5.0 Reed-Solomon Codes and their Relatives

5.1 Summary of the “Conventional” Model of RS Codes

5.1.1 History

- First general family of algebraic codes defined by structure.
- Decoders developed by Peterson, Zierler, Berlekamp, Massey, Cooper, Retter, Sudan, others.
5.1.2 Definition

Definition 1 A Reed-Solomon Code is a cyclic code generated by

\[g(x) = (x - \alpha)(x - \alpha^2) \cdots (x - \alpha^{2t}) \]

where \(\alpha \) is primitive in \(GF(q^m) \).

Therefore,

- length = \(q^m - 1 \)
- \(d_{min} = 2t + 1 \) (will prove using Fourier transforms)
- \(n - k = 2t \Rightarrow \) RS codes meet the Singleton Bound

Definition 2 Any LBC which meets the Singleton Bound is called Maximum Distance Separable (MDS).

Corollary: RS codes are MDS.
5.1.3 Encoding

1. Jointly select size q^m of symbol field and block length $n = q^m - 1$.
2. Choose error correction capability t.
3. Find a primitive element α in $GF(q^m)$.
4. Form the generator polynomial:

\[g(x) = (x - \alpha) \cdot (x - \alpha^2) \cdots (x - \alpha^{2t}) \]
Example:

- \(n = 15 \)
- Symbol field of size 16
- Double error correction (\(t = 2 \))

\[
g(x) = (x - \alpha) \cdot (x - \alpha^2)(x - \alpha^3)(x - \alpha^4)
\]

\[
= x^4 + \alpha^{13}x^3 + \alpha^6x^2 + \alpha^3x + \alpha^{10}
\]

- \((15,11)\) RS code over GF(16), \(d_{min} = 5 \).
5.1.4 Duals of RS Codes

Theorem 1 Dual of RS code is an \((n, n - k)\) RS code with \(d_{\text{min}} = k + 1\).

Theorem 2 The dual of an MDS code is MDS.

Proof: Count the (remaining)roots.

Dual of previous ex: \((15,4)\) over \(GF(16)\), \(d_{\text{min}} = 12\).
5.1.5 Information sets

Definition 3 In a linear block code, an information set is a set of k codeword coordinates which are linearly independent.

(Thus, any information set carries k information symbols).

Theorem 3 Any set of k codeword coordinates of an MDS code is an information set.
5.1.6 Modified MDS and RS codes

5.1.6.1 Punctured

Theorem 4 A punctured \((n, k)\) MDS code is an \((n - 1, k)\) MDS code.

Proof: Puncturing does not change information sets.

\(\square\)
5.1.6.2 Shortened

Theorem 5 A shortened MDS code is MDS.

Proof:

• To shorten, $k \rightarrow k - 1$;

• then $n \rightarrow n - 1$.

• But remaining information sets are not changed.

• $(n - 1) - (k - 1) = 2t$. □
5.1.6.3 Extended

Theorem 6 A narrow sense \((q - 1, k)\) RS code can be extended, by adding a parity check, to form a noncyclic \((q, k, d)\) MDS code.

Comments:

- \(n \rightarrow n + 1, k\) unchanged.
- Now, any position contains a parity check on the other \(n\).
- Any \(k\) positions remain independent.
5.1.6.4 Doubly-extended

Theorem 7 Any narrow-sense, singly-extended \((n + 1, k)\) RS code can be (further) extended to form a noncyclic \((n + 2, k)\) \(q\)-ary MDS code by adding the symbol \(c_{n+1}\) to each code word, such that:

\[
c_{n+1} = - \sum_{j=0}^{n-1} c + j\alpha^j\delta
\]

where \(\delta = \text{the BCH bound of the original BCH code} \).

Proof:

See text, pp 171-172.
5.2 Summary of the “Conventional Model” of BCH Codes

5.2.1 Definition

- \(t, t_0, m, n \) integers;
- \(p \) prime;
- \(q = p^m \);
- \(\alpha \) of order \(n \) in \(GF(q^m) \).
Definition 4 For any $t > 0$ and any t_0, a BCH code is the cyclic code with blocklength n and generator polynomial

$$g(x) = LCM\{m_{t_0}(x), m_{t_0+1}(x), \ldots, m_{t_0+2t-1}(x)\}$$

where $m_{t_0}(x)$ is the minimal polynomial of $\alpha^{t_0} \in GF(q^m)$.

