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1 Introduction

The proper formal definition of adjective denotations has been since the inception
of formal semantics, due to the non-uniformity of interpretations for this part of
speech. It makes strong intuitive sense that attributive adjectives denote properties
of individuals. After all, what is an adjective used for if not to indicate some
property that is not already contributed by the noun it appears with? Indeed, a
common characterization of adjectives holds that

they typically denote properties–most centrally in the domains of size,
shape, colour, worth, and age... The core semantic function of adjectives
seems to be to provide terms for individual properties. (Huddleston and
Pullum, 2002, p. 528–9)

However, this analysis, carried out in full generality, turns out to be untenable
for a large class of adjectives called non-intersective–to wit, those for which no
interpretation can be given a single property/set corresponding to the adjective.

The purpose of this thesis is to study the properties of intersective and non-
intersective adjectives, which have a rich characterization in set-theoretic terms,
in the setting of distributional semantics. Distributional semantic representations
have become prominent in recent years, especially in applications. However, the
wide availability of distributional data on the internet and other sources, coupled
with the computational power now available for analyzing it, means that a whole
new field of models, data, and hypotheses have become available for investigation.
The main hypothesis on which distributional semantics rests is that the patterns of
distributions of words carry information about their meaning. If this is so, and if the
notion of meaning intended by this distributional model is at all relevant to semantic
theory, then we should observe some correspondence between the two sets of con-
cepts. And indeed, some recent studies have found precisely these correspondences
(Boleda et al., 2012, Geffet and Dagan, 2005).

In formal semantics, natural language meanings are generally given as state-
ments of logic interpreted in a model. In the distributional conception, words with
similar distributional patterns in corpora are also similar in meaning. The kind of
distributional context that is considered relevant is a parameter of the model, but in
general, context is taken to refer to the words co-occurring with a given word being
modelled, within a certain window of n words. On the basis of such representations,
it is minimally possible to detect synonymy between words based on this relation
of similarity of contexts. However, much work has been aimed at expanding the
range of semantic phenomena that can be sensibly talked about and analyzed in the
distributional setting.

In this study, I present a theoretical framework for interpreting the types of
models in use in distributional semantics, and spell out a theory-driven hypothesis
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about the distributional characteristics of intersective and non-intersective adjectives
that is tested against data obtained form a corpus of English.

It should be remarked that the model adopted here is strictly based on untrans-
formed co-occurrence statistics from the generating corpus, since the aim is to test
hypotheses related to the characteristics of the data, not to optimize performance on
some semantic task. One problem with the full implementation of the distributional
hypothesis for research purposes is that the computational resources required are
prohibitive. The measurement statistics compiled are potentially immense, which
has led practically-oriented researchers to carry out truncations for statistical trans-
formations of the underlying distributional spaces in order to make the problem of
finding, ranking, and making use of semantic relationships computationally feasi-
ble. However necessary for the purposes of rendering these problems tractable in
a practical setting, transforming co-occurrence statistics by various means renders
these models only loosely interpretable as tests of distributional properties, since
they are not linked to genuine statistics about the characteristics of the language
being modelled.

