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Axial stability of Taylor bubbles
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Long gas bubbles rising in a vertical tube are observed to lose axial symmetry
and become unstable in a downward liquid flow. In this paper an approximate linear
stability analysis of this phenomenon is presented. It is found that, under the combined
effect of gravity and the pressure gradient which drives the liquid flow, the relative
velocity between the bubble and the liquid decreases with increasing downflow, which
diminishes the stabilizing effect of convection. The decrease of the relative velocity is
accompanied by a flattening of the bubble nose, which also has a destabilizing effect
by strengthening the Rayleigh–Taylor instability at the bubble nose.

1. Introduction
Slug flow in vertical tubes is characterized by large gas bubbles, often with a

length of several tube diameters, separated by liquid masses – the so-called ‘slugs’.
When the tube diameter is not too large, the large bubbles (also known as Taylor
bubbles) are smooth and glossy, with a bullet-shaped nose, and they rise at a constant
velocity along the axis of the tube. The general impression is that of an axisymmetric
flow endowed with a remarkable degree of stability which, on a closer consideration,
cannot but appear paradoxical in view of the unstable stratification of the heavy
liquid over the much lighter gas.

The same paradoxical stability is encountered with large, spherical-cap bubbles
rising in an unbounded liquid. Batchelor (1987) has studied this system and has argued
that the stabilization mechanism depends on a two-fold effect of the convection over
the bubble surface. In the first place, as they are swept along the bubble surface,
perturbations are stretched and, therefore, kinematically damped. This is a standard
stabilization effect also encountered in other contexts such as curved flame fronts
(see e.g. Zel’dovich et al. 1980), spherically growing bubbles (see e.g. Plesset 1954;
Plesset & Prosperetti 1977), stretching jets (Frankel & Weihs 1987), and the so-called
Bell–Plesset effect (see e.g. Epstein 2004). Secondly, there is only a finite time available
for amplification before the perturbations are swept to the bubble rim. To explain
the fact that, experimentally, there appears to be an upper bound to the size of
spherical cap bubbles, Batchelor notes that the time available for growth increases
with the radius of the bubble thus permitting some perturbations to grow so large as
to destroy the integrity of the gas mass. Surface tension plays an important role in
the phenomenon as, in its absence, the growth rate of the inviscid Rayleigh–Taylor
instability would be proportional to the square root of the wavenumber, which would
permit an arbitrarily large growth even within a short convection time.

It is likely that the same processes are relevant in explaining the fact that Taylor
bubbles are not found in very large tubes. Martin (1976) quotes an unpublished
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observation by Hsu & Simon of a single Taylor bubbles in water in a 300 mm
diameter tube, but in his own experiments he observed a not-quite-stable bubble in a
101.6 mm diameter tube, but not in a 140 mm diameter one. In their experiments with
vapour–liquid flow, Kawanishi, Hirao & Tsuge (1990) found ‘no typical slug flow’ in
a 102.3 mm diameter vertical pipe. Batchelor’s (1987) estimate of a maximum tube
diameter of 460 mm is probably an upper limit that it would be difficult to achieve,
except perhaps in very controlled situations.

In addition to the instability related to the tube size, Taylor bubbles exhibit another
kind of instability which is of practical interest in that it has a strong effect on their
rise velocity, and therefore on the gas hold-up in the slug flow regime, the period
between slugs, the pressure drop, and other features. This instability arises when the
bubbles rise in a counter-current liquid flow. In the words of Griffith & Wallis (1961),
‘As the downward flow water velocity was increased, a point was reached at which
the stable character of the bubble suddenly changes. . . . The nose of the bubble began
to distort, to become alternately eccentric on one side or another, and to lean over
to one side of the tube’. With its nose pushed to the wall, the bubble faces a slower
liquid flow and is thus able to rise faster than it would otherwise. On the other hand,
the bubble behaviour in an upward liquid flow is quite stable and similar to that in a
quiescent liquid (Griffith & Wallis 1961; Nicklin, Wilkes & Davidson 1962; Bendiksen
1984).

The instability in downflow was first documented in some detail by Griffith &
Wallis (1961) who observed it in air–water flow in tubes with diameters of 1, 3/4, and
1/2 in. (25, 19, and 13 mm, approximately). Similar observations were reported by
Nicklin et al. (1962), Martin (1976), and Polonsky, Shemer & Barnea (1999). Martin’s
(1976) work dealt specifically with downward flow and documented the extreme
instability of bubbles in tubes with diameters of 101.6 mm and larger. In his 26 mm
diameter tube the bubbles were more stable, but under no circumstances was he
able to observe stationary or downward moving axisymmetric Taylor bubbles. Other
existing experimental work on downward gas–liquid flow (e.g. Spedding & Nguyen
1980; Barnea, Shoham & Taitel 1982; Mukherjee & Brill 1985; Kawanishi et al. 1990)
is mostly concerned with flow regime transition and does not distinguish between
axisymmetric and non-axisymmetric slug flow.

In the cited paper, Griffith & Wallis write: ‘No satisfactory explanation or theory
was formed for the bubble instability which was observed for downflow. It is also
unknown as yet whether such instability could occur for upflow in very large pipes
or if a reverse water flow is essential’.

In this paper we make an attempt to study the origin of this instability. The key
element that emerges from our analysis is that the relative velocity between the bubble
and the liquid decreases as the liquid downflow velocity increases. This circumstance
leads to a decreased effectiveness of the convective stabilization mechanisms described
before. The decrease of the relative velocity, accompanied by a flattening of the bubble
nose, is a consequence of the competition between the gravitational pressure gradient
and the imposed pressure gradient necessary to drive the fluid downward. Thus, one
would conclude that the instability investigated here does require a ‘reverse water
flow’.