Definition 5 A primitive BCH code is a BCH code for which α is primitive in $GF(q^m)$.
5.2.2 Generating BCH codes

5.2.2.1 BCH bound and the generator polynomial

Theorem 8 If the roots of every codeword $c(x) \in C$ include $\alpha, \alpha^2, \cdots, \alpha^{2t}$, then the minimum distance of C is bounded from below by $2t + 1$:

$$d_{\text{min}} \geq d_{\text{BCH}} = 2t + 1$$

We call d_{BCH}

- BCH (lower) bound on d_{min}, or
- the design distance of the code.
5.2.2.2 To Design a BCH Code

Parameters:

• Select \(n \) and \(d_{\text{min}} \).

• Determine \(k \) by designing the code.

• If \(k \) is not satisfactory, REPEAT. ELSE,

 1. Find \(\alpha \), an \(n^{th} \) root of unity in some extension field. (If \(\alpha \) is primitive, then so is code.)

 2. Select \(j_0 \).

 3. Write

 \[
g(x) = \text{lcm}(m_1(x), m_2(x), \cdots m_{2t}(x))
 \]

 4. Determine \(G \) from \(g(x) \) if necessary.
5.2.2.3 Example

Requirement: a 2-error correcting binary code with $n = 15$.

Solution: Use a BCH code with $2t = 4$ and $d_{BCH} = 5$.

- Let α be a 15^{th} root of unity; take $j_0 = 0$.
 - The smallest field containing an element of order 15 is $GF(16) = GF(2^4)$.
 - Hence, α is primitive in $GF(2^4)$.
- Let α be a root of $g(x)$, then so are $\alpha^2, \alpha^4, \alpha^8$.
- Also need α^3 to have 4 consecutive powers.
- So, $g(x) = \text{lcm}[m_1(x), m_2(x), m_3(x), m_4(x)]$
- But $m_1(X) = m_2(x) = m_4(x)$ by conjugacy.
- Therefore $g(x) = \text{lcm}[m_1(x), m_3(x)] = m_1(x) \cdot m_3(x)$.
- Exponents of roots of $g(x)$ are $\{1, 2, 3, 4, 6, 8, 9, 12\}$.
For example,

\[
m_1(x) = p(x) = 1 + x + x^4 \\
m_3(x) = (x - \alpha^3)(x - \alpha^6)(x - \alpha^{12})(x - \alpha^9) = 1 + x + x^2 + x^3 + x^4 \\
g(x) = (1 + x + x^4)(1 + x + x^2 + x^3 + x^4) = 1 + x^4 + x^5 + x^6 + x^7 + x^8 \\
deg[g(x)] = n - k = 8 \\
k = 7.
\]

So, the code is a \((15, 7)\) code with \(d_{min} \geq 5\).
Since \(w_H(g(x)) = 5\), \(d_{min} = 5\).
5.3 Codes based on the Fourier Transform

5.3.1 Fourier Transforms in Finite Fields

1. Recall Fourier transform:
 - $v = (v_0, v_1, \ldots, v_{n-1})$: real or complex.
 - $V = (V_0, V_1, \ldots, V_{n-1})$: the discrete Fourier transform of v, where

 $$V_k = \sum_{i=0}^{n-1} e^{j2\pi ik/n}v_i, \quad k = 0, \ldots, n - 1.$$
 - $e^{j2\pi/n}$ is a complex n^{th} root of unity.
2. The Finite Field Fourier Transform (FFFT or GFFT)
 • Let \(\text{ord}(\alpha) = n \) in \(GF(q) \).
 • Let \(v \in GF(q)^n \).

Definition 6 The Finite Field Fourier Transform of \(v \) is \(V = (V_0, V_1, \ldots, V_{n-1}) \), where

\[
V_j = \sum_{i=0}^{n-1} \alpha^{ij} v_i.
\]

Then \(v \) and \(V \) are a Fourier transform pair,

\[v \leftrightarrow V. \]

• \(V \) has length \(n \) because \(\alpha^n = 1 \).

