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The process by which two surfaces of the same liquid establish contact, as when two 
drops collide or raindrops fall on water, is studied. The mathematical formulation is 
based on the assumption of an incompressible, inviscid fluid with surface tension. A 
model problem with a simplified geometry is solved numerically by means of a 
boundary-integral method. The results imply that a number of toroidal bubbles form 
and remain entrapped between the contacting surfaces. Experimental evidence for 
this process, which is important for boiling nucleation and the formation of 
condensation nuclei for rain drops, is found in the literature. 

1. Introduction 
We consider the process by which two surfaces of the same liquid come into 

contact, as for example when two droplets collide or a raindrop falls on water. A 
number of complex events take place just before and after the contact. Viscous 
effects become important in the air film separating the surfaces as it thins and they 
exert a significant stress on the liquid. A very brief stage of free molecular flow 
follows. Just a t  the moment a t  which contact is established the free surfme has a 
cusp a t  the contact point, which is incompatible with the state of local 
thermodynamic equilibrium that is assumed to incorporate the effects of surface 
tension in fluid mechanics. Such a strong disequilibrium cannot persist over the 
timescales of concern in a classical fluid mechanical description of the process and 
almost instantly the cusp must be replaced by a region of continuous, if very sharp 
curvature. 

However complex these processes, their total effect on the macroscopic fluid 
dynamics of the collision cannot be very important for droplets larger than a few 
microns. For droplets having a radius of the order of 100 pm or greater, one expects 
that  classical fluid mechanics should be amply sufficient to explain the basic features 
of the collision. In  such a framework the configuration with a high curvature jus t  
after the disappearance of the cusp can be taken as an initial condition, and the 
problem we consider in this study is to determine how this region evolves and 
propagates outwards as the two liquid masses get closer. 

When we started this work we qualitatively expected the process to evolve 
according to  a sequence of events that may be illustrated with reference to figure 1. 
The curvature along the ring AA' is very large and, therefore, the liquid pressure is 
very small because of the effect of surface tension. This circumstance induces a large 
outward velocity along this ring. As the liquids approach each other the curvature 
would seem to increase further and with it the radial velocity in such a way that no 
further contact between the two facing liquid masses along rings such as B B  and Cc' 
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FIGURE 1. The initial moment of the impact of two liquid drops touching at one point where a 
‘bridge’ AA’ forms. Along the ring AA’ the radius of curvature in the plane of the figure is very 
small. As a consequence of surface tension, the pressure in the liquid is therefore very small 
also. 

can be established. This is essentially the sequence of events proposcd by Chapman 
& Critchlow (1967) in their study of vortex rings formed by falling drops. Our 
findings show however that this picture is incorrect. 

Before describing the results of the detailed calculations, we shall consider the 
matter in a rather heuristic fashion in the next section. There we show that even for 
moderate impact velocities contact between the opposing liquid surfaces is 
established a t  a number of points. Since just before coming into contact each point 
carries its own value of the velocity potential, a vortex sheet is formed, which 
eventually rolls up into the well-known ring vortex that appears in these conditions 
(Rogers 1858; Thomson & Newall 1885; Batchelor 1967; Chapman & Critchlow 
1967 ; Carroll & Mesler 1981 ; Rodriguez & Mesler 1988 ; Esmailizadeh & Mesler 1986). 
It appears therefore that this vortex ring is not due to viscous effects, as might be 
thought. 

The present work was motivated by an attempt to study the mechanism by which 
a bubble is produced a t  the bottom of the crater formed by a drop hitting a water 
surface (Franz 1959; Pumphrey & Crum 1988; Pumphrey, Crum & Bjorno 1989). The 
oscillation of this bubble seems to play a very important role in the noise produced 
by rain and sprays on the ocean surface (Pumphrey & Crum 1989; Pumphrey et al. 
!989; Prosperetti, Pumphrey & Crum 1989). Our preliminary results show that the 
bubble is formed by a very delicate balance between surface tension and gravity. The 
earlier accounts of the collision process available in the literature, in which surface 
tension is either not, considered (Harlow & Shannon 1967a, b ) ,  or included with 
insufficient accuracy (Nystuen 1986; Nystuen & Farmer 1988), fail therefore to 
simulate the collision with the necessary detail. In an effort to improve on these 
studies, we were led to the present investigation. 

A rather unexpected result of this study is the prediction that a number of tiny 
toroidal bubbles should remain entrapped between the two contacting surfaces. It 
appears probable that these structures are unstable and quickly break up into 
spherical bubbles. This prediction appears to be in agreement with the observations 
of Blanchard & Woodcock (1957), who were interested in the formation of 
condensation nuclei for rain drops, and of Carroll & Mesler (1981) and Esmailizadeh 
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FIQURE 2. Schematic illustration of the liquid relocation process described in the text. The shaded 
portion of the drop indicates the volume that must be displaced outward and relocated around the 
ring of contact in the annular region BCD. 

& Mesler (1986), who studied this phenomenon for its bearing on boiling heat 
transfer. We discuss these observations in relation to our findings in the final 
section. 

