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Almtract--The technique for the linear stability analysis of two-phase flow models developed in a previous 
paper has been extended to deal with models containing space and time derivatives of the flow variables 
of arbitrary order. A number of current models for the description of stratified flow have been analysed 
in detail as an illustration of the utility of the technique. The role of interphase drag functions for long 
wavelengths and of surface tension for short wavelengths clearly emerges from these examples. Effects 
such as transverse momentum and viscosity are also contained in the examples considered. For long 
wavelengths some general results are given. 

INTRODUCTION 

It has been shown in Jones & Prosperetti (1985), hereafter referred to as Part I, that a number of 
results concerning a class of two-phase flow models could be obtained by an analysis of the linear 
stability properties of their steady, uniform solutions. This approach is useful both in the initial 
assessment of specific models and as a guide to their further development. In Part I models 
including only first-order time and space derivatives were considered. In this paper that analysis 
is extended to deal with a broader class of models containing time and space derivatives of arbitrary 
order. 

A number of such models can be found in the literature, such as those proposed by Arai (1980), 
Banerjee (1980), Sha & Slattery (1980), Smith (1980), Ramshaw & Trapp (1978), Ramson & Hicks 
(1984) and others. The generalization considered here is a natural extension of the class of models 
previously studied which offers the prospect of correcting its least acceptable feature, namely the 
independence of stability criteria from the wavelength of the perturbations. It is found that higher 
order derivatives lead to a wavenumber dependence, as expected, and make it possible to have, 
for instance, short-wavelength stability combined with long-wavelength instability. Although an 
averaged-equation model is not expected to provide more than a rough description of short- 
wavelength phenomena we consider stability on this scale to be an essential requirement for a 
realistic model. Numerically, this aspect has played a less important role due to the use of finite-size 
grids which limit the minimum resolvable wavelength. 

The results of the general theory are applied to several models available in the literature for the 
description of stratified flow. The models contain a variety of physical effects such as surface 
tension, gravity, transverse momentum and viscosity. Their linear stability properties at different 
wavelengths are described in detail and stability boundaries involving the model parameters are 
obtained. 

In the following developments the same approximations used and discussed in Part I are again 
adopted. Specifically, the phases are assumed to be individually incompressible, the flow is one- 
dimensional, and the energy equations are taken to be decoupled from the mass and momentum 
conservation equations and are therefore not considered. In particular this implies that no mass 
is exchanged between the phases. 

tPresent addreu: Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, U.S.A. 
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THE CLASS OF MODELS CONSIDERED 

The class of  one-dimensional adiabatic two-phase models considered here is a broad extension 
of  that of  Part I . t  The mass conservation equations are 

O~ (EoPG) + (EoPoI"o) ; 0 [la] 

and 

0-'l @LPL) Jr (~Lf)LVL) = O, [lb] 

where p, V and E denote the density, velocity and volume fraction, respectively. Although we use 
subscripts G and L to distinguish the two phases, this does not imply that our results are limited 
to gas-liquid systems. The volume fractions satisfy 

eo + eL = 1. [2] 

As in Part I we now make the assumption of  constant density for both phases to remove PO,L 
from [la, b] which, combined, lead to OU/Ox ffi 0 where the volume velocity U is defined by 

From [2] and [3], we find 

u(t) = E~VG + eL VL. [31 

-- U - V o  U V L and EL • -  [4] 
E°=Vo--VL VL--V~" 

We shall restrict our analysis to two-pressure models such that the phase pressures can be put 
in the form 

PL.O = P + PL,O(~LC, VL,G; PL,G), 
where p is some average pressure. Note that the PL,G can also depend on the derivatives of  their 
arguments. Some examples of  such models are considered later. With this assumption, for 
incompressible phases, the momentum equations can be written in the general form 

£j~P ~ (~jv~)+ j [5] at (EjVj) + ~x ~ ~x = Ej(Aj + Rj), = G,L. 