• \(V_j \in GF(q), \ j = 0, 1, \ldots, n - 1. \)
• DFT exists for every n for real and complex numbers.

• FT exists for $GF(q)$ only if $n | (q - 1)$. (Why?)

Now, let

$$n | q^m - 1$$

for some m.

Then there exists element ω of order n in $GF(q^m)$ and

$$V_j = \sum_{i=0}^{n-1} \omega^{ij} v_j, \ V \in GF(q^m)^n.$$

So, in general,

$$v \in GF(q)^n$$

$$V = \mathcal{F}\{v\}$$

$$V \in GF(q^m)^n$$
Note:

- Say v is time domain signal. Then i is a discrete time variable.
- Say V is spectrum of v or is the frequency domain representation, and j is the “frequency.”
- Any factor of $q^m - 1$ can be a blocklength of $\mathcal{F}\{\cdot\}$.
- Most interesting is the primitive blocklength, $n = q^m - 1$.
- It is easier to decode in the frequency domain (analog to linear systems?).
5.3.2 Properties of the FFFT

Hereafter, let \(\{v_i\} \leftrightarrow \{V_j\} \) be a Fourier transform pair.

1. **Additivity**: \(\{\lambda v_i + \mu w_i\} \leftrightarrow \{\lambda V_j + \mu W_j\} \) are a Fourier transform pair.

 Proof:

 \[
 \mathcal{F}\{\lambda v_i + \mu w_i\} = \sum \alpha^i_j (\lambda v_i + \mu w_i) \\
 = \lambda \sum \alpha^i_j v_i + \mu \sum \alpha^i_j w_j \\
 = \lambda V_j + \mu W_j
 \]
2. **Modulation** \(\{v_i \alpha^{il}\} \leftrightarrow \{V_{(j+l)}\}\) are a Fourier transform pair.

Proof:

\[
\sum_i \alpha^{ij} v_i \alpha^{il} = \sum_i \alpha^{i(j+l)} v_i = V_{j+l}
\]
3. **Inverses Over** $GF(q)$,

$$v_i = \frac{1}{n} \sum_{j=0}^{n-1} \alpha^{ij} V_j, \ j = 0, 1, \ldots, n - 1.$$

Proof: In the Fourier transform, multiply, sum, and re-order.

$$\sum_{j=0}^{n-1} \alpha^{-ij} V_j = \sum_{j=0}^{n-1} \alpha^{-ij} \sum_{k=0}^{n-1} \alpha^{kj} v_k$$

$$= \sum_{k=0}^{n-1} v_k \sum_{j=0}^{n-1} \alpha^{-ij} \alpha^{kj}$$

$$= \sum_{k=0}^{n-1} v_k \sum_{j=0}^{n-1} \alpha^{(k-i)j}$$

But $q^m - 1 = p^M - 1 = nb$. Therefore, p does not divide n.
Since $\alpha^n = 1$ and
\begin{align*}
x^n - 1 &= (x - 1)(x^{n-1} + x^{n-2} + \cdots + x + 1), \quad (1)
\end{align*}
α^{rn} is a root of (1) and
\begin{equation*}
\sum_{i=1}^{n-1} \alpha^{ir} = 0
\end{equation*}
if $r \not\equiv 0 \mod n$ and
\begin{equation*}
\sum_{i=1}^{n-1} \alpha^{ir} = n = \sum \alpha^{(k-i)j}
\end{equation*}
if $r \equiv 0 \mod n$. \hfill \square
4. **Convolution** Suppose \(e_i = f_i g_i, \ i = 0, \ldots, n - 1 \). Then, \(E_j \) is the *cyclic convolution* of \(F_j \) and \(G_j \).