2. Surface destruction 
The basic question we wish to address is, does the line of contact between the liquid 

surfaces move outward fast enough to  prevent further contact after the initial one, 
or is free surface destroyed by the surfaces coming together faster than the line of 
contact can move 12 A qualitative answer can be formulated by studying a simplified 
physical model. Consider for example the case of a droplet hitting a plane surface 
(figure 2). I n  the very early stages of the contact, deformation must be localized in 
the neighbourhood of the contacting point, and must be much greater for the drop 
than for the plane surface owing to the smaller inertia. We wish to  show with a simple 
order-of-magnitude argument that, unless the impact velocity is very small, contact 
between the two surfaces cannot be limited to the initial point. To prove this 
statement we first estimate the radially outward velocity that would be necessary, 
on the basis of mass conservation, to prevent this further contact. Then we show 
from the momentum equation that this velocity is incompatible with the available 
pressure gradient in the early stages of the motion. 

With reference to figure 2, assume that the shaded portion of the drop would 
relocate in the region, the trace of which on the meridian plane is BCD. This would 
be, in fact, the ‘embryo’ of the splash. The shape of this region evidently cannot be 
the one depicted, but the difference with the actual shape can only introduce 
constants of order one in the final results. If we set 

ut 
R ’  

c = -  

where U is the impact velocity, R the drop radius, and the time t is measured from 
the instant of first contact, elementary geometrical considerations lead to the 
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following equation relating the length 6 of the segment BD to B :  
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In  obtaining this relation we have assumed 6/R = O ( E ) ,  which will be confirmed 
a posteriori, and we have dropped higher-order terms. The solution of the above 
equation gives 

0 
= ae, - 

R (3) 

where a is a numerical constant approximately equal to 0.903 for the assumed shape 
and presumably some other value close to one for more realistic shapes. If the rate 
of change of the volume of the 'splash' BCD is now set equal to the rate a t  which the 
shaded portion of the drop volume in figure 2 increases, as is necessary for mass 
conservation, it is easy to show that the radially outward velocity of the point B of 
figure 2 must be 

The time dependence in this relation is the same as in the early stages of blunt solid- 
body penetration into an incompressible fluid (Korobkin & Pukhnachov 1988). If 
this velocity u, is too large to be produced by the available pressure gradient, the 
relocation of the drop's mass into the splash cannot take place and the surfaces must 
move towards each other and eventually come into contact. To estimate the 
maximum velocity compatible with the equation of motion we proceed as follows. 

For an extremely short time after the impact, the liquid pressure on the axis of 
symmetry at  the point A in figure 2 must exceed p,, the undisturbed ambient 
pressure, by an amount of the order of pUc, where p is the liquid density and c is the 
speed of sound in the liquid. This large pressure must fall to a level of the order of 
the stagnation pressure in a time comparable with the acoustic travel time between 
A and neighbouring surface points such as B. This timescale is much shorter than 
those we consider and can therefore be neglected for the present purposes so that we 
may take p ,  % p,+$u2. The pressure a t  B, just inside the liquid, must be p,- uW, 
where CT is the surface tension coefficient and W ,  the local curvature, may be 
estimated to  be 

rg aUt +L(2111)i] 2 + a  R ' 

Here the inverse of the first term is an estimate of the radius of curvature in the plane 
of the drawing of figure 2 ,  while the second term is the inverse of the length AB, 
which is the radius of curvature in the orthogonal direction. From the equation of 
motion we then obtain 

du, - P B - P A  

dt p a r  P T B  

where u, has the same meaning as before and rB is the length AB. By use of the 
previous estimates for p ,  and p ,  this gives 

- - - _ _  % -~ 
9 

-rv du, ( R ) t {  u [ a 

(2"")iI - +- F} . dt 2Ut apRUt 2 + a  R 
rv-- - 

This represents an estimate of the outward acceleration of the line of contact (point 
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B in figure 2) compatible with the equation of motion. The condition for the mass 
relocation required by continuity to be dynamically possible is that the time 
derivative of the estimate of us given in (4) be in magnitude less than or equal to this 
value, from which 

At time t = 0, this relation requires that a quantity, which we may identify with the 
inverse of a Weber number We, 

be greater than a numerical constant of order 1. With increasing time the right-hand 
side of (7) goes through a minimum which, for a of order 1 and We of order 1 or 
smaller, is still of order We, after which it grows monotonically so that the inequality 
(7) will be satisfied for long times irrespective of the value of We. Physically this 
occurs because, as the radius AB of the contact region increases (see figure 2), more 
and more mass can be relocated around the periphery of this region. The last term 
in (7), which dominates for long times, arises from the stagnation pressure term. 
Although our considerations are only justified €or small values of UtIR, the 
qualitative indication is that surface- tension effects grow increasingly small. This 
suggests that the stagnation pressure should eventually be able to generate enough 
of a pressure gradient to prevent surface contact. 

The above considerations strongly suggest that destruction of free surface does 
occur when the impact velocity is sufficiently large, at least in the early stages of the 
impact process. For a water drop of 1 mm radius, We = 1 for U x 0.25 m/s, which is 
the terminal velocity of fall from a height of about 4 mm. We therefore conclude 
that, in most cases of practical interest, the impact of droplets on a liquid surface is 
accompanied by some amount of surface destruction. This consideration leads us to 
the next step in our analysis, namely how this destruction is effectively carried out 
in a manner compatible with the action of surface tension. To address this point we 
consider an idealized situation described in the next section. 