Here ,4: designates albegraic terms in the flow variables ~j and Vj describing the effects of  body force 
and steady drag (for an example see [4] of  Part I). The symbol Rj represents a number of terms 
involving space and time derivatives of arbitrary order of ~j and Vj such as are introduced by the 
modelling of differences in the phase pressures and of the effects of surface tension, viscosity, added 
mass, correlation terms, and others. A sufficiently general form of  R / fo r  our purposes is 

r ~vj ~v~ M.N ~m+,V. 7 
~ =  E / q o , ~ + r o ~  + E "~:') , t  

:=L.o,_ ,.+.~,~:"~ ~t"Ox.j 
po=  non-.no r in'  :to,'m  involvin '  

+ \  the derivatives / + \  U,/7 . . . .  J [6] 

with an analogous expression for RL. Derivatives of  the volume fractions appearing in RO.L have 
been eliminated by the use of [4]. The terms non-linear in the derivatives need not be shown 
explicitly since they vanish in the linear stability analysis of  steady uniform flow which is the 
object of this paper. The quantities qoj, rcj and y ~ 0  are functions of  VO.L and eO.L, specific forms 
of which are presented in the examples below. Note that for y~,~t.) = 0 the class of  models considered 
in Part I is recovered. 

tAll symbols are the same as used in Part I, except for the substitution of ~ for u to conform with the current journal 
nomenclature. 
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The same procedure as used in Part I allows us to combine the momentum equations [5] to find, 
with the aid of [3] and [4], an expression for the pressure gradient: 

@ [ + (vc- u) [7] ~X = ~ kf'fi(Ac "{- RG) "[" £L(AL "{- RL) "}" (VL -- U) ~ OVc COVL]COX j '  

where 

\Pc  PL,/ " 

The pressure gradient in [5] can be eliminated using this expression to find an alternative form for 
the momentum equations: 

and 

in which 

and 

cove wcoVc W) COVL kO+ LL 
Ot + COx + - ~ ( V c -  cox - P c  

COVL + ~(VL-- W)-~X° + W °VL =~(:-~.oL, 
COt ~L 0X PL 

[9a] 

[9hi 

[m] 

and 

and 

U = 17 + u( t ) ,  [13b] 

where VO.L and u are the small perturbations to the flow. To first order in these quantities, [9a, b] 
become 

0[~G WCOl~G ~L COVL = k a 
Ot + Ox ax Po 

+ g ( V G -- W) "~- ~L(LG~G + ZL[~ L + L,~i) [14a] 

CO-"t" +--(VL--~L W) COx + COx ------fiPL --~G(Lovo+LLVL+L'u)" [14hi 

Here all the coefficients are evaluated for the unperturbed conditions but the overbars have been 
dropped. Equation [12] has been used to simplify the r.h.s.'s and LO,L and/.~ are linear differential 
operators arising upon the insertion of [13a, b] into [la, b] and [6] and linearization. The explicit 

LINEAR STABILITY ANALYSIS OF STEADY UNIFORM FLOW 

Following Part I, we now investigate on the basis of [9a, b] the linear stability of steady uniform 
flow with velocities 7O.L. We set 

VG. L = 7G. L "+" VG.L(X, t) [13a] 

It is obvious from [5] that this is just Op/Ox. 

L =  ~ I I ( A o  + / ~ ) -  l ( A L  + RL) I .  [ll] 

Since the algebraic contributions to the momentum equations [5] are represented by Ao, L, without 
loss of generality, we can assume P'a,L = 0 when all the derivatives vanish. Thus in steady uniform 
flow [9a, b] reduce to L = 0 or 

pGAG ---- pL AL . [12] 
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form of LG0 L is found to be 

LL "= ~'g "~" I'lL ~ -I- 0L ~X "1- E ~r[m.n)~  [15a] 
,,,+~2 C~tm~x ~' 

Lo = Yo -- JTo~t -- 0o ax ~. Y~o"' ~ ) ~  [15b] m+n;~2 ~tmt~X n' 
where 

and 

as in Part I and, furthermore, 

. t~ //AG AL~, [16] 

(qLG qC, G) 
t?° = : k'~G ~LL [17] 

\PG PL ] 

('Y [~ ")Y~tn)~ [19] 
y~m.n)= ~ k" ~G PL /I 

with ~t, t/L, 0t, and y[m.,) obtained by interchanging the indices L and G. For Lu we note that 
it is a differential operator on u with constant  coefficients due to the assumed steadiness and spatial 
uniformity of the unperturbed flow. 

