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Abstract

Store-and-forward had been the predominant technique for transmit-
ting information through a network until its optimality was refuted
by network coding theory. Network coding offers a new paradigm for
network communications and has generated abundant research interest
in information and coding theory, networking, switching, wireless com-
munications, cryptography, computer science, operations research, and
matrix theory.

In this issue we review network coding theory for the scenario when
there are multiple source nodes each intending to transmit to a different
set of destination nodes.

A companion issue reviews the foundational work that has led to
the development of network coding theory and discusses the theory
for the transmission from a single source node to other nodes in the
network.
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1
Superposition Coding and Max-Flow Bound

In Part I of this tutorial, we have discussed the single-source network
coding problem in an algebraic setting. Each communication channel
in the network is assumed to have unit capacity. The maximum rate
at which information can be multicast has a simple characterization in
terms of the maximum flows in the network. In Part II, we consider
the more general multi-source network coding problem in which more
than one mutually independent information sources are generated at
possibly different nodes, where each information source is transmitted
to a certain set of nodes in the network. We continue to assume that
the communication channels in the network are free of error.

The achievable information rate region for a multi-source network
coding problem, which will be formally defined in Section 2, refers
to the set of all possible rate tuples at which multiple information
sources can be multicast simultaneously on a network. In a single-
source network coding problem, a primary goal is to characterize the
maximum rate at which information can be multicast from the source
node to all the sink nodes. In a multi-source network coding prob-
lem, we are interested in characterizing the achievable information rate
region.

330



1.1. Superposition coding 331

Fig. 1.1 A network for which superposition coding is suboptimal.

Multi-source network coding turns out not to be a simple extension
of single-source network coding. In the rest of this section, we discuss
two characteristics of multi-source networking coding which differenti-
ate it from single-source network coding. In all the examples, the unit
of information is the bit.

In Part I, nodes are labelled by capital letters. In Part II, since
captical letters are reserved for random variables, nodes will instead be
labelled by small letters.

1.1 Superposition coding

Let us first revisit the network in Figure 1.2(b) of Part I which is
reproduced here as Figure 1.1 in a slightly different manner. Here, we
assume that each channel has unit capacity. For i = 1,2, the source
node i generates a bit bi which is sent to the node ti. We have shown in
Example 1.3 of Part I that in order for the nodes t1 and t2 to exchange
the two bits b1 and b2, network coding must be performed at the node u.
This example in fact has a very intriguing implication. Imagine that
on the Internet a message in English and a message in Chinese are
generated at two different locations. These two messages are to be
transmitted from one point to another point within the network, and we
can assume that there is no correlation between the two messages. Then
this example shows that we may have to perform joint coding of the
two messages in the network in order to achieve bandwidth optimality!
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Fig. 1.2 A network for which superposition coding is optimal.

We refer to the method of coding individual information sources
separately as superposition coding. The above example simply shows
that superposition coding can be suboptimal.

We now give an example for which superposition coding does achieve
optimality. Consider the network in Figure 1.2. To simply the discus-
sion, we set the capacities of the channels 1u and 2u to infinity so that
the information generated at both source nodes are directly available
to the node u. For all the other channels, we set the capacity to 1. We
want to multicast the information generated at the source node 1 to
the nodes v,w and t, and to transmit the information generated at the
source node 2 to the node t.

Let X1 and X2 be independent random variables representing the
information generated respectively at the source nodes 1 and 2 for one
unit time. The rate of the information generated at the source node
s is given by ωs = H(Xs) for s = 1,2. Let Uij be the random variable
sent on the channel ij, where H(Uij) ≤ 1 due to the bit rate constraint
for the channel. Then for any coding scheme achieving the prescribed
communication goals, we have

2ω1 + ω2 = 2H(X1) + H(X2)

= 2H(X1) + H(X2|X1)
a)
≤ 2H(X1) + H(Uvt,Uwt|X1)



1.1. Superposition coding 333

Fig. 1.3 The information rate region for the network in Figure 1.2.

b)
≤ 2H(X1) + H(Uuv,Uuw|X1)

≤ 2H(X1) + H(Uuv|X1) + H(Uuw|X1)

= H(Uuv,X1) + H(Uuw,X1)
c)
= H(Uuv) + H(Uuw)

≤ 2,

where a) follows because X2 is a function of Uvt and Uwt, b) follows
because Uvt is a function of Uuv and Uwt is a function of Uuw, and
c) follows because X1 is a function of Uuv and a function of Uuw.

This region is illustrated in Figure 1.3. To see that the whole region
is achievable by superposition coding, let r

(s)
ij be the bit rate on the

channel ij for transmitting the information generated at the source
node s. Due to the bit rate constraint for each channel ij, the following
must be satisfied:

r
(1)
ij + r

(2)
ij ≤ 1.

Then the rate pair (ω1,ω2) = (1,0) is achieved by taking

r(1)
uv = r(1)

uw = r
(1)
vt = 1

and

r
(1)
wt = r(2)

uv = r(2)
uw = r

(2)
vt = r

(2)
wt = 0,
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while the rate pair (0,2) is achieved by taking

r(1)
uv = r(1)

uw = r
(1)
vt = r

(1)
wt = 0

and

r(2)
uv = r(2)

uw = r
(2)
vt = r

(2)
wt = 1.

Then the whole information rate region depicted in Figure 1.3 is seen
to be achievable via a time-sharing argument.

From the above two examples, we see that superposition coding is
sometimes but not always optimal. Optimality of superposition coding
for certain classes of multilevel diversity coding problems (special cases
of multi-source network coding) has been reported in [17], [14], [21].
For a class of multilevel diversity coding problems (special cases of
multi-source network coding) studied in [8], superposition coding is
optimal for 86 out of 100 configurations. In any case, superposition
coding always induces an inner bound on the information rate region.

1.2 The max-flow bound

In this section, we revisit the two examples in the last section from a
different angle. First, for the network in Figure 1.1, we already have
seen that superposition coding is suboptimal. Now consideration of the
max-flows from t1 to t2 and from t2 to t1 gives

ω1,ω2 ≤ 1.

This outer bound on the information rate region, referred to as the
max-flow bound, is depicted in Figure 1.4. Here the rate pair (1,1) is
achieved by using network coding at the node u as we have discussed,
which implies the achievability of the whole region. Therefore, the max-
flow bound is tight.

We now consider the network in Figure 1.2. Consideration of the
max-flow at either node v or w gives

ω1 ≤ 1, (1.1)

while consideration of the max-flow at node t gives

ω1 + ω2 ≤ 2. (1.2)
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Fig. 1.4 The max-flow bound for the network in Figure 1.1.

Fig. 1.5 The max-flow bound for the network in Figure 1.2.

Figure 1.5 is an illustration of the region of all (ω1,ω2) satisfy-
ing these bounds, which constitute the max-flow bound. Comparing
with the achievable information rate region shown in Figure 1.3, we see
that the max-flow bound is not tight. From these two examples, we see
that like superposition coding, the max-flow bound is sometimes but
not always tight. Nevertheless, it always gives an outer bound on the
information rate region. It has been shown in [6][10] that the max-flow
bound is tight for networks with two sink nodes.



2
Network Codes for Acyclic Networks

2.1 Achievable information rate region

In Part I, the capacity of direct transmission from a node to its
neighbor is determined by the multiplicity of the channels between
them. This is to facilitate the discussion of linear codes. In this
section, codes not necessarily linear are considered and we assume
that the capacity of a channel can take any positive real number. We,
however, continue to allow multiple channels between a pair of nodes
to facilitate subsequent comparison with linear codes.

Convention. The following convention applies to every acyclic com-
munication network in this section.

• The set of all nodes and the set of all channels are denoted
by V and E, respectively.

• The nodes are ordered in a way such that if there exists a
channel from a node i to a node j, then the node i precedes
the node j. This is possible by the acyclicity of the network.

• The capacity of a channel e is denoted by Re.

336



2.1. Achievable information rate region 337

• An independent information source Xs is generated at a
source node s.

• A source node has no input channels.
• The set of all the source nodes in the network is denoted by

S, which is a subset of V .
• The set of all sink nodes is denoted by T , where a sink node

receives at least one information source1. The set of informa-
tion sources received by a sink node i is denoted by β(i).

In the above setup, the decoding requirements are described by the
functions β(i), i ∈ T . Equivalently, we may think of each information
source Xs being multicast to the set of nodes

{i ∈ T : s ∈ β(i)}.