3. Formulation of the problem 
We wish to study in detail the dynamics of the flow taking place in the region 

where the two liquid masses come together. As was noted before, the destruction of 
free surface occurs in the early stages of the impact and is therefore limited to the 
vicinity of the point of initial contact. This circumstance suggests that  the essential 
features that we wish to study will be preserved if, in order to reduce the number of 
parameters, we simplify the geometry of the problem as shown in figure 3. Two semi- 
infinite masses of inviscid, incompressible liquid are connected by a ‘ bridge ’. This 
configuration has an axis of symmetry SS which goes through the centre of the 
‘bridge’ and which is taken as the z-axis. In addition, i t  possesses a plane of 
symmetry TT’, as indicated in the figure, which is taken as the (2, y)-plane. The 
liquid a t  infinity is in a state of rigid-body motion with velocity T U along the z-axis, 
constant with time. Initially the bridge is bounded by the surface of a half-torus the 
cross-section of which will be chosen in a number of ways in the numerical results to 
be described. The half-torus joins with a zero tangent two parallel planes separated 
by a distance 6. The radial coordinate of the point of the toroidal surface closest to 
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FIGURE 3. Simplified geometry for the study of the surface destruction problem. Two semi-infinite 
masses of liquid that approach each other with a velocity U are connected by a ‘bridge ’. The axis 
of symmetry is denoted by SS’ and the plane of symmetry by TT. 

the axis of symmetry will be denoted by R T ( t ) ,  and the radial coordinate of the 
points where the torus joins the planes in the initial configuration by R,(O)+d. It is 
desired to study the evolution of this system when released. 

Of course, the long-time aspects of the process will be influenced by the curvature 
of the contacting surfaces that we disregard here. The qualitative consequences of 
this curvature are readily understood and will be pointed out below. In any case, 
their consideration is more appropriate for studies devoted to specific problems (e.g. 
the impact of a rain drop on a liquid surface, which will form the object of a separate 
publication) rather than in an analysis, such as the present one, devoted to the basic 
and hopefully universal features of the process of present concern. A further 
approximation that we introduce is the neglect of viscous effects. While we shall 
return on this point a t  the end of $4 to show that, this procedure is justified for low- 
viscosity liquids, it may be noted here that the predictions of an inviscid model are 
of interest in themselves in view of the frequent use of such a model in the study of 
free-surface flows. Finally, since the physical scales for the applications that we have 
in mind are very small, we are justified in neglecting the effect of gravity. 

It is somewhat disappointing that, even wit)h the great reduction in the complexity 
of the problem afforded by the foregoing approximations, i t  has proven impossible 
to make progress by purely analytical means. It appears that this problem differs in 
an essential way from other, superficially similar ones that can to some degree be 
studied analytically. Taylor (1959) and Taylor & Michael (1973) studied the growth 
of holes in liquid sheets, and Keller & Miksis (1983) considered idealized models of 
breaking liquid threads and films. In the present case the existence of intrinsic 
lengthscales such as 6, R,  and d prevents the existence of similarity solut,ions such as 
those found by Keller & Miksis. The growth of a ‘bridge’ rather than a hole has the 
consequence that mass conservation cannot be exploited as was done by Taylor. We 
are thus forced to use a numerical approach that we base on a variant of the 
boundary-integral method (Jaswon & Symm 1977; Baker, Meiron & Orszag 1982, 
1984). 

With the hypotheses and approximations described above, it is possible to describe 
the velocity field in terms of a velocity potential which is taken to have the form 

T T  
qh - U,lz,l, where 
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is the dimensionless approach velocity and z* = z / 6 .  From now on we shall use 
exclusively quantities made dimensionless with respect to the initial separation of 
the planes 6 and the characteristic time (pS3/a) i ,  but we shall omit the asterisks. It 
may be noted that, in these units, the dimensionless time tclose necessary for the two 
planes to touch is 

where the Weber number is now based on 6 rather than on R as in (8). 

following equation for 4 :  

tclose = ;We-;, (10) 

From the Laplace equation satisfied by the velocity potential we derive the 

VZ4 = 2US(Z), ( 1 1 )  

where 6(z) is the delta distribution. By use of the Bernouilli integral to calculate the 
pressure and of the dynamic boundary condition that the pressure difference be 
balanced by the Laplace pressure, it is easy to obtain the following evolution 
equation for the value of $ on the free surface: 

Here the convective derivative on the left-hand side is with the total velocity 
T U+V$ and initially 4 = 0. 

Integration of (12) in time gives the value of 4 on the free surface and allows one 
to calculate the velocity in the direction tangent to this surface. To calculate the 
velocity in the normal direction we make use of Green’s formula to find, after 
integration over the angular variable, 

This relation is treated as an integral equation for the derivative a$/an of $ in the 
direction normal to the free surface and oriented away from the liquid. The first term 
arises from the delta-function inhomogeneity in (1 1) and corresponds to  the volume 
integral in Green’s formula. The surface integral that appears in Green’s formula has 
been reduced by the angular integration to an integral over the trace S that the free 
surface leaves on a (half) meridian plane. The functions G and H are defined by 
Jaswon & Symm (1977) as 

(15) 
4rR 

m = - 
A ’  

A = ( R + r ) 2 + ( Z - z ) 2 ,  where 

and K ( m )  is the complete elliptic integral of the first kind and modulus m. In  (14) and 
(15) R and 2 denote the cylindrical coordinates of the surface point a t  which 4 is 
evaluated on the left-hand side of (13), while r ,  z are the coordinates of the integration 
point. It may be remarked that, although the Fredholm integral equation (13) is of 
the first kind, the fact that the kernel G exhibits a logarithmic singularity 
substantially mitigates the numerical problems usually associated with the ill- 
posedness of such equations. 

