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Coupled-resonator optical waveguide:
a proposal and analysis
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We propose a new type of optical waveguide that consists of a sequence of coupled high-Q resonators. Unlike
other types of optical waveguide, waveguiding in the coupled-resonator optical waveguide (CROW) is achieved
through weak coupling between otherwise localized high-Q optical cavities. Employing a formalism similar to
the tight-binding method in solid-state physics, we obtain the relations for the dispersion and the group velocity
of the photonic band of the CROW’s and find that they are solely characterized by coupling factor k1. We also
demonstrate the possibility of highly efficient nonlinear optical frequency conversion and perfect transmission
through bends in CROW’s.  1999 Optical Society of America
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Two mechanisms have been proposed and used in the
past for optical waveguiding.1 The most widely used is
waveguiding by total internal ref lection, as illustrated
in Fig. 1(a). Another mechanism, Bragg waveguiding,
in which waveguiding is achieved through Bragg re-
f lection from a periodic structure, has also been demon-
strated.1,2 Figure 1(b) illustrates an example of Bragg
ref lection provided by a periodic Bragg stack.2

In this Letter we propose a new type of waveguide
based on coupling of optical resonators, the coupled-
resonator optical waveguide (CROW). Figure 1(c)
shows a possible realization of such a waveguide
based on evanescent-field coupling between the high-Q
whispering-gallery modes of individual microdisk
cavities.3 Another possible realization is shown in
Fig. 1(d), in which the individual resonators consist of
defect cavities4,5 embedded in a two-dimensional (2D)
periodic structure (a 2D photonic crystal).6,7 These
defect resonators are designed such that their resonant
frequency falls within the forbidden gap of the sur-
rounding 2D structure, which permits high-Q optical
modes. The coupling in this case is due to the evanes-
cent Bloch waves. In both realizations of the CROW
we assume sufficiently large separation between the
individual resonators that the resonators are weakly
coupled. Consequently, we expect that the eigenmode
of the electromagnetic field in such a coupled-resonator
waveguide will remain essentially the same as the
high-Q mode in a single resonator. At the same time
one must take into account the coupling between the
individual high-Q modes to explain the transmission
of the electromagnetic waves. This coupling is ex-
actly the optical analog of the tight-binding limit in
condensed-matter physics,8 in which the overlap of
atomic wave functions is large enough that corrections
to the picture of isolated atoms are required yet at the
same time is not large enough to render the atomic
description completely irrelevant. The individual
resonators in the CROW are the optical counterpart
of the isolated atoms, and the high-Q mode in the
resonators corresponds to the atomic wave function.
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In the spirit of the tight-binding approximation,
we take the eigenmode EK sr, td of a CROW as a
linear combination of the high-Q modes EVsrd of the
individual resonators along a straight line parallel to
the ez axis [see Figs. 1(c) and 1(d)]. Denoting the
coordinate of the center of the nth resonator as z ­ nR,
we have

EK sr, td ­ E0 expsivKtd
X
n

exps2inKRd

3 EVsr 2 nRezd . (1)

It is straightforward to show that the waveguide mode
EK sr, td satisfies the Bloch theorem. Consequently
we can limit the wave vector K to the first Brillouin
zone, i.e., 2pyR # K # pyR. By writing EK sr, td in
this form, we have assumed EVsrd to be nondegenerate.

EK sr, td satisfies the Maxwell equations, which
leads to (in Gaussian units)

= 3 s= 3 EK d ­ esrd
vK

2

c2 EK , (2)

where esrd is the dielectric constant of the system
(of coupled resonators) and vK is the eigenfrequency
of the waveguide mode. Similarly, EVsrd satisfies
Eq. (2) but with esrd replaced with e0srd, the dielectric
constant of the single resonator, and vK replaced with
the single-resonator mode frequency V. We can take
EVsrd to be real and normalize it to unity according toR

d3re0srdEV ? EV ­ 1.
After substituting Eq. (1) into Eq. (2), multiplying

both sides from the left-hand side by EVsrd and
spatially integrating, we find the dispersion relation
for the waveguide mode EK sr, td to be

vK
2 ­ V2

∑
1 1

P
nfi0 exps2inKRdbn

∏
∑
1 1 Da 1

P
nfi0 exps2inKRdan

∏ , (3)

where an, bn, and Da are defined as
 1999 Optical Society of America



712 OPTICS LETTERS / Vol. 24, No. 11 / June 1, 1999
Fig. 1. Three types of waveguiding: (a) waveguiding
achieved through total internal ref lection at the interface
between a dielectric medium with a high refractive index
n2 and a low refractive index n1. (b) Bragg waveguid-
ing achieved by ref lection from periodic Bragg stacks.
(c) CROW, with waveguiding that is due to coupling
between individual microdisks. R is the size of a unit
cell, and ez is the direction of the periodicity for the
coupled resonators. (d) CROW realized by coupling of the
individual defect cavities in a 2D photonic crystal. R and
ez are defined the same as in (c).

