ABSTRACT: Recent advances in microdroplet chemistry have shown that chemical reactions in water microdroplets can be accelerated by several orders of magnitude compared to the same reactions in bulk water. Among the large plethora of unique properties of microdroplets, an especially intriguing one is the reducing ability of water microdroplets which can sometimes be as high as alkali metals as a result of the spontaneously generated electrons. In this study, we design a catalyst-free strategy that takes advantage of the strong reducing power that can be as high as alkali metals. This study provides a good example of strategically making use of the spontaneous properties of water microdroplets, and we anticipate that microdroplet chemistry will be a green avenue rich in new opportunities in CO2 utilization.

INTRODUCTION

The atmospheric carbon dioxide (CO2) level has exceeded 400 ppm.1 Current and projected CO2 emissions from anthropogenic activities are leading to a continued rise in global temperatures and sea levels.2-4 Converting CO2 into value-added products promises to alleviate the problem,5-7 but the challenges are obvious since CO2 is a highly stable molecule with a high C=O bond dissociation energy (525.9 kJ/mol8) and a high ionization potential (317.7 kJ/mol9), so the direct cleavage of the C=O bond or the oxidation by one electron are both difficult. The carbon atom in CO2 is in the highest oxidation state (+II); as a result, it can only be activated by its reduction. Nevertheless, the direct attachment of an electron to CO2 is also challenging, because CO2 has a large highest-occupied molecular orbital (HOMO)—lowest unoccupied molecular orbital (LUMO) gap, making the occupation of the LUMO by an electron energetically unfavorable, and the electron affinity (EA) of CO2 is negative (−0.6 eV).10 So the CO2− anion is metastable with a short lifetime of ~90 ns.10,11 As a result, despite being highly reactive, the direct use of CO2− for further CO2 fixation has been difficult and scarce.12 Instead of directly using electrons, another strategy is to use anions or partial negative charges to attack the carbon atom on CO2, yielding stable products with carboxylic groups.13-20

In recent years, water microdroplet chemistry has emerged as an exciting new field because of its ability to accelerate chemical reactions by several orders of magnitude compared to the same reactions in bulk water.21,22 Among the unique properties of water microdroplets, an especially useful one is the observation that water microdroplets exhibit strong reducing power that can be as high as alkali metals.23 The power of water microdroplets to promote reduction chemistry has been demonstrated in the reduction of dissolved chloroauroic acid to yield gold nanoparticles and nanowires,24 the reduction of doubly charged ethyl viologen to singly charged ethyl viologen,25 the reduction of organic compounds by hydrogenation,26 and the formation of the pyridyl anion in spraying an aqueous solution containing dissolved pyridine to form microdroplets.23 It is postulated that there is a high electric field (~10⁹ V/m) at the surface of microdroplets that can pull electrons out of hydroxide ions,27-30 resulting in an electron and a hydroxyl radical, and the electron is responsible
for the abovementioned reduction reactions, and the hydroxyl radical can cause oxidation reactions. In some cases, reduction and oxidation reactions occurred simultaneously. The redox potential at the air–water interface has been shown to be very different from the bulk, and a recent study shows that on the aerial surface of air bubbles in water, the oxidation potential of OH⁻ to OH occurs at least 0.7 V below redox tabled values due to the electrostatic destabilization of the hydroxide anion on water, which accelerates the formation of electrons and hydroxyl radicals at the air–water interface.

In view of the above advances, the spontaneous and strong reducing power of water microdroplets should be able to reduce and fixate CO₂. Previous studies showed that water microdroplets could convert CO₂ into formate with or without the addition of triazole as a catalyst. In this study, we take advantage of the reducing power of water microdroplets to generate an exotic radical anion of iodopentafluorobenzene (C₅F₅I⁻) by simply spraying the water solution of C₅F₅I into microdroplets in air. To reveal the electronic nature of this anion, a combination of gas-phase anion photoelectron spectroscopy (PES) and theoretical calculation shows that the excess electron of C₅F₅I⁻ is located on the σ antibonding orbital of the C–I bond, unlike most radical anions with benzene rings whose excess electrons prefer to be on the π antibonding orbital. The electron weakens the C–I bond of C₅F₅I and forms the C₅F₅I⁻ anion, and the latter attacks the carbon atom on CO₂ forming the pentafluorobenzoate product, C₅F₅CO₂⁻. This study brings a new strategy of CO₂ fixation by converting a molecule into its reduced form by water microdroplets, which further promotes carboxylation by attacking the C atom on CO₂.