To solve numerically (13) for a4/an we use cubic splines to interpolate q5, r and z ,  

6 FLM 203 
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and piecewise linear functions to interpolate a$/an. Beyond some large distance from 
the axis of symmetry the following approximations for $ and a$/& are used to 
perform the integrations : 

where the subscript F denotes the last node on the surface. Details concerning the use 
of splines and the formulation in general are given in Oguz (1989). Here we only 
mention the fact that, as is well known, in numerical calculations in which surface 
tension is included but not viscosity, the free surface tends to be irregular owing to 
the numerical excitation of short, very high-frequency, capillary waves which also 
have the unpleasant side effect of rendering the time integration stiff. We have 
applied a smoothing procedure consisting in the averaging of the surface curvature 
over a short interval around each node of the spline interpolation. Further smoothing 
was provided by redefining the spline nodes at each time step so as to keep them 
equispaced. An implicit, second-order accurate, predictor-corrector method with 
under-relaxation by a factor 0.5 was used for the time integration. Even with these 
precautions, the numerical results showed some surface oscillations, the presence of 
which cannot be real in view of the short lengthscales (of the order of microns) of 
present concern. For this reason we have tried adding a term simulating the effect of 
viscous stress to (12). Several cases with and without this term have been tried and 
its effect was found to be confined to the attenuation (although not a complete 
removal) of the high-frequency capillary waves, as desired. Our extensive experience 
with the program, which has been satisfactorily applied to several situations in some 
of which comparison with analytical solutions was possible, and a series of 
convergence tests (see below a t  the end of §4), leads us to believe that the results to 
be shown are essentially accurate. 

4. Zero velocity 
To study the problem stated in the previous section it proves useful to consider 

first the case of zero approach velocity. Figure 4 presents several snapshots of the free 
surface a t  different times for this case. I n  view of the axial symmetry only the trace 
on a meridian half-plane is shown. The complete three-dimensional picture is 
obtained by rotating the figure around its left margin, which coincides with the axis 
of symmetry. 

After the non-dimensionalization described in $3, for zero velocity of approach, the 
only quantities characterizing the calculation are the shape of the cross-section of the 
torus and the value of RT(0) .  This figure corresponds to RT(0)  = 1. The cross section 
has been taken to be elliptical, with a 2 :  1 ratio of the axes, so that the distance d 
defined in figure 3 is 1. The initial shape of the surface evolves into two symmetric 
capillary waves which, in the three-dimensional picture, indent the liquid masses 
with two circular channels of progressively increasing radius. These two channels are 
joined and bounded towards the axis of symmetry by a nearly ‘flat’ front which 
seems to be the distinctive feature of the problem. We have found the same 
behaviour in all the cases that we have calculated, irrespective of the shape of the 
cross-section of the initial torus. For example, we show in figure 5 a similar sequence 
of surface shapes (taken a t  the same times as those shown in figure 4) for a case in 
which RT(0) = 1 as before, but the initial cross-section is circular so that d = t .  



Surface-tension effects in the contact of liquid surfaces 157 

FIQURE 4. Successive computed positions of the free surface for the liquid ‘bridge ’ problem of figure 
3 and zero velocity. The dimensionless time between traces is 0.16 and corresponds to 8 time steps. 
Only the traces of the surface on a half-meridian plane are shown. The complete configuration is 
obtained by rotating the figure around its left margin, which is the axis of symmetry. The initial 
shape of the cavity ‘nbse ’, which is the leftmost trace, is a half-ellipse of aspect ratio 2. The motion 
is away from the axis of symmetry towards the right. Here and in the following figures the 
dimensionless spacing of the dotted grid is unity. 

Except for the first few shapes, the result is very nearly identical to the previous case 
and the surface contours are nearly superposable. 

I n  figure 6 the velocity 

(positive outward) 
V v* = ___ 

( d P S P  

of the point located a t  the intersection with the plane of symmetry is shown for the 
previous two cases. Surface oscillations are very evident, even though the shapes 
shown in figures 4 and 5 look smooth. The velocity V ,  very quickly rises to a value 
close to  1 and then slowly decays with time. The only noticeable difference between 
the two cases is during the initial phase. For a gap width S = 1 pm, V ,  = 1 is 
equivalent, for water, to V x 8.5 m/s. Furthermore, with the present non- 
dimensionalization, V ,  = 1 corresponds to the phase speed of a capillary wave with 
wavenumber 1/S. 

