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Recent work has rendered possible the formulation of a rigorous model for the propagation of 
pressure waves in bubbly liquids. The derivation of this model is reviewed heuristically, and the 
predictions for the small-amplitude case are compared with the data sets of several 
investigators. The data concern the phase speed, attenuation, and transmission coefficient 
through a layer of bubbly liquid. It is found that the model works very well up to volume 
fractions of 1%-2% provided that bubble resonances play a negligible role. Such is the case in 
a mixture of many bubble sizes or, when only one or a few sizes are present, away from the 
resonance frequency regions for these sizes. In the presence of resonance effects, the accuracy 
of the model is severely impaired. Possible reasons for the failure of the model in this case are 
discussed. 

PACS numbers: 43.35.Bf, 43.30.Ft, 43.20. Fn 

INTRODUCTION 

Although a number of models for the propagation of 
nonlinear pressure waves in bubbly liquids are available in 
the literature, it is only recently that a mathematically rigor- 
ous derivation of suitable averaged equations has been given 
by CafiisCh et al. 1 In their range of applicability, these aver- 
aged equations differ only in some quantitatively unimpor- 
tant terms from those proposed some time ago by van Wijn- 
gaarden on the basis of heuristic considerations, 2 and in the 
linear case they reduce to the pioneering results of Foldy. 3 
Another pertinent recent development is a nonlinear formu- 
lation suitable for a precise description of the internal dy- 
namics of the bubbles. 4 The combination of these two devel- 

opments constitutes, therefore, the first rigorously derived 
mathematical model for the propagation of nonlinear pres- 
sure waves in a bubbly liquid. 

As a step toward the validation of this model, in the 
present article we wish to examine in its light the available 
experimental data on linear pressure wave propagation and 
attenuation in liquids containing small concentrations of gas 
bubbles. For the sake of completeness, we also include a brief 
heuristic, nonrigorous derivation of the theoretical formula- 
tion. 

The data we consider span a large range of bubble radii, 
from about 5 pm to 3 ram, and frequencies, from 20 Hz to 10 
MHz. The gas volume fractions are, however, all small, from 
10 -5 to 10 -2 . The picture that emerges from this study is 
that theory and data agree very well provided that resonance 
effects are not important, as is the case at all frequencies for 
bubble size distributions without sharp peaks, or away from 
the resonance frequency of bubbles in cases in which one or 
more bubble sizes are predominant. With resonance effects, 
the agreement between theory and data is less satisfactory 
even at extremely low gas volume fractions. In the final sec- 
tion, we offer some comments on these results. 

I. THE VAN WIJNGAARDEN-PAPANICOLAOU MODEL 

We begin with a review of the van Wijngaarden-Papani- 
colaou model presenting a heuristic, rather than rigorous, 
derivation for the sake of a greater physical insight. 

The continuity equation of the model reads 

10P+v.u o# (1) 
pc 2 •t c•t 

wherep and c are the density and speed of sound of the host 
liquid, and/3 is the local fraction of volume occupied by the 
gas given by 

/3 = •rR 3n, (2) 
where R is the instantaneous radius of the bubbles and n is 

their number per unit volume. As will be shown presently, n 
must be kept constant in taking the time derivative indicated 
in ( 1 ). This equation is written for the case in which all the 
bubbles have the same equilibrium radius. Its extension to 
different bubble sizes is straightforward and is considered 
later. The bubbly medium is to be described in an average 
sense and P and u indicate the average pressure and velocity. 
Although ensemble averaging is conceptually the most satis- 
factory way to define these quantities, volume averaging 
may be referred to for a simple visualization. 

Equation (1) can be justified as follows. Let p= and u 
denote the average local mixture density and center-of-mass 
velocity. Then, we can write an equation for the conservation 
of total mass of the mixture in the usual form, 

-- + V.(p,u) = 0. (3) 
3t 

In terms of the gas volume fraction/•, the average density 
may, be written 

p,, = (1 -/3)p +/3Pa, (4) 

where Pa is the gas density or, since Pa •P, 
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pm•(1 --/g)p. (5) 

Upon substitution into (3) and rearrangement, we have 

1 dp +V.u_•l d/g (6) 
p dt 1 -/g dt 

where d/dt denotes the convective derivative. When/g is 
small, the denominator in the right-hand side can be taken as 
1 up to order/g 2. Furthermore, expanding d/g/dt, we find a 
term proportional to dR/dt and a term proportional to dn/ 
dt. To estimate this second term, we note that, in the absence 
of fragmentation or coalescence, the bubble number density 
must satisfy a conservation equation of the form 

dn 
• + nV-us = 0, 
dt 

where us is the average velocity of the bubble field. Using 
this to eliminate dn/dt in (6), we have 

I dp + V.u = 4•nR 2 dR _•V.u• . 
p dt dt 

Since us must be of the same order as u, the second tern in 
the right-hand side is O(•) smaller than the corresponding 
tern in the left-hand side and can be neglected. Further- 
more, if m and A are a typical frequency and wavelength of 
the waves, we.may write 

•t A ' 

where A• is the oscillation amplitude of•. With these esti- 
mates, we have 

where c• is the celehty of pressure waves in the mixture. If, 
aside from the small effect of liquid compressibility, the mo- 
tion is solely caused by the volume change of the bubbles and 
if their number is not too large, ]u I can be expected to be 
small in comparison with c• and the spatial part of dfi/dt 
can therefore be neglected. A similar argument leads to the 
approximation dp/dt•p/3t so that, in the end, (6) be' 
comes 

p 8t 8t 
By use of the acoustic relation dp = c-2dP, which holds also 
for the average values because a linear relation between pres- 
sure and density is adequate for ordinary liquids over a very 
wide range, Eq. (9) is seen to coincide with ( 1 ). 

Again, in terms of average quantities, the momentum 
equation may be written 

+ V.M = - VP, 
where M is the average mixture momentum flux. Using (3), 
this may be rewritten as 

The terms quadratic in u are small for the conditions pre- 
viously described, and so is flu, so that this relation may be 
approximated by 

p--•- + VP= 0, (12) 
which is the momentum equation of the van Wijngaarden- 
Papanicolaou model. It is easy to prove from this formula- 
tion that the order of magnitude ofu is/gc,•. The approxima- 
tions made are, therefore, equivalent to the neglect of terms 
of order/g 2 with respect to terms of order/g. 

