Repeat the experiment: After a few simulated seconds, the post and pre will match well. You can hit the ‘reset’ button (bottom left) and the weights will be reset to their original random values, and the switch will go to zero. For a different random starting point, you need to re-run the script.

*Output:* See the screen capture below.
Code:

```python
N=60
D=1

import nef
import nef.templates.learned_termination as learning
import nef.templates.gate as gating
import random

from ca.nengo.math.impl import FourierFunction
from ca.nengo.model.impl import FunctionInput
from ca.nengo.model import Units

random.seed(27)

net=nef.Network('Learn Communication') #Create the network object

Create input and output populations.
A=net.make('pre',N,D) #Make a population with 60 neurons, 1 dimensions
B=net.make('post',N,D) #Make a population with 60 neurons, 1 dimensions

Create a random function input.
input=FunctionInput('input',[FourierFunction(0.1, 10, 0.5, 12)], Units.UNK) #Create a white noise input function .1 base freq, max freq 10 rad/s, and RMS of .5; 12 is a seed
net.add(input) #Add the input node to the network
net.connect(input,A)
```
# Create a modulated connection between the 'pre' and 'post' ensembles.
learning.make(net, errName='error', N_err=100, preName='pre', postName='post',
             rate=5e-7)  # Make an error population with 100 neurons, and a learning
             # rate of 5e-7

# Set the modulatory signal.
net.connect('pre', 'error')
net.connect('post', 'error', weight=-1)

# Add a gate to turn learning on and off.
net.make_input('switch', [0])  # Create a controllable input function
                           # with a starting value of 0
net.connect('switch', 'Gate')  # Create a gate population with 100 neurons, and a postsynaptic
                            # time constant of 10ms
net.connect('Gate', 'error')

# Add another non-gated error population running in direct mode.
actual = net.make('actual error', 1, 1,
                  mode='direct')  # Make a population with 1 neurons, 1 dimensions, and
                  # run in direct mode
net.connect(A, actual)
net.connect(B, actual, weight=-1)

net.add_to_nengo()

## 2.5.2 Learning Multiplication

**Purpose:** This demo shows learning a familiar nonlinear function, multiplication.

**Comments:** The setup here is very similar to the other learning demos. The main difference is that this demo learns a nonlinear projection from a 2D to a 1D space (i.e. multiplication).

**Usage:** When you run the network, it automatically has a random white noise input injected into it in both dimensions.

Turn learning on: To allow the learning rule to work, you need to move the ‘switch’ to +1.

Monitor the error: When the simulation starts and learning is on, the error is high. After about 10s it will do a reasonable job of computing the product, and the error should be quite small.

Is it working? To see if the right function is being computed, compare the ‘pre’ and ‘post’ population value graphs. You should note that if either dimension in the input is small, the output will be small. Only when both dimensions have larger absolute values does the output go away from zero (see the screen capture below).

**Output:** See the screen capture below.
**Code:**

```python
N=60
D=2

import nef
import nef.templates.learned_termination as learning
import nef.templates.gate as gating
import random
from ca.nengo.math.impl import FourierFunction
from ca.nengo.model.impl import FunctionInput
from ca.nengo.model import Units

random.seed(37)

net=nef.Network('Learn Product') #Create the network object

Create input and output populations.
A=net.make('pre',N,D)#Make a population with 60 neurons, 1 dimensions
B=net.make('post',N,1) #Make a population with 60 neurons, 1 dimensions

Create a random function input.
input=FunctionInput('input',[FourierFunction (.1, 8,.4,i,0) for i in range(D)],
Units.UNK) #Create a white noise input function .1 base freq, max
#freq 8 rad/s, and RMS of .4; i makes one for each dimension;
#0 is the seed
net.add(input) #Add the input node to the network
net.connect(input,A)
```
# Create a modulated connection between the ‘pre’ and ‘post’ ensembles.
learning.make(net,errName='error', N_err=100, preName='pre', postName='post',
    rate=5e-7)  #Make an error population with 100 neurons, and a learning
    #rate of 5e-7

# Set the modulatory signal to compute the desired function
def product(x):
    product=1.0
    for xx in x: product*=xx
    return product

net.connect('pre', 'error', func=product)
net.connect('post', 'error', weight=-1)

# Add a gate to turn learning on and off.
net.make_input('switch', [0])  #Create a controllable input function with
    #a starting value of 0 and 0 in the two
    #dimensions
gating.make(net,name='Gate', gated='error', neurons=40,
    pstc=0.01)  #Make a gate population with 40 neurons, and a postsynaptic
    #time constant of 10ms
net.connect('switch', 'Gate')

net.add_to_nengo()

## 2.5.3 Learning to Compute the Square of a Vector

**Purpose:** This demo shows learning a nonlinear function of a vector.

**Comments:** The setup here is very similar to the Learning a Communication Channel demo. The main difference is that this demo works in a 2D vector space (instead of a scalar), and that it is learning to compute a nonlinear function (the element-wise square) of its input.

**Usage:** When you run the network, it automatically has a random white noise input injected into it in both dimensions.

Turn learning on: To allow the learning rule to work, you need to move the ‘switch’ to +1.

Monitor the error: When the simulation starts and learning is on, the error is high. The average error slowly begins to decrease as the simulation continues. After 15s or so of simulation, it will do a reasonable job of computing the square, and the error in both dimensions should be quite small.

Is it working? To see if the right function is being computed, compare the ‘pre’ and ‘post’ population value graphs. You should note that ‘post’ looks kind of like an absolute value of ‘pre’, the ‘post’ will be a bit squashed. You can also check that both graphs of either dimension should hit zero at about the same time.

**Output:** See the screen capture below.
N=60
d=2

import nef
import nef.templates.learned_termination as learning
import nef.templates.gate as gating
import random
from ca.nengo.math.impl import FourierFunction
from ca.nengo.model.impl import FunctionInput
from ca.nengo.model import Units

random.seed(27)

net=nef.Network('Learn Square') #Create the network object

# Create input and output populations.
A=net.make('pre',N,D) #Make a population with 60 neurons, 1 dimensions
B=net.make('post',N,D) #Make a population with 60 neurons, 1 dimensions

# Create a random function input.
input=FunctionInput('input',[FourierFunction(.1, 8,.4,i, 0) for i in range(D)],
                      Units.UNK) #Create a white noise input function .1 base freq,
                      #max freq 8 rad/s, and RMS of .4; i makes one for
                      #each dimension; 0 is the seed
```python
net.add(input) # Add the input node to the network
net.connect(input, A)

Create a modulated connection between the 'pre' and 'post' ensembles.
learning.make(net, errName='error', N_err=100, preName='pre', postName='post',
 rate=5e-7) # Make an error population with 100 neurons, and a learning rate of 5e-7

Set the modulatory signal to compute the desired function
def square(x):
 return [xx*xx for xx in x]

net.connect('pre', 'error', func=square)
net.connect('post', 'error', weight=-1)

Add a gate to turn learning on and off.
net.make_input('switch', [0]) # Create a controllable input function with a starting value of 0 and 0 in the two dimensions
gating.make(net, name='Gate', gated='error', neurons=40,
 pstc=0.01) # Make a gate population with 40 neurons, and a postsynaptic time constant of 10ms
net.connect('switch', 'Gate')

net.add_to_nengo()
```

2.6 Miscellaneous

2.6.1 Simple Vehicle

*Purpose:* This demo shows an example of integrating Nengo with a physics engine renderer.

*Comments:* The demo shows a simple Braitenberg vehicle controller attached to a simulated robot (a Dalek from Dr. Who), that drives in a physical simulation.

Most of the code is demonstrating how to construct a simple robot and a simple room in the physical simulator. Only the last few lines are used to construct the neural controller.

*Usage:* Hit play and the robot will drive around, avoiding the blocks and walls. The spikes are generated by measurements of distance from obstacles, and motor commands to the wheels.

*Output:* See the screen capture below.
from __future__ import generators
import nef
import space
from java.awt import Color
import ccm
import random
dt=0.001
N=10

class Bot(space.MD2):
    def __init__(self):
        space.MD2.__init__(self,'python/md2/dalekx/tris.md2', 'python/md2/dalekx/imperial.png', scale=0.02, mass=800, overdraw_scale=1.4)
        z=0
        s=0.7
        r=0.7
        self.wheels=[space.Wheel(-s,0,z,radius=r),
                     space.Wheel(s,0,z,radius=r),
                     space.Wheel(0,s,z,friction=0,radius=r),
                     space.Wheel(0,-s,z,friction=0,radius=r)]
    def start(self):
        self.sch.add(space.MD2.start,args=(self,))
        self.range1=space.RangeSensor(0.3,1,0,maximum=6)
        self.range2=space.RangeSensor(-0.3,1,0,maximum=6)
        self.wheel1=0
        self.wheel2=0
```python
while True:
 r1 = self.range1.range
 r2 = self.range2.range
 input1.functions[0].value = r1 - 1.8
 input2.functions[0].value = r2 - 1.8

 f1 = motor1.getOrigin('X').getValues().getValues()[0]
 f2 = motor2.getOrigin('X').getValues().getValues()[0]

 self.wheels[1].force = f1 * 600
 self.wheels[0].force = f2 * 600
 yield dt

class Room(space.Room):
 def __init__(self):
 space.Room.__init__(self, 10, 10, dt=0.01)
 def start(self):
 self.bot = Bot()
 self.add(self.bot, 0, 0, 1)
 # view = space.View(self, (0, 0, 5))

 for i in range(6):
 self.add(space.Box(1, 1, 1, mass=1, color=Color(0x8888FF),
 flat_shading=False), random.uniform(-5, 5),
 random.uniform(-5, 5), random.uniform(4, 6))

 self.sch.add(space.Room.start, args=(self,))

from ca.nengo.util.impl import NodeThreadPool, NEFGPUInterface

net = nef.Network('Braitenberg')

input1 = net.make_input('right eye', [0])
input2 = net.make_input('left eye', [0])

sense1 = net.make('right input', N, 1)
sense2 = net.make('left input', N, 1)
motor1 = net.make('right motor', N, 1)
motor2 = net.make('left motor', N, 1)

net.connect(input1, sense1)
net.connect(input2, sense2)
net.connect(sense2, motor1)
net.connect(sense1, motor2)

net.add_to_nengo()

r = ccm.nengo.create(Room)
net.add(r)
```

### 2.6.2 Arm Control

**Purpose:** This demo shows an example of having an interaction between a neural and non-neural dynamical simulation.
Comments: The majority of the simulation is a non-neural dynamical simulation, with just one crucial population being neural. That population is plotted in the visualizer, as are the generated control signals. The control signals are used to drive the arm which is run in the physics simulator.

