5.0 BCH and Reed-Solomon Codes

5.1 Introduction

• A. Hocquenghem (1959), “Codes correcteur d’erreurs;”

• Bose and Ray-Chaudhuri (1960), “Error Correcting Binary Group Codes;”

• First general family of algebraic codes defined by structure.

• Peterson: proved BCH codes cyclic; first general coding text;

• Gorenstein & Zierler extended to fields of size p^m.

• Decoders developed by Peterson, Zierler, Berlekamp, Massey, Retter, Cooper, others.
5.1.1 Attributes

- cyclic code
- wide selection of n, k, d_{min}
- binary (will relax later) symbols
- efficient encoding and decoding algorithms
- algorithmic definition

5.1.2 Definition

- m, t integers;
- p prime;
- $q = p^m$;
- Let α be an element of order n in $GF(q^m)$.

Basic definition of binary BCH codes:
Definition 1 For $m \geq 3$ and $t < 2^{m-1}$ there exists a binary BCH code with

- block length $n = 2^m - 1$
- $n - k \leq mt$
- $d_{min} \geq 2t + 1$

The generator polynomial $g(x)$ of this code is the *lowest-degree* polynomial over $\text{GF}(2)$ which has $\alpha, \alpha^2, \cdots, \alpha^{2t}$ among its roots.
A more formal and complete definition is:

Definition 2 For any $t > 0$ and any t_0, a BCH code is the cyclic code with blocklength n and generator polynomial

$$g(x) = LCM\{m_{t_0}(x), m_{t_0+1}(x), \ldots, m_{t_0+2t-1}(x)\}$$

where $m_{t_0}(x)$ is the minimal polynomial of $\alpha^{t_0} \in GF(q^m)$.

Definition 3 A **primitive** BCH code is a BCH code for which α is primitive in $GF(q^m)$.

□
5.2 Generating BCH codes

5.2.1 BCH bound and the generator polynomial

Theorem: If the roots of every codeword \(c(x) \in C \) include \(\alpha, \alpha^2, \ldots, \alpha^{2t} \), then the minimum distance of \(C \) is bounded from below by \(2t + 1 \):

\[
d_{\text{min}} \geq d_{\text{BCH}} = 2t + 1
\]

Proof:

\[
c(\alpha^j) = 0, \ j = 1, 2, \ldots, 2t
\]

\[
\sum_{i=0}^{n-1} c_i (\alpha^j)^i = 0, \ j = 1, 2, \ldots, 2t
\]

Method of proof: Assume \(w_H(c) = \delta \leq 2t \). Find contradiction.
Let

$$
\mathbf{H} \triangleq \begin{bmatrix}
1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \\
1 & (\alpha^2) & (\alpha^2)^2 & \cdots & (\alpha^2)^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & (\alpha^{2t}) & (\alpha^{2t})^2 & \cdots & (\alpha^{2t})^{n-1}
\end{bmatrix}
$$

where

$$
\mathbf{c} \cdot \mathbf{H}^T = 0
$$

Assume:

$$
\omega_H(\mathbf{c}) = \delta \leq 2t
$$
Expand \mathbf{cH}^T, keeping only the terms for which $c_j \neq 0$.

\[0 = (c_{j_1}, c_{j_2}, \ldots, c_{j_\delta}) \cdot \begin{bmatrix}
\alpha^{j_1} & (\alpha^2)^{j_1} & \cdots & (\alpha^{2t})^{j_1} \\
\alpha^{j_2} & (\alpha^2)^{j_2} & \cdots & (\alpha^{2t})^{j_2} \\
\vdots & & & \\
\alpha^{j_\delta} & (\alpha^2)^{j_\delta} & \cdots & (\alpha^{2t})^{j_\delta}
\end{bmatrix} \]