Cafiisch et al. • rigorously prove that the effects due to 
the relative motion between bubbles and liquid disappear at 
the order of the approximations introduced in the model, so 
that the velocity field us of the bubbles drops out of the 
formulation. Therefore, at this point, only an equation for R 
is needed to obtain a closed equation set. This equation will 
be given in the next section. It may be noted that the radius R 
must be considered as a field variable R (x,t), where the first 
argument denotes the position of the bubble. 

For a mixture containing bubbles of different sizes, we 
define 

d•W = f (a;x)da (13) 

to be the number of bubbles per unit volume with equilibri- 
um radius between a and a + da located in the neighborhood 
of the point x. Then, the volume fraction/g is given, in place 
of (2), by 

/g(x,t) =•-rr R3(a;x,t)f(a;x)da, (14) 
where R (a;x,t) denotes the radius at time t of a bubble locat- 
ed at position x and having an equilibrium radius a. It should 
be noted that no time dependence has been indicated for the 
distribution function since the same argument given above 
to neglect dn/dt shows that f can be considered constant 
during the propagation of the waves. With this expression 
for/g, the continuity equation in the form ( 1 ) still holds. The 
momentum equation (12) is also unchanged but, for every x, 
a separate radial equation must be written for each a. 

II. BUBBLE DYNAMICS 

For the case of radial motion of a bubble, an equation 
accounting approximately for the liquid compressibility was 
given by Keller 5-7 in the form 

= 1+ • + (pa P), (15) 
c 

wherep• is the liquid pressure at the bubble interface related 
to the internal pressurep by 

2a +4bt • (16) p=p• +--•- , 
and a and • denote surface tension and the liquid's viscosity. 
For an isolated bubble, the term P in (15) is defined as the 
pressure at the position occupied by the bubble if the bubble 
were absent. It was first realized by Foldy • thaL in a dilute 
mixture, to the lowest order in• this quantity coincides with 
the average pressure defined in the previous section. In this 
limit, the bubbles do not interact with each other's field, but 
with the average field. An intuitive justification can be given 
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as follows. If the liquid quantities are interpreted in a vol- 
ume-averaged sense, it may be said that the pressure is, at 
time t, close to P(x,t) nearly everywhere inside the averaging 
volume centered at x. Large deviations from this value occur 
only in the immediate neighborhood of other bubbles. Let us 
now introduce into the averaging volume the bubble for 
which (15) was written. Since the volume fraction is small, 
the probability of it ending up near another bubble is negligi- 
ble. Furthermore, since an averaging volume must contain 
many bubbles, the effect on P of the addition of the new 
bubble can also be neglected. 

The dots in Eqs. ( 15 ) and (16) denote total time deriva- 
tives that, for a bubble in a mixture, must be interpreted as 
convective derivatives. However, the same argument given 
earlier justifies their interpretation as partial time deriva- 
tives. We shall continue to use the dots for simplicity of nota- 
tion. 

To complete the formulation, an equation for the inter- 
nal pressure œ is needed. Following the procedure of Ref. 4, 
we start from the enthalpy equation in the gas that, using the 
equation of state of perfect gases, may be written as 

1 Dp y-- 1 V.(KVT) + V.v = 0, (17) 
yp Dt yp 

where y is the ratio of specific heats, K the thermal conduc- 
tivity, T the temperature, and v the velocity. If the bubble 
boundary moves with a velocity much smaller than the speed 
of sound in the gas, the pressure can be taken as uniform and 
the convective derivative with the gas velocity Dp/Dt ap- 
proximately equated to p. With these approximations, Eq. 
(17) can be integrated to find an explicit expression for the 
radial component of the gas velocity 

v= (y--1)K-- rp . (18) 
yp Or 3 

By imposing the kinematic boundary condition v = • at 
r = R, this relation becomes an equation for the pressure 

3 

p=•((y--l)KO_TI --yp•). (19) dr IR 

With these results, the temperature field can be obtained 
from the standard form of the energy equation 

pc. or -•- --p = V,(KVT), (20) 
in which Cp is the specific heat at constant pressure and v is 
given by (18). 

It may be noted that the equations for n, P, and r, given 
in the previous section, together with those for the radial 
motion just presented, constitute a mathematical model val- 
id also for large-amplitude (or, at any rate, not infinitesimal ) 
pressure waves. The mixture equations appear linearized be- 
cause, when only a few bubbles are present, even large fluctu- 
ations of the bubble volumes can only induce modest average 
liquid velocities. 

III. LINEARIZATION 

Upon elimination of u between (1) and (12), with the 
usual acoustic approximations (i.e., keeping p and c con- 
stant), we find 

I a2P ?2p=p__ (21) 
c 2 cgt 2 o9t 2 

The time derivative of/g, given by (14), is 

als' = 4•r R • 8R f da , (22) 
•t •t 

or, in the linear approximation, 

• •4• a2• f da (23) 
•t ' 

and, similarly, 

Ot 2 •4• a2• f da, (24) 
so that 

1 02P V2P= 4•p a2•fda (25) 
c 2 •t 2 ' 

It can be shown that, in the linear case, the connection 
between R and p established by the model of Sec. II is a 
convolution.8'9 This reduces to a simple propo•ionality only 
in the case of sinusoidal motion, to which we therefore con- 
fine the analysis from now on. U•n setting 

R=a(I+X), p=po(1--•X) (26) 

in the linearized fo• ofEqs. (19) and (20), and assuming a 
pro•ionality to exp(iwt), one readily finds that4'W 

•= 3y 
1 --3(?'-- l)i)•[(i/)•)t/2coth(i/)[) '/2- 1] ' 

where (27) 
Z = D/tea2, (28) 

and D is the gas thermal diffusivity. Note that the function * 
is complex. The quantity po in Eq. (26) is the undisturbed 
pressure in the bubble given by 

Po = P• + 2a/a, 

whereœ, o is the equilibrium pressure in the liquid. With the 
further definition 

Q = P-poe •c exp(icot), (29) 

the linearized form of the Keller equation (15) is 

px 

X[(--Po*+ 2rr _41aio)X_Q]. (30) 
The derivation of (15) given in Ref. 7 shows that, as an 
approximation to the equatior/s for a compressible liquid, 
Eq. (15) has an error of order c- 2. On the basis of this re- 
mark, it is expedient to multiply (30) by ( 1 -- ioa/c) and to 
neglect terms of order c -2. The final result is 