Usage: When you run the network, it will reach to the target (red ball). If you change refX and refY, that will move the ball, and the arm will reach for the new target location.

Output: See the screen capture below.

Code:

```python
from __future__ import generators
import sys
import nef
import space
from ca.nengo.math.impl import *
from ca.nengo.model.plasticity.impl import *
from ca.nengo.util import *
from ca.nengo.plot import *
from com.bulletphysics import *
from com.bulletphysics.linearmath import *
from com.bulletphysics.dynamics.constraintsolver import *
from javax.vecmath import Vector3f
import java
import ccm
import random
```
random.seed(11)

from math import pi
from com.threed.jpct import SimpleVector
from com.bulletphysics.linearmath import Transform
from javax.vecmath import Vector3f

dt=0.001
N=1
pstc=0.01

net = nef.Network('simple arm controller')

class getShoulder(ca.nengo.math.Function):
    def map(self,X):
        x = float(X[0])
        y = float(X[1])
        # make sure we’re in the unit circle
        if sqrt(x**2+y**2) > 1:
            x = x / (sqrt(x**2+y**2))
            y = y / (sqrt(x**2+y**2))
        L1 = .5
        L2 = .5
        EPS = 1e-10
        D = (x**2 + y**2 - L1**2 - L2**2) / (2*L1*L2)  # law of cosines
        if (x**2+y**2) < (L1**2+L2**2):
            D = -D
        # find elbow down angles from shoulder to elbow
        #java.lang.System.out.println("x: %f y:%f"%(x,y))
        if D < 1 and D > -1:
            elbow = acos(D)
        else:
            elbow = 0
        if (x**2+y**2) < (L1**2+L2**2):
            elbow = pi - elbow
        if x==0 and y==0: y = y+EPS
        inside = L2*sin(elbow)/(sqrt(x**2+y**2))
        if inside > 1: inside = 1
        if inside < -1: inside = -1
        if x==0:
            shoulder = 1.5708 - asin(inside)  # magic numbers from matlab
        else:
            shoulder = atan(y/x) - asin(inside)
        if x < 0: shoulder = shoulder + pi
        return shoulder
    def getDimension(self):
        return 2

class getElbow(ca.nengo.math.Function):
    def map(self,X):
        #
```python
x = float(X[0])
y = float(X[1])
make sure we’re in the unit circle
if sqrt(x**2+y**2) > 1:
 x = x / (sqrt(x**2+y**2))
y = y / (sqrt(x**2+y**2))
L1 = .5
L2 = .5
D = (x**2 + y**2 - L1**2 - L2**2) / (2*L1*L2) # law of cosines
if (x**2+y**2) < (L1**2+L2**2):
 D = -D

find elbow down angles from shoulder to elbow
if D < 1 and D > -1:
 elbow = acos(D)
else:
 elbow = 0
if (x**2+y**2) < (L1**2+L2**2):
 elbow = pi - elbow

return elbow
def getDimension(self):
 return 2
class getX(ca.nengo.math.Function):
 def map(self,X):
 shoulder = X[0]
 elbow = X[1]
 L1 = .5
 L2 = .5

 return L1*cos(shoulder)+L2*cos(shoulder+elbow)
 def getDimension(self):
 return 2
class getY(ca.nengo.math.Function):
 def map(self,X):
 shoulder = X[0]
 elbow = X[1]
 L1 = .5
 L2 = .5

 return L1*sin(shoulder)+L2*sin(shoulder+elbow)
 def getDimension(self):
 return 2

input functions
refX=net.make_input('refX',[-1])
refY=net.make_input('refY',[1])
Tfunc=net.make_input('T matrix',[1,0,0,1])
F=net.make_input('F',[-1,0,-1,0,0,-1,0,-1])
```
# neural populations
convertXY=net.make("convert XY",N,2)
convertAngles=net.make("convert Angles",N,2)
funcT=net.make("funcT",N,6)
FX=net.make("FX",N,12)
controlV=net.make("control signal v",N,2) # calculate 2D control signal
controlU=net.make("control signal u",500,2, quick=True) # calculates

convertXY.addDecodedTermination('refXY',[[1,0],[0,1]],pstc,False)
convertAngles.addDecodedTermination('shoulder',[[1],[0]],pstc,False)
convertAngles.addDecodedTermination('elbow',[[0],[1]],pstc,False)

FX.addDecodedTermination('inputFs',[[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],
                                       [0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],
                                       [0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],
                                       [0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1]],
                                       pstc,False)
FX.addDecodedTermination('X1',[[0],[0],[0],[0],[0],[0],[0],[0],[1]],pstc,False)
FX.addDecodedTermination('X2',[[0],[0],[0],[0],[0],[0],[0],[0],[0]],pstc,False)
FX.addDecodedTermination('X3',[[0],[0],[0],[0],[0],[0],[0],[0],[0]],pstc,False)
FX.addDecodedTermination('X4',[[0],[0],[0],[0],[0],[0],[0],[0],[0]],pstc,False)

funcT.addDecodedTermination('shoulderRef',[[1],[0],[0],[0],[0],[0]],pstc,False)
funcT.addDecodedTermination('elbowRef',[[0],[1],[0],[0],[0],[0]],pstc,False)
funcT.addDecodedTermination('shoulder',[[0],[0],[0],[0],[0],[0]],pstc,False)
funcT.addDecodedTermination('elbow',[[0],[0],[0],[0],[0],[0]],pstc,False)
funcT.addDecodedTermination('inputTs',[[0,0,0,0],[0,0,0,0],[1,0,0,0],[0,1,0,0],
                                          [0,0,1,0],[0,0,0,1]],pstc,False)

controlV.addDecodedTermination('inputCurrentX',[-1],[0],pstc,False)
controlV.addDecodedTermination('inputCurrentY',[0],[-1],pstc,False)
controlV.addDecodedTermination('inputRefX',[[1],[0]],pstc,False)
controlV.addDecodedTermination('inputRefY',[[0],[1]],pstc,False)

controlU.addDecodedTermination('inputFuncT1',[[1],[0]],pstc,False)
controlU.addDecodedTermination('inputFuncT2',[[0],[1]],pstc,False)
controlU.addDecodedTermination('inputFX1',[[1],[0]],pstc,False)
controlU.addDecodedTermination('inputFX2',[[0],[1]],pstc,False)

# add origins
interpreter=DefaultFunctionInterpreter()
convertXY.addDecodedOrigin('elbowRef',[getElbow()],'AXON')
convertXY.addDecodedOrigin('shoulderRef',[getShoulder()],'AXON')

convertAngles.addDecodedOrigin('currentX',[getX()],'AXON')
convertAngles.addDecodedOrigin('currentY',[getY()],'AXON')

FX.addDecodedOrigin('FX1',interpreter.parse("x0*x8+x1*x9+x2*x10+x3*x11",12),
                        'AXON')
FX.addDecodedOrigin('FX2', [interpreter.parse("x4*x8+x5*x9+x6*x10+x7*x11", 12)], "AXON")

funcT.addDecodedOrigin('funcT1', [interpreter.parse("x0*x2+x1*x3", 6)], "AXON")
funcT.addDecodedOrigin('funcT2', [interpreter.parse("x0*x4+x1*x5", 6)], "AXON")

controlU.addDecodedOrigin('u1', [interpreter.parse("x0", 2)], "AXON")
controlU.addDecodedOrigin('u2', [interpreter.parse("x1", 2)], "AXON")

# add projections
net.connect(controlV.getOrigin('X'), convertXY.getTermination('refXY'))

net.connect(refX.getOrigin('origin'), controlV.getTermination('inputRefX'))
net.connect(refY.getOrigin('origin'), controlV.getTermination('inputRefY'))

net.connect(convertAngles.getOrigin('currentX'), controlV.getTermination('inputCurrentX'))
net.connect(convertAngles.getOrigin('currentY'), controlV.getTermination('inputCurrentY'))

net.connect(F.getOrigin('origin'), FX.getTermination('inputFs'))
net.connect(convertXY.getOrigin('shoulderRef'), funcT.getTermination('shoulderRef'))
net.connect(convertXY.getOrigin('elbowRef'), funcT.getTermination('elbowRef'))
net.connect(Tfunc.getOrigin('origin'), funcT.getTermination('inputTs'))
net.connect(funcT.getOrigin('funcT1'), controlU.getTermination('inputFuncT1'))
net.connect(funcT.getOrigin('funcT2'), controlU.getTermination('inputFuncT2'))
net.connect(FX.getOrigin('FX1'), controlU.getTermination('inputFX1'))
net.connect(FX.getOrigin('FX2'), controlU.getTermination('inputFX2'))

net.add_to_nengo()

class Room(space.Room):
    def __init__(self):
        space.Room.__init__(self, 10, 10, gravity=0, color=[Color(0xFFFFFF),
                                                             Color(0xFFFFFF),
                                                             Color(0xEEEEEE),
                                                             Color(0xDDDDDD),
                                                             Color(0xCCCCCC),
                                                             Color(0xBBBBBB)])