Therefore, if one sets 

~L,G ~--" lYL,G(X, t)  + V'L,C(t), [20] 

where c[.o are defined as the solutions of 

and 

dvG (pp__~) 
--~----- -FELL u 

dv L 

[21a] 

[21b] 

then VG. L satisfy equations identical to [14a, b] but without the terms involving u. An explicit 
example of this procedure can be found in Part I. 

Note that the coefficients of the differential system [21a, b] are independent of x due to the 
assumed steadiness and uniformity of the base flow. The quantities V&L describe the response of 
the flow to perturbations in the total volume flux U which, being only a function of time, in practice 
is controlled by the inlet conditions. With this observation we can explicitly dispose of the boundary 
conditions to concentrate on [14a, b] with ~ --0. 

In the standard fashion we set 

VO.L ffi UG.L exp[i ( k x  - cot)], [22] 

where k is the wavenumber of the perturbation and to its angular frequency. 
We note that since by the use of the transformation [20] the effect of inlet perturbations has been 

eliminated, the only meaningful sense in which the stability should be examined is as an initial-value 
problem. This implies real k and stability requires 

J.(co) ~ O. [23] 

In Part I the quantity c = ico/k was used in place of co. 
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Upon substitution of [22] into [14a, b] (with u = 0), one finds a linear homogeneous system in 
U~,L, the solvability condition of which leads to the dispersion relation 

(1 + ~Gr/L t ~L~O)Ca 2 -- [i (EG~L + ~L~) + 2kW + k (~L~O VG + ~Gr/L VL) + k (~0i. + ~LOG)]Ca 

+ ik (~GVL VL "1" ~:I..~G VG) "~ k2( ~G V~. + ~ V ~  + k2(¢GOL V L + ~L 00 v~) 
~PG PL / 

M, N 
+i ~ ~. (1-~j)(ca-kVj)~",")(-ica)"(ik)'ffiO. [241 

m+n;D2 j-G,L 

Note that by [12] the factor ~ need not be differentiated in this linear analysis. Furthermore, 
~LTG ffi ~C~ and ~ ' L  ffi I/LL in the notation of [27] of Part I. In the general case, [24] is a high-order 
polynomial in ca with complex coefficients and it is impossible to translate the stability condition 
[23] into explicit conditions involving the algebraic drag functions ?~ and the further terms of the 
model q~, r~ and y~""), as was done for the relatively simple case of Part I. Some information can, 
however, be derived from [24] in cases more general than those of Part I by examining the behaviour 
of ca (k) in the long-wavelength limit k --, 0. This will be done in the next section. The subsequent 
sections deal with more specific situations for which both short- and long-wavelength results can 
be obtained. 

In the special case in which only first-order time derivatives appear in R~,L, [24] is quadratic in 
ca and explicit stability conditions can be written down (so: Part I). If, on the other hand, R~. g 
do not contain time derivatives but only even-order space derivatives a simple redefinition of t/~.L 
and TG.L shows that instability prevails unless VG ffi VL. An example is the incompressible model 
of Arai (1980) including viscosity but without added mass. 

STABILITY IN THE LONG-WAVELENGTH LIMIT 

The dispersion equation [24] is a polynomial of order M, say, and for stability each of its M 
roots must have a non-negative imaginary part. In the long-wavelength limit the behaviour of these 
roots must be examined as k - ,  0. 