Proof:

\[
E_j = \sum_{i=0}^{n-1} \alpha^{ij} f_i g_i
\]

\[
= \frac{1}{n} \sum_{i=0}^{n-1} \alpha^{ij} f_i \sum_{k=0}^{n-1} \alpha^{-ki} G_k
\]

\[
= \frac{1}{n} \sum_{k=0}^{n-1} G_k \left(\sum_{i=0}^{n-1} \alpha^{ij} \alpha^{-ki} f_i \right)
\]

\[
= \frac{1}{n} \sum_{k=0}^{n-1} G_k F((j-k))
\]

where \(((\cdot)) \equiv \text{mod } n\). This is the formula for cyclic convolution.
Exercise: Show that if $E_i = F_i G_i$ then

$$e_j = \frac{1}{n} \sum_{i=1}^{n-1} f_i g(i(j-i)).$$

5. **Translation**

\[
\begin{align*}
\{v((i-l))\} & \leftrightarrow \{V_j \alpha^{lj}\} \\
\{\alpha^i v_i\} & \leftrightarrow \{V((j+1))\} \\
\{v((l-1))\} & \leftrightarrow \{V_j \alpha^j\}
\end{align*}
\]

Proof: Exercise.
6. **Notation**

\[
v(x) = v_{n-1}x^{n-1} + \cdots + v_1x + v_0
\]

\[
V(x) = V_{n-1}x^{n-1} + \cdots + V_1x + V_0
\]

where

\[
\{v\} \leftrightarrow \{V\}
\]

as before.

Theorem 9

(a) \(v(\alpha^j) = 0 \iff V_j = 0. \)

(b) \(V(\alpha^{-j}) = 0 \iff v_j = 0. \)

Proof: By direct substitution and observation.
7. Decimation

- \(\mathbf{c} = (c_0, c_1, \ldots, c_{n-1}) \).
- Choose \(b \) relatively prime to \(n \).
- Let \(P : i \mapsto b_i \pmod{n} \) define a permutation \(c' \) of \(c \).

\[
 c' \triangleq c_{(b_i)}
\]

\(P \) is a cyclic decimation, choosing every \(b^{th} \) component of \(c \) in a cyclic fashion.
Theorem 10 Let $GCD(b, n) = 1$, $bB \equiv 1 \mod n$. Then,
\(\{c'\} \leftrightarrow \{C'\} \)
where
\[
C'_j = C_{((Bj))}
\]

Proof:

\[
GCD(b, n) = 1 \iff bB + nN = 1.
\]

So, by definition,
\[
C'_j = \sum \alpha^{ij} c'_i
\]
\[
= \sum \alpha^{(bB+nN)ij} c_{((bi))}
\]
\[
= \sum \alpha^{bBij} c_{((bi))}
\]
\[
= \sum \alpha^{i'Bj} c_{i'}
\]
\[
= C'_{Bj}
\]

where the last step is by the translation property.
8. **Linear Complexity** The *Linear Recursion*:

\[
V_k = -\sum_{j=1}^{L} A_j V_{k-j}, \quad k = L + 1, \ldots
\]

is characterized by \(A = (A_1, \ldots, A_L) \) and by length \(L \).

Definition 7 \(\{A, L\} \) is an **Autoregressive Filter** that satisfies the recursion.
Definition 8 The length of the shortest linear recursion that generates a sequence $V_0, V_1, \ldots, V_{n-1}$ is called the linear complexity of $V = (V_0, V_1, \ldots V_{n-1})$.

Note: Recursion V can be considered as the Fourier transform of an n-tuple.

Theorem 11 The linear complexity of a vector V of finite length (cyclically extended?) equals the Hamming weight of its Fourier transform.
Proof:
For \(\mathbf{v} = (v_0, \ldots, v_{n-1}) \), let \(v_j \neq 0, \ j \in \{i_1, i_2, \ldots, i_d\} \). Consider
\[
A(x) = \prod_{l=1}^{d} (1 - x\alpha^{i_l}) = \sum_{k=0}^{d} A_k x^k.
\]

Let \(a(x) \) be the inverse Fourier transform of \(A(x) \). Then,
\[
a_i = \frac{1}{n} \sum_{k=0}^{n-1} \alpha^{-ik} A_k = \frac{1}{n} A(\alpha^{-i})
\]
\[
= \frac{1}{n} \prod_{l=1}^{d} (1 - \alpha^{-i_l} \alpha^i)
\]

Or \(a_i = 0 \iff i \in \{i_1, \ldots, i_d\} \). Therefore, \(a_i = 0 \iff v_i \neq 0, \ \forall i \), and
\[
a_i v_i = 0
\]
5.3.4 RS Codes by Fourier Transforms

We require:

- Symbols from $GF(q)$ and $n|q - 1$.
- Time domain and spectral components from $GF(q)$.