X= -- (COo 2 --co 2 + 2ibw)-'(Q/pa2), (31) 
where the definitions 

COo 2 = Po (Re*- 2.a,), (32) 
pa 2•, apo/ 

Im. + d_a (33) pa 2pa 2c ' 
have been introduced to render explicit the similarity of the 
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bubble response to that of a linear oscillator having a natural 
frequency co o and a damping constant b. However, the de- 
pendence of these quantities on the frequency co of the pres- 
sure wave renders this similarity somewhat superficial. The 
three terms contributing to the damping constant arise from 
viscous, thermal, and acoustic effects, respectively. The 
thermal contribution is normally dominant and it exhibits a 
strong dependence on co, particularly near the true reso- 
nance frequency. •o.• 

Upon substitution of (31 ) into the wave equation (25), 
we obtain 

V2Q q-k2mQ=O, (34) 

where the wavenumber in the mixture k,, is given by the 
dispersion relation 

co2 •o • af (a)da C2 d- 4•'/'co 2 (35) • •g _ •2 + 2ibw 
The complex sound speed in the mixture is given by 
c• = w/k• and, therefore, 

= 1 + 4•c 2 af (a) da 2 (36) c• o• - w 2 + 2ib• 
Setting 

c/c• = u - iv, (37) 
we note that 

[( exp(i•t-ik•x)=exp - x exp iw t- x , 
c 

which shows the phase velocity V of the sound wave to be 
given by 

V= e/u, (38) 

and the attenuation coe•cient A in dB per unit length by 

A = 20(1Og•o e)(wv/e) •8.68589(wv/e). (39) 

For a monodisperse bubble population with equal equi- 
librium radius •, we have 

f= ng(a -- •), (40) 

where n is the bubble number per unit volume, and (36) 
becomes 

c2/c• = 1 + 4vc2n•/(og -- w 2 + 2ibm). (41) 

For a discrete bubble distribution containing radii (a•), 
j = 1,2 ..... N, we find (41) with the fraction preceded by a 
summation overj. 

At frequencies well below the natural frequency, (41) 
reduces to 

• 1 + 4•C 2 -- . (42) 

For • • •, ft m• b• shown that •o.• • 

--P a• p• , (43) 
b• y-- I Po • 2• (44) 

10y pD pa •' 
With these results, and neglecting for simplicity surface ten- 
sion effects, we find 

V2= c2/(1 q-/3pc2/p• ), (45) 

A = 8.68589(/3cbco2a2p2/3p• ). (46) 
In particular, for values of/3 that are not too low, (45) re- 
duces to the well-known result 

V2•p • //3p. (47) 

IV. TRANSMISSION AND REFLECTION COEFFICIENTS 

We now apply the previous results to the case in which a 
plane acoustic wave propagating in a pure liquid encounters 
a uniform bubbly mixture delimited by a plane parallel to 
that of the incident wave. 

The first poin, ts to consider are the conditions to be satis- 
fied by the pressure and velocity fields at the clear liquid- 
bubbly mixture interface. Since the boundary of the bubbly 
mixture is defined by the presence of bubbles, the velocity of 
the interface coincides with the velocity u B of the bubbles. 
Conservation of mass across the interface therefore requires 
that 

p(u ø -- uB ).n =p,• (u -- u• ).n. (48) 
Here, we have indicated with u ø the velocity of the pure liq- 
uid and with n the unit vector normal to the interface. As was 

already done in writing the momentum equation (12), to 
order/32, p,, can be approximated by p when multiplying a 
velocity. Therefore, (48) gives simply 

uø.n = u.n, (49) 

irrespective of the motion of the bubbles. The momentum 
flux tensor in the linear theory is just the pressure times the 
identity tensor, and continuity of the normal momentum 
therefore reduces to 

pO = p (50) 
at the interface, wherep ø is the pressure in the clear liquid. 

Consider a one-dimensional situation, and let the bub- 
bly mixture occupy the region 0<x<s. We imagine the inci- 
dent sinusoidal wave arriving from - o•. In the region 
x < 0, we then have an incident signal, of unit amplitude, and 
a reflected wave, of amplitude .4 _: 

po _ p• = exp(icot- ikx) + A_ exp(icot + ikx). 

At the right of the bubbly mixture, x>s, we have a transmit- 
ted wave: 

pO• _p• =.4+ exp(icot - ikx). 
In the bubbly mixture, 0<x<s, we have both a left- and a 
right-going wave: 

P--p© = B_ exp(icat + ikmx) + B+ exp(io•t -- ikr•x), 

where k,• = co/c,,, is the wavenumber in the mixture. The 
corresponding forms of the velocity fields are readily ob- 
tained from the momentum equations, which, in both media, 
reduce to 

1 t3P _k P-Poo 

iwp •x co p 
for left- and right-going waves, respectively. Here, co/k is to 
be identified with the speed of sound c in the clear liquid and 
cm in the mixture. 
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Imposing the boundary conditions at x = 0, we find 

1 +A_=B_+B+, 

( 1 -- A _ )/½p = (B+ -- B_ )/c,.p, 

while, at x = s, 

B+E'" + B_E'• =A+E_, 

c,.)(B+E '• (1/p _ --B_E + ) = (1/Rc)A+E_, 

where we use the notation E_+ = exp( _+ iks), the super- 
script m indicating that k," appears rather than k. 

The system of equations is readily solved with the result 

A+ -- exp(iks) (51) 
cos k,. s + i/2 (c/c,. + c,"/c) sin k,. s ' 
1 i(c,"/c - c/c,. )sin kmS 

a_=-- , (52) 
2 cos k,. s + i/2 (c/c,. + c,./c) sin k," s 

1 ( 1 _ C/Cm )exp( ___ ik,.s) 

2 cos k,.s + i/2(c/c,. + c,./c)sin k,.s (53) 
The reflection coefficient of the bubbly layer is defined by 

R = la_l =, (54) 
and the transmission coefficient by 

T= {A+[ 2. (55) 

Note that, due to the absorption of energy in the bubbly 
mixture (which translates into a complex value of km and 
cm ), R + T< 1 unlike the nonabsorptive case. Equations 
(51)-(53) were originally derived in Reft 12. In polar form, 
we write 

A+=T•/2exp(t•+), A_=R•/2expO•_), (56) 
where 

q•ñ = tan-•(ImA ñ )/(ReA ñ ). (57) 
For a thin layer (i.e., ks< 1, k.,s< 1), a Taylor series 

expansion gives 

A_ _ ( isw/2c) ( 1 -- c2/c• ), 

or, using Eq. (36), 

fo afda (58) A _ = 2•riswc w 2 2 2ibw -- lO 0 -- 

and 

A+_•(I -A_) -• (59) 
We do not make the further approximation A + = 1 q-A_ 
because it leads to a substantial loss of accuracy near reso- 
nance. 