Other than the paper by Batchelor (1987), the only study dealing with the stability
of three-dimensional Taylor bubbles is by Abarzhi (1998), in which the stability
of bubbles rising in a quiescent liquid with various spatial periodicities is studied;
although the hexagonal periodicity approximates a bubble in a round tube, the
correspondence is clearly not exact. Abarzhi finds stable solutions only in a narrow
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range of curvatures of the bubble nose. At the lowest order in the approximation, the
fastest member of this family of solutions has a rise velocity UB close to that given
by Layzer (1955):

UB =

√
gD

2k0
1

� 0.361
√

gD (1.1)

where k0
1 � 3.8317 is the first positive zero of the Bessel function J1, g is the acceleration

due to gravity, and D is the tube diameter. This result differs slightly from those given
by Dumitrescu (1943) and by Davies & Taylor (1950), in which the numerical
constant is 0.351 and 0.328, respectively. Dumitrescu’s estimate of the Froude number
Fr = UB/

√
gD is usually considered the most accurate one and agrees well with

experiment (Fabre & Liné 1992).
Results such as (1.1), derived for infinitely long bubbles, are found to describe quite

accurately the rise velocity in a quiescent liquid of bubbles of any length down to a
couple of tube diameters (see e.g. Griffith & Wallis 1961; Nicklin et al. 1962), provided
a Reynolds number defined as D

√
gD/ν (with ν the kinematic viscosity of the liquid)

exceeds approximately 200 to 300 (see e.g. Nicklin 1962; Zukoski 1966; Fabre & Liné
1992; Viana et al. 2003). A correction for surface tension effects is however necessary
when the Eötvös number Eo = ρgD2/σ (with ρ the liquid density and σ the surface
tension parameter) is smaller than a value between 40 (e.g. Tung & Parlange 1976;
Bendiksen 1985; Viana et al. 2003) and 70 or, possibly, more (e.g White & Beardmore
1962; Zukoski 1966; Martin 1976; Nickens & Yannitell 1987). For water and normal
gravity, the limitation on the Eötvös number is the more stringent of the two and
corresponds to tube diameters greater than between 17 and 22 mm.

Abarzhi’s study was an attempt to appeal to stability considerations to narrow down
the infinity of possible solutions first found by Garabedian (1957; see also Vanden
Broeck 1984a, b) for the two-dimensional problem, and later confirmed by Levine &
Yang (1990) and Vanden Broeck (1991) for the three-dimensional one. There are
several similarly motivated studies of the stability of two-dimensional Taylor bubbles
(see e.g. Tanveer 1987; Nie & Tanveer 1995), all of which however differ from the
present one in that the liquid far ahead of the bubble is at rest. The study of
the stability of two-dimensional curved fronts by Bensimon, Pelce & Shraiman (1987)
focuses on short-wave instabilities while that of present concern is clearly a long-wave
phenomenon.

A general feature that emerges from a reading of the cited literature (as well as
many other papers in this general area), is that this class of flows presents quite
a number of difficulties and perplexing features (Saffman 1986; Viana et al. 2003;
Funada et al. 2005). For example, Saffman (1986) writes: the mystery ‘is the reason
for the observed stability when the theory which predicts instability also calculates the
steady shape so accurately’. The present analysis is no exception. We find our share
of ambiguities but the results appear to be in reasonable consistency with experiment
and a plausible explanation of the physical mechanism of the instability emerges from
the analysis.

We start from an approximation derived in Collins et al. (1978) for the axisymmetric
bubble shape in a fully developed Poiseuille liquid flow and present a linear stability
analysis under the assumption that the perturbation is irrotational. This apparent
inconsistency in the way in which viscous effects are accounted for was justified in
Collins et al. (1978) whose procedure is supported further by the remark of Fabre &
Liné (1992): ‘viscosity acts essentially to develop the liquid velocity profile far ahead
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of the bubble – but it has no influence near the front if inertia still dominates’. The
same point of view is adopted, explicitly or implicitly, in a large number papers in
this general area (see e.g. Dumitrescu 1943; Davies & Taylor 1950; Collins et al.
1978; Nickens & Yannitell 1987; Meiron 1989; Clanet, Héraud & Searéby 2004;
Baumbach, Hopfinger & Cartellier 2005). (The very existence of a steadily rising
bubble in a closed tube relies on the presence of viscous effects to dissipate the
continuously decreasing potential energy of the gravity field. Thus, strictly speaking,
a potential theory analysis of steady bubble motion is inconsistent.)

Viscosity is known to dampen surface waves over a time scale of the order of
1/(νk2), where k is the wavenumber (see e.g. Lamb 1932). A surface disturbance
originating near the axis is convected around the bubble nose in a time of the order
of D/UB , during which it will have attenuated by an amount νk2D/UB . As will be
seen in the following, the disturbances of present concern are only active as long as
they are near the front of the bubble and have typical wavelengths of the order of D,
so that viscous damping would be expected to dampen them by an amount ν/DUB ,
which is of the order of the inverse Reynolds number. Thus, viscous effects may be
expected to have little effect as long as the Reynolds number is sufficiently large.

In the Appendix we present a similar analysis for a base flow given by a
generalization of that used by Davies & Taylor (1950). While this flow presents
some artificial features, the general conclusion to which it leads is consistent with that
of the more realistic Collins et al. base flow and, therefore, strengthens the findings
of this work.