Definition 9 A Reed-Solomon Code of length n is one for which

$$C_j = 0, \ j \in \{j_0, j_0 + 1, j_0 + 2, \ldots, j_0 + 2t - 1\}.$$

From a previous theorem:

$$c(\omega^j) = 0 \iff C_j = 0, \ \text{where} \ \omega^n = 1.$$

Therefore, if $j_0 = 1$,

$$g(x) = (x - \omega)(x - \omega^2) \cdots (x - \omega^{2t}). \quad (2)$$
Taking the inverse transform produces a non-systematic code:

\[c(x) = \mathcal{F}^{-1}\{C\} = \frac{1}{n} \sum_{i=0}^{n-1} \omega^{-ij} V_i \]

If the order of \(\omega \) is \(q - 1 \) then \(\omega \) is primitive and \(n = q - 1 \). Therefore, for a code satisfying (2), BCH bound requires:

\[d_{\text{min}} \geq 2t + 1 = n - k + 1 \]

But by Singleton bound:

\[d_{\text{min}} \leq 2t + 1 = n - k + 1 \]

Therefore, for the RS codes:

\[d_{\text{min}} = 2t + 1 = n - k + 1 \]

and, for fixed \((n, k)\) no code can have larger \(d_{\text{min}}\).
5.3.5 Other Galois Field (Conjugacy) Constraints

In general, for \(\{v\} \leftrightarrow \{V\} \)

\[v_i \in GF(q), \quad V_j \in GF(q^m) \]

But for arbitrary \(V \in F_{q^m}^n \), in general

\[v \notin F_q^n \]

which we usually want. (Note similarity to complex \(S(f) \) for real \(s(t) \).)
Theorem 12 Let $V \in \mathbf{F}_{q^m}^n$, $n | q^m - 1$. Then

$$v \in \mathbf{F}_q^n \iff V^q_j = V((qj)), \quad j = 0, 1, \ldots, n - 1.$$

Proof of \Rightarrow:
For $j = 0, 1, \ldots, n - 1$,

$$V_j = \sum_{i=0}^{n-1} \omega^{ij} v_i$$

$$V^q_j = \left(\sum_{i=0}^{n-1} \omega^{ij} v_i \right)^q$$

$$= \sum_{i=0}^{n-1} \omega^{iqj} v^q_i$$

$$= \sum_{i=0}^{n-1} \omega^{iqj} v_j$$

$$= V((qj))$$
Proof of \iff:

Suppose

$$V_j^q = V((jq)).$$

Then,

$$\sum_{i=0}^{n-1} \omega^{iqj} v_i^q = \sum_{i=0}^{n-1} \omega^{iqj} v_i$$

Let $k = qj$. Then,

$$\sum_{i=0}^{n-1} \omega^{ik} v_i^q = \sum_{i=0}^{n-1} \omega^{ik} v_i \quad j = 0, \ldots, n - 1$$

But both sides are F.T.s, and the F.T. is unique. Therefore,

$$v_i^q = v_i \Rightarrow v_i \in F_q.$$
5.3.6 Conjugacy Classes modulo \(n \)

Let \(m_j \) = the smallest integer for which:

\[
j q^{m_j} = j \pmod{n}
\]

Recall that \(q \) is relatively prime to \(n \). So the sequence

\[
q, \ q^2, \ q^3, \ldots
\]

must repeat. Therefore, there is a smallest integer \(m_j \) such that all of

\[
\{j, \ jq, \ jq^2, \ldots, \ jq^{m_j-1}\} \tag{3}
\]

are distinct, while \(jq^{m_j} = j \). We say that (3) is the conjugacy class containing \(j \), modulo \(n \).