\[= (c_{j_1}, c_{j_2}, \ldots, c_{j_\delta}) \cdot \begin{bmatrix}
\alpha^{j_1} & (\alpha^{j_1})^2 & \cdots & (\alpha^{j_1})^{2t} \\
\alpha^{j_2} & (\alpha^{j_2})^2 & \cdots & (\alpha^{j_2})^{2t} \\
\vdots & & & \\
\alpha^{j_\delta} & (\alpha^{j_\delta})^2 & \cdots & (\alpha^{j_\delta})^{2t}
\end{bmatrix} \]

\[= (0, 0 \cdots 0) \]

where the last line is a $2t$–tuple of zeros.
• But *each* inner product of \(\mathbf{c} \) and a column is individually zero.

• Therefore, the product of \(\mathbf{c} \) with any any set of \(\delta \) columns is a zero vector:

\[
0 = (c_{j_1}, c_{j_2}, \cdots, c_{j_\delta}) \cdot
\begin{bmatrix}
\alpha^{j_1} & (\alpha^{j_1})^2 & \cdots & (\alpha^{j_1})^{\delta} \\
\alpha^{j_2} & (\alpha^{j_2})^2 & \cdots & (\alpha^{j_2})^{\delta} \\
\vdots & & & \\
\alpha^{j_\delta} & (\alpha^{j_\delta})^2 & \cdots & (\alpha^{j_\delta})^{\delta}
\end{bmatrix}
\]

• Take determinant of the RHS; factor \(\alpha^{j_i} \) from the \(i^{th} \) row.
\[0 = \alpha^{j_1 + j_2 + \cdots + j_\delta} \]

\[
\begin{vmatrix}
1 & \alpha^{j_1} & (\alpha^{j_1})^2 & \cdots & (\alpha^{j_1})^{\delta-1} \\
1 & \alpha^{j_2} & (\alpha^{j_2})^2 & \cdots & (\alpha^{j_2})^{\delta-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{j_\delta} & (\alpha^{j_\delta})^2 & \cdots & (\alpha^{j_\delta})^{\delta-1}
\end{vmatrix}
\]

- This is a **Van der Monde** determinant and cannot be \(= 0 \).
- But we assumed that it is 0.
- \(\Rightarrow \) contradiction. Therefore \(w_H(c) \geq 2t \).
5.2.2 BCH code design procedure

Parameters:

- Typically, communication problem dictates n and d_{min}.
- k may not be directly specified.

Design methods:

1. For primitive code, if $n \leq 255$, use table in Appendix E of Wicker.

2. For primitive code, if $255 \leq n \leq 1023$, use table in Appendix C of Lin and Costello (1983 and 2004).

3. If you don’t have the tables, proceed as follows:
1. Select \(n \) and \(d_{\text{min}} \).

2. Find \(\alpha \), an \(n^{th} \) root of unity. (If \(\alpha \) primitive, then so is code.)

3. Select \(j_0 \). For convenience, I usually use 0.

4. Need 2\(t \) consecutive powers of \(\alpha \) and their conjugates as roots of \(g(x) \).

5. Determine all the roots and take LCM to get \(g(x) \).

6. Determine \(G \) from \(g(x) \) if necessary.
5.2.3 Example

Requirement: a 2-error correcting binary code with $n = 15$.
Solution: Use a BCH code. Take:

\[2t = 4 \]
\[j_0 = 0 \text{ (assumed)} \]

- Find a 15^{th} root α of unity.
 - The smallest field containing an element of order 15 is $GF(16) = GF(2^4)$.
 - Hence, α is primitive in $GF(2^4)$.
• Need at least 4 consecutive powers of α as roots of $g(x)$:

 – If α is a root of $g(x)$, then so are $\alpha^2, \alpha^4, \alpha^8$.
 – Still need α^3 as a root.
 – Then $\alpha^6, \alpha^{12}, \alpha^{24} = \alpha^9$ are conjugate roots of α^3.
 – Now, exponents are 1, 2, 3, 4, 6, 8, 9, 12.

• But only α and α^3 were specified.