We now consider a block code with length n. The information source
Xs is a random variable which takes values in the set

Xs = {1,2, · · · ,�2nτs�}
according to the uniform distribution. The rate of the information
source Xs is τs. According to our assumption, the random variables
Xs,s ∈ S are mutually independent.

Definition 2.1. An

(n,(ηe : e ∈ E),(τs : s ∈ S))

code on a given communication network is defined by

1) for all source node s ∈ S and all channel e ∈ Out(s), a local
encoding mapping

k̃e : Xs → {1, · · · ,ηe}; (2.1)

2) for all node i ∈ V \S and all channel e ∈ Out(i), a local encod-
ing mapping

k̃e :
∏

d∈In(i)

{1, · · · ,ηd} → {1, · · · ,ηe}; (2.2)

1 Since a source node has no input channels, it cannot be a sink node.
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3) for all sink node i ∈ T , a decoding mapping

gi :
∏

d∈In(i)

{1 · · · ,ηd} →
∏

s∈β(i)

Xs.

In a coding session, if a node i precedes a node j, then the encod-
ing mappings k̃e,e ∈ Out(i) are applied before the encoding mappings
k̃e,e ∈ Out(j). If e,e′ ∈ Out(i), then k̃e and k̃e′ can be applied in any
order. Since a node i precedes a node j if there exists a channel from
the node i to the node j, a node does not encode until all the necessary
information is received on the input channels.

Introduce the notation XS′ for (Xs : s ∈ S′), where S′ ⊂ S. For all
i ∈ T , define

∆i = Pr
{
ĝi(XS) �= Xβ(i)

}
,

where ĝi(XS) denotes the value of gi as a function of XS . ∆i is the prob-
ability that the set of information sources Xβ(i) is decoded incorrectly
at the node i.

In the subsequent discussion, all the logarithms are in the base 2.

Definition 2.2. An information rate tuple

ω = (ωs : s ∈ S),

where ω ≥ 0 (componentwise), is asymptotically achievable if for any
ε > 0, there exists for sufficiently large n an

(n,(ηe : e ∈ E),(τs : s ∈ S))

code such that

n−1 logηe ≤ Re + ε

for all e ∈ E, where n−1 logηe is the average bit rate of the code on the
channel e,

τs ≥ ωs − ε

for all s ∈ S, and

∆i ≤ ε
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for all i ∈ T . For brevity, an asymptotically achievable information rate
tuple will be referred to as an achievable information rate tuple.

Definition 2.3. The achievable information rate region, denoted by
R, is the set of all achievable information rate tuples ω.

Remark 2.4. It follows from the definition of the achievability of an
information rate tuple that if ω is achievable, then ω′ is achievable for
all 0 ≤ ω′ ≤ ω. Also, for any sequence of achievable rate tuples ω(k),
k ≥ 1, it can be proved that

ω = lim
k→∞

ω(k),

if exists, is also achievable, i.e., R is closed. It can then be shown by
invoking a time-sharing argument that R is closed and convex.

In this section, we discuss characterizations of the information rate
region of a general multi-source network coding problem. Unlike single-
source network coding which already has explicit algebraic code con-
structions, the current understanding of multi-source network coding is
quite far from being complete. Specifically, only inner and outer bounds
on the achievable information rate region R are known for acyclic net-
works, and only existence proof of codes by random coding technique
is available. The tools we shall use are mainly probabilistic instead of
algebraic.

We note that the definition of a network code in this section does
not reduce directly to the definitions of a network code in Part I when
there is only one information source. It is because in Part I, a network
code is defined in a way such that various notions specific to linear
codes for a single information source (namely linear broadcast, linear
dispersion, and generic network code) can be incorporated. Essentially,
the definition of a network code here is the local description of a network
code for multicast.



340 Network Codes for Acyclic Networks

2.2 Inner bound Rin

In this section, we discuss an inner bound on the achievable informa-
tion rate region R for acyclic networks. We start with some standard
definitions and properties of strong typicality, a fundamental tool in
information theory. For proofs and further details, We refer the reader
to [1], [2], [19]. Here, we adopt the convention in [19].

2.2.1 Typical sequences

Consider an information source {Xk,k ≥ 1} where Xk are i.i.d. with
distribution p(x). We use X to denote the generic random variable, SX

to denote the support of X, and H(X) to denote the common entropy
for all Xk, where H(X) < ∞. Let X = (X1,X2, · · · ,Xn).

Definition 2.5. The strongly typical set Tn
[X]δ with respect to p(x)

is the set of sequences x = (x1,x2, · · · ,xn) ∈ X n such that N(x;x) = 0
for x �∈ SX , and

∑
x

∣∣∣∣ 1nN(x;x) − p(x)
∣∣∣∣ ≤ δ, (2.3)

where N(x;x) is the number of occurrences of x in the sequence x, and
δ is an arbitrarily small positive real number. The sequences in Tn

[X]δ
are called strongly δ-typical sequences.

Theorem 2.6. (Strong asymptotic equipartition property) In
the following, η is a small positive quantity such that η → 0 as δ → 0.

1) If x ∈ Tn
[X]δ, then

2−n(H(X)+η) ≤ p(x) ≤ 2−n(H(X)−η). (2.4)

2) For n sufficiently large,

Pr{X ∈ Tn
[X]δ} > 1 − δ.
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3) For n sufficiently large,

(1 − δ)2n(H(X)−η) ≤ |Tn
[X]δ| ≤ 2n(H(X)+η). (2.5)

Next, we discuss strong joint typicality with respect to a bivariate
distribution. Generalization to a multivariate distribution is straight-
forward.

Consider a bivariate information source {(Xk,Yk),k ≥ 1} where
(Xk,Yk) are i.i.d. with distribution p(x,y). We use (X,Y ) to denote
the pair of generic random variables, and assume that H(X,Y ) < ∞.

Definition 2.7. The strongly jointly typical set Tn
[XY ]δ with respect

to p(x,y) is the set of (x,y) ∈ X n × Yn such that N(x,y;x,y) = 0 for
(x,y) �∈ SXY , and

∑
x

∑
y

∣∣∣∣ 1nN(x,y;x,y) − p(x,y)
∣∣∣∣ ≤ δ, (2.6)

where N(x,y;x,y) is the number of occurrences of (x,y) in the pair
of sequences (x,y), and δ is an arbitrarily small positive real number.
A pair of sequences (x,y) is called strongly jointly δ-typical if it is in
Tn

[XY ]δ.

Strong typicality satisfies the following consistency and preservation
properties.

Theorem 2.8. (Consistency) If (x,y) ∈ Tn
[XY ]δ, then x ∈ Tn

[X]δ and
y ∈ Tn

[Y ]δ.

Theorem 2.9. (Preservation) Let Y = f(X). If

x = (x1,x2, · · · ,xn) ∈ Tn
[X]δ,

then

f(x) = (y1,y2, · · · ,yn) ∈ Tn
[Y ]δ, (2.7)

where yi = f(xi) for 1 ≤ i ≤ n. ([19], Lemma 15.10.)
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For a bivariate i.i.d. source {(Xk,Yk)}, we have the strong joint
asymptotic equipartition property (strong JAEP), which can readily be
obtained by applying the strong AEP to the source {(Xk,Yk)}.

Theorem 2.10. (Strong JAEP) Let

(X,Y) = ((X1,Y1),(X2,Y2), · · · ,(Xn,Yn)),

where (Xi,Yi) are i.i.d. with generic pair of random variables (X,Y ). In
the following, λ is a small positive quantity such that λ → 0 as δ → 0.

1) If (x,y) ∈ Tn
[XY ]δ, then

2−n(H(X,Y )+λ) ≤ p(x,y) ≤ 2−n(H(X,Y )−λ).
2) For n sufficiently large,

Pr{(X,Y) ∈ Tn
[XY ]δ} > 1 − δ.

3) For n sufficiently large,

(1 − δ)2n(H(X,Y )−λ) ≤ |Tn
[XY ]δ| ≤ 2n(H(X,Y )+λ).

2.2.2 First example

Consider a point-to-point communication system, the simplest possible
example of a communication network:

V = {1,a}, E = {1a}, S = {1}, T = {a}, β(a) = {1}.

This network is illustrated in Figure 2.1, and we call this network G1.
By the source coding theorem [15], the information rate ω1 is achievable
if and only if ω1 ≤ R1a. The following theorem can be regarded as an
alternative form of the direct part of the source coding theorem.