RESULTS AND DISCUSSION

Detailed experimental methods are provided in the Supporting Information. Figure 1a presents the experimental setup. The water solutions of C₅F₅I with different concentrations are forced by a syringe pump through a fused silica capillary that sits inside a larger coaxial capillary through which high-pressure N₂ sheath gas flows. The resulting spray of microdroplets is aimed toward the inlet of a mass spectrometer. The mass spectrometer’s inlet is inserted into a glovebox filled with pure N₂ (Figure 1a). The distance between the end of the sprayer and the mass spectrometer inlet is defined as the microdroplet flying (reaction) distance. Figure 1b presents a mass spectrum showing the spontaneous reduction products by spraying water solutions of C₅F₅I into water microdroplets. Two anionic products, C₅F₅I⁻ (m/z = 294) and C₅F₅⁻ (m/z = 167), were observed. Apparently, C₅F₅I was reduced by one electron into a radical anion, supporting the fact that electrons can easily be generated in water microdroplets, and the C₅F₅⁻ anion could be a C–I bond dissociation product from C₅F₅I⁻ via a dissociative electron attachment process. A same experiment performed in the atmosphere did not yield any signal related to C₅F₅I, suggesting that C₅F₅I⁻ is a fragile anion that cannot survive air. To provide evidence that C₅F₅⁻ was indeed a product from C₅F₅I through C–I bond dissociation, Figure 1c shows the change of I(C₅F₅⁻)/I(C₅F₅I⁻) as a function of the reaction distance and reaction time, where I denotes the mass peak intensity. By adjusting the reaction distance from 10 to 25 mm, the reaction time varied from 208 to 521 μs (Figure 1c) and a clear increase of the ratio was observed, indicating that the airborne microdroplet, but not the gas phase inside the mass spectrometer, was where the reaction occurred and that C₅F₅⁻ was a product from C₅F₅I. The reaction kinetics was also dependent on the concentration of C₅F₅I (Figure 1d). A higher I(C₅F₅⁻)/I(C₅F₅I⁻) ratio was observed with a lower concentration. In a model study by Wilson and coworkers, lower concentrations yielded higher fractions of the molecules partitioning to the microdroplet surface, suggesting that the air–water interface of the microdroplets played a key role in the reactions, which is consistent with this case and our previous studies. The mass spectra supporting the data in Figure 1c,d are displayed in Figures S1 and S2, respectively.
and the collision-induced dissociation spectra bearing structural information of these species are provided in Figure S3.

To understand the geometric and electronic structures of \(\text{C}_6\text{F}_5\text{I}^- \) and \(\text{C}_6\text{F}_5^- \), we also performed gas-phase PES measurements and density functional theory (DFT) calculations. Detailed methods are provided in the Supporting Information. In brief, a home-built apparatus combines a laser photoemission ion source, time-of-flight mass spectrometry, and anion PES. We analyzed the kinetic energies of the resultant photoelectrons by crossing a mass-selected anion beam with a fixed-frequency photon beam. The energetics of the photodetachment process is governed by the energy-conserving relationship, \(h\nu = \text{EBE} + \text{EKE} \), where \(h\nu \) is the photon energy, EBE is the electron binding (photodetachment transition) energy, and EKE is the electron kinetic energy. Figure 2 presents the photoelectron spectra of \(\text{C}_6\text{F}_5^- \), \(\Gamma^- \), and \(\text{C}_6\text{F}_5\text{I}^- \) taken with different photon energies. The spectrum of \(\text{C}_6\text{F}_5^- \) in Figure 2a exhibits an EBE band starting from around 3.05 eV and peaks at 3.53 eV, these two values corresponding to the EA of \(\text{C}_6\text{F}_5^- \) and vertical detachment energy (VDE) of \(\text{C}_6\text{F}_5^- \), in consistent with our calculated values, 3.18 and 3.50 eV, at the PBE/aug-cc-pVTZ level of theory. The spectrum of \(\Gamma^- \) in Figure 2b shows a sharp peak at 3.06 eV, corresponding to the well-known EA of iodine.41 Figure 2c exhibits the PES of the \(\text{C}_6\text{F}_5\text{I}^- \) parent anion using 266 nm photons. The first band starts from \(\sim 2.5 \) eV and peaks at 3.05 eV (VDE). The measured VDE agrees well with the calculated value, 3.12 eV, at the PBE/aug-cc-pVTZ(C,F)/aug-cc-pVTZ-PP(I) level of theory, but the onset of the first band, 2.5 eV, is not consistent with the calculated EA value, 1.59 eV. In PES experiments, only when there is enough Franck–Condon overlap between the ground state of the anion and the ground state of the neutral can EA be observed,42 suggesting that the observed onset of the \(\text{C}_6\text{F}_5\text{I}^- \) spectrum is not the EA due to the lack of Franck–Condon overlap (vide infra). As a result, we can only compare the calculated EA with a previous experiment, 1.48 eV, using a pulsed electron high-pressure mass spectrometer.43 In Figure 2d, the PES of \(\text{C}_6\text{F}_5\text{I}^- \) at 355 nm obviously has features from \(\text{C}_6\text{F}_5^- \) (black), \(\Gamma^- \) (blue), and \(\text{C}_6\text{F}_5\text{I}^- \) (red), which is a result of two-photon processes: the first photon dissociates \(\text{C}_6\text{F}_5\text{I}^- \) into either \(\text{C}_6\text{F}_5^- \) or \(\Gamma^- \), and the second photon photodetaches them. The photodissociation suggests that the C–I bond is weakened in \(\text{C}_6\text{F}_5\text{I}^- \) and vulnerable to 355 nm photons. The experimental and measured EA and VDE values are tabulated in Table 1 for comparison.