    def start(self):
        self.target = space.Sphere(0.2, mass=1, color=Color(0xFF0000))
        self.add(self.target, 0, 0, 2)

        torso = space.Box(0.1, 0.1, 1.5, mass=100000, draw_as_cylinder=True,
                          color=Color(0x4444FF))
        self.add(torso, 0, 0, 1)

        upperarm = space.Box(0.1, 0.7, 0.1, mass=0.5, draw_as_cylinder=True,
                              color=Color(0x8888FF), overdraw_radius=1.2, overdraw_length=1.2)
        self.add(upperarm, 0.7, 0.5, 2)
        upperarm.add_sphere_at(0, 0.5, 0.1, Color(0x4444FF), self)
        upperarm.add_sphere_at(0, -0.5, 0.1, Color(0x4444FF), self)

        lowerarm = space.Box(0.1, 0.75, 0.1, mass=0.1, draw_as_cylinder=True,
                              color=Color(0x8888FF), overdraw_radius=1.2, overdraw_length=1.1)
self.add(lowerarm, 0.7, 1.5, 2)

shoulder = HingeConstraint(torso.physics, upperarm.physics,
Vector3f(0.7, 0.1, 1), Vector3f(0, -0.5, 0),
Vector3f(0, 0, 1), Vector3f(0, 0, 1))

elbow = HingeConstraint(upperarm.physics, lowerarm.physics,
Vector3f(0, 0.5, 0), Vector3f(0, -0.5, 0),
Vector3f(0, 0, 1), Vector3f(0, 0, 1))

shoulder.setLimit(-pi/2, pi/2 + 0.1)
elbow.setLimit(-pi, 0)

self.physics.addConstraint(elbow)
self.physics.addConstraint(shoulder)

#upperarm.physics.applyTorqueImpulse(Vector3f(0, 0, 300))
#lowerarm.physics.applyTorqueImpulse(Vector3f(0, 0, 300))

self.sch.add(space.Room.start, args=(self,))
self.update_neurons()
self.upperarm = upperarm
self.lowerarm = lowerarm
self.shoulder = shoulder
self.elbow = elbow
self.hinge1 = self.shoulder.hingeAngle
self.hinge2 = self.elbow.hingeAngle
self.upperarm.physics.setSleepingThresholds(0, 0)
self.lowerarm.physics.setSleepingThresholds(0, 0)

def update_neurons(self):
    while True:
        scale = 0.0003
        m1 = controlU.getOrigin('u1').getValues().getValues()[0] * scale
        m2 = controlU.getOrigin('u2').getValues().getValues()[0] * scale
        v1 = Vector3f(0, 0, 0)
v2 = Vector3f(0, 0, 0)
        #java.lang.System.out.println("m1: %f  m2:%f"%(m1,m2))

        self.upperarm.physics.applyTorqueImpulse(Vector3f(0, 0, m1))
        self.lowerarm.physics.applyTorqueImpulse(Vector3f(0, 0, m2))

        self.hinge1 = -(self.shoulder.hingeAngle - pi/2)
        self.hinge2 = -self.elbow.hingeAngle
        #java.lang.System.out.println("angle1: %f  
#angle2:%f"%(self.hinge1, self.hinge2))

        self.upperarm.physics.getAngularVelocity(v1)
        self.lowerarm.physics.getAngularVelocity(v2)
        # put bounds on the velocity possible
        if v1.z > 2:
            self.upperarm.physics.setAngularVelocity(Vector3f(0, 0, 2))
        if v1.z < -2:
            self.upperarm.physics.setAngularVelocity(Vector3f(0, 0, -2))
        if v2.z > 2:
            self.lowerarm.physics.setAngularVelocity(Vector3f(0, 0, 2))
        if v2.z < -2:
            self.lowerarm.physics.setAngularVelocity(Vector3f(0, 0, -2))
self.upperarm.physics.getAngularVelocity(v1)
self.lowerarm.physics.getAngularVelocity(v2)

wt=Transform()
self.target.physics.motionState.getWorldTransform(wt)
wts.setIdentity()

if tx is not None:
    wt.origin.x=tx.values[0]+0.7
else:
    wt.origin.x=0.7

if ty is not None:
    wt.origin.y=ty.values[0]+0.1
else:
    wt.origin.y=0.1

wt.origin.z=2

self.target.physics.motionState.worldTransform=wt

self.vel1=v1.z
self.vel2=v2.z

yield 0.0001

r=ccm.nengo.create(Room)
net.add(r)

# need to make hinge1, hinge2, vel1, and vel external nodes and hook up
# the output to the FX matrix
r.exposeOrigin(r.getNode('hinge1').getOrigin('origin'),'shoulderAngle')
r.exposeOrigin(r.getNode('hinge2').getOrigin('origin'),'elbowAngle')
r.exposeOrigin(r.getNode('vel1').getOrigin('origin'),'shoulderVel')
r.exposeOrigin(r.getNode('vel2').getOrigin('origin'),'elbowVel')

net.connect(r.getOrigin('shoulderAngle'),FX.getTermination('X1'))
net.connect(r.getOrigin('elbowAngle'),FX.getTermination('X2'))
net.connect(r.getOrigin('shoulderVel'),FX.getTermination('X3'))
net.connect(r.getOrigin('elbowVel'),FX.getTermination('X4'))

net.connect(r.getOrigin('shoulderAngle'),convertAngles.getTermination('shoulder'))
net.connect(r.getOrigin('elbowAngle'),convertAngles.getTermination('elbow'))
net.connect(r.getOrigin('shoulderAngle'),funcT.getTermination('shoulder'))
net.connect(r.getOrigin('elbowAngle'),funcT.getTermination('elbow'))

# put everything in direct mode
net.network.setMode(ca.nengo.model.SimulationMode.DIRECT)
# except the last population
controlU.setMode(ca.nengo.model.SimulationMode.DEFAULT)
CHAPTER THREE

NENGO SCRIPTING

This documentation describes the scripting libraries available for use in Nengo.

3.1 Scripting Interface

Many researchers prefer to create models by writing scripts rather than using a graphical user interface. To accomplish this, we have embedded a scripting system within Nengo.

The scripting language used in Nengo is Python. Detailed documentation on Python syntax can be found at http://www.python.org/. Nengo uses Jython (http://jython.org/) to interface between the script and the underlying Java implementation of Nengo. This allows us to use Python syntax and still have access to all of the underlying Java code.

3.1.1 Running scripts from a file

You can create scripts using your favourite text editor. When saved, they should have a .py extension. To run the script, click on the icon, or select File->Open from file from the main menu.

3.1.2 Running scripts from the console

You can also use scripting to interact with a model within Nengo. Click on the icon to toggle the script console (or press Ctrl-P to jump to it). You can now type script commands that will be immediately run. For example, you can type this at the console:

```python
print "Hello from Nengo"
```

When using the script console, you can refer to the currently selected object using the word that. For example, if you click on a component of your model (it should be highlighted in yellow to indicate it is selected), you can get its name by typing:

```python
print that.name
```

You can also change aspects of then model this way. For example, click on an ensemble of neurons and change the number of neurons in that ensemble by typing:

```python
that.neurons=75
```
You can also run a script file from the console with this command, with `script_name` replaced by the name of the script to run:

```
run script_name.py
```

Pressing the up and down arrows will scroll through the history of your console commands.

### 3.1.3 Running scripts from the command line

You can also run scripts from the command line. This allows you to simply run the model without running Nengo itself. To do this, instead of running `nengo` with `nengo` (or `nengo.bat` on Windows), do:

```
nengo-cl script_name.py
```

Of course, since this bypasses the Nengo graphical interface, you won’t be able to click on the icon to show the model. Instead, you should add this to the end of your model:

```
net.view()
```

### 3.1.4 Importing other libraries

The scripting system allows you to make use of any Java library and any 100% Python library. There are two methods for doing this in Python.

First, you can do it this way:

```
import ca.nengo.utils
```

but then when you use the library, you will have to provide its full name:

```
y=ca.nengo.utils.DataUtils.filter(x,0.005)
```

The other option is to import this way:

```
from ca.nengo.utils import *
```

This allows you to just do:

```
y=DataUtils.filter(x,0.005)
```

### 3.2 Scripting Basics

The Jython scripting interface in Nengo provides complete access to all of the underlying Java functionality. This provides complete flexibility, but requires users to manually create all of the standard components (Origins, Terminations, Projections, etc), resulting in fairly repetitive code.

To simplify the creation of Nengo models, we have developed the `nef` module as a wrapper around the most common functions needed for creating Nengo networks. As an example, the following code will create a new network with an input that feeds into ensemble A which feeds into ensemble B:

```
import nef
net=nef.Network('Test Network')
net.add_to_nengo()
input=net.make_input('input',values=[0])
```
A=net.make('A',neurons=100,dimensions=1)
B=net.make('B',neurons=100,dimensions=1)
net.connect(input,A)
net.connect(A,B)

These scripts can be created with any text editor, saved with a .py extension, and run in Nengo by choosing File->Open from the menu or clicking on the blue Open icon in the upper-left. All of the examples in the demo directory have been written using this system.