It is interesting to compare this result with the rough estimate, (41, obtained in $2 
for the speed necessary to relocate mass without further surface contact. If, as seems 
reasonable, we take the present gap width 6 to coincide with the length S defined in 
figure 2, and we use (3) for this quantity, we find, from (4), 

uB, x 0.57 Wet, 

where the numerical constant has been evaluated using the value of a given in $2. A 
drop with a radius of R = 1 mm has a terminal velocity U x 6.6 m/s (Dingle & Lee 
1972) which results in uB, z 13.9, which is seen to be one order of magnitude larger 
than the velocity V ,  given by the numerical solution. 
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FIGURE 5.  Successive computed positions of the free surface for the liquid ‘bridge ’ problem of figure 
3 and zero velocity. Here the initial shape of the cavity ‘nose’, which is the leftmost trace, is a half- 
circle of unit radius. The dimensionless time between traces is 0.16 and corresponds to 8 time 
steps. Only the traces of the surface on a half-meridian plane are shown. The complete 
configuration is obtained by rotating the figure around its left margin, which is the axis of 
symmetry. The motion is away from the axis of symmetry towards the right. 

FIGURE 6. Dimensionless velocity V, of the free surface at the plane of symmetry (i.e. the point 
closest to the z-axis) versus dimensionless time. The continuous line is for the elliptic initial shape 
of figure 4 and the dotted line for the circular one of figure 5.  

The amplitude of the capillary wave, defined as the maximum value of IzI for a 
given surface shape, is also clearly growing in time. We show in figure 7 a graph of 
this quantity as a function of time for the two cases considered before. Again 
oscillations are apparent although the two results are extremely close. As already 
stated, we found essentially the same behaviour in all the cases that we have 
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FIGURE 7 

FIGURE 8. Successive positions of the free surface for the liquid ‘bridge’ problem for a larger initial 
distance from the axis of symmetry (left-hand margin of the figure), RT(0) = 3, and the same initial 
shape as in figure 4. The motion is away from the axis of symmetry towards the right. The 
dimensionless time interval between successive traces 0.16 and corresponds to 8 time steps. 

investigated, and we are therefore confident that the evolution of the process is 
rather insensitive to the initial conditions. 

Another important parameter in this problem is the value of RT(0) .  We show in 
figure 8 the results for RT(0) = 3 and d = 1,  with a 2 : 1 elliptical initial shape, again 
at the same times as in figures 4 and 5. The flat ’ advancing front proves to be the 
basic feature of the result in this case as well. The velocity graph in figure 9 has a 
behaviour qualitatively very similar to that shown in figure 6, but the peak velocity 
is now somewhat larger. Presumably this is due to the combined effect of a reduction 
of the competing curvature in the orthogonal plane, and to the release of more 
surface energy due to the geometry. The dotted line in figure 9 is the result obtained 
by computing the curvature by fitting circular arcs to the surface points rather than 
from the spline interpolation. The minor differences between the two results confirm 
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FIGURE 9. Dimensionless velocity V, of the free surface a t  the plane of symmetry (i.e the point 
closest to the z-axis) versus dimensionless time for the case of figure 8. Cubic splines were used to 
calculate the surface curvature for the result shown by the continuous line. For the dotted line use 
was made of circular arcs fitted to the computed points. 

FIGURE 10. Successive positions of the free surface shapes for the two-dimensional case. The initial 
shape is the same as in figure 4 (half-ellipse of aspect ratio 2). The fluid extends to infinity in every 
direction except the gap in the right and there is no symmetry with respect to the left margin in 
this geometry. The motion is towards the right. The dimensionless time interval between successive 
traces is 0.08 and corresponds to 4 time steps. 
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FIGURE 11 .  Comparison of the velocity of the points on the plane of symmetry for the cases in 
figure 4 (-); figure 9 (...); and figure 11 (-.-.). 

that the slight irregularities of the curves arise from capillary waves. At the same 
time, the substantial agreement of the two computations suggests that the basic 
features of our results are unaffected by the way in which the effects of capillarity are 
stabilized. 

As RT(0) increases further the effect of the curvature in the planes orthogonal to 
those of the figures decreases and the situation becomes closer and closer to being 
two-dimensional rather than axisymmetric. For completeness we present in figure 10 
the results for an exactly two-dimensional situation for an initial shape identical to 
that of figure 4. The snapshots of the surface are shown at the same times as in that 
figure. In this case the left margin of the figure is placed arbitrarily and is not a plane 
of symmetry. These results have been obtained by using an integral equation of the 
same form as (13) but with the functions G and H given by 

1 1 n . h  G = --logh*h, H = -- 
2n: 7ch.h’ 

Here h is the vector with components X - x , Z - z  where X , Z  and x ,z  are the 
coordinates of the observation and integration points respectively. The computation 
is otherwise the same as before. In  this case we found the results to be more sensitive 
to the treatment of the condition at  ‘infinity’. Since no useful asymptotic form 
similar to the one previously used is available for this geometry, it was necessary to 
simply truncate the integration by setting g5 = 0, ag5/an = 0 a t  some large distance 
from the axis of symmetry. The minor opening of the horizontal lines with time is 
caused by the error introduced by this procedure. Indeed, i t  was found that this 
opening decreased by enlarging the computational domain. Since we show these 
results for comparison purposes only, it did not seem worthwhile to invest a greater 
effort in an attempt to solve this minor problem. The velocity of the points on the 
plane of symmetry for this case is compared in figure 11 (dash-and-dot line) with 
those of figures 4 (continuous line) and 9 (dotted line). The two-dimensional 
calculation appears wavier than the others because it was run with a coarser 
resolution in view of the need for a larger computational domain. The trends are 
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FIGURE 12. Comparison of the free-surface shapes at the dimensionless time 1.440 for the case of 
figure 4 computed with two different spatial resolutions, As = 0.1, line 1, and As = 0.2, line 2 .  The 
two squares are the third and fourth of the second row from the top in figure 4. 

however similar. A very rapid initial rise brings the velocity to a value somewhat 
above that found for RT(0)  = 3, thus confirming the trend towards higher maximum 
velocities as RT(0)  increases. The decline from this value is however faster than in 
the other cases, which also agrees with the difference found between RT(0) equal to 
1 and 3. 