A necessary stability condition can be derived by observing that [24] always has at least one root 
which tends to zero as k-+ 0. By direct substitution it can be verified that such a root is 

CO l = k V ~  - -  i k 2 X  + 0 (k3), [25] 

where Vy is an average of the phase velocities weighted with the quantities ~a,L and YI~G, related 
to the drag functions, and is defined by 

EG~'L VL + ELrG VG 
V~ = [26] 

~G ~L "4" £L ~G 

The quantity X in [25] is dependent only on the drag functions and on the coefficients of the 
lowest-order (first) space and time derivatives in the momentum equation [5]. The definition is 

[(1 + ~Ot/L + EL/']G ) V~ -- ( 2 W  Jr- leg t]L V L + ~Lt]G V o "at" £GOL "3 k (~L 0O) V? X 
L 

The stability condition [23] for this root is just X >/0. Note that this necessary condition is sensitive 
to the form of the algebraic part AG.L of the drag functions which determine the quantities YG~.- 
Of course, further stability conditions will arise from the other roots of the dispersion relation 
making X I> 0 only necessary. 

It might be hoped that the instability of a non-hyperbolic first-order model could be corrected 
by the introduction of higher-order derivatives. However, as was shown in Part I, such a 
non-hyperbolic model would not satisfy X t> 0 and so would be unstable in the long-wavelength 
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limit. We note also that the condition X >/0, together with 

F = ~)'L+~L7~ ~< O, [28] 
1 + ~G~L "4- EL~G 

are equivalent to the two stability conditions of Part I, [44] and [49], which in that case were valid 
for all k. 

The same conditions may be shown to arise in the long-wavelength limit under the restriction 
that the model under examination contains no time derivatives of second or higher order, i.e. 
~ ' " ) - - 0  for m i> 2. The proof actually holds for the slightly more general case in which 
~a ]~'~'n) + ~L Y~" n) = 0 for m/> 2. Referring to [24], it is seen that this is now a quadratic equation 
in to. One solution has the form [25], while the other is 

o~2 = iF + o (k ) [29] 

with F defined by [28]. The stability condition for k --, 0 for this root is then [28]. Model features 
contributing terms of the type just discussed include the Arai (1980) viscosity term, Ramshaw & 
Trapp's (1978) surface tension term, the "hydrostatic" term of Rousseau & Ferch (1979) and 
Ardron (1980), and the 5E2P model of Ransom & Hicks (1984). 

HORIZONTAL STRATIFIED FLOW: GRAVITY AND 
SURFACE TENSION EFFECTS 

Horizontal stratified flow in a channel having a rectangular cross-section has been used by a 
number of investigators as a model problem for the investigation of several features of average 
two-phase flow equations. Ramshaw & Trapp (1978) have considered a model which includes 
surface tension effects and which, in the incompressible case, consists of the continuity equations 
[la, b] and of momentum equations of  the form 

av, av, l ~j,, 
o-7 + v,~-x +~.~=o, j=G,L, t301 

with 

~2EL [31] 
PL --  PO = --  ¢7H bx2  • 

Here H is the height of the channel and a the interracial tension coefficient. To bring [30] into our 
general form [5] it is sufficient to define 

p = ½(po +p~) [32] 

to find 

av~ v~V~ lap  l ~  _a3~, 
W + ' ax ~ ~ x = ~ H T ~ x  ~' 

j = G, L. [33] 

Use of [4] then shows that 

1 o'H ( ~3V G ~3VL~ 
= 2p~ v~--~ eL,  ~ ~ + ~L-~-~3 ) [341 

up to terms non-linear in the derivatives. The form of R~ is obtained on interchanging the indices 
G and L. 

The effect of gravity also gives rise to a pressure difference between the phases, as shown by 
Rousseau & Ferch (1979), Ardon (1980), Banerjee & Chart (1980) and others. In these models the 
pressure in the upper fluid, the gas, is given by 

P6  = Pos  - ½ H ~ c  PGg  [35] 

and in the lower fluid, the liquid, by 

PL = PLS + ½ H e L P t g ,  [36] 
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where Pcs and PLS are the values at the interface. This is just the hydrostatic approximation 
commonly used in hydraulics. 