• Therefore $m_1(x)$ and $m_3(x)$ divide $g(x)$.
Therefore,

\[g(x) = LCM[m_1(x), m_3(x)]. \]

• But \(m_1(x) \) is of degree 4 and has a primitive root.
• Therefore, \(m_1(x) \) is a primitive polynomial.

• One possible \(m_1(x) \) is:

\[p(x) = 1 + x + x^4. \]

• Can use \(p(\alpha) = 0 \) to define arithmetic in \(GF(2^4) \).
• Expand \(m_3(x) \):

\[
\begin{align*}
m_3(x) &= (x - \alpha^3)(x - \alpha^6)(x - \alpha^{12})(x - \alpha^9) \\
&= 1 + x + x^2 + x^3 + x^4
\end{align*}
\]
Finally, $g(x) = LCM[m_1(x), m_3(x)] = m_1(x) \cdot m_3(x)$.

$$\deg[g(x)] = n - k = 8$$

$$k = 7$$

and the code is a $(15, 7)$ code with $d_{min} \geq 5$.

$$g(x) = 1 + x^4 + x^5 + x^6 + x^7 + x^8$$
5.3 Introduction to Reed-Solomon codes

5.3.1 Code definition and examples

5.3.1.1 The Codes

Definition 4 A Reed-Solomon Code is a q^m-ary BCH code of length $n = q^m - 1$.

Properties:

• Roots of $g(x)$ include $2t$ consecutive powers of $\alpha \in GF(q^m)$.
 $\alpha^n = 1$.

• $g(x)$ contains no conjugate roots (Why?)

• Therefore, $n - k = 2t = d_{BCH} - 1$ (MDS!)
5.3.1.3 Encoding

1. Jointly select block length \(n \) and size \(q^m \) of symbol field.

2. Choose error correction capability \(t \).

3. Find a primitive element \(\alpha \) in \(GF(q^m) \).

4. Form the generator polynomial:

\[
g(x) = (x - \alpha) \cdot (x - \alpha^2) \cdots (x - \alpha^{2t})
\]
Example:

- \(n = 15 \)
- Symbol field of size 16
- Double error correction

\[
g(x) = (x - \alpha) \cdot (x - \alpha^2)(x - \alpha^3)(x - \alpha^4)
\]

\[
= x^4 + \alpha^{13} x^3 + \alpha^6 x^2 + \alpha^3 x + \alpha^{10}
\]
5.3.2 MDS Codes

5.3.2.1 Definition of MDS Codes

Definition 5 Any LBC which meets the Singleton Bound is called Maximum Distance Separable (MDS).

Theorem: RS codes are MDS.

Proof:

\[d_{\text{min}} \leq n - k + 1 \text{ (Singleton Bound)} \]
\[d_{\text{min}} \geq 2t + 1 = n - k + 1 \text{ by construction} \]
5.3.2.2 Duals

Theorem: The dual of an MDS code is MDS.

Proof:

- Assume there is $c' \in C^\perp$ such that $w_H(c') < k$.
- This is equivalent to saying C^\perp is non-MDS. (*Why?*)
- Let $c_{w_i} = 0$, $i = 1, 2, \ldots, n - k$ in C^\perp.
- Since H is the generating matrix for C^\perp,
 - write the sub-matrix of H that generates the 0 positions of c'.

\[
(0, 0, \cdots, 0)_{n-k} = \sum_{i=1}^{k} a_{w_i} \cdot h_{w_i}
\]
or as matrices

\[0 = \mathbf{a}_w \cdot \mathbf{H}_w, \quad \mathbf{a}_w \neq 0 \]

- Therefore, \(\mathbf{H}_w \) is \((n - k) \times (n - k)\) singular sub-matrix of \(\mathbf{H} \).

- **But**, every linear combination of \(d - 1 = n - k \) columns of \(\mathbf{H} \) is linearly independent (property of \(\mathcal{C} \)).