Fig. 2.1 The network G1 for the first example.
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Theorem 2.11. For the network G1, an information rate ω1 is achiev-
able if there exists auxiliary random variables Y1 and U1a such that

H(Y1) > ω1 (2.8)

H(U1a|Y1) = 0 (2.9)

H(U1a) < R1a (2.10)

H(Y1|U1a) = 0. (2.11)

We first note that (2.9) and (2.11) together imply that the random
variables Y1 and U1a determines each other, so we write

U1a = u1a(Y1)

and

Y1 = y1(U1a),

which imply

Y1 = y1(u1a(Y1)). (2.12)

Moreover,

H(Y1) = H(U1a).

Then for any ω1 satisfying (2.8) to (2.11) for some auxiliary random
variables Y1 and U1a, we have

R1a > H(U1a) = H(Y1) > ω1,

which is essentially the direct part of the source coding theorem except
that the inequality is strict here. By invoking the remark following
Definition 2.3, we see that the rate

R1a = ω1

is indeed achievable.
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We should think of Y1 and U1a as random variables representing
the information source X1 and the codeword sent on the channel 1a,
respectively. Accordingly, we have (2.8) as the entropy constraint on Y1,
and (2.10) corresponds to the capacity constraint for the channel 1a.

Proof of Theorem 2.11. Let δ to be a small positive real number
to be specified later. For given random variables Y1 and U1a satisfying
(2.8) to (2.11), we construct a random code by the following procedure:

1. Generate 2nω1 sequences of length n independently according
to pn(y1).

2. If the message is i, map it to the ith sequence generated in
Step 1. Denote this sequence by y1.

3. If y1 ∈ Tn
[Y1]δ, obtain the sequence

u1a = u1a(y1)

(recall the notation f(x) in Theorem 2.9). By Theorem 2.9,
u1a ∈ Tn

[U1a]δ. Otherwise, let u1a be a constant sequence in
Tn

[U1a]δ.
4. Output the index of u1a in Tn

[U1a]δ as the codeword and send
on the channel 1a.

5. At the node b, upon receiving the index of u1a ∈ Tn
[U1a]δ,

recover u1a and obtain

ỹ1 = y1(u1a).

If ỹ1 = y1 and y1 is unique among all the sequences generated
in Step 1 of the random coding procedure, then the message
i can be decoded correctly.

A decoding error is said to occur if the message i is decoded incorrectly.
Note that the total number of codewords is upper bounded by

|Tn
[U1a]δ| < 2n(H(U1a)+η)

(cf. (2.5)), so that the rate of the code is at most

H(U1a) + η < R1a + η.
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We now analyze the probability of decoding error of this random
code. Consider

Pr{decoding error}
= Pr{decoding error|y1 �∈ Tn

[Y1]δ}Pr{y1 �∈ Tn
[Y1]δ}

+Pr{decoding error|y1 ∈ Tn
[Y1]δ}Pr{y1 ∈ Tn

[Y1]δ}
≤ 1 · Pr{y1 �∈ Tn

[Y1]δ} + Pr{decoding error|y1 ∈ Tn
[Y1]δ} · 1

= Pr{y1 �∈ Tn
[Y1]δ} + Pr{decoding error|y1 ∈ Tn

[Y1]δ}.

By the strong AEP,

Pr{y1 �∈ Tn
[Y1]δ} → 0

as n → ∞. So it remains to show that

Pr{decoding error|y1 ∈ Tn
[Y1]δ} → 0

as n → ∞ with an appropriate choice of δ. Toward this end, we observe
that if y1 ∈ Tn

[Y1]δ, then

u1a = u1a(y1)

(instead of being a constant sequence in Tn
[U1a]δ), so that

ỹ1 = y1(u1a) = y1(u1a(y1)).

Then from (2.12), we see that

ỹ1 = y1.

In other words, if y1 ∈ Tn
[Y1]δ, a decoding error occurs if and only if the

sequence y1 is drawn more than once in Step 1. Thus,

Pr{decoding error|y1 ∈ Tn
[Y1]δ}

= Pr{y1 drawn more than once|y1 ∈ Tn
[Y1]δ}

= Pr
{

∪j �=i{obtain y1 in the jth drawing|y1 ∈ Tn
[Y1]δ}

}
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≤
∑
j �=i

Pr{obtain y1 in the jth drawing|y1 ∈ Tn
[Y1]δ}

< 2nω1 · Pr{obtain y1 in any drawing|y1 ∈ Tn
[Y1]δ}

< 2nω1 · 2−n(H(U1a)−η)

= 2−n(H(U1a)−ω1−η)

= 2−n(H(Y1)−ω1−η),

where we have invoked the strong AEP in the last inequality. Since
H(Y1) > ω1 and η → 0 as δ → 0, by taking δ to be sufficiently small,
we have H(Y1) − ω1 − η > 0, and hence

Pr{decoding error|y1 ∈ Tn
[Y1]δ} → 0

as n → ∞.
It appears that Theorem 2.11 only complicates the direct part of

the source coding theorem, but as we shall see, it actually prepares us
to obtain a characterization of the achievable information rate region
for more general networks.

2.2.3 Second example

In the next section, we shall state without proof an inner bound on the
achievable information rate region R for a general acyclic network. We
already have proved a special case of this inner bound in Theorem 2.11
for a point-to-point communication system. In this section, we prove
this inner bound for another network considerably more complicated
than the one in the last section. Although this network is still far from
being general, the proof of the inner bound for this network contains
all the essential ingredients. Besides, the ideas are more transparent
without the overwhelming notation in the general proof.

The second network we consider here is the network in Figure 2.2
with the following specification:

V = {1,2,a,b,c,d}, E = {1a,2b,ab,ac,bc,bd,cd}
S = {1,2}, T = {c,d}, β(c) = {1}, β(d) = {1,2}.

Call this network G2.
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Fig. 2.2 The network G2 for the second example.

For the network G2, we first make the observation that the source
nodes 1 and 2 each has only one output channel. By the source coding
theorem, if either R1a < ω1 or R2b < ω2, the sink node d cannot possi-
bly receive both X1 and X2. Therefore, in order to make the problem
meaningful, we make the assumptions that R1a ≥ ω1 and R2b ≥ ω2, so
that we can regard X1 and X2 as being directly available to the nodes
a and b, respectively.

Theorem 2.12. For the network G2, an information rate pair (ω1,ω2)
is achievable if there exist auxiliary random variables Ys,s ∈ S and
Ue,e ∈ E such that

H(Y1,Y2) = H(Y1) + H(Y2) (2.13)

H(Ys) > ωs, s ∈ S (2.14)

H(Uab,Uac|Y1) = 0 (2.15)

H(Ubc,Ubd|Y2,Uab) = 0 (2.16)

H(Ucd|Uac,Ubc) = 0 (2.17)

H(Ue) < Re, e ∈ E (2.18)

H(Y1|Uac,Ubc) = 0 (2.19)

H(Y1,Y2|Ubd,Ucd) = 0. (2.20)
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The interpretations of (2.13) to (2.20) are as follows. Similar to our
discussion on the network in the last section, Ys and Ue are random
variables representing the information source Xs and the codeword
sent on the channel e, respectively. The equality in (2.13) says that
the information sources 1 and 2 are independent. The inequality (2.14)
is the entropy constraint on the auxiliary random variable Ys. The
equality (2.15) says that the codewords sent on the channels ab and
ac depend only on the information source X1. The equality (2.16) says
that the codewords sent on the channels bc and bd depend only on the
information source X2 and the codeword sent on the channel ab. The
equality (2.17) says that the codeword sent on the channel cd depends
only on the codeword sent on the channels ac and bc. The inequality
(2.18) is the capacity constraint for the channel e. The equality (2.19)
says that the information source 1 can be recovered (at the sink node
c) from the codewords sent on the channels ac and bc, and finally the
equality (2.20) says that both the information sources X1 and X2 can be
recovered (at the sink node d) from the codewords sent on the channels
bd and cd.

From (2.15), we see that Uab and Uac are both functions of Y1. Thus
we write

Uab = uab(Y1) (2.21)

and

Uac = uac(Y1). (2.22)

In the same way, from (2.16), (2.17), (2.19), and (2.20), we write

Ubc = ubc(Y2,Uab) (2.23)

Ubd = ubd(Y2,Uab) (2.24)

Ucd = ucd(Uac,Ubc) (2.25)

Y1 = y
(c)
1 (Uac,Ubc) (2.26)

Y1 = y
(d)
1 (Ubd,Ucd) (2.27)

Y2 = y
(d)
2 (Ubd,Ucd). (2.28)

In (2.26) to (2.28), the superscript denotes the sink node with which
the function is associated.
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Proof of Theorem 2.12. Let δ to be a small positive real number to
be specified later. For given random variables Ys,s ∈ S and Ue,e ∈ E

satisfying (2.13) to (2.20), we construct a random code by the following
procedure:

1. For the information source j (= 1,2),

a) Generate 2nωj sequences of length n independently
according to pn(yj).

b) If the message is ij , map it to the ij-th sequence gen-
erated in Step 1a). Call this sequence yj .