The metric proposed here for detecting distributional analogues of the formal
properties of intersectives and non-intersectives is based on the information-theoretic
notion of entropy, which is a measure of the uncertainty associated with a proba-
bility distribution. Specifically, I use the von Neumann entropy (Kartsaklis, 2014,
Neumann, 1955), which is a generalization of the classical Shannon entropy measure
(Shannon, 1948) that applies to vector spaces. Intuitively, the more uncertain the
outcome of a random experiment, the higher the entropy associated with the ex-
periment. Briefly, the hypothesis is that intersective adjectives consistently denote
the same properties across all uses, whereas non-intersectives vary depending on the
meaning of their noun argument. If property denotations predict distributional char-
acteristics, it is expected that nouns modified by an intersective adjective will have
lower uncertainty (= lower entropy) about their location within the semantic space.
Conversely for non-intersective adjectives. Section 2 reviews the essentials of distri-
butional semantics, and lays out relevant literature, including work that has aimed
at linking formal and distributional semantic models. Section 3 explains the distinc-
tion between intersective and non-intersective adjectives, defines operational tests
for discriminating them. Section 4 crystallizes the probabilistic model of word mean-
ing implied in distributional semantics work, and links this to an explicit method for
computing representations of lexical states corresponding to modelled words. It is
shown how these lexical states are related to the co-occurrence statistics. A minimal
mathematical framework is developed for the purposes of proving the framework’s in-
ternal consistency and relevance to distributional hypothesis-testing. The expected
correspondences between distributional uncertainty and (non-)intersectivity are ex-
plained.
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Density matrices are the key mathematical objects employed for the character-
ization of distributional uncertainty around adjectives. Density operators are used
to represent probability distributions over states of a system when there is uncer-
tainty about what state the system is in. Within distributional semantics, density
matrices have been proposed for a variety of tasks related to disambiguating word
meanings. Kartsaklis (2014) proposes a density operator-based word representations
that capture various sense of a word in a compact form, to enable disambiguation.
Blacoe et al. (2013) use density matrices to represent probability distributions over
dependency relations, and define a similarity relation between density matrices that
exploits the power of these objects to represent ambiguity and sense-selecting be-
havior.

In addition to representing ambiguity of meaning, density operators come with
a measure of entropy or uncertainty that allows the level of uncertainty about the
meanings of words or groups of words to be quantified. Hence, these representations
are a good candidate for measuring the level of uncertainty associated with the
meanings of different classes of adjective. In 4, I explain the von Neumann entropy,
a generalization of the classical Shannon entropy measure defined, which quantifies
the amount of uncertainty associated with a probability distributions. The von
Neumann entropy assigns a value to the level of uncertainty about the state of
a probabilistic system defined over a vector space. The results of an experiment
conducted on a semantic space constructed from nouns and adjective-noun pairs are
reported in section 5.

2 Semantics in Vector Spaces

Although many different models exist for constructing vector representations for
words on the basis of co-occurrence statistics observed in large language corpora,
a simple baseline model consists of the following. A vector of frequencies can be
constructed for each word w, in which each vector component corresponds to a
context word. The vector for w is then:

[count(c1), count(c2), ... count(ci), ... count(cn)] (1)

where each ci is a context word co-occurring with w.
This type of representation easily induces a variety of metrics for distributional

distance between words, which can empirically be justified as a metric of semantic
distance. A common metric of lexical distance is the cosine similarity, which is given
by the equation:

sim( ~w1, ~w2) =
~w1 · ~w2

|| ~w1|| || ~w2||
= cos(θ) (2)
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where θ is the angle between ~w1, ~w2, and ||~w|| is the length of the vector ~w. This
quantity is greatest when ~w1

|| ~w1|| = ~w2

|| ~w2|| . The division by the lengths of ~w1 and

~w2 corresponds to the fact that the overall frequency of occurrence of a word is
not important, only its relative frequency of occurrence with each context, as a
proportion of all its contexts. As an intuitive example, consider that while canine
and dog are essentially identical in meaning, they will occur with very different
frequencies, a fact which may obscure their underlying similarity. Normalizing the
word vectors ~w (giving them length 1 by dividing by their lengths ||~w||) eliminates
this distinction, leaving only differences in the proportion of contexts corresponding
to each ci. Other common similarity metrics include Eulcidean and City Block
distance, and information-theoretic measures such as Hellinger, Bhattacharya, and
Kullback-Leibler distance (Bullinaria and Levy, 2007). In addition to modelling
the semantic relations between individual words or short phrases obtained from co-
occurrence statistics, many researchers have explored the possibility of implementing
algebraic operations over such vectors, allowing for the creation of adequate vector
representations for expression classes constructed out of more basic expressions.

These projects are largely motivated by the linguistic insight that meaning con-
struction is combinatory and functional, and, moreover, that the types of larger
expressions are often quite different than those of their constituent parts. As a con-
sequence, many current models of compositional distributional semantics propose
a deep unification of vector representations for atomic words with compositional
semantic architecture, generally modelled along the lines of Montague semantics or
Lambek syntactic pregroups, guided by a linguistic typology of expressions (Clark
et al., 2008, Clark and Pulman, 2007, Coeke et al., 2010, Sadrzadeh et al., 2013,
2014).