an ­
Z

d3resrdEVsrd ? EVsr 2 nRezd , n fi 0 ,

(4a)

bn ­
Z

d3re0sr 2 nRezdEVsrd ? EVsr 2 nRezd ,

n fi 0 , (4b)

Da ­
Z

d3rfesrd 2 e0srdgEVsrd ? EVsrd . (4c)
If the coupling between the resonators is sufficiently
weak, we can keep only the nearest neighbor coupling,
i.e., an ­ 0 and bn ­ 0 if n fi 1, 21. From sym-
metry considerations, we also require that a1 ­ a21
and b1 ­ b21. Finally, we assume a1, b1, and Da to
be small. Putting all these observations together, we
simplify Eq. (3) to

vK ­ V

∑
1 2

Da

2
1 k1 cossKRd

∏
, (5)

where we define the coupling factor k1 as

k1 ­ b1 2 a1 ­
Z

d3rfe0sr 2 Rezd 2 esr 2 Rezdg

3 EVsrd ? EVsr 2 Rezd . (6)

A dispersion diagram is shown in Fig. 2. This disper-
sion relation defines a photonic band formed by the
coupling of the high-Q modes in the individual reso-
nators, which can be denoted the CROW band. From
Eq. (5), the group velocity is found to be

vgsKd ­
dvK

dK
­ 2VRk1 sinsKRd , (7)

which can be quite small for a weakly coupled
CROW. Notice that both the dispersion and the group
velocity are characterized by k1 only.

A particularly appealing feature of the CROW is
the possibility of making lossless and ref lectionless
bends. It is obvious from symmetry considerations
that if the individual resonator mode possesses an
n-fold rotational symmetry one can make a perfect
2pyn bend, since the coupling of the corner resonator
to its two immediate neighbors is identical. This bend
is illustrated in Fig. 3. The transmission coefficient
through the bend is 100% throughout the entire CROW
band. This property is in contrast with the bent
photonic crystal waveguide that has been proposed
by Mekis et al.9 in which complete transmission occurs
only at certain frequencies.

Another important application envisaged for the
CROW is nonlinear optical frequency conversion. Us-
ing second-harmonic generation as an example, we

Fig. 2. Dispersion diagram of a CROW band. The dis-
persion relation is plotted according to Eq. (5), with Da ­ 0
and k1 ­ 20.03. V is the resonant frequency of the single
high-Q cavity. K is the wave vector of the CROW band.
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Fig. 3. Two realizations of the CROW bend with complete
transmission. The gray regions represent the microcavi-
ties that are coupled together to form the CROW. The
black regions inside the individual microcavities represent
the high-Q optical modes in each microcavity, which have
n-fold rotational symmetry. (a) n ­ 4, (b) n ­ 6.

can use the unique vsKd dispersion characteristics
of the CROW to satisfy the phase-matching condition
Ks2vd ­ 2Ksvd. In addition, the highly concentrated
optical field in the CROW can also increase the conver-
sion efficiency for a given input power P . In fact, the
propagating power f lux P in the CROW is proportional
to the group velocity of the CROW band1 [see Figs. 1(c)
and 1(d)]:

P ­
1

8pR
vv, gE0

2. (8)

Consequently the small group velocity of the CROW
band can result in a large optical field with only a
modest amount of power f lux. From Eq. (7), it is ob-
vious that at K ø pyR, 2pyR (band edge) or K ø 0
(band center), the group velocity vg of the CROW band
will be close to 0. Since the eff iciency of nonlinear
optical processes (second-harmonic generation, for ex-
ample) is proportional to some power of the electric-
field strength,10 it is possible to use the CROW band
to greatly enhance the efficiency of these processes.
Another interesting application is as a superresonator,
i.e., a resonator of resonators, formed by folding a
CROW back upon itself. Since the folding angles of
the superresonator are determined by the symmetry
of the single resonator modes, the superresonator it-
self will possess the same, or simply related, symmetry.
A higher-rank resonator can also be formed whose ba-
sic elements are the superresonators. This resonator
opens the way to a hierarchy of self-similar, or fractal,
resonators.
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