But this *contradicts* the assumption that \(w_H(\mathbf{c}') < k \). \(\Box \)
5.3.2.3 Information sets

Definition 6 In a linear block code, information set is a set of k codeword coordinates which are linearly independent.

(Thus, any information set carries k information symbols).

Theorem *Any set* of k codeword coordinates of an MDS code is an information set.

Proof:

- G is a parity check matrix for C^\perp.
- C^\perp has $d_{\min} = k + 1 \Rightarrow$ any k columns of G are linearly independent.
- Row rank = column rank. Therefore, any $k \times k$ submatrix can be reduced to I_k by elementary row operations.
5.3.3 Modified MDS and RS codes

5.3.3.1 Punctured

Theorem: A punctured \((n, k)\) MDS code is an \((n - 1, k)\) MDS code.

Proof:

- MDS: Any position can be a parity position, therefore punctured.

- Puncturing reduces \(d_{\text{min}}\) by no more than 1, and
 - \(d_{\text{min}} \geq (n - 1) - k + 1 = n - k.\)
 - But, by Singleton bound \(d_{\text{min}} \leq (n - 1) - k + 1\)

- Hence, \(d_{\text{min}} = n - k = (n - 1) - k + 1: \) MDS. \(\square\)
5.3.3.2 Shortened

Theorem: A shortened MDS code is MDS.

Proof:

- Remove all codewords having 0 in a specified position: $k \rightarrow k - 1$.
- Delete that position from all codewords: $n \rightarrow n - 1$.
- In a *subset* of codewords, d_{min} may increase:
 $$d_{\text{min}} \geq (n - 1) - (k - 1) + 1 = n - k + 1.$$
- But by Singleton bound, $d_{\text{min}} \leq (n - 1) - (k - 1) + 1$.
- Therefore $d_{\text{min}} = (n - 1) - (k - 1) + 1$ and code is MDS. \[\square\]
5.3.3.3 Extended

Theorem: A narrow sense \((q - 1, k)\) RS code can be extended, by adding a parity check, to form a noncyclic \((q, k, d)\) MDS code.

Proof: [Due to S. Roman]

- Let \(C\) be a narrow sense \((j_0 = 1)\) \((q - 1, k, d)\) RS code.

- Let \(c(x) \in C, \ s.t. \ w_H[c(x)] = d.\)
• Extend $c(x)$. (Additional parity check on all positions.)

$$\hat{c}(x) = c(x) + c_n x^n$$

$$c_n = -\sum_{i=0}^{n-1} c_i = -c(1)$$

1. If $c(1) \neq 0$, then $w_H[\hat{c}(x)] = d + 1$.
2. Now, if \(c(1) = 0 \), then

- Write \(c(x) = p(x)g(x) \)
- Then \(c(1) = p(1)g(1) = 0 \)
- Since \(g(1) \neq 0 \), \(p(1) = 0 \).
- Therefore \(\hat{g}(x) = (x - 1)g(x) \) and \(\hat{g}(x)|c(x) \).
- This means that \(c(x) \in < \hat{g}(x) > \).
- Also \(\hat{g}(x) \) has \(\hat{d} = 2t + 1 \) zeros.
- Therefore, \(w_H[c(x)] = d + 1: \text{contradiction!} \)
- Since we assumed \(w_H[c(x)] = d \), \(p(1) \neq 0 \) and \(c(1) \neq 0 \).
- Therefore \(w_H(\hat{c}(x)) = d + 1 \)
5.3.3.4 Doubly-extended

Theorem: Any narrow-sense, singly-extended \((n + 1, k)\) RS code can be (further) extended to form a noncyclic \((n + 2, k)\) \(q\)-ary MDS code by adding the symbol \(c_{n+1}\) to each code word, such that:

\[
c_{n+1} = - \sum_{j=0}^{n-1} c + j \alpha^j \delta
\]

where \(\delta =\) the BCH bound of the original BCH code.

\[\square\]