![Figure 2](https://example.com/figure2)

Figure 2. Photoelectron spectroscopic study of the anion species. (a) Spectrum of \(\text{C}_6\text{F}_5^- \) taken with 266 nm photons. (b) Spectrum of \(\Gamma^- \) taken with 355 nm photons. (c) Spectrum of \(\text{C}_6\text{F}_5\text{I}^- \) taken with 266 nm photons. (d) Spectrum of \(\text{C}_6\text{F}_5\text{I}^- \) taken with 355 nm photons. The HOMOs of \(\text{C}_6\text{F}_5^- \) and \(\text{C}_6\text{F}_5\text{I}^- \) are embedded.

<table>
<thead>
<tr>
<th>species</th>
<th>exp. EA</th>
<th>theo. EA</th>
<th>exp. VDE</th>
<th>theo. VDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C}_6\text{F}_5^-)</td>
<td>3.05</td>
<td>3.18</td>
<td>3.53</td>
<td>3.50</td>
</tr>
<tr>
<td>(\Gamma^-)</td>
<td>3.05</td>
<td>3.06</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>(\text{C}_6\text{F}_5\text{I}^-)</td>
<td>1.48</td>
<td>1.59</td>
<td>3.05</td>
<td>3.12</td>
</tr>
</tbody>
</table>

All numbers are in eV.

As a side note, the superatom concept depicts a class of clusters and molecules that possess certain behavior akin to an atom of the periodic table.44 EA was considered to be the defining characteristic for identifying a superatom of a halogen element. With this criterion, \(\text{Al}_1 \) was determined to be the superatom of Br.45 Since the EA of \(\text{C}_6\text{F}_5^- \) and I are almost identical, we opine that \(\text{C}_6\text{F}_5^- \) can be viewed as a superatom of I.

The calculated HOMOs of \(\text{C}_6\text{F}_5^- \) and \(\text{C}_6\text{F}_5\text{I}^- \) are embedded in Figure 2. Unlike most radical anions with benzene rings where the excess electrons prefer to be on the \(\pi^* \) antibonding orbital on the ring, the excess electron of \(\text{C}_6\text{F}_5\text{I}^- \) is located on the \(\sigma^* \) antibonding orbital of the C–I bond, which is a singly occupied molecular orbital, making it a half bond, and elongating it from 2.09 to 2.67 Å. Such a large bond length change from neutral to anion causes a poor Franck–Condon overlap, explaining the failure of the measurement of EA in the PES experiment. This result also explains the formation of \(\text{C}_6\text{F}_5^- \) by breaking the weakened C–I bond. The HOMO of \(\text{C}_6\text{F}_5^- \) is an occupied sp³ orbital located on the carbon atom, making it negatively charged by \(0.38 \) e (Figure S4), providing a chance for attacking the carbon atom on the CO₂ molecule. The calculated geometric and charge information of these species are provided in Figure S4, and the Cartesian coordinates of all the calculated species are provided in Table S1.