Concrete proposals for word and short phrase representations include studies
of adjective-noun composition (Baroni and Zamparelli, 2010, Mitchell and Lapata,
2010) based on a variety of semantic composition functions. In Baroni and Zam-
parelli (2010), adjectives are assumed to be linear maps given by order-2 tensors
(matrices) acting on distributionally obtained vectors for nouns. Each adjective
matrix A : N → N is therefore a function whose inputs and outputs are both
nouns, such that the resulting vectors can be compared with those for nouns. Ad-
jective maps are estimated by linear regression over noun vectors, with the adjective
matrix optimized to achieve minimum-error mappings for nouns onto their adjective-
noun phrase counterparts. This model is the most pertinent to the current research
project, but one extension of it bears mentioning. Grefenstette et al. (2013) extend
this algorithm to cover other word-classes, for instance those like transitive verbs
that take multiple (NP) arguments. For a functional word F with arguments x
and y, this is achieved through multi-step regression learning. The steps are: (1)
estimate order-2 tensors Fx for each x predicting vectors Fxy for each y. (2) Then,
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for each x, estimate an order-3 tensor F predicting Fx. The process may be it-
erated for order-n + 1 tensors, although at this point the representations become
quite large. Not only is it difficult to compute the results of compositional proce-
dures involving such large objects; in order to estimate the tensor representations
for a functional-type lexical item, it is necessary to solve an exponentially increasing
number of linear regression problems.

Another class of compositional distributional models found widely in many cur-
rent systems uses neural network embeddings of words, phrases, and contexts to de-
rive representations that exhibit sensitivity to variations in meaning (Huang et al.,
2012, Mikolov et al., 2013). Such models have been extended beyond modeling words
or small phrases; some are implemented with compositional architecture (Socher
et al., 2012). However, they are orthogonal to the current study because they are
not informed by any linguistic semantic typology, and thus they are essentially athe-
oretical.

2.1 Distributional meaning

There exist many successful implementations of compositional distributional models,
and these models have proven successful in a variety of semantic tasks (Grefenstette
and Sadrzadeh, 2011). However, as many researchers freely admit, there is little
understanding of the correspondence between the distributional representations em-
ployed in compositional distributional semantics and the logical and set-theoretic
objects used to characterize natural language meaning in the type-logical setting of
formal semantics.

Some work in this direction does exist, however. A widespread hypothesis is the
distributional inclusion hypothesis, which states that the contexts of a hypernym
will be a superset of the contexts of a hyponym (Geffet and Dagan, 2005, Roller
et al., 2014). If A ⊆ B, then any context in which A occurs, B may occur as well.
Whereas cosine similarity measures are symmetric, the inclusion relation is asym-
metric. Therefore, a variety of measures have been devised to test distributional
inclusion and classify words accordingly (Lenci and Benotto, 2012). For instance,
Rimell (2014) considers a measure of topic coherence as a candidate feature for de-
tecting hypernyms, based on the hypothesis that hyponyms, which are more specific,
will occur in some contexts where their hypernyms are highly unlikely to occur, since
the hyponyms gravitate towards certain topics–for instance, beer may be found in
the highly specific context drunk where beverage is unlikely to occur.

At a highly general level, Coeke et al. (2010) propose a two-dimensional truth-
theoretic space for sentences that is related to Montagovian characterizations of
sentence meaning. However, I am aware of no concrete implementations of this
proposal.
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Quite close to the topic of the current investigation into the properties of in-
tersective and non-intersective adjectives, Boleda et al. (2012) investigate the dis-
tributional properties of adjective maps modelled within the Baroni and Zam-
parelli (2010) framework described earlier, distinguishing between first-order and
higher-order modification. They compared the cosine similarity between observed
adjective-noun vectors and those for their corresponding nouns across three classes–
intersective, non-intersective subsective, and intensional (privative) adjectives. They
found that the mean cosine similarity between adjective-nouns and nouns was high-
est for intersectives and lowest for privatives. These findings indicate that classifi-
cations of adjectives based on set-theoretic characteristics are plausibly linked with
distributional effects.