At the other extreme, if RT(0) is very small, the curvature in the plane of 
symmetry of the system, which has a sign opposite to that in the meridian plane, 
dominates. The free surface, rather than moving outward, moves inward toward the 
axis of symmetry until the ‘bridge’ pinches off and the two liquid masses are 
eventually severed from each other. The critical value of RT(0)  below which this 
happens is somewhat dependent on the initial shape but is close to the radius of 
curvature of the initial shape a t  z = 0 in the meridian plane. With this value of 
RT(0) the initial curvature a t  z = 0 vanishes. 

One may speculate to what extent these results would be affected by viscosity. I t  
is well known that, for a surface wave of wavenumber k, viscous effects act on 
timescales of the order of (vk2)-l where v is the kinematic viscosity coefficient. If we 
use the estimate k - &’, the viscosity of water, and S of the order of microns, we find 
that this timescale is much longer than the timescale (pS33 /~ ) i  that  is relevant for the 
present problem. It seems reasonable therefore to conclude that the main features of 
our findings would not be affected by viscosity. This conclusion seems also to be in 
agreement with experiment, as will be mentioned below. 

As a final point of interest we present an example of the convergence of the 
numerical method in figure 12 where we show a detail of the shape of the interface 
a t  time 1.440 as computed with two different resolutions (ALS = 0.1, line 1,  and As = 
0.2, line 2) for the case of figure 4. The agreement between the two simulations is very 
good, especially in consideration of the very delicate stability features of the present 
problem. 

5. Non-zero velocity 
The effects due to a non-zero velocity of approach of the two liquid masses can be 

inferred to some extent from the previous results, but unexpected features do arise. 
In figure 13 we show the case of figure 4 with a velocity U ,  = 0.2 superposed. The 



163 

FIQURE 13. Successive computed positions of the free surface for the axisymmetric liquid ‘bridge’ 
problem of figure 4 and a dimensionless approach velocity of the liquid masses of 0.2. The initial 
shape is the same as in figure 4. The left margin is the axis of symmetry. The motion is towards 
the right. The dimensionless time interval between successive traces is 0.16 and corresponds to 8 
time steps. 

_ _ -  

FIGURE 14. Successive computed positions of the free surface for the axisymmetric liquid ‘bridge’ 
problem of figure 4 and a dimensionless approach velocity of the liquid masses of 1. The initial 
shape is the same as in figure 4. The left margin is the axis of symmetry. The motion is towards 
the right. The dimensionless time interval between successive traces is 0.04 and corresponds to 4 
time steps. 

characteristic troughs of the capillary waves of the zero-velocity case are still 
present, but they are accompanied downstream by two wave crests which are found 
to be dependent on the initial shape. This feature can be appreciated by comparing 
figures 14 and 15, which correspond to U ,  = 1. For figure 14 the initial shape is the 
same 2:  1 ellipse of figure 4, 8, and 10 with RT(0) = 1 and d = 1.  For figure 15 it is a 
circle as in figure 5 .  The velocity of the points on the plane of symmetry is compared 
in figure 16 (dash-and-dot line) with that of the zero-velocity case of figure 4 
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FIGURE 15. Successive computed positions of the free surface for the axisymmetric liquid 'bridge' 
problem of figure 4 and a dimensionless approach velocity of the liquid masses of 1. The initial 
shape is semi-circular as in figure 5.  The left margin is the axis of symmetry. The motion is toward 
the right. The dimensionless time interval between successive traces is 0.04 and corresponds to 4 
time steps. 
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FIGURE 16. The velocity of the points on the plane of symmetry for different approach velocities : 
-, U ,  = 0 ;  ..., 0.2; -.-., 1.0. The initial shape is elliptical as in figure 4. 

(continuous line) and that for U ,  = 0.2 of figure 13 (dotted line). Clearly a non-zero 
approach velocity leads to a faster outward velocity, but there is no indication of this 
latter velocity becoming greater and greater as the gap narrows, as might have been 
expected on intuitive grounds. Furthermore, it is evident that the appearance of the 
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FIGURE 17. The motion of the rightmost wavecrest for the case of figure 15 (upper line) compared 
with that of the point on the plane of symmetry (lower line). 