We can combine the effects of gravity and surface tension by assuming the PLs and PGs in these 
equations arc related by [31]. If we then again let 

P = ~ (PGs + PLS), [37] 

we find momentum equations of the general form [5] with 

H F / ~VG ~VL~ l 0" { ~3 V c {~3 VL~l 
RG= vGzvLLg~ec--~X'x+eL-~-I+-~--|~C--~'X'f'X3+eL'-~-~-X3]I ; o x  / ,: P c \  [38] 

/ 

a similar expression for Rt` is obtained by an interchange of the indices. Again, only terms linear 
in the derivatives have been written down explicitly in [38]. Comparing with [6], we are then led 
to the identifications 

E____L__L e..._...GG [39] 
rGt. = -Hg 1"o- VL' roc = --Hg Vc_ VL 

and 

2pc VG- VL' 2pc V c -  VL' 

with the corresponding liquid quantities obtained by an interchange of the indices, all other 
coefficients lacing zero. From the definitions [16]-[19] we then find 

r/c = P/L = 0, [41] 

OG = - HP----~Lgp (PL -- Pc) eG _ ~ Ot̀  [42] 
Po V c -  VL EL 

and 

y~.3)_ ~P H ~G __ ~y~.3) .  [43] 
PoPE Vc-- VL ~L 

The dispersion relation [24] can now be written in the form 

( , c  'L~ (co - k W )  ~ - i (Et`~c + Ec~t`)(~ - k W )  + ikEcE, (Vc -- VL) ~ \ ~ - -  ~/  

k2£G~L 
+ ~ [~ ( v c  - vL) 2 - Hg (PL - Pc)  - k~oH] = 0. [44] 

Pa PL 

If, as in the papers referred to above, the drag functions arc disregarded, then ~G = ~L = 0, and the 
stability requirements reduce to just 

P ( v c  - vL) ~ ~ [k2 o + g (PL -- Pc)IH. [45] 

This is the standard stability condition for the Kelvin-Helmholtz problem when the two fluids are 
of infinite vertical extent, and is the approximate form valid when ~.t`Hk ~ 1 (Lamb 1932; 
Ramshaw & Trapp 1978; Ardron 1980; Rousseau & Fetch 1979; Banerjcc & C h a n  1980). 

The presence of drag modifies this condition to 

P(vc  - vt`) 2 ~< [k2~ +g(PL - pc)]H(1 _ f 2 ) ,  [46] 

where f2  is positive definite and is given by 

(,Q ' L y  

~ v ~ + ~ v [  
PG O PL 

Hence, the addition of drag forces represented exclusively by algebraic terms, whatever their form, 
always has a destabilizing effect on the equations. 
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It is readily shown that 0 ~<f~< 1, the upper limit being attained for 

EC)'L = EL ~c. [48] 

When this relation holds the range of stability reduces to Vc = VL. In the long-wavelength limit, 
k-~ O, [46] reduces to 

,Vc- VL[ <~[ pL-pO ]½, : Hg (1 _ f 2 )  [49] 
P 

in agreement with [27], while the other condition [28] is 

EL)/G + EG)7 L ~ 0. [50] 

In the opposite limit, k---, oo, [46] ensures stability for any relative velocity (unless f = 1) since 
o '>0 .  

HORIZONTAL STRATIFIED FLOW: ADDED MASS EFFECTS 

In the preceding section a difference in the phase pressures was caused by surface tension and 
gravity. Banerjee (1980) has proposed a stratified flow model in which pressure differences caused 
by motion of the phases transverse to the direction of mean flow are approximately accounted for. 
In his formulation this effect, which is the added mass interaction appropriate for stratified flow, 
leads to the following momentum equations: 

OVG vcOVG 1 Op . O, o 1 2 O [ (O  d ) ]  2 ] 
a---f- + ax "~ + + vc ~x EG = 0 [51 a] Pc 0x n g  "~x -~ H EG ~X 

and 
0V L V dVL 1 Op . dE c 1 2 d [ ( d  63)]2 1 
dt + L--~X "~ = PL dX ng  ~ + "~ H EL ~X ~---~ + VL -~X_~ 0, [51 b] 

while the continuity equations are still [la, b]. As in the previous section, H is the total height of 
the channel. By use of the definitions it is straightforward to show that 