2. Theoretical framework
Since, in the unperturbed state, the bubble rises with a constant velocity, we take a

frame of reference with the origin at the position of the unperturbed bubble nose and
the z-axis oriented vertically upward. We use dimensionless variables in which lengths
are non-dimensionalized by the tube diameter D, velocities by

√
gD, and pressures by

ρgD, with ρ the liquid density. Dimensional variables are however used in the figures
and figure captions.

Neglecting viscosity, but allowing for the presence of vorticity, we write the liquid
momentum equation as

∂v

∂t
+ ∇

(
1
2
v · v + Π + z

)
+ Ω × v = 0, (2.1)

where v is the velocity, Ω = ∇ × v the vorticity, and Π the pressure. Upon integrating
this equation along any line L, we find∫

L

∂v

∂t
· dx + 1

2
v · v + Π + z +

∫
L

(Ω × v) · dx = C(t) (2.2)

where C(t) is an integration constant which can, in principle, depend on time.
Let now

v = U + εu, u = ∇φ, Π =P + εp, (2.3)

where U and P are the steady, unperturbed velocity and pressure fields, and the
perturbation velocity u is approximated as irrotational. Take the line L to be the
trace of the unperturbed bubble on the meridian plane starting at the origin. Then,
upon separating the perturbation from the base flow and using the fact that U and
dx are co-planar, we have

1
2
U · U + P + z =C0 (2.4)
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and†
∂φ

∂t
+ U · u + p +

∫
0

(Ω × u) · dx = 0. (2.5)

Since the origin is a stagnation point for the base flow, the integration constant C0

in the equation (2.4) must equal the pressure PB at the origin. With the neglect of
surface tension, this will also be the pressure in the bubble, which we may take as
spatially uniform, neglecting hydrostatic effects in the gas. With these approximations,
the liquid pressure at the interface P will also equal PB and (2.4) simply becomes

U · U = − 2z. (2.6)

In order to specify the boundary conditions, we write the unperturbed free surface
as

S0 ≡ r − f (z) = 0 (2.7)

with f (0) = 0, while, after the perturbation,

S = S0 − εh ≡ r − f (z) − εh(θ, z, t) = 0. (2.8)

The kinematic boundary condition[
∂S

∂t
+ v · ∇S

]
S=0

= 0 (2.9)

separates into the two relations

[U · ∇S0]S0=0 = 0, (2.10)

and

ur − f ′uz =
∂h

∂t
− h

∂

∂r

(
Ur − f ′Uz

)
+ Uz

∂h

∂z
(2.11)

where indices denote components.
With the neglect of surface tension, the dynamic boundary condition is

[P + εp]S=0 = PB (2.12)

which gives, for the perturbation[
h

∂P

∂r
+ p

]
r=f

= 0. (2.13)

Since ∂P/∂r vanishes for r = 0, so does p. As a consequence, (2.5) shows that
∂φ/∂t =0 at the nose of the unperturbed bubble.

It can be shown that, near the bubble nose, the perturbation equations (2.5) and
(2.11) (the latter without the vorticity contribution) coincide with Batchelor’s (1987)
formulation.

3. The base flow
Collins et al. (1978) presented a solution for the rise of a Taylor bubble in a viscous

liquid by approximating the flow as inviscid, but retaining in the incident flow the

† If one were to write C(t) = C0 + εc(t), the right-hand side of (2.5) would be c(t) rather than 0.
However, since c is only a function of time, it can be absorbed in a redefinition of the potential,
φ → φ +

∫
c(t) dt which leaves the perturbation velocity unchanged.
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same vorticity that would be generated by viscous stresses. We base our analysis on
their model A, the simpler of the two models that they use for laminar incident flow.

In this model only one term of an infinite series expansion for the stream function
Ψ is retained:

Ψ = 1
2
UBr2 − Ur2(1 − 2r2) + (UB − 2U )

r

2k0
1

exp
(

− 2k0
1z

)
J ′

0

(
2k0

1r
)
. (3.1)

Here U is the average velocity in the tube made dimensionless by division by
√

gD;
positive and negative U correspond to upward and downward liquid flow, respectively.
The incident velocity distribution is parabolic, oriented in the opposite direction to
the flow. The vorticity is given by

Ω = eθ (∂zUr − ∂rUz) = 16Ureθ (3.2)

in which eθ is a unit vector in the angular direction. The surface Ψ = 0 is the bubble
surface:

Z(r) = − 1

2k0
1

log

[
k0

1r

J1(2k0
1r)

(
1 +

4Ur2

UB − 2U

)]
. (3.3)

The dashed lines in figure 1 show the bubble shape corresponding to U = 0.1, 0,
−0.1, and −0.2; the solid lines will be explained later in § 6. It can be seen here
that, as the upward liquid velocity is gradually decreased and becomes negative, the
bubble becomes flatter and flatter, with the radius of curvature at the nose increasing
from 2/k0

1 � 0.522 for U = 0 (the experimental value is closer to 0.350, Fabre & Liné
1992, or 0.375, Funada et al. 2005), to 6/k0

1 � 1.567 for the limit value U � − 0.255
(see below). This trend can be understood by noting that the liquid flow requires the
action of a pressure gradient which combines with gravity to drive the bubble motion.
For upward liquid flow the effect of the imposed gradient is in the same direction
as that of gravity, while it is in the opposite direction for downward liquid flow. As
a consequence, as will be shown presently, the velocity of the bubble relative to the
liquid will be greater in upflow than in downflow. Because of the obstruction caused
by the bubble, the liquid must accelerate but since, along the bubble, it is essentially
in free fall (see e.g. Nicklin et al. 1962), this acceleration can only be obtained at the
expense of gravitational potential energy. This circumstance limits the rate at which
the bubble cross-section can grow with the consequence that the higher the relative
velocity the more tapered (i.e. more pointed) is bubble. The mechanism by which
the bubble shape is adjusted in this way is the dynamic pressure: a higher relative
velocity means a larger dynamic pressure, which will push the bubble surface further
down.

