The recovery of sparse data is at the core of many applications in machine learning and signal processing. While such problems can be tackled using $\ell_1$-regularization as in the LASSO estimator and in the Basis Pursuit approach, specialized …
We prove new results about the robustness of well-known convex noise-blind optimization formulations for the reconstruction of low-rank matrices from underdetermined linear measurements. Our results are applicable for symmetric rank-one measurements …