We next move to the CO₂ fixation experiment taking advantage of the reducing power of water microdroplets. Figure 3a shows the mass spectrum using CO₂ as the sheath gas, and a new peak corresponding to the pentafluorobenzoate product, \(\text{C}_6\text{F}_5\text{CO}_2^- \), is unambiguously observed. Remarkably, there were \(\sim 71\% \) of the \(\text{C}_6\text{F}_5^- \) anions converted into \(\text{C}_6\text{F}_5\text{CO}_2^- \). The signal of \(\text{C}_6\text{F}_5\text{I}^- \) becomes very low, suggesting...
To summarize, we have used spontaneously generated electrons in water microdroplets to reduce \(\mathrm{C}_6\mathrm{F}_5\mathrm{I}^- \) into \(\mathrm{C}_6\mathrm{F}_5\mathrm{I}^{3-} \), where the excess electron unusually occupies the \(\sigma^* \) antibonding orbital of the C–I bond and further breaks the C–I bond, forming the \(\mathrm{C}_6\mathrm{F}_5\mathrm{I}^- \) anion that fixates \(\mathrm{CO}_2 \) into \(\mathrm{C}_6\mathrm{F}_5\mathrm{CO}_2^- \). This study provides an example of \(\mathrm{CO}_2 \) utilization and brings a new catalyst-free strategy that takes advantage of the reducing power of water microdroplets for the applications of not only \(\mathrm{CO}_2 \) fixation but also potentially a large variety of reactions such as reductive coupling and hydrogenation where the reduction by an electron plays the key role.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c12731.

Experimental and theoretical methods, additional experimental, and theoretical results (PDF)

AUTHOR INFORMATION

Corresponding Authors

Kit Bowen — Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States; orcid.org/0000-0002-2858-6352; Email: kbowen@jhu.edu

Xinxing Zhang — College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; orcid.org/0000-0001-5884-2727; Email: zhangxx@nankai.edu.cn

Authors

Huan Chen — College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China

Ruijing Wang — College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China

Jinheng Xu — College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States

Xu Yuan — College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition,
Dongmei Zhang — College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China; Haife Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China

Zhaoqun Zhu — Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States

Mary Marshall — Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States

orcid.org/0000-0002-4395-9102

orcid.org/0000-0001-6614-1963

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.2c12731

Notes

The authors declare no competing financial interest.

Acknowledgments

X.Z. acknowledges the National Natural Science Foundation of China (22174073 and 22003027), the NSF of Tianjin City (21JCQJC00010), the Haife Laboratory of Sustainable Chemical Transformations, the Beijing National Laboratory for Molecular Sciences (BNLMS202106), and the Frontiers Science Center for New Organic Matter at Nankai University (63181206). Portions of this material are based on work supported by the US National Science Foundation (NSF) under grant number CHE-2054308 (K.H.B.).

References

Transfer and Its Correlation with Excited-State Intramolecular Proton Affinities of Perfluorobenzenes C6F5X.

Chen, J. Revisiting the Hitherto Elusive Cyclohexanehexone and Reduction in Microdroplets by the Water Radical Cation/Anion Pair.

Studies.

Song, X.; Meng, Y.; Zare, R. N. Spraying Water Microdroplets Containing 1,2,3-Triazole Converts Carbon Dioxide into Formic Acid. J. Am. Chem. Soc. 2022, 144, 16744–16748.

Recommended by ACS

Spontaneous Reduction of Transition Metal Ions by One Electron in Water Microdroplets and the Atmospheric Implications

Xu Yuan, Xinxing Zhang, et al. JANUARY 27, 2023 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Catalyst-Free Decarboxylative Amination of Carboxylic Acids in Water Microdroplets

Yifan Meng, Richard N. Zare, et al. DECEMBER 25, 2022 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Conductive Metal–Organic Framework Microelectrodes Regulated by Conjugated Molecular Wires for Monitoring of Dopamine in the Mouse Brain

Yue Wang, Yang Tian, et al. JANUARY 17, 2023 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Pengchao Zhao, Liming Bian, et al. FEBRUARY 02, 2023 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Get More Suggestions