Upon substitution of the expressions for Ur and Uz obtained from the stream
function (3.1) into the dynamic condition (2.6), one finds a relation from which the
bubble rise velocity UB can in principle be determined. However, since (3.1) is only
an approximation to the stream function, it is found that (2.6) cannot be satisfied for
all values of r with a single UB . Rather, the equation can only be satisfied at one
point. By taking this point to be the origin, we find

(UB − 2U )2 =
2

k0
1

[
1

(k0
1)

2

2U

UB − 2U
+

1

4

]
. (3.4)

In particular, for a bubble rising in a quiescent liquid, U = 0 and this relation gives
the result quoted earlier in (1.1), UB = (2k0

1)
−1/2 � 0.361, which differs by 3% from the

accepted value 0.351. In order to determine the physical root of (3.4), we follow the
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Figure 1. The dashed lines are the unperturbed bubble shapes for (a) U/
√

gD = 0.1, (b) 0,
(c) −0.1, (d) −0.2 (left to right, top to bottom). The bubble becomes more and more blunt as
the velocity is decreased. The solid lines are the perturbed shapes as described in § 6.

branch to which this root belongs with decreasing U . This root becomes complex

for U = − 1
2
(k0

1/6)3/2 � − 0.255, which corresponds to UB = [1 − (k0
1)

2/6]
√

1/(6k0
1) �

−0.301. This root is always greater than the liquid velocity on the tube axis, 2U , and
always greater than U except in a small region near U = − 0.244. Whenever there is
more than one root, this root is larger than the others, thus satisfying Garabedian’s
(1957) criterion for stable equilibrium. The bubble starts moving downward for UB =0

which corresponds to U = − 1
2

√
(1 − 4/(k0

1)
2)/2k0

1 � −0.154. The relation between UB

and U given by (3.4) is shown by the solid line in figure 2(a).
The dashed line in figure 2(b) shows the dependence of the bubble rise velocity

on U if (2.6) is evaluated at r =1/4 rather than 0 as in Davies & Taylor (1950).
While there are some differences, the results of the two evaluations are reasonably
consistent. For upward liquid flow, Collins et al. (1978) give the approximation

UB = c1U + c2 (3.5)
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Figure 2. (a) Bubble rising velocity vs. U , the mean liquid velocity in the pipe (positive
upward), as calculated from (3.4). (b) Bubble rising velocity as calculated from (2.6) evaluated
at different values of the radial coordinate r .

with c1 = 2.27 and c2 = 0.361. Between U = 0 and 0.3, our result for the evaluation
at r = 0 can be approximated by taking c1 = 2.213 and c2 = 0.361, and that for the
evaluation at r = 1/4 by taking c1 = 1.86 and c2 = 0.327. This second value of c1 is
definitely too low to match experiment, which suggests that (3.4) is fairly accurate.

Figure 2(b) shows, for representative positive and negative values of U , the predicted
rise velocity UB evaluated corresponding to different values of r . It can be seen here
that, for downward liquid flows, which is the situation that interests us most in this
paper, the calculated bubble rise velocity is only weakly dependent on r for r up to
about 0.2. For larger values of r , however, the r-dependence increases.

4. Perturbation
Since the base flow is axisymmetric, the perturbation can be expanded on a basis of

eigenfunctions of the angular variable which, by linearity, can be considered one by
one. Thus, we consider an irrotational perturbation corresponding to the mth angular
mode characterized by a potential given by

φ = exp(imθ)

∞∑
j=1

αj (t) exp
(
−2km

j z
)
Jm

(
2km

j r
)
, (4.1)

where the αj are functions of time to be determined. Choosing the km
j as the j th

positive zero of J ′
m satisfies the kinematic boundary condition on the tube wall. Upon

substitution into the integral term of (2.5), we find∫
0

(Ω×u) · dr = 32U exp(imθ)

∞∑
j=1

αjk
m
j

∫
0

exp
[
−2km

j Z(r)
] [

Jm + J ′
mZ′(r)

]
r dr. (4.2)

The surface deformation is taken in the form

h = exp(imθ)

∞∑
j=1

βj (t)
Jm

(
2km

j r
)

r
(4.3)

with the βj other functions of time to be determined.
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The choice m = 0 amounts to a correction of the unperturbed bubble shape and
base flow and, as argued in the next section, is not particularly significant. A value
of m equal to 2 would correspond to the bubble cross-section acquiring an elliptical
shape, m =3 to a perturbation with three lobes in the angular direction, and so forth.
The most interesting case for the present purposes is m =1 which, to lowest order,
corresponds to displacing the centre of each cross-section z =const. away from the
axis of symmetry.