3.2.1 Creating a network

The first thing you need to do is to create your new network object and tell it to appear in the Nengo user interface:

```python
import nef
net=nef.Network('My Network')
net.add_to_nengo()
```

3.2.2 Creating an ensemble

Now we can create ensembles in our network. You must specify the name of the ensemble, the number of neurons, and the number of dimensions:

```python
A=net.make('A',neurons=100,dimensions=1)
B=net.make('B',1000,2)
C=net.make('C',50,10)
```

You can also specify the radius for the ensemble. The neural representation will be optimized to represent values inside a sphere of the specified radius. So, if you have a 2-dimensional ensemble and you want to be able to represent the value (10, -10), you should have a radius of around 15:

```python
D=net.make('D',100,2,radius=15)
```

3.2.3 Creating an input

To create a simple input that has a constant value (which can then be controlled interactive mode interface), do the following:

```python
inputA=net.make_input('inputA',values=[0])
```

The name can anything, and the values is an array of the required length. So, for a 5-dimensional input, you can do:

```python
inputB=net.make_input('inputB',values=[0,0,0,0,0])
or:
inputC=net.make_input('inputC',values=[0]*5)
```

You can also use values other than 0:

```python
inputD=net.make_input('inputD',values=[0.5,-0.3,27])
```
3.2.4 Computing linear functions

To have components be useful, they have to be connected to each other. To assist this process, the `nef.Network.connect()` function will create the necessary Origins and/or Terminations as well as the Projection:

```python
A = net.make('A', 100, 1)
B = net.make('B', 100, 1)
net.connect(A, B)
```

You can refer to networks by name or by reference:

```python
net.make('A', 100, 1)
net.make('B', 100, 1)
net.connect('A', 'B')
```

You can also specify a transformation matrix (to allow for the computation of any linear function) and a post-synaptic time constant:

```python
A = net.make('A', 100, 2)
B = net.make('B', 100, 3)
net.connect(A, B, transform=[[0, 0.5], [1, 0], [0, 0.5]], pstc=0.03)
```

3.2.5 Computing nonlinear functions

To compute nonlinear functions, you can specify a function to compute and an origin will automatically be created:

```python
def square(x):
 return x[0] * x[0]
net.connect(A, B, func=square)
```

This also works for highly complex functions:

```python
import math
def strange(x):
 if x[0] < 0.4:
 return 0.3
 elif x[1] * x[2] < 0.3:
 return math.sin(x[3])
 else:
 return x[4]
net.connect(A, B, func=strange)
```

3.3 Configuring Neural Ensembles

When creating a neural ensemble, a variety of parameters can be adjusted. Some of these parameters are set to reflect the physiological properties of the neurons being modelled, while others can be set to improve the accuracy of the transformations computed by the neurons.

3.3.1 Membrane time constant and refractory period

The two parameters for Leaky-Integrate-and-Fire neurons are the membrane time constant (\(\tau_{rc}\)) and the refractory period (\(\tau_{ref}\)). These parameters are set when creating the ensemble, and default to 0.02 seconds for the
membrane time constant and 0.002 seconds for the refractory period:

```python
D = net.make('D', 100, 2, tau_rc=0.02, tau_ref=0.002)
```

Empirical data on the membrane time constants for different types of neurons in different parts of the brain can be found at http://ctn.uwaterloo.ca/~cnrglab/?q=node/547.

### 3.3.2 Maximum firing rate

You can also specify the maximum firing rate for the neurons. It should be noted that it will always be possible to force these neurons to fire faster than this specified rate. Indeed, the actual maximum firing rate will always be \(1/\tau_{\text{ref}}\), since if enough current is forced into the simulated neuron, it will fire as fast as its refractory period will allow. However, what we can specify with this parameter is the normal operating range for the neurons. More technically, this is the maximum firing rate assuming that the neurons are representing a value within the ensemble’s radius.

In most cases, we specify this by giving a range of maximum firing rates, and each neuron will have a maximum chosen uniformly from within this range. This gives a somewhat biologically realistic amount of diversity in the tuning curves. The following line makes neurons with maximums between 200Hz and 400Hz:

```python
E = net.make('E', 100, 2, max_rate=(200, 400))
```

Alternatively, we can specify a particular set of maximum firing rates, and each neuron will take on a value from the provided list. If there are more neurons than elements in the list, the provided values will be re-used:

```python
F = net.make('F', 100, 2, max_rate=[200, 250, 300, 350, 400])
```

**Note:** The type of brackets used is important! Python has two types of brackets for this sort of situation: round brackets () and square brackets []. Round brackets create a *tuple*, which we use for indicating a range of values to randomly choose within, and square brackets create a *list*, which we use for specifying a list of particular value to use.

### 3.3.3 Intercept

The intercept is the point on the tuning curve graph where the neuron starts firing. For example, for a one-dimensional ensemble, a neuron with a preferred direction vector of [1] and an intercept of 0.3 will only fire when representing values above 0.3. If the preferred direction vector is [-1], then it will only fire for values below 0.3. In general, the neuron will only fire if the dot product of \(x\) (the value being represented) and the preferred direction vector, divided by the radius, is greater than the intercept. Note that since we divide by the radius, the intercepts will always be normalized to be between -1 and 1.

While this parameter can be used to help match the tuning curves observed in the system being modelled, one important other use is to build neural models that can perfectly represent the value 0. For example, if a 1-dimensional neural ensemble is built with intercepts in the range (0.3,1), then no neurons at all will fire for values between -0.3 and 0.3. This means that any value in that range (i.e. any small value) will be rounded down to exactly 0. This can be useful for optimizing thresholding and other functions where many of the output values are zero.

By default, intercepts are uniformly distributed between -1 and 1. The intercepts can be specified by providing either a range, or a list of values:

```python
G = net.make('G', 100, 2, intercept=(-1, 1))
H = net.make('H', 100, 2, intercept=[-0.8, -0.4, 0.4, 0.8])
```
Note: The type of brackets used is important!! Python has two types of brackets for this sort of situation: round brackets () and square brackets []. Round brackets create a *tuple*, which we use for indicating a range of values to randomly choose within, and square brackets create a *list*, which we use for specifying a list of particular value to use.

3.3.4 Encoders (a.k.a. preferred direction vectors)

You can specify the encoders (preferred direction vectors) for the neurons. By default, the encoders are chosen uniformly from the unit sphere. Alternatively, you can specify those encoders by providing a list. The encoders given will automatically be normalized to unit length:

```python
F=net.make('F',100,2,encoders=[[1,0],[-1,0],[0,1],[0,-1]])
G=net.make('G',100,2,encoders=[[1,1],[1,-1],[-1,1],[-1,-1]])
```

This allows you to make complex sets of encoders by creating a list with the encoders you want. For example, the following code creates an ensemble with 100 neurons, half of which have encoders chosen from the unit circle, and the other half of which are aligned on the diagonals:

```python
import random
import math

encoders=[] # create an empty list to store the encoders
for i in range(50):
 theta=random.uniform(-math.pi,math.pi) # choose a random direction between -pi and pi
 encoders.append([math.sin(theta),math.cos(theta)]) # add the encoder
for i in range(50):
 encoders.append(random.choice([[1,1],[1,-1],[-1,1],[-1,-1]])) # add an aligned encoder

G=net.make('G',100,2,encoders=encoders) # create the ensemble
```

3.4 Saving Time with the Quick Option

Whenever Nengo creates an ensemble, it needs to compute a decoder. This is done via the NEF method of doing a least-squares minimization computation. For large ensembles (~500 neurons or more), this can take some time, since it needs to invert an NxN matrix.

To speed up this process, the scripting system can optionally save the decoders it has computed and re-use them if it ever needs to create an ensemble with the exact same parameters. That is, if the particular parameters used in the `nef.Network.make()` call are seen again, instead of randomly creating a new ensemble, Nengo will make an exact copy of the old ensemble.

To turn on this feature, set `quick=True` when calling `nef.Network.make()`:

```python
A=net.make('A',500,40,quick=True)
```

This can save considerable time in terms of loading a network (the time required to run a simulation is unaffected), since it only needs to solve for the decoders once. Each time the script is run after this, it will just re-use those same decoders.

However, setting does mean that if you have two ensembles with the same parameters in the same model, those ensembles will have the exact same tuning curves and the exact same representational accuracy. If this is a problem, you can optionally specify a *storage_code* for the ensembles. Two ensembles with different *storage_code* values will not end up being identical, but there will still be time savings when re-running the script:
A = net.make('A', 500, 40, quick=True, storage_code='A')
B = net.make('B', 500, 40, quick=True, storage_code='B')

If you create an array of ensembles using `nef.Network.make_array()`, these ensembles will all have the same parameters, leading them to all have the same tuning curves if `quick=True`. To avoid this, you can use the special storage code marker of `'%d'`, which will be replaced by the index number of the ensemble in the array. This allows you to make use of the quick option and have all ensembles have separate tuning curves, if needed:

A = net.make_array('A', 500, 40, quick=True, storage_code='A%d')
B = net.make_array('B', 500, 40, quick=True, storage_code='B%d')

You can also indicate the default value for quick when you create a `nef.Network`:

net = nef.Network('My Network', quick=True)

The saved files can be found in the `quick` directory as separate files for each saved parameter setting. If you delete these, Nengo will automatically regenerate new ensembles as needed.

### 3.5 Adding Arbitrary Code to a Model

Nengo models are composed of Nodes. Each Node has Origins (outputs) and Terminations (inputs), allowing them to be connected up to perform operations. Nengo has built-in Node types for Neurons, Ensembles (groups of Neurons), Networks, Arrays, and so on. However, when creating a complex model, we may want to create our own Node type. This might be to provide custom input or output from a model, or it can be used to have a non-neural component within a larger model.

Technically, the only requirement for being a Node is that an object supports the `ca.nengo.model.Node` interface. However, for the majority of cases, it is easier to make use of the `nef.SimpleNode` wrapper class.

#### 3.5.1 SimpleNode

You create a `nef.SimpleNode` by subclassing, defining functions to be called for whatever Origins and/or Terminations you want for this object. The functions you define will be called once every time step (usually 0.001 seconds). These functions can contain arbitrary code, allowing you to implement anything you want to. For example, the following code creates a Node that outputs a sine wave:

```python
import nef
import math

net = nef.Network('Sine Wave')

define the SimpleNode
class SineWave(nef.SimpleNode):
 def origin_wave(self):
 return [math.sin(self.t)]

wave = net.add(SineWave('wave'))
neurons = net.make('neurons', 100, 1)

connect the SimpleNode to the group of neurons
net.connect(wave.getOrigin('wave'), neurons)

net.add_to_nengo()
```
3.5.2 Outputs (a.k.a. origins)

You can create as many outputs as you want from a SimpleNode, as long as each one has a distinct name. Each origin consists of a single function that will get called once per time-step and must return an array of floats.