3 Adjective semantics

According to Huddleston and Pullum (2002), adjectives are defined as a word class
whose characteristic function is to modify nouns. Syntatically, they appear in one
of three positions. Adjectives may be

1. attributive appearing before a noun as in the red sky

2. predicative appearing as a copular complement and modifying a noun phrase
via the linking copula, as in Mark is tall

3. postpositive appearing after a noun, as in a man full of his own importance

Often, postpositive constructions preclude the use of an adjective by itself, requiring
a larger phrase. Consider the strangeness of a man full. Moreover, the postpositive
use of adjectives is quite rare in English. Hence, I focus on the core cases of at-
tributive and predicative adjectives. When an adjective appears in the attributive
adjective-noun position, I refer to the compound as an AN.

A näıve first approximation of adjective semantics, based on the intuition that
adjectives denote properties, is to simply identify an adjective with a set associated
with the property. That is, for every adjective α, the denotation ❏α❑ of α is a
predicate of type e→ t. Taking the copula to be a function (e→ t) → (e→ t) that
links a predicate given by the adjective, we have the following denotation for Mark
is tall :

is := λAλx.x ∈ A (3)

mark ∈ Tall (4)

Given a denotation for an adjective as a set, we can obtain denotations for their
attributive counterparts via a simple type-shifting operator shift : λAλN.N ∩ A.
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Hence, from the denotation of A, we are immediately given the denotation of shiftA,
a function from noun denotations to the intersection of the adjective denotation
with the noun denotation.

However, if this were the correct denotation for an adjective α, an immediate
consequence would be that the attributive uses of an adjective should denote subsets
of their predicative uses. However, at least since Montague (1974), it has been
known that this treatment of adjective denotations is highly unsatisfactory. While
adjectives, like nouns, would seem to denote sets, and indeed largely do so when
used in the predicative position, they do not uniformly behave this way when used
attributively. Using the above example of a big flea being big in a sense different from
a big elephant, Montague generalized to the worst case, arguing that the denotation
of an adjective could not be a single set.

The denotation of an adjective phrase is always a function from prop-
erties to properties... The standard denotations of many adjectives—for
instance, “green” and “married”—may be taken as intersection func-
tions, that is, functions H such that, for some property P , H(Q) is, for
every property Q, the property possessed by a given individual with re-
spect to a given possible world if and only if the individual possesses
both P and Q with respect to that possible world. It would be a mis-
take, however, to suppose that all adjectives could be so interpreted.
(Montague, 1974, p. 211)

Montague goes on to use the example of a graded adjective, big, to show how certain
adjectives fail to be intersective: “not all big fleas (indeed, probably no big fleas) are
big entities. (A big flea is, roughly, a flea bigger than most fleas, and a big entity
an entity bigger than most entities.)”

This characterization highlights the major difference between intersective and
non-intersective adjectives: the latter are sensitive to the surrounding context, in
particular the context provided by their noun argument, to receive a denotational
interpretation. Whereas the set intersected with a noun argument in the case of
an intersective adjective is invariant across all uses, the meaning of “big” in any
particular instance is determined by the noun it is applied to. This fact of varying
meanings depending on the local context is ripe for empirical investigation using the
tools of distributional semantics.

3.1 Intersectives and non-intersectives: Basic properties

Before proceeding, it is important to clarify the terminology around different types
of adjectives. The typology of adjectives with respect to their inclusion properties
can be represented in a partial order, where the “mother of” relation corresponds
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to set inclusion.

Adjective

Intersective Non-Intersective

Non-intersective subsective Non-subsective

Privative Other non-subsective

It is important to note that the non-intersective adjectives broadly understood are
not a subset of the subsective adjectives. In fact, any adjective not falling into the
class of intersective adjectives may be considered non-intersective. However, when I
refer to non-intersective adjectives, I mean the non-intersective subsective kind, as
that is the primary distinction of interest in this study. Subsective adjectives have the
property that, when they are applied to a noun, the resulting denotation is always
a subset of the denotation of the noun. For instance, the set of unfortunate ηs is
always a subset of ηs for any noun η. Compare this with the intensional or privative
adjectives such as former or fake. The set of former dancers is complementary to the
set of dancers ; they have no members in common. In between are more ambiguous
cases like possible. The set of possible suitors of Pocahantas is neither included in,
nor complementary to, the set of suitors of Pocahantas.