With these expressions, after truncating the infinite series to N terms, the dynamic
boundary condition (2.5) becomes

N∑
j=1

α̇j exp
(

− 2km
j Z

)
Jm +

1

r
[(U · ∇)Ur ]

N∑
j=1

βjJm

+

N∑
j=1

αj

[
2 exp

(
− 2km

j Z
)
km

j

(
J ′

mUr − JmUZ

)

+ 32Ukm
j

∫
exp

(
− 2km

j Z
) (

Jm + J ′
mZ′) rdr

]
= 0 (4.4)

where dots denote time differentiation. The kinematic boundary condition is

N∑
j=1

β̇jJm +

N∑
j=1

βj

[
− ∂

∂r
(Ur − Uz/Z

′)Jm + Ur

(
2J ′

mkm
j − Jm/r

)]

−
N∑

j=1

2αj exp
(

− 2km
j Z

)
km

j r
(
J ′

m + Jm/Z′) = 0. (4.5)

The previous equations cannot be applied at r = 0 as they stand. The limit is
however readily calculated analytically, with the result

N∑
j=1

α̇j

(
km

j

)m
+ (UB − 2U )k0

1m

N∑
j=1

αj

(
km

j

)m
+

[
k0

1(UB − 2U )
]2

N∑
j=1

βj

(
km

j

)m
= 0, (4.6)

N∑
j=1

β̇j

(
km

j

)m
+ (UB − 2U )k0

1(m + 2)

N∑
j=1

βj

(
km

j

)m

−
N∑

j=1

αj (k
m
j )m

[
m −

km
j

k0
1

1(
k0

1

)2
2U/(UB − 2U ) + 1

4

]
= 0. (4.7)

The plan of the calculation is to solve the problem by collocation imposing that
(4.4) and (4.5) be satisfied for N different values of r .

5. Approximation near the bubble nose
The simplest approximation is to impose the kinematic and dynamic boundary

conditions at the single point r =0. Upon retaining only the first term of (4.6) and
(4.7), and using (3.4), we find

α̇1 + (UB − 2U )k0
1mα1 +

[
k0

1(UB − 2U )
]2

β1 = 0, (5.1)
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β̇1 + (UB − 2U )k0
1(m + 2)β1 − α1

[
m − 2km

1(
k0

1

)2
(UB − 2U )2

]
=0. (5.2)

This is a linear system of the form AẊ = BX , in which A and B are constant
matrices and XT = (α1, β1). The solutions are proportional to exp(λt) with λ given by
det(Aλ − B) = 0. A simple calculation gives

λ= k0
1 (UB − 2U )

[
−(m + 1) ±

√
1 − m +

2km
1(

k0
1

)2
(UB − 2U )2

]
. (5.3)

It is evident that a positive root always exists for an axisymmetric disturbance with
m =0. This class of perturbations corresponds to an adjustment of the unperturbed
state and the instability is due to the fact that the bubble shape and base flow which
we use are not exact. In other words, if one were to do an ‘exact’ axisymmetric
numerical calculation starting with our assumed base flow and bubble shape, one
would find an evolution of the flow and bubble shape away from the initial condition
toward the exact solution. In a stability context, this evolution away from the initial
condition would appear as an instability of the assumed base flow. This situation
is encountered in other problems as well (see e.g. Meiron 1989): the instability is
clearly spurious and can be disregarded.† Obviously, this is possible only because, in
this linear study, modes with different m decouple. In a fully nonlinear analysis, the
approximate nature of the base state would eventually contaminate all the modes.

For non-zero values of m since, as noted before, UB − 2U is always positive, the
stability condition λ � 0 is that the square root be smaller than m + 1, which gives

UB − 2U �
1

k0
1

√
2km

1

m(m + 3)
. (5.4)

The eigenvalues given by (5.3) are shown as functions of U for m =1, 2, and 3 in
figure 3(a) in the physical range U � −0.255. It is seen here that m =1 is the least
stable mode, which becomes unstable at U � − 0.239. All other modes are stable.

6. A better approximation
The result (5.3) can be improved by imposing that (4.4) and (4.5) be satisfied for

other r values in addition to r =0. This procedure leads to a linear system of the same
form as before, AẊ = B X , again having exponential solutions with the eigenvalues
given by det(Aλ − B) = 0. The only difference is that there are now 2N eigenvalues
for the 2N-equations system, and that XT = (α1, α2, . . . , αN, β1, β2, . . . , βN ). The UB

present in (4.4) and (4.5) was evaluated from (3.4).
We take N equispaced values of r in the range 0 � r � rmax . The least stable

eigenvalue for m = 1, 2, and 3 calculated with N = 5 and rmax = 0.35 is shown as a
function of U in figure 3(b). While the general trend of the curves is similar to that
found by only considering the point r = 0, there are important quantitative differences.

† For example, Meiron (1989) states ‘if the stability analysis . . . is performed with respect to
an inconsistent equilibrium solution . . . then a spurious growth rate . . . will be obtained’ (p. 110).
This comment was in connection with the claim by Hartunian & Sears (1957) to have found an
‘explanation’ for the deviation of a rising bubble from a rectilinear path. These authors failed to
realize that their result was due to the assumption of an approximate, rather than exact, base state.
As shown by Meiron, when an exact base state is assumed, the instability disappears.
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Figure 3. (a) The largest eigenvalue as calculated from the near-nose relation (5.3) vs. the
liquid mean velocity for m= 1, 2, and 3. The mode m= 1 is unstable for U/

√
gD < −0.239.

(b) The largest eigenvalue as calculated from (4.4) and (4.5) evaluated at 5 equispaced points
between r = 0 and r/D = 0.35 vs. the liquid mean velocity for m= 1, 2, and 3. The modes
m= 1, 2, and 3 are unstable for U/

√
gD < −0.138, −0.238, and −0.249, respectively
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Figure 4. The m= 1 eigenvalue with the largest real part for N equispaced points between
r = 0 and r/D =0.30 (a) and r = 0.35 (b). The lines for N =1 (dashed), are the same as shown
in the figure 3(a).