2. If y1 ∈ Tn
[Y1], obtain the sequences

uab = uab(y1) ∈ Tn
[Uab]δ

and

uac = uac(y1) ∈ Tn
[Uac]δ

(cf. (2.21) for the definition of uab(·), etc, and Theorem 2.9
for the notation f(x)). Here, uab(y1) ∈ Tn

[Uab]δ
and uac(y1) ∈

Tn
[Uac]δ as follow from Theorem 2.8. Otherwise, let uab and

uac be constant sequences in Tn
[Uab]δ

and Tn
[Uac]δ, respectively.

3. Output the indices of uab in Tn
[Uab]δ

and uac in Tn
[Uac]δ as

codewords and send on the channels ab and ac, respectively.
4. If (y2,uab) ∈ Tn

[Y2Uab]δ
, obtain the sequences

ubc = ubc(y2,uab) ∈ Tn
[Ubc]

and

ubd = ubd(y2,uab) ∈ Tn
[Ubd].

Otherwise, let ubc and ubd be constant sequences in Tn
[Ubc]δ

and Tn
[Ubd]δ, respectively.

5. Output the indices of ubc in Tn
[Ubc]δ

and ubd in Tn
[Ubd]δ as code-

words and send on the channels bc and bd, respectively.
6. If (uac,ubc) ∈ Tn

[UabUbc]δ
, obtain the sequence

ucd = ucd(uab,ubc) ∈ Tn
[Ucd].

Otherwise, let ucd be a constant sequence in Tn
[Ucd]δ.
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7. Output the index of ucd in Tn
[Ucd]δ as the codeword and send

on the channel cd.
8. At the node c, upon receiving the indices of uac ∈ Tn

[Uac]δ and
ubc ∈ Tn

[Ubc]δ
, uac and ubc can be recovered. Then obtain

ỹ(c)
1 = y

(c)
1 (uac,ubc). (2.29)

If ỹ(c)
1 = y1 and y1 is unique among all the sequences gener-

ated in Step 1a) for j = 1, then the message i1 can be decoded
correctly.

9. At the node d, upon receiving the indices of ubd ∈ Tn
[Ubd]δ

and ucd ∈ Tn
[Ucd]δ, ubd and ucd can be recovered. For j = 1,2,

obtain

ỹ(d)
j = y

(d)
j (ubd,ucd).

If ỹ(d)
j = yj and yj is unique among all the sequences gen-

erated in Step 1a), then the message ij can be decoded
correctly.

If either i1 is decoded incorrectly at the node c or (i1, i2) is decoded
incorrectly at the node d, we say that a decoding error occurs. Note
that for each channel e ∈ E, the total number of codewords is upper
bounded by

|Tn
[Ue]δ| < 2nH(Ue)+η

(cf. (2.5)), so that the rate on the channel e is at most

H(Ue) + η < Re + η.

We now analyze the probability of decoding error of this random
code. Analogous to the proof of Theorem 2.11 in the last section, we
have

Pr{decoding error}
≤ Pr{(y1,y2) �∈ Tn

[Y1Y2]δ} + Pr{decoding error|(y1,y2) ∈ Tn
[Y1]δ}.
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Since the pair of sequence (y1,y2) is generated according to

pn(y1)pn(y2) = pn(y1,y2),

by the strong JAEP,

Pr{(y1,y2) �∈ Tn
[Y1Y2]δ} → 0

as n → ∞, so it suffices to show that

Pr{decoding error|(y1,y2) ∈ Tn
[Y1Y2]δ} → 0

as n → ∞ with an appropriate choice of δ. Toward this end, we analyze
the random coding procedure when (y1,y2) ∈ Tn

[Y1Y2]δ:

• By Theorem 2.8, we have yj ∈ Tn
[Yj ]δ

, j = 1,2.
• In Step 2, since y1 ∈ Tn

[Y1]δ, we have

uab = uab(y1) (2.30)

(instead of a constant sequence in Tn
[Uab]δ

) and

uac = uac(y1). (2.31)

• In Step 4, by (2.30), we have

(y2,uab) = (y2,uab(y1)).

Since (y1,y2) ∈ Tn
[Y1Y2]δ,

(y2,uab(y1)) ∈ Tn
[Y2Uab]δ

by Theorem 2.9. Therefore,

ubc = ubc(y2,uab) (2.32)

and

ubd = ubd(y2,uab). (2.33)
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• In Step 6, by applying (2.31), (2.32) and (2.30), we have

(uac,ubc) = (uac(y1),ubc(y2,uab))

= (uac(y1),ubc(y2,uab(y1))). (2.34)

Again, since (y1,y2) ∈ Tn
[Y1Y2]δ,

(uac,ubc) ∈ Tn
[UacUbc]δ

by Theorem 2.9. Therefore,

ucd = ucd(uac,ubc).

• By (2.26), (2.22), (2.23), and (2.21), we can write

Y1 = y
(c)
1 (Uac,Ubc)

= y
(c)
1 (uac(Y1),ubc(Y2,Uab))

= y
(c)
1 (uac(Y1),ubc(Y2,uab(Y1))). (2.35)

On the other hand, from (2.29) and (2.34), we have

ỹ(c)
1 = y

(c)
1 (uac,ubc)

= y
(c)
1 (uac(y1),ubc(y2,uab(y1))). (2.36)

A comparison of (2.35) and (2.36) reveals that

ỹ(c)
1 = y1. (2.37)

Similarly, it can be shown that

ỹ(d)
1 = y1. (2.38)

and

ỹ(d)
2 = y2. (2.39)

In conclusion, whenever (y1,y2) ∈ Tn
[Y1Y2]δ, (2.37) to (2.39) hold. By the

strong AEP,

Pr{(y1,y2) ∈ Tn
[Y1Y2]δ} → 1

as n → ∞. Therefore, if (y1,y2) ∈ Tn
[Y1Y2]δ, a decoding error occurs if

and only if either y1 or y2 is drawn more than once in Step 1a).
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By means of an argument similar to the one in the proof of Theo-
rem 2.11, it can be shown that

Pr{decoding error|(y1,y2) ∈ Tn
[Y1Y2]δ} → 0

as n → ∞ with an appropriate choice of δ. The details are omitted here.

2.2.4 General acyclic networks

In this section, we present an inner bound Rin on the information rate
region for a general acyclic network. The reader should have no problem
understanding the meaning of Rin after studying the special cases in
the previous two sections. In the sequel, we will use the abbreviations
YS , UIn(i) respectively for {Ys : s ∈ S}, {Ue : e ∈ In(i)}, etc.

Definition 2.13. Let R′ be the set of all information rate tuples ω

such that there exist auxiliary random variables Ys,s ∈ S and Ue,e ∈ E

which satisfy the following conditions:

H(YS) =
∑
s∈S

H(Ys) (2.40)

H(Ys) > ωs, s ∈ S (2.41)

H(UOut(s)|Ys) = 0, s ∈ S (2.42)

H(UOut(i)|UIn(i)) = 0, i ∈ V \S (2.43)

H(Ue) < Re, e ∈ E (2.44)

H(Yβ(i)|UIn(i)) = 0, i ∈ T. (2.45)

Theorem 2.14. R′ ⊂ R.

The proof of Theorem 2.14 involves a set of techniques originally
developed in [20] and [16]. The proof of Theorem 2.12 in the last section,
though a special case of Theorem 2.16 here, contains all the essential
ingredients necessary for proving Theorem 2.14.

Definition 2.15. Let Rin = con(R′), the convex closure of R′.
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Theorem 2.16. Rin ⊂ R.

Theorem 2.16 can readily be obtained from Theorem 2.14 as a corol-
lary by invoking the remark following Definition 2.3. Specifically, by
taking the convex closure on both sides in

R′ ⊂ R,

we have

con(R′) ⊂ con(R) = R.

For a complete proof of Theorem 2.16, we refer the reader to [16]
and [19], Ch. 152. The inner bound proved in [16] is for zero-error
variable-length network codes.

2.2.5 Rin recasted

In this section, Rin will be recasted in the framework of information
inequalities developed in [18]. As we shall see, this alternative charac-
terization of Rin, developed in [20] and [16], enables the region to be
described on the same footing for different multi-source network coding
problems.