Non-subsective adjectives, including privative/intensional adjectives, will not be
studied here due to their sparseness. It is difficult to prepare a large enough sample
of such adjectives to study their distributional properties adequately. Hence they
are avoided in this project, and are intentionally excluded from the testing dataset
discussed in section 5.

Many accounts exist of the set-theoretic properties of intersective and non-
intersective adjectives respectively, but I will focus on those that attempt to account
the meaning-shifting character of non-intersective adjectives. Considering examples
such as

1. Sam is a giant and a midget

2. Sam is a giant midget

3. Sam is a midget giant
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Kamp and Partee (1995) argue that, in cases of non-subsective behavior, the adjec-
tive is “coerced” by its context–in this case, the head noun–into adopting a meaning
compatible with the context. Whereas 1 is simply contradictory without an exotic
interpretation of giant or midget, 2 and 3 are generally accepted to be perfectly
acceptable. This suggests that, in modifier-head constructions, the modifier under-
goes a reinterpretation relative to the context provided by the head. An even more
radical stance is expounded in (Partee, 2007), where it is argued that, in cases of
so-called privative adjectives, such as fake fur, the meaning of the noun is actually
modified in order to accommodate instances of both real and fake fur.

Pustejovsky (1991) argues from within the Generative Lexicon (GL) theory of
lexical semantics that adjectives (among other lexical categories) undergo type- and
denotation-shifting alterations as a function of the semantic and pragmatic context
in which they are employed. In GL, lexical entries are represented as feature-value
structures containing information about various types assigned to the lexical entry.
In the course of compositional operations, modifiers make use of the information
encoded in the lexical entry, altering their own meanings accordingly. Pustejovsky
uses the example of the word good, whose effect on its argument varies depending
on what the argument is. For instance, all of the following are appropriate char-
acterizations of the meaning of good. As an eventive predicate, good modifies its
arguments based on the events that these are intended to or are typically involved
in. Hence, based on the lexical specification that the purpose of a knife is to be used
in cutting, good knife derives the meaning a knife that cuts well.

All of these characterizations of the relationship between modifiers and heads
are akin to the tack taken here for distinguishing intersective and non-intersective
adjectives. A variety of linguistic theorists have identified and discussed the tendency
of many adjectives, especially the non-intersective ones, to change their meaning as
a function of their its context.

3.2 Tests for intersectivity

One test for intersectivity–the predicative descent test–has already been mentioned.
However, it is not fully reliable. Consider the pair of sentences

1. Mary is a skilled acrobat

2. The acrobat is skilled

It is not at all clear that 2 does not have the same meaning as 1, i.e. that The
acrobat is skilled (at acrobatics). In fact, given the information that the target
of skilled is an acrobat, it is easy to assign the interpretation The acrobat does
her acrobatics skillfully to 2. The denotations of predicative uses of an adjective
thus appear sensitive to the meanings of the precopular nouns, just as attributives
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are sensitive to the meanings of their noun arguments. Consider another instance
involving Montagues’ example of the big flea.

Marcel, noticing an unusually large flea on his arm:
Whoa! That flea is big.

The sentence does not seem false, even though ❏big❑, under the standard assumption
that it is a predicate when used in the predicative position, can not normally apply
to fleas, however large. It is likely that, in this case, the meaning of flea propagates
across the copula to affect the interpretation of big, such that the sentence has an
interpretation like

• That flea is (a) big (flea)

which indicates that predicative uses of an adjective are not so semantically distinct
from attributive uses as is generally assumed. The predicative descent test assumes
that the type of the adjective in a predictive position is a set invariant across uses,
and tries to match attributive uses of the adjective to this set. If the match fails
on some cases, then the adjective is determined to be non-intersective. However,
the modifiability of the meaning of the predicative use of the adjective in a non-null
context indicates a weakness in this identification strategy.

There are other reasons to prefer the attributive propagation test over the pred-
icative descent test. For example, the latter cannot accommodate certain adjectives
which cannot appear in the predicative position. Ethnic, for instance, is normally
an exclusively attributive adjective, and appears only recently to have begun being
used predicatively. Hence there are many cases where the predicative descent test
simply cannot be used.