The m =1 mode becomes unstable for U = − 0.138 and, in addition, modes with a
larger value of m are found to become unstable: that for m =2 for U < −0.238, and
that for m =3 for U < −0.249.

To explore the sensitivity of the results to N and rmax we show in figure 4 the least
stable eigenvalue for m =1 for rmax = 0.30 (panel a) and 0.35 as a function of U . The
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Figure 5. Free-surface perturbation for a stable case, U = 0 (a), and an unstable case,
U/

√
gD = − 0.2 (b) as calculated for N = 3, 4, and 5. The unlabelled curves are for N = 3 in

(a) and N = 4 in (b).

different lines correspond to different values of N between 1 and 5. Aside from the
line for N = 1 (dashed), which in both figures is the same as that shown in figure 3(a),
the various N values all predict the onset of instability for U between −0.14 and
−0.13. The agreement among the results for different N is better for rmax = 0.30 than
for 0.35, which is probably the result of the progressive deterioration of the accuracy
of the base flow as r is increased. The eigenvalue is real in most of the range shown.
An exception is the case N =5 in figure 4(a), where the kink in the curve at about
U = 0.24 corresponds to the transition from real to complex values. The robustness
of this result is discussed further in the next section.

The predicted shape of the free-surface perturbation for m = 1 is shown for U = 0
and −0.2 and N =3, 4, and 5 in figure 5. There is a general agreement among
the predictions for different N , which deteriorates somewhat with increasing U . The
bubble shapes including the perturbation (multiplied by an arbitrary small number)
are shown by the solid lines in figure 1, where the displacement away from the axis
of symmetry of the m =1 mode is evident.

7. Discussion
Griffith & Wallis (1961) measured the instability threshold in downflow of 10 ◦C

water (µ = 1.3 × 10−3 kg m−1, ν = 1.3 × 10−6 m2 s−1). They used pipes of diameter 1,
3/4, and 1/2 in. (25, 19, and 13 mm). The measured thresholds can be read off their
figure 3 and are, approximately, −0.11, −0.18, and −0.51 ft s−1 (−33.6, −54.9, and
−156 mms−1), which correspond to Reynolds numbers DU/ν =646, 802, and 1560
respectively, indicating an essentially laminar flow. Upon conversion to dimensionless
values by division by

√
Dg, these thresholds become U = − 0.067, −0.13, and −0.44.

There is no doubt as to the importance of surface tension effects for the smallest tube,
for which the Eötvös number Eo = 23, while, for the largest tube for which Eo = 90,
surface tension may be expected to be much less important. While, as noted before,
most of the existing literature places the upper limit for significant surface tension
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effects at values of Eo between 40 and 70, a recent computational study (Ha-Ngoc &
Fabre 2004) finds a 5% difference in the bubble rise velocity as Eo is increased from
100 to 1000. The 3/4 in. tube, with Eo = 51, probably falls in a transition region,
although the factor 2 difference between the measured thresholds for the 1 and
3/4 in. tubes is surprisingly large and may indicate some problem with the data. The
stability threshold value calculated in the previous section was between −0.14 and
−0.13, which is close to the data for the 3/4 in. tube but much more negative than
for the 1 in. tube. While, as just pointed out, there appear to be some uncertainties
in the data, it would not be surprising if our very simple model exhibited a relatively
large quantitative error. In addition to the many approximations made, in principle,
enlarging the class of admitted perturbations beyond the irrotational ones might
conceivably expand the unstable range.

In a short note, Nigmatulin (2001) shows a stable axisymmetric Taylor bubble
rendered stationary in the laboratory frame by a downward liquid flow. As mentioned
in § 3, according to our model this would happen for U = − 0.154 which is past the
instability threshold. However these experiments were conducted in water in a 15.6 mm
diameter tube, which corresponds to Eo � 33, too small to ignore surface tension.

In spite of its quantitative uncertainty, the model sheds some light on the physical
processes underlying the observed instability of the axially symmetric flow. As
mentioned in § 3, as the imposed fluid velocity decreases, the relative velocity between
the bubble and the liquid also decreases. This fact has two important consequences. In
the first place, it decreases the stabilizing effect of convection described by Batchelor
(1987) and summarized in § 1: the perturbations have more time to grow and they
are stretched at a slower rate. A measure of the magnitude of this latter effect can be
obtained by considering ∂Ur/∂r at the bubble nose, which is

∂Ur

∂r

∣∣∣∣
0,0

= k0
1(UB − 2U ). (7.1)

Since c1 > 2, the approximation (3.5) shows that this is an increasing function of U ,
which quantifies the increasing degree of surface stretching as U is increased.

The second point is that the bubble becomes flatter so that the interface more closely
approaches the situation prevailing in the standard Rayleigh–Taylor instability. In
particular, the gravity component normal to the interface, which drives the instability,
is larger. Heuristically, one may define an effective gravity acceleration as

geff = − 1

S

∫
S

g · n dS (7.2)

where n is the unit outward normal and the integral is extended over the portion S

of the bubble surface where the acceleration due to gravity is locally directed into the
gas phase. With a representation of the surface as in (2.7), a simple calculation shows
that

geff

g
=

∫ Z

0

dz f ′(z)∫ Z

0

dz
√

1 + f ′2
=

f (Z)∫ Z

0

dz
√

1 + f ′2
(7.3)

where Z is the lower boundary of the portion S of the bubble surface. For a nearly
flat bubble, f ′ is very large and geff � g. With increasing upward flow, the radius of
curvature decreases and so does f ′, which leads to a decrease of geff. For example, for
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a spherical bubble nose with a radius equal to the tube radius and Z =1/2, a simple
calculation gives geff/g = 2/π � 0.64.