Let N be a collection of discrete random variables whose joint dis-
tribution is unspecified, and let

QN = 2N \{∅},

the set of all nonempty subsets of random variables in N . Then

|QN | = 2|N | − 1.

Let HN be the |QN |-dimensional Euclidean space with the coordinates
labeled by hA,A ∈ QN . We will refer to HN as the entropy space for
the set of random variables N . A vector

h = (hA : A ∈ QN ) ∈ HN (2.46)

2 The proof given in Section 2.2.3 is a simplified version of the proofs in [19] and [16].
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is said to be an entropy function if there exists a joint distribution for
(Z : Z ∈ N ) such that

hA = H(Z : Z ∈ A)

for all A ∈ QN . We then define the region

Γ∗
N = {h ∈ HN : h is an entropy function}.

To simplify notation in the sequel, for any nonempty A,A′ ∈ QN ,
we define

hA|A′ = hAA′ − hA′ , (2.47)

where we use juxtaposition to denote the union of two sets. In using
the above notation, we do not distinguish elements and singletons of
N , i.e., for a random variable Z ∈ N , hZ is the same as h{Z}. Note that
(2.47) corresponds to the information-theoretic identity

H(A|A′) = H(AA′) − H(A′).

To describe Rin in terms of the above framework, we let

N = {Ys : s ∈ S;Ue : e ∈ E}.

Observe that the constraints (2.40) to (2.45) in the definition of R′

correspond to the following constraints in HN , respectively:

hYS
=
∑
s∈S

hYs (2.48)

hYs > ωs, s ∈ S (2.49)

hUOut(s)|Ys
= 0, s ∈ S (2.50)

hUOut(i)|UIn(i)
= 0, i ∈ V \S (2.51)

hUe < Re, e ∈ E (2.52)

hYβ(i)|UIn(i)
= 0, i ∈ T. (2.53)

Then we have the following alternative definition of R′.

Definition 2.17. Let R′ be the set of all information rate tuples ω

such that there exists h ∈ Γ∗
N which satisfies (2.48) to (2.53).
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Although the original definition of R′ as given in Definition 2.13 is
more intuitive, the region so defined appears to be totally different from
one problem to another problem. On the other hand, the alternative
definition of R′ above enables the region to be described on the same
footing for all cases. Moreover, if Γ̃N is an explicit inner bound on Γ∗

N ,
upon replacing Γ∗

N by Γ̃N in the above definition of R′, we immediately
obtain an explicit inner bound on Rin for all cases. We shall see further
advantage of this alternative definition when we discuss an explicit
outer bound on R in the next section.

2.3 Outer bound Rout

In this section, we prove an outer bound Rout on R. This outer bound
is in terms of Γ∗

N , the closure of Γ∗
N .

Definition 2.18. Let Rout be the set of all information rate tuples ω

such that there exists h ∈ Γ∗
N which satisfies the following constraints:

hYS
=
∑
s∈S

hYs (2.54)

hYs ≥ ωs, s ∈ S (2.55)

hUOut(s)|Ys
= 0, s ∈ S (2.56)

hUOut(i)|UIn(i)
= 0, i ∈ V \S (2.57)

hUe ≤ Re, e ∈ E (2.58)

hYβ(i)|UIn(i)
= 0, i ∈ T. (2.59)

The definition of Rout is the same as the alternative definition of
R′ (Definition 2.17) except that

1. Γ∗
N is replaced by Γ∗

N .
2. The inequalities in (2.49) and (2.52) are strict, while the

inequalities in (2.55) and (2.58) are nonstrict.

From the definitions of R′ and Rout, it is clear that

R′ ⊂ Rout. (2.60)
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It is also easy to verify that the convexity of Γ∗
N ([19], Theorem 14.5)

implies the convexity of Rout. Then upon taking convex closure in
(2.60), we see that

Rin = con(R′) ⊂ con(Rout) = Rout,

where the last equality follows because Rout is close and convex. How-
ever, it is not apparent that the two regions Rin and Rout coincide
in general. This will be further discussed in the next section. We first
prove that Rout is indeed an outer bound on R.

Theorem 2.19. R ⊂ Rout.

Proof. Let ω be an achievable information rate tuple and n be a suffi-
ciently large integer. Then for any ε > 0, there exists an

(n,(ηe : e ∈ E),(τs : s ∈ S))

code on the network such that

n−1 logηe ≤ Re + ε (2.61)

for all e ∈ E,

τs ≥ ωs − ε (2.62)

for all s ∈ S, and

∆i ≤ ε (2.63)

for all i ∈ T .
We consider such a code for a fixed ε and a sufficiently large n. Since

the information sources Xs,s ∈ S are mutually independent, we have

H(XS) =
∑
s∈S

H(Xs). (2.64)

For all s ∈ S, from (2.62),

H(Xs) = log |Xs| = log�2nτs� ≥ nτs ≥ n(ωs − ε). (2.65)
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For e ∈ E, let Ue be the codeword sent on the channel e. For all s ∈ S

and e ∈ Out(s), since Ue is a function of the information source Xs,

H(UOut(s)|Xs) = 0. (2.66)

Similarly, for all i ∈ V \S,

H(UOut(i)|UIn(i)) = 0. (2.67)

From (2.1), (2.2), and (2.61), for all e ∈ E,

H(Ue) ≤ log |Ue| = log(ηe + 1) ≤ n(Re + 2ε). (2.68)

For i ∈ T , by Fano’s inequality (cf. [19], Corollary 2.48), we have

H(Xβ(i)|UIn(i)) ≤ 1 + ∆i log


 ∏

s∈β(i)

|Xs|



= 1 + ∆iH(Xβ(i)) (2.69)

≤ 1 + εH(Xβ(i)), (2.70)

where (2.69) follows because Xs distributes uniformly on Xs and Xs,
s ∈ S are mutually independent, and (2.70) follows from (2.63). Then

H(Xβ(i)) = I(Xβ(i);UIn(i)) + H(Xβ(i)|UIn(i))
a)
≤ I(Xβ(i);UIn(i)) + 1 + εH(Xβ(i))

≤ H(UIn(i)) + 1 + εH(Xβ(i))

b)
≤

 ∑

e∈In(i)

logηe


 + 1 + εH(Xβ(i))

c)
≤

 ∑

e∈In(i)

n(Re + ε)


 + 1 + εH(Xβ(i)), (2.71)

where

a) follows from (2.70);
b) follows from H(Z) ≤ log |Z|, cf. [19], Theorem 2.43;
c) follows from (2.61).
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Rearranging the terms in (2.71), we obtain

H(Xβ(i)) ≤ n

1 − ε


 ∑

e∈In(i)

(Re + ε) +
1
n




< 2n
∑

e∈In(i)

(Re + ε) (2.72)

for sufficiently small ε and sufficiently large n. Substituting (2.72) into
(2.70), we have

H(Xβ(i)|UIn(i)) < n


 1

n
+ 2ε

∑
e∈In(i)

(Re + ε)




= nφi(n,ε), (2.73)

where

φi(n,ε) =


 1

n
+ 2ε

∑
e∈In(i)

(Re + ε)


→ 0

as n → ∞ and then ε → 0. Thus for this code, from (2.64), (2.65),
(2.67), (2.68), and (2.73), we have

H(XS) =
∑
s∈S

H(Xs) (2.74)

H(Xs) ≥ n(ωs − ε), s ∈ S (2.75)

H(UOut(s)|Xs) = 0, s ∈ S (2.76)

H(UOut(i)|UIn(i)) = 0, i ∈ V \S (2.77)

H(Ue) ≤ n(Re + 2ε), e ∈ E (2.78)

H(Xβ(i)|UIn(i)) ≤ nφi(n,ε), i ∈ T. (2.79)

We note the one-to-one correspondence between (2.74) to (2.79) and
(2.54) to (2.59). By letting Ys = Xs for all s ∈ S, we see that there
exists h ∈ Γ∗

N such that

hYS
=
∑
s∈S

hYs (2.80)

hYs ≥ n(ωs − ε), s ∈ S (2.81)
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hUOut(s)|Ys
= 0, s ∈ S (2.82)

hUOut(i)|UIn(i)
= 0, i ∈ V \S (2.83)

hUe ≤ n(Re + 2ε), e ∈ E (2.84)

hYβ(i)|UIn(i)
≤ nφi(n,ε), i ∈ T. (2.85)

By Theorem 14.5 in [19], Γ∗
N is a convex cone. Therefore, if h ∈ Γ∗

N ,
then n−1h ∈ Γ∗

N . Dividing (2.80) through (2.85) by n and replacing
n−1h by h, we see that there exists h ∈ Γ∗

N such that

hYS
=
∑
s∈S

hYs

hYs ≥ ωs − ε, s ∈ S

hUOut(s)|Ys
= 0, s ∈ S

hUOut(i)|UIn(i)
= 0, i ∈ V \S

hUe ≤ Re + 2ε, e ∈ E

hYβ(i)|UIn(i)
≤ φi(n,ε), i ∈ T.

