Gazette
masthead
   About The Gazette Search Back Issues Contact Us    
The newspaper of The Johns Hopkins University April 9, 2007 | Vol. 36 No. 29
 
Linking lead exposure and learning deficits

Public Health Scientists Find Evidence of Effects on Brain Development

By Kenna Lowe
School of Public Health

Researchers from the Johns Hopkins Bloomberg School of Public Health have found evidence that explains exactly how exposure to lead during brain development produces learning deficits.

A study with young adult rats shows that exposure to levels of lead similar to those measured in lead-intoxicated children reduces the birth and survival of new neurons (neurogenesis) in the brain. Lead also alters the normal development of newly born neurons in the hippocampus, a part of the brain known to be important for learning and memory. The study is published in the March 30 issue of Neuroscience.

"There was a dogma in neuroscience that you were born with all the neurons you would ever have, but that thinking has changed dramatically in the last 20 years," said Tomas R. Guilarte, senior author of the study and professor of environmental health sciences at the Bloomberg School. "The exciting idea is that scientists have discovered ways to increase the number of new neurons, and this may facilitate learning in the hippocampus portion of the brain."

When the researchers examined the brains of lead-exposed rats, they found that fewer neurons were born and those neurons that were born survived for a shorter amount of time and had abnormal development, compared to the nontreated (control) rats.

Guilarte explained that newly born neurons extend processes to form new connections with other neurons in the brain — like branches growing off of a tree limb — that allow learning and memory to take place. The length of the neuronal processes, called dendrites, were shorter and twisted in lead-exposed rats as compared to the long and relatively straight dendrites in neurons found in control rats.

"The fewer connections between neurons found in lead-exposed rats decrease their ability to communicate, which has a major impact on the rat's ability to learn. Previously, we knew that lead impaired cognitive function, but we didn't know exactly how," Guilarte said. "Now that we know that lead decreases neurogenesis in the hippocampus and alters the ability of these new neurons to communicate, in future studies we hope to determine if environmental enrichment can reverse these detrimental effects of lead."

Guilarte has studied lead's effects at the molecular level on rat brain development for more than a decade. In November 2002, he and colleagues reported that environmental enrichment that stimulates brain activity can reverse the long-term learning deficits caused by lead poisoning.

Tatyana Verina, Charles A. Rohde and Guilarte, all with the Bloomberg School of Public Health, co-authored the study. It was supported by a grant from the National Institute of Environmental Health Sciences, part of the National Institutes of Health.

GO TO APRIL 9, 2007 TABLE OF CONTENTS.
GO TO THE GAZETTE FRONT PAGE.


The Gazette | The Johns Hopkins University | Suite 540 | 901 S. Bond St. | Baltimore, MD 21231 | 443-287-9900 | gazette@jhu.edu