Retaining only the first few terms in the expansions (4.1) and (4.3) permits us only
to analyse the stability of perturbations with a length scale comparable to the tube
diameter. This is the reason why our results fail to capture the intermediate-wave
instability that prevents the existence of axisymmetric Taylor bubbles in very large
tubes. As for short waves, the neglect of surface tension deprives our results of an
essential stabilizing effect at the small scales. Unfortunately, as shown by Tung &
Parlange (1976) and Bendiksen (1985), the inclusion of surface tension in a model
resting on the one-term representation (3.1) of the base state leads to a prediction
of the dependence on the rising velocity of the Eötvös number which is not only
quantitatively but even qualitatively incorrect. A stability analysis including surface
tension effects would therefore be considerably more involved.

If we increase the number of terms retained, we find that spurious eigenvalues
arise which are clearly unphysical as, for example, they would predict an instability
of bubbles rising in a quiescent fluid for N > 7. Upon a close examination of the
results, it is found that the surface perturbations corresponding to these spurious
modes acquire more and more structure near the tube wall, which is the region where
our model is least accurate. In spite of this convergence failure, we believe that our
results are acceptably accurate as, in the range of rmax and N used to obtain them, we
encounter a relative insensitivity to these parameters. Furthermore, this is precisely
the range where the structure of the solution is mostly localized near the axis of the
tube, which is the region directly involved in the instability and where we expect our
model to be most reliable.

In addition to surface tension, viscous effects have also been neglected in our work.
Other than for a stabilizing effect on the short waves, the most serious consequence of
this approximation is probably the restriction to irrotational perturbations. Narrowing
the class of admitted perturbations can evidently lead to an over–estimation of
the stability properties of the flow, but also to the omission of other instability
mechanisms dependent on vorticity. For such other effects to qualitatively change our
conclusions, however, they should be sufficiently strong to overpower the Rayleigh–
Taylor instability. In general, the most powerful instabilities in high-Reynolds-number
fluid mechanics are those which exist also in the inviscid theory. Hence, we would
expect the likelihood of other mechanisms being more important than the ones we
account for to be small.

8. Conclusion
We have studied a simple model of Taylor bubbles in co-current and counter-current

liquid flow in an attempt to understand the instability encountered in experiments in
which the bubble rises against an incoming liquid stream. We have found that the
major factor underlying the observed instability is the flattening of the bubble nose
as the liquid flows downward. This effect is the result of the negative combination of
gravity and the imposed pressure gradient, which results in a decrease of the relative
velocity between the bubble and the liquid.

Our analysis has been conducted using a simplified model in which the bubble shape
is approximated rather crudely and the perturbation is assumed to be irrotational.
As a consequence, our results match experiment only in a general way, but they have
proven useful in understanding the nature of the instability which is described in
detail in § 7.



Axial stability of Taylor bubbles 187

On the basis of our understanding of this instability, it would seem that its
mechanism is generic. To illustrate this point we present in the Appendix the analysis
of the stability of another base flow which, though different from the one studied
here, leads to a similarly unstable situation. An interesting finding of this analysis is
that the instability is only due to the deformation of the bubble nose, as the cross-
section-averaged velocity of the base flow vanishes. This is yet another indication of
the crucial importance of the near-axis region in the dynamics of Taylor bubbles.

In closing, it should be mentioned that Griffith & Wallis (1961) report that, after
the onset of the instability, ‘as downflow water velocity was further increased, the
unsymmetrical shape became dominant and the motion became steady again’. It is
worth noting that the possibility of such steady unsymmetrical bubbles has also been
noted in two-dimensional viscous fingering in Hele-Shaw cells and porous media
(Taylor & Saffman 1959). In this case one finds a two-parameter family of solutions,
rather than a one-parameter family as in the symmetric case. The physical explanation
of the instability studied in this paper would suggest that a similar instability would
also be found in the two-dimensional case.

This study has been supported by NASA under grant NNC05GA47G.

Appendix. Potential base flow
In order to illustrate the generic nature of the instability that we have studied, it is

of some interest to consider a different base flow, even if perhaps less realistic than
the one studied before. In this case as well we find that the instability is associated
with a flattening of the bubble nose and a decreased degree of stretching of the flow
in its neighbourhood.

A.1. Unperturbed problem

We take the base flow to be given in terms of a potential which generalizes the form
used by Davies & Taylor (1950):

Φ = UBΦ0 + WΦ1 (A 1)

in which

Φ0 = −
[
z +

1

2k0
1

exp
(

− 2k0
1z

)
J0

(
2k0

1r
)]

(A 2)

is the original Davies & Taylor potential, corresponding to stagnant liquid ahead of
the bubble, while

Φ1 =
1

2k0
1

cosh
(
2k0

1z
)
J0

(
2k0

1r
)

(A 3)

is a new term. The corresponding stream function is

Ψ = UBΨ 0 + WΨ 1 (A 4)

with

Ψ 0 =
1

2
r2 +

r

2k0
1

exp
(

− 2k0
1z

)
J ′

0

(
2k0

1r
)
, (A 5)

Ψ 1 =
r

2k0
1

sinh
(
2k0

1z
)
J ′

0

(
2k0

1r
)
. (A 6)