FIGURE 18. Successive computed free-surface shapes of a liquid ‘bridge’ being pulled apart with a 
dimensionless velocity of 0.2. The initial distance closest to the axis of symmetry (left margin) is 
R,(O) = 0.3 and the initial shape is a half-ellipse of aspect ratio 2 as in figure 4. In this case the 
motion is towards the left and the last computed shape is the one closest to the axis of symmetry. 
With zero velocity this case exhibits a motion towards the right as in all other cases shown. The 
dimensionless time interval between successive traces is 0.16 and corresponds to 8 time steps. 

two symmetrically placed wave crests will lead to further contact between the liquid 
masses. When this happens, the resulting cusp will very rapidly relax toward a shape 
with a continuous curvature, after which the process may be envisaged as repeating 
itself indefinitely on a smaller and smaller scale. We shall discuss the significance of 
these conclusions in the last section. 

It is also of some interest to compare the motion of the rightmost wave crest with 
that of the point on the plane of symmetry. We show in figure 17 the positions of 
these two points (upper and lower lines, respectively) for the case of figure 15. After 
an initial interval, the two traces are close to being parallel, which indicates that the 
evolution of the wave structure is characterized by wavenumbers of similar 
magnitude in its various parts. 
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Although irrelevant for the drop impact problem, for completeness we also give one 
example of the effect of a negative velocity U,,  which would correspond to the two 
liquid masses being pulled apart. This is shown for a velocity U ,  = -0.2 in figure 18. 
Here R,(O) = 0.3 and d = 1 .  With a zero velocity this initial configuration is found to 
evolve similarly to the other examples shown with the liquid bridge becoming thicker 
and the free surface moving to the left. The pulling apart of the liquid masses 
however causes the reverse to happen and the bridge to eventually break up. 

6. Discussion 
If, as the two liquid masses approach, the free surface were to retain essentially its 

shape, with only an increase in curvature at the points on the plane of symmetry, one 
would expect that  the radial velocity of these points would increase without bound 
as the gap becomes narrower and narrower (figure 1).  This argument was a t  the basis 
of our early belief that no surface contact would occur after the initial one. The result 
of this investigation is however quite the opposite. The free surface becomes nearly 
‘flat’ in the region of the plane of symmetry, and therefore the outward velocity is 
only slightly affected by the narrowing of the gap. Further contact will then occur 
downstream of the first one, a t  the crests of the capillary waves that appear so 
prominently in figures 13-15. After this contact is established, the process starts over 
again from the contact point and so on. 

The large-time, large-distance behaviour in the model problem studied is not very 
relevant for the drop impact situation, since in this case the fact that the opposing 
surfaces are not (both) plane will start to play a role at some point. As the distance 
between opposing points on the two surfaces increases owing to their curvature, a 
longer time will be needed to establish contact, and this time may become sufficient 
for the available pressure gradient to push the liquid outward and prevent further 
surface contact. Curvature should however be negligible in the neighbourhood of the 
point of first contact, and our results should apply there. The indications furnished 
by these results point toward repeated contacts along a finite, and probably not too 
large, number of rings of increasingly larger radius. A rather unexpected prediction 
is that these contact regions will be separated by toroidal ‘air’ bubbles as sketched 
in figure 19. 

Two questions come immediately to  mind, namely, are these bubbles real, and, can 
they be observed? On the first point, all we have proved is that  their generation 
seems to be the inescapable conclusion to  which the model of perfect fluids with 
surface tension leads. Insofar as this model is widely used, our result may have some 
interest whether i t  corresponds to the actual behaviour occurring in nature or is only 
an artifact of the model. If we can venture into some speculation, however, we may 
add that one feature of our result appears to be physically correct, and therefore 
should survive the inclusion of more realistic effects such as viscosity. We refer to the 
fact that the flow in the region close to the points where two liquids come into contact 
is predicted to be inherently unsteady. The initial cusp rounds off instantly, moves 
outwards for a while becoming flatter, a new contact is established downstream of 
the first one, and the process repeats. If this were not so, the cusp would have to 
persist and propagate over intervals of time comparable with those of the fluid flow. 
This is incompatible with the assumption of local thermodynamic equilibrium which 
underlies standard fluid mechanics and, in particular, the usual treatment of surface 
tension. A configuration with cusps is one of large non-equilibrium and must 
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FIQURE 19. Schematic of the proposed mechanism of surface destruction by creation of a series 
of successive toroidal bubbles. 

disappear over times very short compared with those associated with the liquid 
flow. 

As to the second question about the observability of the toroidal bubbles it may 
be noted that their size is very small, comparable with the distance between the two 
opposing liquid surfaces in the region of contact. At the moment a t  which the liquid 
surface entraps the bubble, the pressure in it will be atmospheric, while the 
equilibrium pressure compatible with surface tension would be higher. For a bubble 
size in the range from 10 to 1 pm the overpressure due to surface tension is, in water, 
of the order of 0.1 to 1 atm. The toroidal bubble will therefore tend to collapse and 
presumably break up in the process. We base the last statement on two considerations 
arising in the somewhat similar case of cylindrical bubbles. In the first place a 
cylindrical cavity, much as a cylindrical jet, is unstable in the presence of surface 
tension (Chandrasekhar 1961). Secondly, a stability analysis of a collapsing 
cylindrical cavity (Birkhoff 1954) reveals an instability having the same origin as the 
one appearing in the more usual spherical case (Plesset 1954). It may also happen 
that the axial symmetry forced on our calculation is destroyed in nature. This will 
certainly be the case if contact a t  different points along the ring takes place a t  times 
separated by an interval longer than that necessary for the disappearance of the 
cusp, and is therefore very probable. In  this case the formation of spherical bubbles 
does not have to rely on the breakup of a primary toroidal structure. An additional 
factor is that, unless the liquid is saturated with gas, the small spherical bubbles 
would tend to dissolve in relatively short times (Epstein & Plesset 1950). Even if real, 
therefore, the structures that we have found may not lend themselves to a casual 
observation. In  spite of this, experimental evidence of their formation has been 
reported, to which we now turn. 