We then let n → ∞ and then ε → 0 to conclude that there exists h ∈ Γ∗
N

which satisfies (2.54) to (2.59). Hence, R ⊂ Rout, and the theorem is
proved.

2.4 RLP – An explicit outer bound

In Section 2.2.5, we stated the inner bound Rin on R in terms of Γ∗
N ,

and in Section 2.3, we proved the outer bound Rout on R in terms
of Γ∗

N . So far, there exists no full characterization of either Γ∗
N or

Γ∗
N . Therefore, these bounds cannot be evaluated explicitly. In this

section, we give a geometrical interpretation of these bounds which
leads to an explicit outer bound on R called the LP bound (LP for
linear programming).

Let A be a subset of QN . For a vector h ∈ HN , let

hA = (hZ : Z ∈ A).

For a subset B of HN , let

projA(B) = {hA : h ∈ B}
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be the projection of the set B on the coordinates hZ ,Z ∈ A. For a subset
B of HN , define

Λ(B) = {h ∈ HN : 0 ≤ h < h′ for some h′ ∈ B}

and

Λ̄(B) = {h ∈ HN : 0 ≤ h ≤ h′ for some h′ ∈ B}.

A vector h ≥ 0 is in Λ(B) if and only if it is strictly inferior to some
vector h′ in B, and is in Λ̄(B) if and only if it is inferior to some vector
h′ in B.

Define the following subsets of HN :

C1 =

{
h ∈ HN : hYS

=
∑
s∈S

hYs

}

C2 =
{
h ∈ HN : hUOut(s)|Ys

= 0 for all s ∈ S
}

C3 =
{
h ∈ HN : hUOut(i)|UIn(i)

= 0 for all i ∈ V \S
}

C4 = {h ∈ HN : hUe < Re for all e ∈ E}
C5 =

{
h ∈ HN : hYβ(i)|UIn(i)

= 0 for all i ∈ T
}

.

These sets contain points in HN that satisfy the constraints in (2.48)
and (2.50) to (2.53), respectively. The set C1 is a hyperplane in HN .
Each of the sets C2, C3, and C5 is the intersection of a collection of
hyperplanes in HN . The set C4 is the intersection of a collection of
open half-spaces in HN . Then from the alternative definition of R′

(Definition 2.17), we see that

R′ = Λ(projYS
(Γ∗

N ∩ C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5)).

and

Rin = con(Λ(projYS
(Γ∗

N ∩ C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5))).

Similarly, we see that

Rout = Λ̄(projYS
(Γ∗

N ∩ C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5)). (2.86)
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It can be shown that if Γ∗
N ∩ (C1 ∩ C2 ∩ C3 ∩ C5) is dense in Γ∗

N ∩
(C1 ∩ C2 ∩ C3 ∩ C5), i.e.,

Γ∗
N ∩ (C1 ∩ C2 ∩ C3 ∩ C5) = Γ∗

N ∩ (C1 ∩ C2 ∩ C3 ∩ C5),

then

Rout = R′ ⊂ con(R′) = Rin,

which implies

Rin = Rout.

Note that (C1 ∩ C2 ∩ C3 ∩ C5) is a closed subset of HN . However, while

Γ∗
N ∩ C ⊂ Γ∗

N ∩ C
for any closed subset C of HN , it is not in general true that

Γ∗
N ∩ C = Γ∗

N ∩ C.

As a counterexample, it has been shown in [22] (also see [19], Theo-
rem 14.2) that Γ∗

3 ∩ C̃ is a proper subset of Γ∗
3 ∩ C̃, where Γ∗

n denotes
Γ∗

N for

N = {X1,X2, · · · ,Xn}
and

C̃ =
{
h ∈ Γ∗

3 : hXj + hXk
= h{Xj ,Xk},1 ≤ j < k ≤ 3

}
.

To facilitate our discussion, we further define

iA;A′ = hA − hA|A′ (2.87)

and

iA;A′|A′′ = hA|A′′ − hA|A′A′′ (2.88)

for A,A′,A′′ ∈ QN . Note that (2.87) and (2.88) correspond to the
information-theoretic identities

I(A;A′) = H(A) − H(A|A′)
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and

I(A;A′|A′′) = H(A|A′′) − H(A|A′A′′),

respectively. Let ΓN be the set of h ∈ HN such that h satisfies all the
basic inequalities involving some or all of the random variables in N ,
i.e., for all A,A′,A′′ ∈ QN ,

hA ≥ 0

hA|A′ ≥ 0

iA;A′ ≥ 0

iA;A′|A′′ ≥ 0.

These inequalities are equivalent to the nonnegativity of all Shan-
non’s information measures (entropy, conditional entropy, mutual infor-
mation, and conditional mutual information). The significance of the
region ΓN is that it fully characterizes all the Shannon-type informa-
tion inequalities involving the random variables in N , namely those
inequalities implied by the above set of basic inequalities. Since the
basic inequalities are satisfied by all joint distributions (i.e., h ∈ Γ∗

N
implies h ∈ ΓN ) and that ΓN is closed, we have Γ∗

N ⊂ ΓN . Then upon
replacing Γ∗

N by ΓN in the definition of Rout, we immediately obtain
an outer bound on Rout. This is called the LP bound, denoted by RLP .
In other words, RLP is obtained by replacing Γ∗

N by ΓN on the right
hand side of (2.86), i.e.,

RLP = Λ̄(projYS
(ΓN ∩ C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5)).

Since all the constraints defining RLP are linear, RLP can in prin-
ciple be evaluated explicitly, although the computation involved can be
nontrivial.

However, it has been shown in [23] by means of the discovery of what
is known as a non-Shannon-type information inequality that Γ∗

n �= Γn

for n ≥ 4, so there is a potential gap between Rout and RLP . In short,
a non-Shannon-type information inequality is an outer bound on Γ∗

N
which is not implied by the basic inequalities. Specifically, it is proved
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in [23] that for any 4 random variables X1,X2,X3, and X4,

2I(X3;X4) ≤ I(X1;X2) + I(X1;X3,X4)

+ 3I(X3;X4|X1) + I(X3;X4|X2). (2.89)

We refer the reader to [19], Ch. 14, for a detailed discussion.
Now return to the question of whether there is indeed a gap between

Rout and RLP . This important question has recently been answered in
[3], where it is shown by means of the non-Shannon-type inequality
(2.89) that RLP is not tight for a particular multi-source network cod-
ing problem constructed from matroid theory. This result implies that
Rout is generally tighter than RLP .

Nonetheless, it has been proved in [19], Ch. 15, and [20] that RLP is
tight for all special cases of multi-source network coding for which the
achievable information rate region is known. These include single-source
network coding discussed in Part I as well as the models described in
[17][8][14][21][20]. Since RLP encompasses all Shannon-type informa-
tion inequalities and the converse proofs of the achievable information
rate region for all these special cases do not involve non-Shannon-type
inequalities, the tightness of RLP for all these cases is not surprising.



3
Fundamental Limits of Linear Codes

In Part I, we have shown that for single-source network coding, linear
codes are sufficient for achieving asymptotic optimality. It is not clear
whether this continues to hold for multi-source network coding. In this
section, we present a framework for discussion and explore a potential
gap between the asymptotic performance of linear codes and nonlinear
codes.

3.1 Linear network codes for multiple sources

We first generalize the global description of a linear network code in
Definition 2.5 of Part I for multiple sources. As in Part I, to facilitate
our discussion of linear codes, we assume that each channel has unit
capacity. Let F be a finite field,

ω = (ωs : s ∈ S)

be a tuple of positive integers, and

Ω =
∑
s∈S

ωs.

365
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Consider the space FΩ. The information source generated at a source
node s is regarded as an ωs-dimensional subspace of FΩ, denoted by Ws,
and it is assumed that the subspaces for different information sources
are linearly independent, i.e.,

Ws ∩ Ws′ = 0 for s �= s′, (3.1)

where 0 denotes the zero vector.
As in Part I, the information source generated at a source node s is

modelled by ωs imaginary channels terminating at the node s. We adopt
the convention that these channels are labeled by s(1),s(2), · · · ,s(ωs).