1 ~H 2 = E_.qy~), y~_~) = 2y~_,i~)" Vc ' "[ 
Ygg~ = 3 vc---------VL ~L [521 

f ygi~ ) = 2ygi~ )" Vc, y ~ )  = y ~ "  V 2 and y~i~ ) = ygi~ )" V 2 

with y~'~") and y[~) obtained by an interchange of G and L. 
With these expressions and the 00,t given by [42] the dispersion relation [24] may be written as 

PL -~L + kaJ =0 '  [53] 

where 

Q = ~EcELH2# [54] 

and 

j = Q v[  + - -  vg . [551 
P, 

Since the model [51a,b] has been derived to describe waves of wavelength > H  it is expected to 
fail at short wavelengths. Indeed, it is easy to show that, as k --, oo, [53] becomes ) (o) . .  

Ec + ~ v[  + -  vg = 0 [561 
\-'~L -~o] \-'k J \Pc PL PL 

and the stability condition J m  co ~< 0 can only be satisfied if (Vc - Vr) 2 <~ O, which is impossible 
in general. For numerical applications it may be useful to avoid this unsatisfactory behaviour of 
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the equations at short wavelength, which can be achieved by the introduction of surface tension 
effects in the way shown in the previous section. 

It is readily seen that the introduction of the term multiplied by ¢ in [33] into [51a,b] leads to 
the same dispersion equation [53] with J replaced by 

j ,  = j trH~eo [57] 
PtPG 

The stability condition, as k ~ ~ ,  is now 

(VG-- VL)2 <~ 3tr H(E--~G + 'L) [58] 
f-OeL \PL ~ " 

For variable ~G the r.h.s, has a minimum for ~6 = [l +(p~/pL)I/2] -i, where it has the value 
3aH(p£~/2+ p~/2)2. The short-wavelength stability is thus substantially improved. 

At long wavelengths one stability condition is, as always, X >/0 with X defined by [27]. The 
second condition is [28] since, as is readily verified, ~GY[ '~) + f.LY~ re'n) ----0 for m = 2 in the present 
model so that the theory leading to [29] applies. Surface tension does not affect either condition, 
nor does the added mass term. 

ANOTHER MODEL FOR HORIZONTAL STRATIFIED FLOW 

A further model for stratified flow has recently been proposed by Ransom & Hicks (1984) on 
the basis of an analysis of transverse momentum effects, the physical content of which is quite 
different from that of Banerjee's model considered in the previous section. Although this model 
appears to be physically incorrect because of the critical role which it ascribes to compressibility, 
even at low speeds, its mathematical structure is interesting for our purposes. Our conclusion is 
that in the limit we consider, even aside from its physical content, the model must be rejected 
because it is unconditionally unstable. The version of Ransom & Hicks' model in which the 
momentum equations are independent of the energy equations (termed by them the 5E2P model) 
is closest to our analytical starting point [5] and will be analysed in terms of the results derived 
in the previous sections. In the 5E2P model the continuity equations are identical with [la,b] up 
to terms of order c-2 where c is the speed of sound. The momentum equations in our notation G.L, 

a r e  

0 O 2 Op O~ 
Ot (PGEG VG) + ~X (poEo Vo) + eG ~X + (PG -- P) "~X = 0 [59a] 

and 

O 0 0p ) &L 
0-7 (p  LVL) + (PL LV[) + EL X + (PL--P = O, [59b1 

in which the interface pressure p is defined as 

p = (PcaG l + pLaL I)(a61 + aLl)-I ] 

P )-Pc + (1 - 2)pL, f [60] 

where 0 ~< ). ~< 1 is a constant and the relationship between the phase pressures PG and PL is provided 
by the PDE 

a(:o VG + VL C3~G = K_l(po --Pt), [61] 
0~- -t 2 Ox 

in which K is a second constant. 
In the original Ransom & Hicks (1984) model 2 = a~l / (a~+ 2a~-I), K = H(aG + aO, with aGX 

representing the acoustic impedances of the pure phases. In Ransom & Hicks' model the phases 
are compressible, whereas our analysis assumes incompressibility. Formally, however, we can take 
the incompressible limit aO.L -" oO, provided H ~ 0 at the same tim© in such a way that K remains 
constant. In this limit, which corresponds to the case in which the acoustic transit time across the 



170 A. PROSPERETFI and A. V. JONES 

channel width is small compared with the period of the surface disturbances, it is appropriate to 
apply our incompressible analysis. 