The toroidal bubbles, or bubble chains, predicted by our study form exactly on the 
vortex sheet produced by the surface destruction process. They therefore seem likely 
to remain entrained in the vortex ring into which the sheet evolves. Precisely such 
an entrainment has been noticed by Blanchard & Woodcock (1957) and Carroll & 
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Mesler (1981). The first authors report that a 2.2 mm diameter drop a t  terminal 
velocity ‘was observed to produce from 50 to 100 bubbles that were often carried 
down in a vortex ring to depths of 2 4  em. The vast majority of these bubbles 
appeared to be under 50 microns diameter.. . . These bubbles would go rapidly into 
solution or grow depending upon whether the sea water was considerably under- or 
over-saturated, respectively ’. The terminal velocity for a 2.2 mm drop is about 
6.9 m/s (Dingle & Lee 1972) with a Weber number, given by (8), of 1.39 x lW3 which 
should lead, according to the considerations of $2, to a substantial amount of free 
surface destruction. Blanchard & Woodcock go on to say that ‘with increasing drop 
size an increase in the number of bubbles was observed, although the bubble size was 
predominantly the same ’. This observation is also compatible with our findings since 
the toroidal bubbles are formed when the two surfaces come together, a local process 
which should be independent of the global lengthscales. Interestingly enough ‘the 
larger drops also produce several bubbles of about a mm diameter’. These bubbles 
are very likely those formed by the pinching off of the crater, to which reference was 
made in $ 1  .t It is evident from the experimental observations that the two types of 
bubbles are completely distinct. 

The entrainment process discovered by Blanchard & Woodcock was later 
studied in more detail by Carroll & Mesler (1981) and Esmailizadeh & Mesler (1985). 
This investigation was motivated by the observation by Mesler (1981) and Bergman 
& Mesler (1981) that the vortex bubbles could act as boiling nuclei in hot liquids 
and considerably increase the heat transfer, particularly in the boiling of thin liquid 
layers. We reproduce in figure 20 one of Carroll & Mesler’s photographs with a sketch 
illustrating the process. Carroll & Mesler also found that the bubbles were seen only 
for relatively low impact velocities, corresponding to  release heights of 10 cm or less. 
This trend is not incompatible with our results since i t  is clear upon comparison of 
figures 13 and 14 that the size of the entrapped bubble should decrease with 
increasing impact velocity. This circumstance would cause a more violent collapse 
and a greater rate of dissolution. 

Professor Mesler pointed out to us the possibility that the small bubbles remain 
entrapped because of a Rayleigh-Taylor instability of the impacting drop. According 
to this picture, just before impact the drop would be strongly flattened by the action 
of the thin air film that separates i t  from the underlying liquid and would be subject, 
a t  the same time, to a strong acceleration directed from the air into the drop. Thin 
air films are certainly a possibility and are thought to explain the curious 
phenomenon of drops ‘floating’ over liquid surfaces as in a low-temperature 
Leidenfrost effect. This phenomenon, however, is only seen by carefully depositing 
the drop on the liquid and disappears as soon as there is an impact velocity. The 
fastest growing wavelength in the Rayleigh-Taylor instability process is of the order 
of (cr/pA)f, where A denotes the acceleration. To produce a bubble with a radius of 
50 pm due to this process one therefore needs an acceleration A z 28000 m/sz. For 
an impact velocity of 1-2 m/s, such an acceleration is sufficient to bring to rest a 
body in less than 100 ps, i.e. over a distance smaller than 100 pm, which is less than 
one tenth of the drop radius. Alternatively, it would seem reasonable that, if the drop 

t The experiments of Pumphrey & Crum (1 988) indicate that drops with a diameter greater than 
about 1.2 mm impacting at terminal velocity would not produce bubbles directly owing to the 
pinching off of the crater. Rather the drop, or drops, which fall back from the tip of the jet formed 
upon closure of the crater (Worthington 1908; Franz 1959) give rise to secondary craters which 
may pinch off to form a bubble. See also Pumphrey et al. (1989) and Prosperetti et al. (1989). 
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FIGURE 20. Minute bubbles entrained in the vortex ring produced by the impact of a coloured drop 
on a surface of the same liquid. (Courtesy of Professor Russell Mesler). 

flattens against the receiving liquid, this would occur over a time of the order a/U,  
with a corresponding acceleration of the order U l a  which, for the experimental 
conditions of Carroll & Mesler, is about 2000 m/sz and therefore smaller by an order 
of magnitude than the one needed for the Rayleigh-Taylor mechanism to be 
effective. These considerations suggest that the explanation given in the present 
paper is more plausible than that based on the Rayleigh-Taylor instability, but 
experiments will be needed for a firmer conclusion. 
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