For W > 0, the fluid velocity near the tube wall is faster than near the axis, while
the reverse is true for negative W . Streamlines illustrating the nature of the flow
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Figure 6. Streamlines of the potential base flow of the Appendix for W = 0.1 (a) and −0.1 (b).
The thick solid line is the bubble surface and the dashed line in (a) the stagnation streamline
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Figure 7. Full Navier–Stokes streamlines of the steady axisymmetric flow between two
successive bubbles of a periodic bubble train rising against a downward liquid flow with
U/

√
gD = − 0.2. The Morton number is Mo = gµ4/(ρσ 3) = 4.7 × 10−5, Eo = 16.4, and the

spatial period is L/D = 6; gravity points to the right and the bubbles move from right to left
(from Lu & Prosperetti 2006).

described by (A 1), (A 4) are shown in figure 6 for W = 0.1 (a) and W = − 0.1
(b). Positive values of W result in a stagnation point ahead of the bubble, which
approaches the bubble nose as W increases. This flow may mimic the flow behind
the closed wake of a preceding bubble. For W < 0 the stagnation point moves to the
wall. A flow with a similar character is encountered when a periodic bubble train rises
against a downward liquid flow as shown in figure 7 (from Lu & Prosperetti 2006).
However, the fact that the volumetric flow rate associated with the stream function
(A 4) vanishes makes these identifications somewhat artificial as it would imply a
vanishing relative velocity between the bubble and the liquid.
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The bubble surface is given by Ψ =0 as before:

(W − 2UB) exp
(
−2k0

1Z
)

− W exp
(
2k0

1Z
)

=
2k0

1rUB

J ′
0

(
2k0

1r
) (A 7)

and is also shown in figure 6 by the thick solid lines. The radius of curvature at the
nose increases as W is decreased. In this sense, W behaves here as U in the flow
studied earlier. In order for the bubble to extend in the downstream direction, it is
necessary that UB − W > 0.

As before, the bubble rise velocity can be obtained from (2.6) evaluated at an
arbitrarily chosen value of r . Upon taking r = 0 we find

(UB − W )3 =
UB

2k0
1

. (A 8)

The physical branch of solutions of this equation is the one corresponding to the

Davies–Taylor solution for W = 0. This branch disappears for W = − 2
3

√
1/(6k0

1) �
−0.138, which corresponds to UB = 1

3

√
1/(6k0

1) � 0.0695. Since the mean liquid
velocity in the laboratory frame vanishes, the relative velocity between the bubble
and the mean flow is always UB . Thus, the cases of a stationary and downward
moving bubble are not contained in this flow.

A.2. Perturbation

For the perturbation, the kinematic boundary condition keeps the same form as (4.5).
The dynamic condition is also the same as (4.4) except for the integral term which
now vanishes as Ω = 0.

Near the bubble nose r = 0, (4.4) and (4.5) become

N∑
j=1

α̇j

(
km

j

)m
+ (UB − W )k0

1m

N∑
j=1

αj

(
km

j

)m
+

(
(UB − W )k0

1

)2
N∑

j=1

βj

(
km

j

)m
= 0, (A 9)

N∑
j=1

β̇j

(
km

j

)m
+(UB −W )k0

1(m+2)

N∑
j=1

βj

(
km

j

)m −
N∑

j=1

αj

(
km

j

)m

[
m − 4

km
j

k0
1

(UB − W )

]
= 0,

(A 10)
Upon keeping only one term, the result is

α̇1 + (UB − W )k0
1mα1 + ((UB − W )k0

1)
2β1 = 0, (A 11)

β̇1 + (UB − W )k0
1(m + 2)β1 − α1

[
m − 4

km
1

k0
1

(UB − W )

]
= 0, (A 12)

from which

λ = (UB − W )k0
1

[
−(m + 1) ±

√
1 − m + 4

km
1

k0
1

(UB − W )

]
, (A 13)

The corresponding stability condition is

UB − W �
k0

1

4km
1

m(m + 3) (A 14)

which gives W = − 0.131 for m = 1; all other modes are found to be stable. A graph
of the maximum eigenvalue vs. W for this calculation is shown in figure 8(a).
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Figure 8. (a) The largest eigenvalue for the potential base flow of the Appendix as calculated
from the near-nose relation (5.3) vs. the parameter W for m= 1, 2, and 3. The mode m= 1
is unstable for W < −0.131. (b) The largest eigenvalue for the potential base flow of the
Appendix as calculated from (4.4) and (4.5) evaluated at 5 equispaced points between r = 0
and r/D =0.35 vs. the parameter W for m= 1, 2, and 3. The modes m= 1, 2, and 3 are
unstable for W < −0.025, −0.079, and −0.110, respectively

In order to obtain a more accurate result we evaluate (4.4) and (4.5) at five
equispaced points between r = 0 and r = 0.35 as before. The real part of the do-
minant eigenvalue for m =1 is shown in figure 8(b). The stability thresholds are
found to be W = − 0.025, −0.079, −0.110 for m = 1, 2, and 3, respectively. The
apparent break in the slope of the curves is due to the eigenvalue becoming complex.

The flattening of the bubble shape with decreasing W indicates that the mechanism
of this instability is similar to the one studied before. In particular, the degree of
stretching near the bubble nose, calculated as in § 7, is

∂Ur

∂r

∣∣∣∣
0,0

= k0
1(UB − W ) =

[
1
2

(
k0

1

)2
UB

]1/3

� 1.94U
1/3
B . (A 15)

Since UB is an increasing function of W , again we have a destabilizing effect when W

becomes negative. It should be noted that this result is only dependent on the profile
of the incident velocity near the bubble nose, as there is no net flow in the tube.
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