In the case of constant phase densities [59a,b]--[61] may be combined to produce momentum 
equations of the form [5] in which 

P ~ =  K ( I - 2 )  t~ [ ( d  VG.3I.-VLd~q 
PGt~ c~x % ~ + ~ ~xJ t~J  [62a] 

and 

(1 -- 2) d 
OcEG Ox Ice(pC - pO] 

K2 d [  ( d  VG+VLd'~ -] 
RL= PL£L ~X 'L  ~ -~ 2 ~ ) ' L  3" [62b] 

As already remarked, the terms non-linear in the derivatives vanish in the linear theory due to the 
assumed steady uniform character of the base flow and these expressions can, for the present 
purpose, be simplified to 

RG= K(1 - 2 ) [  d2 VG+ VL t~ 2 
PG \ ~ x x  + ~ ~-2x2) E° [63a] 

and 

9 2 Vo+ VL c 32) 
RL ='-" K2 H + - -  £L" 

PL ~ 2 

Proceeding as before, the dispersion relation [24] for the 5E2P model is found to be 

0) 2 - -  [i(EG~' L "4- EL~)G) '3 !- 2 k W ] ( D  + /k (EG~ILV L -Jr- eL'~GVG) dr- k 2 p  ~L PG 

With the substitutions 

2pGPL 

[64] may be written in the form 

[63b] 

+ itak 2/gKEoEL ik3~ KEG~L VG + VL = 0. [64] 
P~PL PGPL 2 

and ?~ = ?G--k2 pK% 
2poPL' [65] 

o~ - [~ (Eo~ t + ~L~ O) + 2k W]to + ik (~o~ [ V, + EL~ 6 Vo) + k2p V~ + - -  V[ = 0, [66] 
PL 

which has the same form as the stability equation of Part I and readily loads to the stability 
conditions 

EG~L + EL~O ~< k 2 PK%~L [67a] 
2pGPL 

and 
(Vo - VL)2p%EL ?g + __ ?[2 ~< 0. [67b] 

PL 

Clearly [67b] cannot be satisfied for any k. Hence Ransom & Hicks' 5E2P model predicts that no 
uniform steady flows are possible. This seems unphysical and is an interesting result of our analysis 
since Ransom & Hicks (1984) were able to prove that their model has real characteristics. This 
is a confirmatory instance of the well-known fact that reality of characteristics is necessary but not 
in general sufficient for stability. We conclude that this model is not only physically incorrect but 
also has unacceptable stability properties. 

C O N C L U S I O N S  

In this paper we have considered a general class of  one-dimensional, two-phase flow models. This 
class of  models is sufficiently broad to accommodate a variety of  physical phenomena such as 
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surface tension, viscosity, correlation effects and added mass. Furthermore, unequal phase 
pressures can be included to the extent that their difference can be expressed in terms of the 
other flow variables and their time and space derivatives. Extending the methods of Part I we 
have examined steady uniform flows and derived general linear stability criteria for them. The 
introduction of derivatives of orders higher than the first causes the stability criteria to depend on 
the wavelength of the perturbation. Nevertheless one of the criteria of Part I is a necessary 
condition for stability in the long-wavelength limit. As a consequence, we conclude that the long- 
wavelength stability behaviour of a first-order hyperbolic model cannot be improved by the 
addition of higher-order derivatives. 

In our formulation drag effects between the phases and with structures enter in a natural way 
and prove to be decisive for long-wavelength stability in many instances, as shown in the cases 
considered. 

Our approach leads to a relatively straightforward technique for the evaluation of the stability 
features of specific models. The utility of this technique has been illustrated by its application to 
several current models for stratified flow. 
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