For the case of a thin screen containing bubbles all of the 
same size with a number density n per unit volume, (58) 
becomes 

2 2ibw) ]N•, (60) A _ = [ 2•riwca/((o 2 -- Wo - 
where N, = sn is the number of bubbles per unit area of the 
screen. The result is independent of the actual screen thick- 
ness in this limit. Conversely, for s very large, we find 
A+ =B_ = 0and 

A_ = (c,. -- C)/(Cm + C), B+ = 2c../(c," + c). 
(61) 

These two expressions are formally identical to the reflection 

and transmission coefficients at the interface between two 

semi-infinite fluids having an equal density but different 
sound speeds. 

V. ANALYSIS OF THE DATA 

A number of experimental studies on pressure wave 
propagation in bubbly liquids can be found in the litera- 
ture. •2-2o Only some of them contain sufficient detail to ren- 
der a comparison with the previous theory possible. We shall 
now consider these, in turn, and, at the end, we shall briefly 
mention some others. 

A. Silberman •a 

The study by Silberman, •3 although published in 1957, 
still appears to be unsurpassed for the control of bubble size 
and accuracy of the data. It was conducted by establishing 
standing waves in 6.35-mm-thick steel pipes filled with the 
gas-water mixture. Most of the data were taken in a 7.5-cm 
i.d., 1.80-m-long pipe, but a 5-cm i.d., 240-m-long pipe was 
also used. For small attenuation, the wave phase speed was 
deduced from the measurement of the distance between 

pressure antinodes, and the attenuation coefficient from the 
ratio of the amplitudes at the antinodes. For attenuations so 
large that the pressure at two successive antinodes could not 
be reliably measured, the attenuation coefficient was ob- 
tained from 

1og(P•/P2)/(x2 - x• ), (62) 

where the positions x• and x2 were close to the sound source. 
No data for the wave celerity could be taken in these cases. 
The bubbles were produced from hypodermic needles and 
other small-diameter tubing, and were therefore relatively 
large, with radii in the range 1-3 mm and some deviation 
from sphericity. The size was measured photographically. 
Control of bubble size required the use of small gas flow 
rates, and the maximum volume fraction in this study was 
1%. Bubble size control at the larger volume fractions stud- 
ied was not as good as at lower volume fractions, but no 
quantitative statements on this point can be found in this 
article. The volume fraction was measured by comparing the 
hydrostatic head in the columm with that in a column of 
equal height containing pure water. The variable hydrostatic 
head in the tubes forced Silberman to apply corrections to 
this data, never amounting to more than 8%. This was not 
necessary for the large-attenuation data, since all of these 
were taken near the sound sources. 

We show in Fig. 1 the attenuation coefficient•efined 
by ( 39 )--for the smallest gas volume concentration studied 
by Silberman,/3 = 0.0377%. Since data at small void frac- 
tion are presumably the easiest ones to obtain in the region of 
large attenuation, this should be a stringent test of the theo- 
ry. The data shown are for a ranging between 0.994 and 1.07 
mm. The solid line is the theoretical result for a = 0.994 mm. 

The narrow maximum occurs in the immediate vicinity of 
the resonance frequency of the bubbles that, for the radius 
quoted, is v o = 3.26 kHz. (Here and in the following the 
resonance frequencies are stated for an ambient pressure of 1 
arm. ) The agreement is, in general, good except in the imme- 
diate neighborhood of resonance, where the largest attenu- 
ation measured by Silberman is less than one-third of the 
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FIG. 1. Comparison between the attenuation coefficient given by Eq. (39) 
for a bubble radius of 0.994 mm and data from Ref. 13. The volume fraction 

is 0.0377 % and the bubble radii 0.994. mm (diamonds) and 1.07 mm ( trian- 
gles and circles). 

.it 
t\ 

I I0 

Z/,kHz 

FIG. 2. The same data shown in the previous figure are compared here with 
the theoretical curves obtained by using the distribution function (63) with 
ao= I mm, a s =0.75 mm, a2= 1.25 ram, a• =2 mm, and with 
,6' = 0.0377% (solid line) and,6' = 0.02% (dashed line). Thedash-and-dot 
line corresponds to the same distribution (63) but with a 10% spread in 
radii and, again, % = 2 mm,/5' = 0.0377%. 

theoretical result. To examine the reasons of this discrepan- 
cy and to show the sensitivity of the calculation to the bubble 
size distribution, we show in Fig. 2 the results obtained by 
use, instead of a delta distribution, of the truncated Gaussian 

f(a) = [Cexp[ - (a-ao)2/o•a], a• <a<a2, /0, otherwise, (63) 
where the constant C is selected to match the prescribed void 
fraction. The solid line in Fig. 2 shows the results obtained by 
taking a o=1 ram, a•=0.75 mm, a2=1.25 mm, 
cra = 2 ram, and fi = 0.0377%. The dashed line is for the 
same values of the radius parameters but for fi = 0.02%. It 
is clear that, by adjusting these quantities, a significantly 
better result than that appearing in Fig. 1 can be obtained. 
However, the amount of adjustment needed is substantial 
and very likely much greater than the accuracy with which 
the size distribution and the volume fraction were deter- 

mined experimentally. This is demonstrated by the dash- 
and-dot line of Fig. 2, which corresponds to a o = 1 mm, 
a• = 0.9 ram, a 2 = 1.1 mm, and/? o = 0.0377%. Evidently a 
radius spread of 10% is insufficient to lower the maximum 
attenuation predicted by the theory down to the measured 
level. We also looked at the possible effect of the hydrostatic 
head. An increase of the parameter Poe by 10% merely dis- 
places the theoretical curves by a very small amount in the 
direction of !ncreasing frequency, without otherwise affect- 
ing their shape. 