Note: By the previous theorem, if \(c \in \mathbf{F}_q^n \) then

\(C_j = C_{jq^l}, \ l = 0, 1, \ldots, m_j \). This can be used to design codes as we shall see.
5.3.7 Traces and Idempotents

5.3.7.1 The Trace

Definition 10 The \(q \)-ary trace of \(\beta \in GF(q^m) \) is:

\[
Tr(\beta) \triangleq \sum_{i=0}^{n-1} \beta^{q^i} = \beta + \beta^q + \beta^{q^2} + \cdots
\]

Since \((a + b)^q = a^q + b^q\),

\[
[Tr(\beta)]^q = [Tr(\beta)] \in GF(q)
\]

Note that \(Tr(\beta) \) is just the sum of the elements in the conjugacy class of \(\beta \). Exercise: Prove that all conjugates have the same trace.
5.3.7.2 Idempotents

In the spectral domain, let A_k be a conjugacy class and consider a spectrum for which:

$$W_j = \begin{cases}
0, & j \in A_k \\
1, & j \notin A_k
\end{cases}$$

Obviously,

$$W^q_j = W((jq))$$

and the time domain polynomial $w(x) \in \mathbb{F}_q[x]$.

Notice that the j^{th} term of $w^2(x)$ is

$$[\sum_{i=1}^{j} w_i w_{j-i}] x^j$$
• So \(w^2(x) \) is a convolution, and its spectrum is given by \(W_j^2 \).

• \(W_j^2 = W_j \).

Therefore,

\[
 w^2(x) = w(x)
\]

Eq (4) defines an **idempotent**.

Definition 11 *If an idempotent \(w(x) \) of a cyclic code satisfies*

\[
 c(x)w(x) = c(x) \mod(x^n - 1)
\]

\(w(x) \) *is called a principal idempotent of the code.*
5.3.7.3 Further Results on Idempotents

Construction:

- Let \(\{A_i\}, \ i \in I \) be a set of conjugacy classes.
- Let \(W_i = 0 \) if \(j \in A_i \) for all \(i \in I \), and zero elsewhere.
- Then \(w(x) = \mathcal{F}^{-1}\{W\} \) is an idempotent.

Definition 12 A **primitive idempotent** is one constructed from a single conjugacy class. In general an idempotent can be generated as the sum of a set of primitive idempotents.
Theorem 13 Every cyclic code has a unique principal idempotent.

Proof:

\[W_j = \begin{cases}
0, & g(\omega^j) = 0 \\
1, & g(\omega^j) \neq 0
\end{cases} \]

This defines a conjugacy class, so \(w(x) \) is an idempotent. Now,

\[g(\omega^j) = 0 \Rightarrow w(\omega^j) = 0. \]

Therefore \(w(x) \in \) the code. Also, from the construction above,

\[W_j G_j = G_j \]

so that \(w(x)g(x) = g(x) \). Finally,

\[c(x) \in \mathcal{C} \Rightarrow c(x) = a(x)g(x) \]

\[c(x)w(x) = a(x)w(x)g(x) = a(x)g(x) = c(x) \mod(x^n - 1). \]
5.3.3 Spectral Representations of Cyclic Codes

Time domain polynomial codeword representation:

\[c(x) = a(x)g(x) \in \mathbb{F}_q[x] \]

Then

\[c_j = \sum_{i=0}^{k-1} a_i g((j-i)) \]

which is the \(j^{th} \) term of a cyclic convolution:

\[c = a \ast g \]

Therefore, the spectrum is:

\[C_j = A_j G_j. \] (5)

If \(A_j, G_j \in GF(q) \) and \(C_j \in GF(q^m) \), then \(C \) defined by (5) is a codeword.
Given an index set, $\mathcal{J} = \{j_1, \ldots, j_r\}$, and let

$\mathcal{C} \overset{\Delta}{=} \{ \mathbf{c} \in \mathbb{F}_q^n : C_j = 0, \; \forall j \in \mathcal{J} \}$

Note: This defines a cyclic code.

- By Theorem 9, $\alpha^j = 0 \Leftrightarrow C_j = 0$.
- Therefore, the set \mathcal{J} of frequencies corresponds to the defining set $\mathcal{A} = \alpha^j, \; j \in \mathcal{J}$.
- So an alternate definition for a cyclic code is:

$$\mathcal{C} = \{ \mathcal{F}^{-1}\{C(X)\} : C_j = 0, \; \forall j \in \mathcal{J} \}$$
5.3.8 Spectral Specification of BCH Codes

5.3.8.1 Introduction

Suppose we have a vector $\mathbf{v} \in \mathbb{F}_q^n$ where $n | q^m - 1$ such that,

$$w_H(\mathbf{v}) \leq d - 1$$

$$0 = C_j = C_{j+1} = \cdots = C_{j+2t-1}$$

for some $0 \leq j \leq n - 1$. Can such a vector exist?