Definition 3.1. (Global Description of a Linear Network
Code) Let F be a finite field, and ω = (ωs : s ∈ S) be a tuple of pos-
itive integers. For s ∈ S, let Ws be an ωs-dimensional subspace of FΩ

such that Ws ∩ Ws′ = 0 for s �= s′. An ω-dimensional F -valued linear
network code on an acyclic network with respect to {Ws} consists of
a scalar kd,e for every adjacent pair (d,e) in the network as well as an
Ω-dimensional column vector fe for every channel e such that:

(7.2) fe =
∑

d∈In(i) kd,efd, where e ∈ Out(i).
(7.3) For s ∈ S, the vectors fs(1),fs(2), · · · ,fs(ωs) for the ωs imaginary

channels terminating at the node source node s constitute a
basis for the subspace Ws.

The scalar kd,e is called the local encoding kernel for the adjacent pair
(d,e), while the vector fe is called the global encoding kernel for the
channel e.

We note that in the above definition, for given ωs,s ∈ S, the spe-
cific choice of the set of subspaces {Ws} is not important. While it is
convenient to choose Ws for s ∈ S and fe for all imaginary channels e

such that the latter form the natural basis for FΩ, in order to keep
the definition general and to facilitate subsequent discussion, we do
not impose this requirement. In fact, a linear network code as defined
in Definition 3.1 that does not satisfy this requirement can readily be
converted into one by means of a linear transformation.
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Introduce the notations

fs =
[
fs(1) fs(2) · · · fs(ωs)

]
(3.4)

for s ∈ S and

fE′ = [fe]e∈E′ (3.5)

for E′ ⊂ E. In (3.5), the matrix elements fe are put in juxtaposition.
This convention will be adopted throughout this section.

Definition 3.2. An information rate tuple

ω = (ωs : s ∈ S)

is linearly achievable if for some base field F , there exists an ω′-
dimensional linear code on the network, where ω′ ≥ ω (component-
wise), satisfying: For all i ∈ T , for all s ∈ β(i), there exists an |In(i)| ×
ω′

s matrix Gi(s) such that

fs = fIn(i) · Gi(s). (3.6)

The matrix Gi(s) is called the decoding kernel at the node i for the
information source generated at the source node s.

3.2 Entropy and the rank function

In this section, we establish a fundamental relation (Theorem 3.4)
between entropy and the rank function of matrices. This relation is
instrumental for the discussion in the next section, where we explore
the asymptotic limitation of linear network codes for multiple sources.

Theorem 3.3. Let F be a finite field, Y be an Ω-dimensional
random row vector that distributes uniformly on FΩ, and A be
an F -valued Ω × l matrix. Let Z = g(Y ), where g(Y ) = Y · A. Then
H(Z) = rank(A) log |F |.

Proof. Let y ∈ FΩ and z ∈ F l be row vectors. Consider the system of
simultaneous equations

y · A = z
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with y being unknown and z fixed, and let Sz denote the solution set
for a particular z. It is readily seen that S0, where 0 denotes the zero
vector, is a linear subspace of FΩ.

For a particular z, Sz may or may not be empty. For distinct z1,z2 ∈
range(g), i.e., both Sz1 and Sz2 are nonempty, it is readily seen that

Sz1 ∩ Sz2 = ∅. (3.7)

Now regard the vectors in FΩ together with vector addition as a
group, and hence S0 is a subgroup of FΩ. For a fixed z such that Sz is
nonempty, consider any ỹ ∈ Sz. Then it is easy to verify that

Sz = {ỹ + y : y ∈ S0}.

Thus Sz is a coset of S0 with respect to ỹ, and by the Lagrange theo-
rem (see for example [7]), |Sz| = |S0|. It follows that |Sz| is equal to a
constant for all z ∈ range(g).

Finally, for all z ∈ range(g),

Pr{Z = z} = Pr{Y ∈ Sz}
=

|Sz|
|F |Ω

=
|S0|
|F |Ω ,

which does not depend on z. Thus Z has a uniform distribution on
range(g). Since range(g) is a subspace of F l with dimension rank(A),
it follows that

H(Z) = log |F |rank(A) = rank(A) log |F |.
The theorem is proved.

Before we proceed further, we first define a region in the entropy
space HN which is closely related to the region Γ∗

N , where we recall
from Section 2.2.5 that

N = {Ys : s ∈ S;Ue : e ∈ E}.

Let Ω be any integer such that Ω ≥ 1. For each e ∈ E, associate with
the random variable Ue an unspecified Ω-dimensional column vector
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denoted by vUe , and for each s ∈ S, associate with the random variable
Ys an unspecified Ω × ωs matrix denoted by vYs (here vYs is regarded
as a collection of ωs Ω-dimensional column vectors). The use of these
unspecified vectors/matrices will become clear shortly. For A ∈ QN , let

vA = [vZ ]Z∈A.

A vector

h = (hA : A ∈ QN )

as defined in (2.46) is a rank function for a finite base field F if there
exists a collection of column vectors {vZ : Z ∈ N} in F such that

hA = rank(vA) (3.8)

for all A ∈ QN . We then define the region

Ψ∗
N = {h ∈ HN : h is a rank function for some base field F

and some Ω ≥ 1}.

The possible gap between the asymptotic performance between lin-
ear and nonlinear codes, as we shall see, hinges on a gap between the
region Ψ∗

N and Γ∗
N characterized by an inequality on the rank function

known as the Ingleton inequality [9]. We first establish the following
fundamental theorem.

Theorem 3.4. con(Ψ∗
N ) ⊂ Γ∗

N , where con(Ψ∗
N ) denotes the convex

hull of Ψ∗
N .

Proof. Consider h ∈ Ψ∗
N . Then for some finite base field F and some

Ω ≥ 1, there exists a collection of vectors {vZ : Z ∈ N} such that (3.8)
is satisfied. Let

Y =
[
Y1 Y2 · · · YΩ

]
be an Ω-dimensional row vector, where Yi, 1 ≤ i ≤ Ω are i.i.d. random
variables each distributing uniformly on F , so that Y distributes uni-
formly on FΩ. Define the random variable

Z = Y · vZ
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for every Z ∈ N , so that for every A ∈ QN ,

[Z]Z∈A = Y · vA.

Then by Theorem 3.3,

H(Z : Z ∈ A) = rank(vA) log |F |. (3.9)

From (3.8) and (3.9), we have

hA = rank(vA) = (log |F |)−1H(Z : Z ∈ A),

or

(log |F |)hA = H(Z : Z ∈ A).

This implies that (log |F |)h is an entropy function, or

(log |F |)h ∈ Γ∗
N .

Since Γ∗
N is a convex cone,

h ∈ Γ∗
N .

Therefore, we conclude that

Ψ∗
N ⊂ Γ∗

N .

The proof is then completed by taking the convex hull in the above.

3.3 Can nonlinear codes be better asymptotically?

Recall the notation

fE′ = [fe]e∈E′

for E′ ⊂ E and introduce a similar notation

fS′ = [fs]s∈S′

for S′ ⊂ S. For a linear code as defined in Definition 3.1, we observe
that the assumption (3.1) is equivalent to

rank(fS) =
∑
s∈S

rank(fs),
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while the requirement (7.2) is equivalent to

rank(fIn(i)∪Out(i)) = rank(fIn(i)).

Furthermore, in Definition 3.2, the decoding requirement prescribed in
(3.6) is equivalent to

rank(fβ(i)∪In(i)) = rank(fIn(i)).

Letting

vYs = fs

for s ∈ S and

vUe = fe

for e ∈ E, and following Definitions 3.1 and 3.2 and the foregoing, we
see that an information rate tuple ω is linearly achievable if and only
if for some finite base field F , there exists a collection of Ω-dimensional
column vectors {vZ : Z ∈ N}, where Ω =

∑
s∈S ωs, which satisfies the

following conditions:

rank(vYS
) =

∑
s∈S

rank(vYs) (3.10)

rank(vYs) ≥ ωs, s ∈ S (3.11)

rank(vUOut(s)∪Ys) = rank(vYs), s ∈ S (3.12)

rank(vUIn(i)∪Out(i)) = rank(vUIn(i)), i ∈ V \S (3.13)

rank(vUe) ≤ 1, e ∈ E (3.14)

rank(vYβ(i)∪UIn(i)) = rank(vUIn(i)), i ∈ T. (3.15)

In other words, there exists h ∈ Ψ∗
N which satisfy the following

conditions:

hYS
=
∑
s∈S

hYs (3.16)

hYs ≥ ωs, s ∈ S (3.17)

hUOut(s)|Ys
= 0, s ∈ S (3.18)

hUOut(i)|UIn(i)
= 0, i ∈ V \S (3.19)

hUe ≤ 1, e ∈ E (3.20)

hYβ(i)|UIn(i)
= 0, i ∈ T, (3.21)
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where (3.18), (3.19), and (3.21) follow because these equalities are
equivalent to

hUOut(s)∪Ys = hYs

hUOut(i)∪In(i) = hUIn(i)

and

hYβ(i)∪UIn(i) = hUIn(i) ,

which correspond to (3.12), (3.13), and (3.15), respectively. If we allow
time-sharing of linear codes, then we simply replace the region Ψ∗

N
by the region con(Ψ∗

N ). The discussion above is summarized by the
following definition and theorem.