When defining this function, it is often useful to know the current simulation time. This can be accessed as `self.t`, and is the time (in seconds) of the beginning of the current time-step (the end of the current time step is `self.t_end`):

```python
class ManyOrigins(nef.SimpleNode):
 # an origin that is 0 for t<0.5 and 1 for t>=0.5
 def origin_step(self):
 if self.t<0.5: return [0]
 else: return [1]

 # a triangle wave with period of 1.0 seconds
 def origin_triangle(self):
 x=self.t%1.0
 if x<0.5: return [x*2]
 else: return [2.0-x*2]

 # a sine wave and a cosine with frequency 10 Hz
 def origin_circle(self):
 theta=self.t*(2*math.pi)*10
 return [math.sin(theta),math.cos(theta)]
```

When connecting a SimpleNode to other nodes, we need to specify which origin we are connecting. The name of the origin is determined by the function definition, of the form `origin_<name>`:

```python
A=net.make('A',100,1)
B=net.make('B',200,2)
many=net.add(ManyOrigins('many'))
net.connect(many.getOrigin('triangle'),A)
net.connect(many.getOrigin('circle'),B)
```

3.5.3 Inputs (a.k.a. Terminations)

To provide input to a SimpleNode, we define terminations. These are done in a similar manner as origins, but these functions take an input value (usually denoted `x`), which is an array of floats containing the input.

When defining the termination, we also have to define the number of dimensions expected. We do this by setting the `dimensions` parameter (which defaults to 1). We can also specify the post-synaptic time constant at this termination by setting the `pstc` parameter (default is None).

For example, the following object takes a 5-dimensional input vector and outputs the largest of the received values:

```python
class Largest(nef.SimpleNode):
 def init(self):
 self.largest=0
 def termination_values(self,x,dimensions=5,pstc=0.01):
 self.largest=max(x)
 def origin_largest(self):
 return [self.largest]
```

```python
net=net.Network('largest')
input=net.make_input('input',[0]*5)
largest=net.add(Largest('largest'))
net.connect(input,largest.getTermination('values'))
```
3.5.4 Arbitrary Code

You can also define a function that will be called every time step, but which is not tied to a particular Origin or Termination. This function is called tick. Here is a simple example where this function simply prints the current time:

```python
class Time(nef.SimpleNode):
 def tick(self):
 print 'The current time in the simulation is:', self.t
```

As a more complex example, here is a tick function used to save spike raster information to a text file while the simulation runs:

```python
class SpikeSaver(nef.SimpleNode):
 def tick(self):
 f=file('data.csv','a+')
 data=A.getOrigin('AXON').getValues().getValues()
 f.write('%.3f,%s
' % (self.t, list(data)))
 f.close()
```

```python
net=nef.Network('Spike Saver example')
A=net.make('A',50,1)
saver=net.add(SpikeSaver('saver'))
```

3.6 Scripting Tips

3.6.1 Common transformation matrices

To simplify creating connection matrices for high-dimensional ensembles, you can use three additional parameters in the `nef.Network.connect()` function: `weight`, `index_pre`, and `index_post`. `weight` specifies the overall gain on the connection across all dimensions, and defaults to 1. For example:

```python
A=net.make('A',100,3)
B=net.make('B',100,3)
net.connect(A,B,weight=0.5) # makes a transform matrix of
 # [[0.5,0,0],[0,0.5,0],[0,0,0.5]]
```

Note that the system by default assumes the identity matrix for the connection.

If you don’t want the identity matrix, and would prefer some other connectivity, specify `index_pre` and `index_post`. These indicate which dimensions in the first ensemble should be mapped to which dimensions in the second ensemble. For example:

```python
A=net.make('A',100,3)
B=net.make('B',100,1)
net.connect(A,B,index_pre=2) # makes a transform matrix of
 # [[0,0,1]]
```
A=net.make('A',100,1)
B=net.make('B',100,3)
net.connect(A,B,index_post=0)
    # makes a transform matrix of 
    # \([1, 0, 0]\)

A=net.make('A',100,4)
B=net.make('B',100,2)
net.connect(A,B,index_pre=[1,2])
    # makes a transform matrix of 
    # \([0, 1, 0, 0], [0, 0, 1, 0]\)
    # which makes B hold the 2nd and 3rd element of A

A=net.make('A',100,4)
B=net.make('B',100,3)
net.connect(A,B,index_pre=[1,2],index_post=[0,1])
    # makes a transform matrix of 
    # \([0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]\)
    # which makes B hold the 2nd and 3rd element of A
    # in its first two elements

3.6.2 Adding noise to the simulation

To make the inputs to neurons noisy, you can specify an amount of noise and a noise frequency (how often a new noise value is sampled from the uniform distribution between -noise and +noise). Each neuron will sample from this distribution at this rate, and add the resulting value to its input current. The frequency defaults to 1000Hz:

H=net.make('H',50,1,noise=0.5,noise_frequency=1000)

3.6.3 Random inputs

Here is how you can convert an input to provide a randomly changing value, rather than a constant:

input=net.make_input('input',[0])
input.functions=[FourierFunction(0.1,10,0.5,0,0)]

This will produce a randomly varying input. This input will consist of random sine waves varying from 0.1Hz to 10Hz, in 0.5Hz increments. The random number seed used is 0.

3.6.4 Changing modes: spiking, rate, and direct

You can set an ensemble to be simulated as spiking neurons, rate neurons, or directly (no neurons). The default is spiking neurons:

J=net.make('J',neurons=1,dimensions=100,mode='direct')
K=net.make('K',neurons=50,dimensions=1,mode='rate')

One common usage of direct mode is to quickly test out algorithms without worrying about the neural implementation. This can be especially important when creating algorithms with large numbers of dimensions, since they would require large numbers of neurons to simulate. It can often be much faster to test the algorithm without neurons in direct mode before switching to a realistic neural model.
Note: When using direct mode, you may want to decrease the number of neurons in the population to 1, as this makes it much faster to create the ensemble.

3.6.5 Arrays of ensembles

When building models that represent large numbers of dimensions, it is sometimes useful to break an ensemble down into sub-ensembles, each of which represent a subset of dimensions. Instead of building one large ensemble to represent 100 dimensions, we might have 10 ensembles that represent 10 dimensions each, or 100 ensembles representing 1 dimension each.

The main advantage of this is speed: It is much faster for the NEF methods to compute decoders for many small ensembles, rather than one big one.

However, there is one large disadvantage: you cannot compute nonlinear functions that use values in two different ensembles. One of the core claims of the NEF is that we can only approximate nonlinear functions of two (or more) variables if there are neurons that respond to both dimensions. However, it is still possible to compute any linear function.

We create an array by specifying its length and (optionally) the number of dimensions per ensemble (the default is 1):

```
M=net.make_array('M',neurons=100,length=10,dimensions=1)
```

You can also use all of the parameters available in `nef.Network.make()` to configure the properties of the neurons.

Note: The `neurons` parameter specifies the number of neurons in each ensemble, not the total number of neurons!

The resulting array can be used just like a normal ensemble. The following example makes a single 10-dimensional ensemble and a network array of 5 two-dimensional ensembles and connects one to the other:

```
A=net.make_array('A',neurons=100,length=5,dimensions=2)
B=net.make('B',neurons=500,dimensions=10)
net.connect(A,B)
```

When computing nonlinear functions with an array, the function is applied to each ensemble separately. The following computes the products of five pairs of numbers, storing the results in a single 5-dimensional array:

```
A=net.make_array('A',neurons=100,length=5,dimensions=2)
B=net.make('B',neurons=500,dimensions=5)
def product(x):
 return x[0]*x[1]
net.connect(A,B,func=product)
```

3.6.6 Matrix operations

To simplify the manipulation of matrices, we have added a version of JNumeric to Nengo. This allows for a syntax similar to Matlab, but based on the NumPy python module.

To use this for matrix manipulation, you will first have to convert any matrix you have into an array object:

```
a=[[1,2,3],[4,5,6]] # old method
a=array([[1,2,3],[4,5,6]]) # new method
```

You can also specify the storage format to be used as follows:
The first important thing you can do with this array is use full slice syntax. This is the [:] notation used to access part of an array. A slice is a set of three values, all of which are optional. [a:b:c] means to start at index a, go to index b (but not include index b), and have a step size of c between items. The default for a is 0, for b is the length of the array, and c is 1. For multiple dimensions, we put a comma between slices for each dimension. The following examples are all for a 2D array. Note that the order of the 2nd and 3rd parameters are reversed from matlab, and it is all indexed starting at 0:

\[
\begin{align*}
a[0] & \quad \text{# the first row} \\
a[0,:] & \quad \text{# the first row} \\
a[:,0] & \quad \text{# the first column} \\
a[0:3] & \quad \text{# the first three rows} \\
a[:,0:3] & \quad \text{# the first three columns} \\
a[:,;3] & \quad \text{# the first three columns (the leading zero is optional)} \\
a[:,2:] & \quad \text{# all columns from the 2nd to the end (the end value is optional)} \\
a[:,::-1] & \quad \text{# all columns in reverse order} \\
a[:,2:] & \quad \text{# just the even-numbered columns (skip every other column)} \\
a[:,::-1] & \quad \text{# all columns in reverse order} \\
\end{align*}
\]

\[a.T\] \quad \text{# efficient transpose (doesn’t use any more memory)}

With such an array, you can perform element-wise operations as follows:

\[
\begin{align*}
c=a+b & \quad \text{# same as .+ in matlab} \\
c=a+b & \quad \text{# same as .* in matlab} \\
b=\cos(a) & \quad \text{# computes cosine of all values in a} \\
\end{align*}
\]