Figure 3 is for/g = 0.22% and the data points have been 

I 
I 
I 

I 
I 

! 
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/ 
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I 

?/, kHz 
10 

FIG. 3. Comparison between the attenuation coefficient given by Eq. (39) 
for a bubble radius of 1.77 mm (continuous line) and 2.44 mm (dashed 
line) and data from Ref. 13. The volume fraction is 0.22% and the bubble 
radii 1.77 mm (diamonds), 1.83 mm (circles), 2.07 mm (squares), and 
2.44 mm (triangles). The dash-and-dot line is obtained with a constant dis- 
tribution of bubble sizes between 1.77 and 2.44 mm normalized so as to give 
the correct volume fraction. 
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FIG. 4. Comparison between the attenuation coefficient given by Eq. (39) 
for a bubble radius of 2.07 mm (continuous line) and 2.32 mm (dashed 
line) and data from Reft 13. The volume fraction is 0.53% and the bubble 
radii 2.07 mm (diamonds), 2.13 mm (circles), and 2.32 mm (triangles). 
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FIG. 5. Comparison between the attenuation coefficient given by F_.,q. (30) 
for a bubble radius of 2.68 mm and data from Reft ] 3. The volume fraction is 

1% and the bubble radii 2.60 mm (diamonds), 2.68 mm (circles), and 3.64 
mm (triangles). The dashed line is for a radius of 3.41 ram. 

obtained for radii a = 1.77, 1.83, 2.07, and 2.44 mm. The 
continuous theoretical curve has been obtained for a = 1.77 

mm (resonance frequency v o = 1.84 kHz) while the dashed 
curve corresponds to a = 2.44 mm (% = 1.33 kHz). The 
dash-and-dot line has been obtained by use of a constant 
distribution for 1.77 mm <a•<2.44 mm normalized so as to 

give the correct volume fraction. The data indicated by dia- 
monds should be fitted by the continuous line, but they ex- 
hibit the same level of scatter as in the case of the previous 
figure. 

Figure 4 is for • = 0.53% and the data correspond to 
a = 2.07 mm (v o = 1.57 kHz), 2.13 mm (v o = 1.53 kHz), 
and 2.32 mm (% = 1.40 kHz). The continuous and dashed 
theoretical lines are for a = 2.07 and a = 2.32 mm, respec- 
tively. The comparison that emerges from this figure is much 
like the situation of Figs. 1-3. The agreement is very good in 
the low-attenuation range but marginal in the resonance re- 
gion. Very similar conclusions may be drawn from Fig. 5, for 
which/• = 1% anda = 2.60, 2.68, and 3.41 mm (% = 1.25, 
1.22, and 0.955 kHz), and from Fig. 6 for the same • but 
bigger bubbles, a = 3.42, 3.45, and 3.54 mm (% = 0.955, 
0.947, and 0.920 kHz). In both these examples, if the very 
narrow resonance peak is neglected, the discrepancy 
between theory and the largest measured attenuation is 
around 30%-50%. The data do, however, exhibit a consid- 
erable scatter, particularly in Fig. 5. Finally, Fig. 7 is for a 
mixture of bubbles with a = 1.13 mm (v o = 2.87 kHz) and a 
• of 0.042% and a = 2.53 mm (re = 1.29 kHz) and a/•of 
0.0256%. The data are few but the situation similar to that of 

the preceding examples except for some discrepancy (and 
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FIG. 6. Comparison between the attenuation coefficient given by Eq. (39) 
for a bubble radius of 3.416 mm (continuous line) and data from Reft 13. 
The volume fraction is 1% and the bubble radii 3.42 mm (triangles), 3.45 
mm (diamonds'), and 3.54 mm (circles). 
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FIG. 7. Comparison between the attenuation coefficient given by Eq. (39) 
for water containing bubbles with a radius of 1.13 mm, present with a con- 
centration of 0.0421%, and bubbles with a radius 2.53 mm and a concentra- 
tion of 0.0256%, and data from Ref. 13. The data are for mixtures with radii 
1.16 and 2.59 mm (circles and triangles) and 1.13 and 2.53 mm (dia- 
monds). 

experimental scatter) at low frequency. 
The next series of figures, from 8-10, shows the phase 

velocity of the waves. As was already remarked, this could 
not be measured in the particularly interesting region of high 
attenuation and, therefore, comparison between theory and 
experiment, although very good, is not as stringent as might 
be desired. Only in Fig. 8, for/• = 0.0377% and the same 

//', kHz 

FIG. 8. Comparison between the phase speed of pressure waves given by 
(38) for a bubble radius of 0.994 mm and data from Ref. 13. The volume 
fraction is 0.0377% and the data are for 1.07 mm (triangles and circles). 

IO 3 

IO i i I I I I I 
Ol I IO 

Z/, kHz 

FIG. 9. Comparison between the phase speed of pressure waves given by 
(38) for a bubble radius of2.134 mm (continuous) and 2.073 mm (dashed) 
and data from Ref. 13. The volume fraction is 0.53% and the data are for 
2.13 mm (circles) and 2.32 mm (triangles). 

ditions as in Figs. 1 and 2, two data points above the region of 
anomalous dispersion have been obtained, and they agree 
very well with the theoretical curve. 

Silberman compares his data with an approximate theo- 
ry due to Willis and Spitzer, which gives results very close to 
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FIG. 10. Comparison between the phase speed of pressure waves given by 
(38) for a bubble radius of 2.68 mm and data from Ref. 13. The volume 
fraction is 1% and the data are for 2.68 mm (circles) and 3.64 mm (trian- 
gles). The dashed line is for a radius of 3.41 mm. 
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ours. We have been unable to find the wartime report in 
which that theory is described. Judging from the formulas 
quoted by Silberman, this theory assumes the bubbles to be- 
have nearly adiabatically (which is reasonable for the rela- 
tively large bubbles of this study) and treats the bubbly mix- 
ture in some sort of self-consistent approximation. It, 
therefore, cannot be expected to be accurate for smaller bub- 
bles, and presumably lacks the solid theoretical foundation 
of the van Wijngaarden-Papanicolaou model previously de- 
scribed. A close examination of Silberman's results (com- 
pare, especially, his Figs. 9 and 4 and our Figs. I and 6) 
shows that the present theory matches the off-resonance 
data slightly better than his, presumably a consequence of 
our using a frequency-dependent damping parameter b [ see 
Eqs. (33) and (27)]. 

B. Fox et ½•L 14 

Another one of the classic studies on pressure waves in 
bubbly liquids is that of Fox et al. published in 1955. •4 In this 
case, the volume fraction was very small, fi ---- 0.01%, but 
the frequency was higher than in Silberman's work due to 
the use of smaller bubbles with a radius around 30/tm. These 
bubbles were produced by blowing air through a 0.6-/zm po- 
rous porcelain filter. The typical histogram of bubble sizes 
given in this article is reproduced in Fig. 11. Here, the data 
have been normalized so that the integral of the distribution 
gives the reported volume fraction. 