Definition 3.5. Let Rlinear be the set of all information rate tuple ω

such that there exists h ∈ con(Ψ∗
N ) satisfying (3.16) to (3.21).

Theorem 3.6. An information rate tuple is achievable by time-
sharing of linear codes, possibly defined on base fields with different
characteristics, if and only if ω ∈ Rlinear .

By setting Re = 1 in (2.58), (3.16) to (3.21) become exactly the
same as (2.54) to (2.59). Invoking Theorem 3.4, we see that

Rlinear ⊂ Rout,

which is expected.
The regions Rin and Rout are in terms of Γ∗

N and Γ∗
N , respectively,

while the region Rlinear is in terms of con(Ψ∗
N ). Let A and B be any

collections of vectors. It is well known that the rank function satisfies
the following properties:

P1. 0 ≤ rank(A) ≤ |A|.
P2. rank(A) ≤ rank(B) if A ⊂ B.
P3. rank(A) + rank(B) ≥ rank(A ∪ B) + rank(A ∩ B).
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In addition, a rank function also satisfies the Ingleton inequality [9]:
For any collections of vectors Ai, i = 1,2,3,4,

rank(A13) + rank(A14) + rank(A23) + rank(A24) + rank(A34)

≥ rank(A3) + rank(A4) + rank(A12) + rank(A134) + rank(A234),

where A13 denotes A1 ∪ A3, etc.
It has been shown in [23] that there exists entropy functions involv-

ing 4 random variables which do not satisfy the corresponding Ingle-
ton inequality for entropy functions. The gap between con(Ψ∗

N ) and
Γ∗

N so implied indicates that for certain multi-source network cod-
ing problems, ROut may be strictly larger than RLinear, opening
up the possibility that nonlinear codes can outperform linear codes
asymptotically.

In fact, examples have been reported by various authors that non-
linear codes can outperform linear codes [12][13][4][11][5]. In particular,
it is shown in [5] that there exist multi-source network coding problems
for which nonlinear codes can outperform very general forms of linear
codes, including mixtures of linear codes discussed here. This shows
that there is indeed a gap between RLinear and ROut.



Appendix A

Global Linearity versus Nodal Linearity

In this appendix, we define global linearity and local linearity of a
network code based on the first principle. We shall show that global
linearity implies local linearity. This justifies the generality of the local
and global descriptions of a linear network code on an acyclic network
in Definitions 2.4 and 2.5 of Part I.

Definition A.1. (Global Linearity) A network code on an acyclic
network is globally linear if the global encoding mappings f̃e,e ∈ E are
all linear, i.e.,

f̃e(a1x1 + a2x2) = a1f̃e(x1) + a2f̃e(x2), (A.1)

where x1 and x2 are row vectors in Fω and a1,a2 ∈ F .

Definition A.2. (Local Linearity) A network code on an acyclic
network is locally linear if the local encoding mappings k̃e,e ∈ E are all
linear.
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It can easily be seen by induction that local linearity implies global
linearity, but the converse is not immediate. We shall prove that this
is indeed the case.

We shall need a few preliminary results. We begin with the following
lemma whose proof is elementary, but we nevertheless include it so that
the reader can compare it with the proof of the next lemma.

Lemma A.3. Let g : Fm → F , where Fm denotes the linear space
of F -valued m-dimensional row vectors. Then g is linear if and only if
there exists an F -valued m-dimensional column vector a such that

g(y) = y · a

for all y ∈ Fm.

Proof. It is clear that if g(y) = y · a for all y ∈ Fm, then g is linear. We
only need to prove the converse. Let uk denote the row vector in Fm

such that the kth component is equal to 1 while all other components
are equal to 0. Write

y =
∑

k

ykuk,

where yk is the kth component of y. Then

g(y) = g

(∑
k

ykuk

)

=
∑

k

ykg(uk).

Upon letting a be the column vector [g(uk)], we have

g(y) = y · a,

proving the lemma.

This lemma has the following less trivial generalization.

Lemma A.4. Let g : S → F , where S denotes a subspace of row vec-
tors in Fm. Then g is linear if and only if there exists an F -valued
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m-dimensional column vector k such that

g(y) = y · k

for all y ∈ S.

Proof. Again, it is clear that if g(y) = y · k for all y ∈ S, then g is linear.
So we only prove the converse.

Denote the dimension of S by κ. Let {u1, · · · ,uκ} be a basis for S

and let U be the κ × m matrix with the rows being u1, · · · ,uκ in this
order. Then y ∈ S if and only if

y = w · U

for some row vector w ∈ F κ. Since U is full rank by construction, it’s
right inverse, denoted by U−1

r (m × κ), exists, and we can write

w = y · U−1
r .

Define a function g̃ : F κ → F such that

g̃(w) = g(w · U).

Since g is linear, it can readily be verified that so is g̃. Then by
Lemma A.3,

g̃(w) = w · a

for some column vector a ∈ F κ. Hence,

g(y) = g(w · U)

= g̃(w)

= w · a

= (y · U−1
r ) · a

= y · (U−1
r · a).

Upon letting k = U−1
r · a, we have

g(y) = y · k,

proving the lemma.

This lemma has the following immediate matrix generalization.
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Corollary A.5. Let g : S → F l, where S denotes a subspace of row
vectors in Fm. Then g is a linear transformation if and only if there
exists an F -valued matrix K with dimension m × l such that

g(y) = y · K

for all y ∈ S.

Now consider a globally linear network code and any non-source
node i. Let K̃i be the local encoding mapping at i, i.e.,

(f̃d(x),d ∈ In(i)) �→ (f̃e(x),e ∈ Out(i)).

Introduce the notations

f̃In(i)(x) = [f̃d(x)]d∈In(i)

and

fIn(i) = [fd]d∈In(i),

where f̃In(i)(x) and fIn(i) are row vectors, and recall that fd denotes the
global encoding kernel of the channel d. In a similar fashion, f̃Out(i)(x)
and fOut(i) are defined. It is easy to see that {f̃In(i)(x) : x ∈ Fω} forms
a subspace (of row vectors) in F |In(i)|. In other words, K̃i is a mapping
from a subspace of F |In(i)| to F |Out(i)|.

We now show that encoding mapping K̃i is linear. Let

yj = f̃In(i)(xj)

for j = 1,2. Then for any c1, c2 ∈ F ,

K̃i(c1y1 + c2y2) = K̃i(c1f̃In(T )(x1) + c2f̃In(T )(x2))

= K̃i(f̃In(T )(c1x1 + c2x2))

= f̃Out(T )(c1x1 + c2x2)

= c1f̃Out(T )(x1) + c2f̃Out(T )(x2)

= c1K̃i(f̃In(T )(x1)) + c2K̃i(f̃In(T )(x2))

= c1K̃i(y1) + c2K̃i(y2).
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Thus K̃i is linear. Hence, global linearity implies local linearity.
Now since K̃i is linear, by Corollary A.5, there exists an |In(i)| ×

|Out(i)| matrix Ki (encoding kernel for the node i) such that

gi(y) = y · Ki

for all {f̃In(i)(x) : x ∈ Fω}. Then for any row vector x ∈ Fω, we have

x · fOut(i) = f̃Out(i)(x)

= K̃i(f̃In(i)(x))

= f̃In(i)(x) · Ki

= (x · fIn(i)) · Ki

= x · (fIn(i) · Ki).

Since the above holds for every x ∈ Fω, it implies that

fOut(i) = fIn(i) · Ki,

or for every e ∈ Out(T ),

fe =
∑

d∈In(T )

kd,efe.

This justifies Definition 2.5, and we have shown that this definition as
well as Definition 2.4 define the most general linear network code on
an acyclic network.
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