# other known functions: add, subtract, multiply, divide, remainder, power, 
# arccos, arccosh, arcsinh, arctan, arctanh, ceil, conjugate, imaginary, 
# cos, cosh, exp, floor, log, log10, real, sin, sinh, sqrt, tan, tanh, 
# maximum, minimum, equal, not_equal, less, less_equal, greater, 
# greater_equal, logical_and, logical_or, logical_xor, logical_not, 
# bitwise_and, bitwise_or, bitwise_xor

You can also create particular arrays:

\[
\begin{align*}
\text{arrange}(5) & \quad \text{# same as array(range(5))==[0,1,2,3,4]} \\
\text{arrange}(2,5) & \quad \text{# same as array(range(2,5))==[2,3,4]} \\
\end{align*}
\]

\[
\begin{align*}
\text{eye}(5) & \quad \text{# 5x5 identity matrix} \\
\text{ones}(3,2) & \quad \text{# 3x2 matrix of all 1} \\
\text{ones}(3,2),\text{typecode}='f' & \quad \text{# 3x2 matrix of all 1.0 (floating point values)} \\
\text{zeros}(3,2) & \quad \text{# 3x2 matrix of all 0} \\
\end{align*}
\]

The following functions help manipulate the shape of a matrix:
Some basic linear algebra operations are available:

c=dot(a,b)
c=dot(a,a.T)
c=innerproduct(a,a)
c=convolve(a,b)

And a Fourier transform:

b=fft(a)
a=ifft(b)

The following functions also exist:

# argmax, argsort, argmin, asarray, bitwise_not, choose, clip, compress,
# concatenate, fromfunction, indices, nonzero, searchsorted, sort, take
# where, tostring, fromstring, trace, repeat, diagonal
# sum, cumsum, product, cumproduct, alltrue, sometrue

The vast majority of the time, you can use these objects the same way you would a normal list of values (i.e. for specifying transformation matrices). If you ever need to explicitly convert one back into a list, you can call .tolist():

a=array([[1,2,3]])
b=a.tolist()

These functions are all available at the Nengo console and in any script called using the run command. To access them in a separate script file, you need to call:

from numeric import *

### 3.7 List of Classes

#### 3.7.1 nef.Network

class nef.Network(name, quick=False)

Wraps a Nengo network with a set of helper functions for simplifying the creation of Nengo models.

This system is meant to allow short, concise code to create Nengo models. For example, we can make a communication channel like this:

```python
import nef
net=nef.Network('Test Network')
input=net.make_input('input',values=[0])
A=net.make('A',neurons=100,dimensions=1)
B=net.make('B',neurons=100,dimensions=1)
net.connect(input,A)
net.connect(A,B)
net.add_to_nengo()
```

This will automatically create the necessary origins, terminations, ensemble factories, and so on needed to create this network.
Parameters

- **name** *(string or NetworkImpl)* – If a string, create and wrap a new NetworkImpl with the given name. If an existing NetworkImpl, then create a wrapper around that network.
- **quick** *(boolean)* – Default setting for the `quick` parameter in `nef.Network.make()`

```python
make(name, neurons, dimensions, tau_rc=0.02, tau_ref=0.002, max_rate=(200, 400), intercept=(-1, 1), radius=1, encoders=None, decoder_noise=0.10000000000000001, eval_points=None, noise=0, noise_frequency=1000, mode='spike', add_to_network=True, node_factory=None, decoder_sign=None, quick=None, storage_code='')
```

Create and return an ensemble of neurons.

Parameters

- **name** *(string)* – name of the ensemble (must be unique)
- **neurons** *(integer)* – number of neurons in the ensemble
- **dimensions** *(integer)* – number of dimensions to represent
- **tau_rc** *(float)* – membrane time constant
- **tau_ref** *(float)* – refractory period
- **max_rate** *(tuple or list)* – range for uniform selection of maximum firing rate in Hz (as a 2-tuple) or a list of maximum rate values to use
- **intercept** *(tuple or list)* – normalized range for uniform selection of tuning curve x-intercept (as 2-tuple) or a list of intercept values to use
- **radius** *(float)* – representational range
- **encoders** *(list)* – list of encoder vectors to use (if None, uniform distribution around unit sphere). The provided encoders will be automatically normalized to unit length.
- **decoder_noise** *(float)* – amount of noise to assume when calculating decoders
- **eval_points** *(list)* – list of points to do optimization over
- **noise** *(float)* – current noise to inject, chosen uniformly from (-noise, noise)
- **noise_frequency** *(float)* – sampling rate (how quickly the noise changes)
- **mode** *(string)* – simulation mode (‘direct’, ‘rate’, or ‘spike’)
- **node_factory** *(ca.nengo.model.impl.NodeFactory)* – a factory to use instead of the default LIF factory (for creating ensembles with neurons other than LIF)
- **decoder_sign** *(None, +1, or -1)* – +1 for positive decoders, -1 for negative decoders. Set to None to allow both.
- **quick** *(boolean or None)* – if True, saves data from a created ensemble and will re-use it in the future when creating an ensemble with the same parameters as this one. If None, uses the Network default setting.
- **storage_code** *(string)* – an extra parameter to allow different quick files even if all other parameters are the same
- **add_to_network** *(boolean)* – flag to indicate if created ensemble should be added to the network

Returns the newly created ensemble

```python
make_array(name, neurons, length, dimensions=1, **args)
```

Create and return an array of ensembles. This acts like a high-dimensional ensemble, but actually consists of many sub-ensembles, each one representing a separate dimension. This tends to be much faster
to create and can be more accurate than having one huge high-dimensional ensemble. However, since the neurons represent different dimensions separately, we cannot compute nonlinear interactions between those dimensions.

**Note:** When forming neural connections from an array to another ensemble (or another array), any specified function to be computed with be computed on each ensemble individually (with the results concatenated together). For example, the following code creates an array and then computes the sum of the squares of each value within it:

```python
net = nef.Network('Squaring Array')
input = net.make_input('input', [0, 0, 0, 0, 0])
A = net.make_array('A', neurons=100, length=5)
B = net.make('B', neurons=100, dimensions=1)
net.connect(input, A)
def square(x):
 return x[0] * x[0]
net.connect(A, B, transform=[1, 1, 1, 1, 1], func=square)
```

All of the parameters from `nef.Network.make()` can also be used.

**Parameters**

- **name** (string) – name of the ensemble array (must be unique)
- **neurons** (integer) – number of neurons in the ensemble
- **length** (integer) – number of ensembles in the array
- **dimensions** (integer) – number of dimensions each ensemble represents

**Returns** the newly created `nef.array.NetworkArray`

**make_input**(name, values, zero_after_time=None)

Create and return a FunctionInput of dimensionality `len(values)` with `values` as its constants. Python functions can be provided instead of fixed values.

**Parameters**

- **name** (string) – name of created node
- **values** (list or function) – numerical values for the function. If a list, can contain a mixture of floats and functions (floats are fixed input values, and functions are called with the current time and must return a single float). If values is a function, will be called with the current time and can return either a single float or a list of floats.
- **zero_after_time** (float or None) – if not None, any fixed input value will change to 0 after this amount of time

**Returns** the created FunctionInput

**compute_transform**(dim_pre, dim_post, weight=1, index_pre=None, index_post=None)

Helper function used by `nef.Network.connect()` to create a `dim_pre` by `dim_post` matrix. All values are either 0 or weight. `index_pre` and `index_post` are used to determine which values are non-zero, and indicate which dimensions of the pre-synaptic ensemble should be routed to which dimensions of the post-synaptic ensemble.

For example, with `dim_pre=2` and `dim_post=3`, `index_pre=[0,1]`, `index_post=[0,1]` means to take the first two dimensions of pre and send them to the first two dimensions of post, giving a transform matrix of `[[1,0],[0,1],[0,0]]`. If an index is None, the full range [0,1,2,...,N] is assumed, so the above example could just be `index_post=[0,1]`
Parameters

- **dim_pre** (integer) – first dimension of transform matrix
- **dim_post** (integer) – second dimension of transform matrix
- **weight** (float) – the non-zero value to put into the matrix
- **index_pre** (list of integers or a single integer) – the indexes of the pre-synaptic dimensions to use
- **index_post** (list of integers or a single integer) – the indexes of the post-synaptic dimensions to use

Returns a two-dimensional transform matrix performing the requested routing

```python
connect(pre, post, transform=None, weight=1, index_pre=None, index_post=None, pstc=0.01, func=None, weight_func=None, origin_name=None, modulatory=False, plastic_array=False, create_projection=True)
```

Connect two nodes in the network.

*pre* and *post* can be strings giving the names of the nodes, or they can be the nodes themselves (FunctionInputs and NEFEnsembles are supported). They can also be actual Origins or Terminations, or any combination of the above. If *post* is set to an integer or None, an origin will be created on the *pre* population, but no other action will be taken.

*pstc* is the post-synaptic time constant of the new Termination

If transform is not None, it is used as the transformation matrix for the new termination. You can also use *weight*, *index_pre*, and *index_post* to define a transformation matrix instead. *weight* gives the value, and *index_pre* and *index_post* identify which dimensions to connect (see `nef.Network.compute_transform()` for more details). For example:

```python
net.connect(A,B,weight=5)
```

with both A and B as 2-dimensional ensembles, will use `[[5, 0], [0, 5]]` as the transform. Also, you can do:

```python
net.connect(A,B,index_pre=2,index_post=5)
```

to connect the 3rd element in A to the 6th in B. You can also do:

```python
net.connect(A,B,index_pre=[0, 1, 2],index_post=[5, 6, 7])
```
to connect multiple elements.

If *func* is not None, a new Origin will be created on the pre-synaptic ensemble that will compute the provided function. The name of this origin will taken from the name of the function, or *origin_name*, if provided. If an origin with that name already exists, the existing origin will be used rather than creating a new one.