In this study, the phase velocity of the waves was mea- 
sured by comparing the phase of the received signal in a tank 
containing pure water with that measured in the same tank 
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FIG. 12. Comparison between the phase speed given by (38) with the bub- 
ble distribution shown in Fig. 11 and the data of Ref. 14. The gas volume 
fraction is 0.02%. The dashed line is the phase speed in the pure liquid. 
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FIG. l 1. Histogram of bubble sizes, given as typical in Ref. 14, used in the 
calculations shown in Figs. 12 and 13. 
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FIG. 13. Comparison between the attenuation coefficient given by (39) 
with the bubble distribution shown in Fig. 11 and the data of Ref. 14 (con- 
tinuous line). The gas volume fraction is 0.02%. The dashed line has been 
obtained by using a bubble distribution consisting of a discrete number of 
sizes corresponding to the midpoints of the intervals of Fig. 11, rather than 
the continuous distribution of Fig. 11. 
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filled with the bubbly mixture. The authors quote an error of 
5% for these measurements and an error of 2 dB/cm for the 

attenuation, which was obtained directly from the amplitude 
of the measured signal. Fox et al. combine, in a single dia- 
gram, all their experimental points. The data thus presented 
exhibit a large scatter, which can be judged from our Figs. 12 
and 13. Here, we do not reproduce all the experimental 
points, but only some chosen so as to bracket the reported 
data. An example of data obtained in the course of a single 
experimental run is also given in Ref. 14. Here, the variabil- 
ity is considerably smaller. The authors ascribe these fluctu- 
ations to variations in the volume fraction between different 

runs and to the effect of the standing wave pattern in the 
tank, which depends on the water level and, therefore, is also 
subject to change from run to run. 

We show in Fig. 12 a comparison between data and the- 
ory for the wave speed. The agreement is good below about 
70 kHz. In the high-frequency region, although some of the 
data fall on the theoretical line, the majority of them lie far 
below. The data on the attenuation coefficient are compared 
with theory in Fig. 13. Here, the agreement appears to be 
substantially better, although the data tend to lie slightly 
below the theoretical line. This result is gratifying since Fox 
et al., in order to match the data, had to increase substantial- 
ly the bubble damping calculated on the basis of the limited 
theory available at the time while no such adjustment has 
been made on the present theoretical curve. 

The data on attenuation are not contaminated by tank 
resonances, which, therefore, appear to bear the greatest re- 
sponsibility for the scatter and deviations that affect the 
phase velocity of Fig. 12. The solid lines shown in the figures 
have been obtained using the histogram of Fig. 11. The dis- 
continuity of this bubble distribution is reflected in the dis- 
continuity of the slope of these lines. The dashed line in Fig. 
13 has been obtained by using a bubble distribution consist- 
ing of the superposition of a number of delta functions cen- 
tered at the midpoints of the histogram. The effect of the 
continuous distribution in smearing the resonances is evi- 
dent from the comparison. More interestingly, it is evident 
that, by introducing the effect of sharp resonances, the theo- 
retical maxima move far above the experimental points 
much in the same way as was found in the case of Silberman's 
data. This circumstance seems to imply that the theory is 
only correct provided resonance effects are not pronounced. 
We shall return to this point in the final section. 

C. Kol'tsova etal? 

The attenuation data obtained in this article, published 
in 1979, are unique in the unusually high frequencies that 
they cover. The use of electrolysis produced very small hy- 
drogen bubbles with a mean size of 15-20/•m. It was found 
that the bubble spectrum depended somewhat on the liquid 
temperature and on the gas volume fraction. We reproduce, 
in Fig. 14, the two histograms given in this article for 15 øC 
and volume fractions of 0.02% ( continuous line) and 0.03 % 
(dashed line), and in Fig. 15 the two histograms for 25 øC 
and/•= 0.005% (continuous line) and 0.025% (dashed 
line). In the first case, the differences are very minor, while, 
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FIG. 14. Histograms of bubble sizes given in Ref. 15 for a liquid tempera- 
ture of 15 øC and volume fractions of 0.02% (continuous line) and 0.03% 
(dashed line). The ordinate scale is in arbitrary units (different for the two 
lines). 

in the second case, they are somewhat greater. These bubble 
distributions were determined photographically or visually 
with a long-focus microscope. The volume fraction in this 
study ranged between 0.002% and 0.04%. Only volume 
fractions greater than 0.02% could be measured directly, the 
other ones being inferred by extrapolation on the basis of the 
current in the electrolyzer. No comments are given on the 
accuracy of this procedure. 

The attenuation coefficient was obtained by the use of 
Eq. (62), plotting the amplitude of pulses at five to ten dif- 
ferent separations x2 -x•. A significant variability (up to 
30%) in the attenuation coefficient was observed due to 
nonuniform spatial distribution of bubbles and fluctuations 
in the acoustic signal. The data reported are, therefore, aver- 
ages of an unspecified number of observations. In the fre- 
quency range explored, the liquid (a 3 % solution of sodium 
chloride in water) causes some (unspecified, but presum- 
ably small) attenuation and the data express the excess at- 
tenuation due to the bubbles. The authors give their data in 
terms of inverse e-folding length, rather than dB per unit 
length, and this is the quantity that we compare in the figures 
that follow. The difference between the two is the numerical 

factor 20 logto e_•8.68589 in Eq. (39). 
We show in Fig. 16 a comparison between some of the 

data presented by Kol'tsova et al. for a temperature of 15 øC 
and the present theory. We have selected the data corre- 
sponding to •/= 0.004% (circles) and/•---- 0.037% (trian- 
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FIG. 15. Histograms of bubble sizes given in Ref. 15 for a liquid tempera- 
ture of 25 øC and volume fractions of 0.005% (continuous line) and 
0.025% (dashed line). The ordinate scale is in arbitrary units (different for 
the two lines). 

gles). The first set corresponds to the largest volume fraction 
for which a complete set of data also covering the resonance 
region is given, while the second set corresponds to the lar- 
gest volume fraction investigated experimentally. In the cal- 
culations we have used for both cases, the bubble distribu- 
tion of Fig. 14 corresponding to /•= 0.03% suitably 
normalized. In the first case, we see a pattern emerging very 

i 

Z/, MHz 

FIG. 16, Comparison between the attenuation length [given by Eq. (39) 
without the numerical factor 8.68589] for volume fractions of 0.004% 
(continuous line and circles) and 0.037% (dashed line and triangles) and 
data from Ref. 15. The theoretical curves have been obtained using the 
histogram given by the dashed line of Fig. 14. 

much like the one previously observed, namely, a general 
agreement between theory and experiment except in the res- 
onance region, where the data are consistently substantially 
below the theory. In the second case, the data only cover the 
high-frequency region, and the discrepancy with the theory 
increases with increasing frequency. In this high-frequency 
region, the smaller bubbles in the distribution, which are 
very difficult to measure, play a dominant role, and it is 
possible that this is the origin of the disagreement. We have 
tried to reconcile data and theory by modifying the bubble 
distribution, but we found that very substantial alterations 
would have been needed, and we have desisted in view of the 
arbitrariness involved in this effort. 