Only if it is the all zero vector...
Theorem 14 Let $q^m - 1 = nx$. Then the only vector in \mathbb{F}_q^m of weight $(d - 1)$ or less having $(d - 1)$ consecutive spectral zeros is 0.

Proof:

- Given $w_H(v) \leq (d - 1)$.
- Recall that the linear complexity of $V = w_H(v)$.
- Therefore, we write the recursion,

$$V_j = \sum_{l=0}^{d-1} A_l V_{(j-l)}.$$

But if $(d - 1)$ consecutive spectral components are zero, this recursion guarantees that all subsequent components will be zero. □
Note that the foregoing theorem gives an alternate definition of the BCH bound.

Definition 13 A BCH code is a code over $GF(q)$ that satisfies the BCH bound. In general,

$$C_j \in GF(q^m)$$

$$c_j \in GF(q)$$
Generating BCH Codes

Properties of BCH codes:

- General: \(C_j \in GF(q^m), \; c_j \in GF(q) \).
- Special case (RS): \(C_j, \; c_j \in GF(q) \).

So,

- Specify \(2t \) consecutive spectral zeros.
- BCH bound requires that any nonzero word must have weight \(\geq 2t + 1 \).

Therefore \(d_{\text{min}} \geq 2t + 1 \equiv d \).

- \(d \) is called the “design distance” of the code.
Spectral Domain Specification of BCH Codes

- Select $2t$ consecutive spectral zeros.
- By Theorem 12, other components are constrained and not freely chosen; i.e., given C_j,

$$C_{((jq))} = C_j^q$$

$$C_{((jq^2))} = C_j^{q^2}$$

$$\vdots$$

$$C_{((jq^{m_j-1})} = C_j^{q^{m_j-1}}$$

where
- $A_j = \{j, jq, \ldots, jq^{m_j-1}\}$, the conjugacy class containing j
- $m_j =$ smallest integer such that $jq^{m_j} = j$.
Therefore,

\[C_j^{q^{m_j}} = C((jq^{m_j})) = C_j \]

and,

\[C_j^{q^{m_j} - 1} = 1 \]

Therefore we can select for \(C_j \) only those \(\beta \in GF(q^m) \) such that

- \(\text{ord}\{\beta}\ | q^{m_j} - 1 \), or
- \(\beta = 0 \).
5.3.8.2 BCH Encoding

Encoding ⇒ select a value for each of the $q^m - 1$ positions in the word or in its Fourier Transform.

Procedure:

- Divide the $q^m - 1$ integers into conjugacy classes. (Why?)
- Set $2t$ consecutive frequencies to zero.
- The first element of each remaining conjugacy class is freely assignable. The others...?
5.3.8.3 Example

- 3-error correcting BCH code over $GF(2^6)$.
- $C_1 = C_2 = C_3 = C_4 = C_5 = C_6 = 0$.
- Each of these is in a conjugacy class of size 6, so requires 6 bits to specify.
- The remaining components that can be independently specified are $C_0, C_7, C_9, C_{11}, C_{12}, C_{15}, C_{21}, C_{23}, C_{27}, C_{31}$. All belong to $GF(2^6)$.
However:

\[|A_9| = 3 \]

Therefore,

\[C_2^3 = C_9 \ (\text{see above result}) \]

Similarly,

\[|A_{27}| = 3, \Rightarrow C_{27}^{2^3} = C_{27} \]

Therefore \(C_9, C_{27} \in GF(2^3) \). Also,

\[|A_{21}| = 2 \Rightarrow C_{21} \in GF(2^2) \]

\[|A_0| = 1 \Rightarrow C_0 \in GF(2) \]

All others \(\in GF(2^6) \) but in no subfield thereof.
Hence, to specify each:

- C_0 requires 1 bit
- C_9 requires 3 bits
- C_{21} requires 2 bits
- C_{27} requires 3 bits

Total 9 bits

and the remaining $C_7, C_{11}, C_{13}, C_{15}, C_{23}, C_{31}$ require 6 bits each to specify. Hence, we can freely choose $6 \times 6 + 9 = 45$ bits of the codeword, producing a $(63, 45, t = 3)$ BCH code.