If *weight_func* is not None, the connection will be made using a synaptic connection weight matrix rather than a DecodedOrigin and a Decoded Termination. The computed weight matrix will be passed to the provided function, which is then free to modify any values in that matrix, returning a new one that will actually be used. This allows for direct control over the connection weights, rather than just using the once computed via the NEF methods.

Parameters

- **pre** – The item to connect from. Can be a string (the name of the ensemble), an Ensemble (made via `nef.Network.make()`), an array of Ensembles (made via `nef.Network.make_array()`), a FunctionInput (made via `nef.Network.make_input()`), or an Origin.
• **post** – The item to connect to. Can be a string (the name of the ensemble), an Ensemble (made via `nef.Network.make()`), an array of Ensembles (made via `nef.Network.make_array()`), or a Termination.

• **transform** *(array of floats)* – The linear transform matrix to apply across the connection. If `transform` is `T` and `pre` represents `x`, then the connection will cause `post` to represent `Tx`. Should be an `N` by `M` array, where `N` is the dimensionality of `pre` and `M` is the dimensionality of `post`, but a 1-dimensional array can be given if either `N` or `M` is 1.

• **pste** *(float)* – post-synaptic time constant for the neurotransmitter/receptor implementing this connection

• **weight** *(float)* – scaling factor for a transformation defined with `index_pre` and `index_post`. Ignored if `transform` is not None. See `nef.Network.compute_transform()`

• **index_pre** *(list of integers or a single integer)* – the indexes of the pre-synaptic dimensions to use. Ignored if `transform` is not None. See `nef.Network.compute_transform()`

• **index_post** *(list of integers or a single integer)* – the indexes of the post-synaptic dimensions to use. Ignored if `transform` is not None. See `nef.Network.compute_transform()`

• **func** *(function)* – function to be computed by this connection. If None, computes \(f(x) = x\). The function takes a single parameter \(x\) which is the current value of the `pre` ensemble, and must return wither a float or an array of floats. For example:

```python
def square(x):
 return x[0]*x[0]
net.connect(A,B,func=square)

def powers(x):
 return x[0],x[0]^2,x[0]^3
net.connect(A,B,func=powers)

def product(x):
 return x[0]*x[1]
net.connect(A,B,func=product)
```

• **origin_name** *(string)* – The name of the origin to create to compute the given function. Ignored if `func` is None. If an origin with this name already exists, the existing origin is used instead of creating a new one.

• **weight_func** *(function or None)* – if not None, converts the connection to use an explicit connection weight matrix between each neuron in the ensembles. This is mathematically identical to the default method (which simply uses the stored encoders and decoders for the ensembles), but much slower, since we are no longer taking advantage of the factorable weight matrix. However, using `weight_func` also allows explicit control over the individual connection weights, as the computed weight matrix is passed to `weight_func`, which can make changes to the matrix before returning it.

• **modulatory** *(boolean)* – whether the created connection should be marked as modulatory, meaning that it does not directly affect the input current to the neurons, but instead may affect internal parameters in the neuron model.

• **plastic_array** *(boolean)* – configure the connection to be learnable. See `nef.Network.learn()`.
• **create_projection** *(boolean)* – flag to disable actual creation of the connection. If False, any needed Origin and/or Termination will be created, and the return value will be the tuple *(origin, termination)* rather than the created projection object.

**Returns** the created Projection, or *(origin, termination)* if *create_projection* is False.

**learn** *(post, learn_term, mod_term, rate=4.9999999999999998e-07, stdp=False, **kwargs)*

Apply a learning rule to a termination of the *post* ensemble. The *mod_term* termination will be used as an error signal that modulates the changing connection weights of *learn_term*.

**Parameters**

• **post** *(string or Ensemble)* – the ensemble whose termination will be changing, or the name of this ensemble

• **learn_term** *(string or Termination)* – the termination whose transform will be modified by the learning rule. This termination must be created with plastic_array=True in *nef.Network.connect()*

• **mod_term** *(string or Termination)* – the modulatory input to the learning rule; while this is technically not required by the plasticity functions in Nengo, currently there are no learning rules implemented that do not require modulatory input.

• **rate** *(float)* – the learning rate that will be used in the learning fuctions.

**Todo**

(Possible enhancement: make this 2D for stdp mode, different rates for in_fcn and out_fcn)

• **stdp** *(boolean)* – signifies whether to use the STDP based error-modulated learning rule. If True, then the SpikePlasticityRule will be used, and the *post* ensemble must be in DEFAULT (spiking) mode. If False, then the RealPlasticityRule will be used, and *post* can be either in RATE or DEFAULT mode.

If *stdp* is True, a triplet-based spike-timing-dependent plasticity rule is used, based on that defined in:


The parameters for this learning rule have the following defaults, and can be set as keyword arguments to this function call:

(a2Minus=5.0e-3, a3Minus=5.0e-3, tauMinus=70, tauX=70, a2Plus=5.0e-3, a3Plus=5.0e-3, tauPlus=70, tauY=70, decay=None, homeostatis=None)

If *stdp* is False, a rate-mode error minimizing learning rule is applied. The only parameter available here is whether or not to include an oja normalization term:

(oja=True)

**learn_array** *(array, learn_term, mod_term, rate=4.9999999999999998e-07, stdp=False, **kwargs)*

Apply a learning rule to a termination of a *nef.array.NetworkArray* (an array of ensembles, created using *nef.Network.make_array()*).

See *nef.Network.learn()* for parameters.

**add_to_nengo** *

Add the network to the Nengo user interface. If there is no user interface (i.e. if Nengo is being run via the command line only interface nengo-cl), then do nothing.
add_to(world=None)
Add the network to the given Nengo world object. If there is a network with that name already there, remove the old one. If world is None, it will attempt to find a running version of Nengo to add to. Deprecated since version 1.3: Use nef.Network.add_to_nengo() instead.

view(play=False)
Creates the interactive mode viewer for running the network

Parameters
- play (False or float) – Automatically starts the simulation running, stopping after the given amount of time

set_layout(view, layout, control)
Defines the graphical layout for the interactive plots

You can use this to specify a particular layout. This will replace the currently saved layout (if any). Useful when running a script on a new computer that does not have a previously saved layout (saving you from also copying over that layout file).

The arguments for this function call are generally made by opening up interactive plots, making the layout you want, saving the layout, and then copying the text in layouts/<networkname>.layout.

Parameters
- view (dictionary) – parameters for the window position
- layout (list) – list of all components to be shown and their parameters
- control (dictionary) – configuration parameters for the simulation

add(node)
Add the node to the network.

This is generally only used for manually created nodes, not ones created by calling nef.Network.make() or nef.Network.make_input() as these are automatically added. A common usage is with nef.SimpleNode objects, as in the following:

```python
node = net.add(MyNode('name'))
```

Parameters
- node – the node to be added

Returns
- node

get(name)
Return the node with the given name from the network

releaseMemory()
Attempt to release extra memory used by the Network. Call only after all connections are made.

neuron_count()
Return the total number of neurons in this network

set_view_function_1d(node, basis, label='1D function', origin='X', minx=-1, maxx=1, miny=-1, maxy=1)
Define a function representation for the given node.

This has no effect on the model itself, but provides a useful display in the interactive plots visualizer. The vector represented by the function is plotted by treating the vector values as weights for a set of basis functions. So, if a vector is (2,0,3) and the basis functions are $x^2$, $x$, and 1, we get the polynomial $2*x^2 + 3$.

The provided basis function should accept two parameters: an index value indicating which basis function should be computed, and x, indicating the x value to compute the basis function at. For example, for polynomials, the basis functions would be computed as:
def polynomial_basis(index, x):
    return x**index

Parameters

- node (Node) – The Nengo component that represents the vector
- basis (function) – The set of basis functions to use. This is a single function accepting two parameters: the basis index and the x value. It should return the corresponding y value.
- origin (string) – Which origin to use. Defaults to X.
- label (string) – The text that will appear in the pop-up menu to activate this view
- minx (float) – minimum x value to plot
- maxx (float) – maximum x value to plot
- miny (float) – minimum y value to plot
- maxy (float) – maximum y value to plot

3.7.2 nef.SimpleNode

class nef.SimpleNode(name)
A SimpleNode allows you to put arbitrary code as part of a Nengo model.

This object has Origins and Terminations which can be used just like any other Nengo component. Arbitrary code can be run every time step, making this useful for simulating sensory systems (reading data from a file or a webcam, for example), motor systems (writing data to a file or driving a robot, for example), or even parts of the brain that we don’t want a full neural model for (symbolic reasoning or declarative memory, for example).

Origins and terminations are defined by subclassing SimpleNode. For example, the following code creates a node that takes a single input and outputs the square of that input:

class SquaringNode(nef.SimpleNode):
    def init(self):
        self.value=0
    def termination_input(self, x):
        self.value=x[0]*x[0]
    def origin_output(self):
        return [self.value]
square=net.add(SquaringNode('square'))
net.connect(A,square.getTermination('input'))
net.connect(square.getOrigin('output'),B)

You can have as many origins and terminations as you like. The dimensionality of the origins are set by the length of the returned vector of floats. The dimensionality of the terminations can be set by specifying the dimensionality in the method definition:

class SquaringFiveValues(nef.SimpleNode):
    def init(self):
        self.value=0
    def termination_input(self, x, dimensions=5):
        self.value=[xx*x for xx in x]
    def origin_output(self):
        return [self.value]

You can also specify a post-synaptic time constant for the filter on the terminations in the method definition:
class SquaringNode(nef.SimpleNode):
    def init(self):
        self.value = 0
    def termination_input(self, x, pstc=0.01):
        self.value = x[0]*x[0]
    def origin_output(self):
        return [self.value]

There is also a special method called tick() that is called once per time step. It is called after the terminations but before the origins:

class HelloNode(nef.SimpleNode):
    def tick(self):
        print 'Hello world'

The current time can be accessed via self.t. This value will be the time for the beginning of the current time step. The end of the current time step is self.t_end:

class TimeNode(nef.SimpleNode):
    def tick(self):
        print 'Time:', self.t

Parameters name (string) – the name of the created node

create_origin (name, func)

Adds an origin to the SimpleNode.