Figure 17 is for a temperature of 25 øC and/• = 0.004% 
and 0.04%. The criteria with which we selected these data 

are the same as for the previous figure. For the lower volume 
fraction case, we have used the distribution function of Fig. 
15 corresponding to/• = 0.005%. Here, the comparison is 
very similar to that found for Silberman's data in Figs. 1-6 
with an overprediction of the data in the resonance region 
and a reasonable agreement elsewhere. For the higher vol- 
ume fraction, we have used the bubble distribution of Fig. 15 
corresponding to/• = 0.025%. As in the case of the previous 
figure, the theoretical curve falls below the data at high fre- 
quency, which is again possibly the result of the imprecise 
measurement of small bubbles. The secondary narrow peak 
in the theoretical curve is caused by the small number of 
bubbles with radius between 45 and 55/zm of the distribution 
used for this case. 

Finally, we show in Fig. 18 data and theory for 
/• = 0.002% obtained with the same distribution function of 
Fig. 15 for/• = 0.005% suitably scaled. Here, the discrepan- 
cies are very large. Certainly, the data exhibit a large scatter, 
but this does not seem sufficient to account for the order-of- 

magnitude differences. At such a low volume fraction, how- 
ever, the authors were unable to measure directly the bubble 
distribution and the void fraction, as was mentioned above, 
and these uncertainties can possibly explain the large differ- 

FIG. 17. Comparison between the attenuation length [given by Eq. (39) 
without the numerical factor 8.68589] for volume fractions of 0.004% 
(continuous line and circles) and 0.04% (dashed line and triangles)and 
data from Ref. 15. The continuous and dashed theoretical curves have been 

obtained using the continuous and dashed histograms Fig. 15, respectively. 
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FIG. 18. Comparison between the attenuation length [givefi by Eq. (39) 
without the numerical factor 8.68589] for volume fractions of 0.002% and 
data from Ref. 15. The theoretical curve has been obtained using the histo- 
gram given by the continuous line of Fig. 15. 

ences observed. It may be recalled from Sec. III that, for 
small/5, the attenuation coefficient is linear in B. It appears, 
therefore, that, ira reconciliation of theory and experiment is 
attempted by modifying this quantity, a very large adjust- 
ment would be required. 

D. Macpherson • 

These data, published in 1957, are the only ones we con- 
sider that are concerned with the attenuation produced by a 
bubble screen. In this case, oxygen bubbles were produced 
electrolytically by a row of equal electrodes. By pulsing the 
current at a certain rate, a two-dimensional lattice of slowly 
rising bubbles was obtained. The bubble size was determined 
in a number of ways, including the measurement of their 
ascending speed, and was found to be nearly uniform with a 
7% standard deviation. While the ascending speed is useful 
to determine relative radii, it is less accurate for an absolute 
measurement due to the uncertainty with which it can be 
predicted in the case of bubbles having a size of a fraction of a 
millimeter. Macpherson states that "the direct photographic 
method and the measurement of the rate of rise were both 

found to be less accurate for determining the absolute bubble 
size than the acoustic method." Here, we have adjusted the 
bubble size so as to fit the data, and include results for two 
slightly different sizes to show the sensitivity to this variable. 

We reproduce in Fig. 19 Macpherson's data and the 
theoretical curve for the transmission coefficient through 
the screen versus frequency. [The quantity plotted is 
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FIG. 19. Comparison between the transmission coefficient given by (55), in 
decibels, for bubbles with a radius of0.110 mm (continuous line) and 0.112 
mm (dashed line) and data from Ref. 16. 

-- 10logic T, with T defined in Eq. (55).] In Fig. 20,'we 
show data and theory for the phase shift of the transmitted 
wave defined in Eq. (57). In both figures, the solid lines are 
for a -- 0.110 mm (% = 28.7 kHz) and the dashed lines for 
a = 0.112 mm (Vo = 28.2 kHz). This difference is well with- 
in the experimental error but it noticeably affects the results. 
It is interesting to note that the phase data appear to match 
the theory better than the amplitude data. 

E. Ruggles eta/. •7 

Very recently, Ruggles et al. •7 repeated essentially the 
same experiment conducted by Silberman with similar (if 
updated) procedures. They investigated gas volume frac- 
tions between 0.5% and 18%, bubble radii of the order of 1- 
2 mm, and frequencies up to about 200 Hz, which is far 
below resonance for the bubble sizes they used. Their data 
offer the possibility to investigate the progressive deteriora- 
tion of the accuracy of the model considered here as the 
volume fraction increases. An attempt to reproduce their 
data on attenuation for/3' = 0.5%, which is well within the 
region explored by Silberman, gives rather poor results. The 
authors themselves were unable to fit these data with their 

theory, while they got much better comparisons at higher 
volume fractions. This circumstance seems to imply that the 
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FIG. 20. Comparison between the phase of the transmitted amplitude given 
by (57) for bubbles with a radius of0.110 mm (continuous line) and 0.112 
mm (dashed line) and data from Ref. 16. 
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FIG. 21. Comparison between the attenuation coefficient given by (39) and 
data from Ref. 17. The dashed line and the circles are for a volume fraction 
of 2.89% and bubble radius of 1.5 min. The continuous line and the squares 
are for a volume fraction of 5% and bubble radius of 1.7 min. The dash-and- 
dot line and the triangles are for a volume fraction of 10% and bubble radius 
of 2.2 min. 

low volume fraction data are faulty. A comparison between 
the present theory and the measured attenuation coefficient 
for/? = 2.89% (average radius 1.5 mm),/7 = 5% (average 
radius 1.7 mm), and/? = 10% (average radius 2.2 mm) is 
shown in Fig. 21. Interestingly enough, the numbers predict- 
ed are generally within 10% of the measurements, which is a 
very good and perhaps unexpected finding at these much 
larger volume fractions. 

F. Other data acts 

A few other experiments on small-amplitude wave 
propagation in bubbly liquids exist in the literature. Carsten- 
sen and Foldy ]2 reported in 1947 the results of tests on bub- 
ble screens conducted in a lake. The control of bubble sizes 

and spatial distribution in these early experiments was rath- 
er poor and we felt that it would be next to impossible to 
compare these data with theory in a meaningful way. 