Every timestep the function func will be called. It should return a vector which is the output value at this origin.

Any member functions of the form origin_name will automatically be created in the constructor, so the following two nodes are equivalent:

class Node1(nef.SimpleNode):
    def origin_test(self):
        return [0]
node1 = Node1('node1')
node2 = nef.SimpleNode('node2')
def test():
    return [0]
node2.create_origin('test', test)

Parameters

• name (string) – the name of the origin
• func (function) – the function to call

Note: The function func will be called once by create_origin to determine the dimensionality it returns.

create_termination (name, func)

Adds a termination to the SimpleNode.

Every timestep the function func will be called. It must accept a single parameter, which is a list of floats representing the current input to the termination.
Any member functions of the form `termination_name` will automatically be created in the constructor, so the following two nodes are equivalent:

```python
class Node1(nef.SimpleNode):
 def termination_test(self, x):
 self.data=x[0]
node1=Node1('node1')
node2=nef.SimpleNode('node2')
def test(x):
 node2.data=x[0]
node2.create_termination('test', test)
```

By default, the termination will be 1 dimensional. To change this, specify a different value in the function definition:

```python
class Node3(nef.SimpleNode):
 def termination_test(self, x, dimensions=4):
 self.data=x[0]*x[1]+x[2]*x[3]
```

By default, no post-synaptic filter is applied. To change this, specify a `pstc` value:

```python
class Node4(nef.SimpleNode):
 def termination_test(self, x, pstc=0.01):
 self.data=x[0]
```

**Parameters**

- `name` *(string)* – the name of the termination
- `func` *(function)* – the function to call.

**Note:** The function `func` will be called once by `create_termination` with an input of all zeros.

**tick()**

An extra utility function that is called every time step.

Override this to create custom behaviour that isn’t necessarily tied to a particular input or output. Often used to write spike data to a file or produce some other sort of custom effect.

**setTau(name, tau)**

Change the post-synaptic time constant for a termination.

**Parameters**

- `name` *(string)* – the name of the termination to change
- `tau` *(float)* – the desired post-synaptic time constant

**init()**

Initialize the node.

Override this to initialize any internal variables. This will also be called whenever the simulation is reset:

```python
class DoNothingNode(nef.SimpleNode):
 def init(self):
 self.value=0
 def termination_input(self, x, pstc=0.01):
 self.value=x[0]
 def origin_output(self):
 return [self.value]
```
3.7.3 nef.array.NetworkArray

class nef.array.NetworkArray(name, nodes)
Collects a set of NEFEnsembles into a single network.

Create a network holding an array of nodes. An ‘X’ Origin is automatically created which concatenates the values of each internal element’s ‘X’ Origin.

This object is meant to be created using nef.Network.make_array(), allowing for the efficient creation of neural groups that can represent large vectors. For example, the following code creates a NetworkArray consisting of 50 ensembles of 1000 neurons, each of which represents 10 dimensions, resulting in a total of 500 dimensions represented:

```python
net=nef.Network('Example Array')
A=net.make_array('A',neurons=1000,length=50,dimensions=10,quick=True)
```

The resulting NetworkArray object can be treated like a normal ensemble, except for the fact that when computing nonlinear functions, you cannot use values from different ensembles in the computation, as per NEF theory.

Parameters

- **name** (string) – the name of the NetworkArray to create
- **nodes** (list of NEFEnsembles) – the nodes to combine together

createEnsembleOrigin(name)
Create an Origin that concatenates the values of internal Origins.

Parameters

- **name** (string) – The name of the Origin to create. Each internal node must already have an Origin with that name.

addDecodedOrigin(name, functions, nodeOrigin)
Create a new Origin. A new origin is created on each of the ensembles, and these are grouped together to create an output.

This method uses the same signature as ca.nengo.model.nef.NEFEnsemble.addDecodedOrigin()

Parameters

- **name** (string) – the name of the newly created origin
- **functions** (list of ca.nengo.math.Function objects) – the functions to approximate at this origin
- **nodeOrigin** (string) – name of the base Origin to use to build this function approximation (this will always be ‘AXON’ for spike-based synapses)

addTermination(name, matrix, tauPSC, isModulatory)
Create a new termination. A new termination is created on each of the ensembles, which are then grouped together. This termination does not use NEF-style encoders; instead, the matrix is the actual connection weight matrix. Often used for adding an inhibitory connection that can turn off the whole array (by setting matrix to be all -10, for example).

Parameters

- **name** (string) – the name of the newly created origin
- **matrix** (2D array of floats) – synaptic connection weight matrix (NxM where M is the total number of neurons in the NetworkArray)
- **tauPSC** *(float)* – post-synaptic time constant
- **isModulatory** *(boolean)* – False for normal connections, True for modulatory connections (which adjust neural properties rather than the input current)

**addPlasticTermination** *(name, matrix, tauPSC, decoder, weight_func=None)*

Create a new termination. A new termination is created on each of the ensembles, which are then grouped together.

If decoders are not known at the time the termination is created, then pass in an array of zeros of the appropriate size (i.e., however many neurons will be in the population projecting to the termination, by number of dimensions).

**addDecodedTermination** *(name, matrix, tauPSC, isModulatory)*

Create a new termination. A new termination is created on each of the ensembles, which are then grouped together.
CHAPTER FOUR

ADVANCED NENGO USAGE

4.1 Interactive Plots Layout Files

The interactive plots mode in Nengo shows a wide variety of information about a running Nengo model, including graphs to interpret the value being represented within a network and interactive controls which allow the inputs to the system to be varied.

The exact configuration of this view is saved in a text file in the layouts directory, using the name of the network as an identifier. For example, the layout for the multiplication demo is saved as layouts/Multiply.layout and looks like:

The first line gives the size and location of the window, the last line gives the setting of the various simulation parameters, and the middle lines define the various plots that are displayed.

While this saved file format is human-readable, it is not meant to be hand-coded. The best way to create a layout is to open up the Interactive plots window, create the layout you want, and save it. A corresponding file will be created in the layouts folder.

4.1.1 Specifying a Layout

If you want to, you can define a layout in a script by cutting and pasting from a .layout file. For this, you can use the nef.Network.set_layout() function.

For example, here we define a simple network and directly specify the layout to use:

```python
import nef

net=nef.Network('My Test Model')
input=net.make_input('input', [0,0])
neuron=net.make('neurons', 100, 2, quick=True)
net.connect(input,neuron)
net.add_to_nengo()

net.set_layout({'height': 473, 'x': -983, 'width': 798, 'state': 0, 'y': 85},
 [('neurons', None, {'x': 373, 'height': 32, 'label': 0, 'width': 79, 'y': 76}),
 ('input', None, {'x': 53, 'height': 32, 'label': 0, 'width': 51, 'y': 76}),
 ('neurons', 'voltage grid', {'x': 489, 'height': 104, 'auto_improve': 0, 'label': 0, 'width': 104, 'rows': None, 'y': 30}),
 ('neurons', 'value|X', {'x': 601, 'height': 105, 'sel_dim': [0, 1], 'label': 0, 'width': 158, 'autozoom': 0, 'last_maxy': 1.0, 'y': 29}),
 ('neurons', 'preferred directions', {'x': 558, 'height': 200, 'label': 0, 'width': 79, 'y': 76})])
```
This ability is useful when sending a model to someone else, so that they will automatically see the particular set of graphs you specify. This can be easier than also sending the .layout file.

4.2 Creating a Drag And Drop Template

Nengo comes with a variety of templates: pre-built components that can be used to build your models. These are the various icons on the left side of the screen that can be dragged in to your model.

These components are defined in python/nef/templates. There is one file for each item, and the following example uses thalamus.py.

The file starts with basic information, including the full name (title) of the component, the text to be used in the interface (label), and an image to use as an icon. The image should be stored in /images/nengoIcons:

```python
title='Thalamus'
label='Thalamus'
icon='thalamus.png'
```

Next, we define the parameters that should be set for the component. These can be strings (str), integers (int), real numbers (float), or checkboxes (bool). For each one, we must indicate the name of the parameter, the label text, the type, and the help text:

```python
params=[
 ('name','Name',str,'Name of thalamus'),
 ('neurons','Neurons per dimension',int,'Number of neurons to use'),
 ('D','Dimensions',int,'Number of actions the thalamus can represent'),
 ('useQuick', 'Quick mode', bool, 'If true, the same distribution of neurons will be used for each action'),
]
```

Next, we need a function that will test if the parameters are valid. This function will be given the parameters as a dictionary and should return a string containing the error message if there is an error, or not return anything if there is no error:

```python
def test_params(net,p):
 try:
 net.network.getNode(p['name'])
 return ''That name is already taken''
 except:
 pass
```

Finally, we define the function that actually makes the component. This function will be passed in a nef.Network object that corresponds to the network we have dragged the template into, along with all of the parameters specified in the params list above. This script can now do any scripting calculations desired to build the model:

```python
def make(net,name='Network Array', neurons=50, D=2, useQuick=True):
 thal = net.make_array(name, neurons, D, max_rate=(100,300),
 intercept=(-1, 0), radius=1, encoders=[[[1]]],
 quick=useQuick)
def addOne(x):
 return [x[0]+1]
net.connect(thal, None, func=addOne, origin_name='xBiased',
 create_projection=False)

The last step to make the template appear in the Nengo interface is to add it to the list in python/nef/templates/__init__.py.
The Java API documentation is not a part of the User Manual, but can be found here: http://www.nengo.ca/javadoc/

- genindex
- search