Gibson ]a reports some wave celerity data obtained in a 
horizontal pipe in the presence of flow. Air was introduced 
in the water by means era pipe with no control on bubble size 
distribution, which is not even mentioned in the article. 
There was no control on the sound frequency either, and 
what was measured was essentially the low-frequency speed 
given by (47) in a range of volume fraction between 0% and 
0.8%. We feel that the low-frequency data of Silberman al- 
low a much more stringent and meaningful comparison 
between theory and experiment. 

Medwin 19 reports some data on the attenuation caused 
by a stream of electrolytically generated bubbles with a radi- 
us of 52/zm. It is not clear how to describe this situation in 
such a way that the present theoretical formulation is appli- 
cable, and we have not attempted to do so. 

Finally, Card et al. zø report measurements of wave ce- 
lerity at large volume fractions, up to 40%, and far above 
resonance (500 kHz with bubbles era few mm radius). For 
volume fractions up to 1%-2%, they find a speed essentially 
equal to that in the pure liquid, which agrees with the predic- 

tiens of the present model far above resonance (see, e.g., 
Figs. 8-10). However, their data indicate a decreasing wave 
celerity at higher volume fractions, which, not surprisingly, 
cannot be explained by our model. This article also contains 
a number of references to other measurements contained in 

unpublished reports and therefore, unfortunately, inaccessi- 
ble. 

¾1. CONCLUSIONS 

We have analyzed in detail five different sets of data for 
the'propagation of linear pressure waves in a bubbly liquid in 
the light of a model that, though simple, has a rigorous math- 
ematical basis. For the data sets of Silberman and Kol'tsova 

etal., who used fairly monodisperse mixtures, we consistent- 
ly found that the agreement between theory and experiment 
deteriorates significantly in the neighborhood of the reso- 
nance of the bubbles, even at volume fractions as low as a few 
hundredths of 1%. A corresponding deterioration was not 
apparent in the comparison with the data obtained by Fox et 
al., who used bubbles of a relatively wide size distribution, 
nor with the data of Macpherson, who used two-dimensional 
bubble screens. 

In considering these results, the very dramatic increase 
of the sca.ttering cross section of bubbles in the neighborhood 
of resonance comes immediately to mind. The scattering 
cross section o s is defined by 2• 

0'• = 4•'a2to4/[ ( to• -- to2)2 + 4b 2to2]. (64) 
For example, the ratio of % to the geometric cross section 
rra 2 for an air bubble in water at I atm increases from ap- 
proximately 752 for a = 0.1 mm to 5644 for a -= 1 mm at 
to = to o. On purely intuitive grounds, one may expect that 
such enormous increases would make the volume fraction 

"look bigger" than its actual value. This remark can be put 
on more quantitative grounds in several ways. For example, 
it is evident that, if the average pressure field exciting a bub- 
ble is smaller than, or comparable with, the pressure wave 
scattered by a neighboring bubble, the model will fail. It is 
easy to prove that this criterion imposes a limitation of the 
form 

(a/d)to/ltoo z -- to 2 + 2ibo I ,• 1, (65) 
where d is the distance between the two bubbles. If this dis- 

tance is taken to be the average interbubble distance n-ira, 
the preceding relation takes the form n 2/• cr• ,• 1, which can 
become particularly stringent near resonance. 

Other upper limits can be found in the multiple scatter- 
ing literature. These are pertinent here because it can be 
shown that the present model, in the linearized approxima- 
tion, gives results equivalent to those of multiple scattering 
such as pioneered by Foldy 3 and improved by others since 
(see, e.g., Refs. 22-27). For example, from the condition 
that the multiple scattering field caused by the insertion of a 
bubble be much smaller than the field exciting that bubble, 
Waterman and TrueIF 3 derive the condition no•/k,• 1 that, 
in terms of the volume fraction, implies 

C = a[ (toZo -- to2) z + 4bo2]/3cto3>>/?. (66) 
In Fig. 22, we show the left-hand side of this equation as a 
function ofto/Oo for bubble radii of I mm (continuous line), 
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FIG. 22. Graph of the quantity defined in Eq. (66) as a function of the ratio 
of the driving frequency to the resonance frequency for bubbles with radii of 
I mm (continuous line), 0.1 mm (dash-and-dot line), and 0.01 mm 
(dashed line). These curves can be interpreted as an upper limit to the vol- 
ume fraction for the validity of the present theory. 

0.1 (dash-and-dot line), and 0.01 mm (dashed line). The 
extremely severe limitation imposed by this inequality near 
resonance is particularly striking, and can account for the 
disagreement between theory and experiment that we have 
found. Further criteria can be obtained from other multiple 
scattering studies, such as those of Keller 24 and 
Twerski. 2s-27 Their result can be put in the form 

narr•/',• 1 (67) 
and arises from the condition of negligibility of two-particle 
correlation effects. 

All of these forms point very clearly to the determinant 
effect of the scattering cross section at resonance. The much 
better agreement found in the case of the data by Fox et al. 
and Macpherson can perhaps be explained in the light of 
these considerations by noting that, in the first case, the 
number of resonant bubbles at any frequency is so small that 
these stringent limits are met. In the second case, due to the 
two-dimensional bubble screens used, one deals with a very 
small volume fraction and, in addition, a peculiar geometry 
that tends to reduce bubble-bubble interactions. 

For the small-amplitude regime to which we have re- 
stricted our considerations, more sophisticated treatments 
than that afforded by the linearization of the model present- 
ed in Secs. I and II are available in the literature, •7 and it is 
conceivable that a better agreement with the data can be 
obtained by use of some of those results. We have not pur- 
sued this matter because the primary motivation of this 
study was the desire to validate the nonlinear model by a 

consideration of its restrictions in the linear case. Our con- 

clusion is, therefore, that, since it fails in this case when reso- 
nance effects are important, most likely the same will happen 
for large-amplitude waves. Away from resonance, our re- 
sults imply that the model performs well up to volume frac- 
tions of about 1%-2%. Although this does not, of course, 
guarantee an equally adequate performance in the nonlinear 
case, it certainly is an encouraging result. 

A number of nonlinear models for pressure waves in 
bubbly liquids have been proposed that are purported to in- 
clude many more effects than those contained in the present 
one such as relative motion of the phases, Reynolds stresses, 
and others. sa•-3ø All these models, however, have been de- 
rived by more or less ad hoc procedures. The model we have 
considered is the only one, to our knowledge, to have a sound 
mathematical basis and this has been the origin of our inter- 
est in it. 
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