For all of these reasons, in section 5 describing the experimental implementa-
tion, I eschew the predicative descent test as a means of distinguishing between
intersective and non-intersective adjectives in the preparation of a dataset, due to
the possibility of false positives. Instead, I employ the following operational defi-
nition of intersectivity relied on to distinguish intersectives from non-intersectives.
An adjective α is intersective if:

x is an α η1 (Premise 1)
x is an η2 (Premise 2)
x is an α η2 (Conclusion)

for arbitrary η1, η2. This operational definition may be called the attributive propa-
gation test, and it can be shown to be fully equivalent to the set-theoretic definition
of intersectivity. This set theoretic definition is that an intersective adjective has
the denotation of an intersection of the predicate denoted by its argument and some
given set A, invariant across uses of the adjective. This set-theoretic definition
means that, for a given intersective adjective α, there exists a set A satisfying (5).

∀ηi, x.x ∈ ❏α❑❏ηi❑ ↔ x ∈ A ∩ ❏ηi❑ (5)
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Equivalently:
∃A∀ηi.❏α❑❏ηi❑ = A ∩ ❏ηi❑ (6)

Although below I discuss some qualifications to this assignment of denotation for
intersective adjectives, for the moment, this is claimed to be the denotation of an
intersective adjective. To show the correspondence between between this intersec-
tivity condition and the test laid out below, we first make a handful of assumptions.
We assume that denotation of an arbitrary noun η is a predicate, that is ❏η❑ = P

for some P . Assume as well a process transcribing an attributive use of an adjective
α from a usage like “x is an α η” into propositions of first-order logic of the form
❏α❑❏η❑(x) where the type of ❏α❑❏η❑ is a predicate, i.e. of type e → t. Since each
❏η❑ ∈ P(U), then every ❏α❑ is a function f : P(U) → P(U). This transcription
procedure will not be spelled out in detail; we suppose it to exist. It follows that we
can translate the above operational definition into the following condition on α:

∀ηi, x, ηj.❏α❑❏ηi❑(x) ∧ ❏ηj❑(x)] → ❏α❑❏ηj❑(x) (7)

This is equivalent to:

∀ηi, x, ηj.[x ∈ ❏α❑❏ηi❑ ∧ x ∈ ❏ηj❑] → x ∈ ❏α❑❏ηj❑ (8)

We will assume that α is subsective; that is, ❏α❏❏η❑ ⊆ ❏η❑ for any η. However, it
need not be assumed that ❏α❑❏η❑ is defined for any η, i.e. that every attributive use
of the adjective α has a denotation, only that this condition applies for any pair of
nouns η1, η2 for which α is defined. We will show that, as long as α is subsective,
these two conditions are equivalent.

Proof. (6) → (7) Let α, be any subsective adjective. Suppose that (6) holds. Let
ηi be an arbitrary noun, x any individual, and ηj any noun. Suppose x ∈ ❏α❑❏ηi❑
and x ∈ ❏ηj❑. Then by assumption x ∈ Aα ∩ ❏ηi❑, and so x ∈ Aα. But then also
x ∈ Aα ∩ ❏ηj❑, and by assumption x ∈ ❏α❑❏ηj❑ as well. Since ηi, x, and ηj were
chosen arbitrarily, this is the case for any ηi, x, ηj. This is just condition (7).
(7) → (6) Now in the other direction. Suppose (7). Consider the set Aα =
⋃

i{❏α❑❏ηi❑}. Let ηi be any noun and x be any individual. If x ∈ ❏α❑❏ηi❑, then
clearly x ∈ Aα. And by the subsectivity of α, x ∈ ❏ηi❑. Therefore x ∈ Aα ∩ ❏ηi❑.
Suppose now that x ∈ Aα ∩ ❏ηj❑. It follows from the definition of Aα that x is
in some set ❏α❑❏ηi❑ for some ηi, not necessarily ηj. However, by condition (7), if
x ∈ ❏α❑❏ηi❑ and x ∈ ❏ηj❑, then also x ∈ ❏α❑❏ηj❑. Therefore, x ∈ ❏α❑❏ηj❑. From the
fact that every x in ❏α❑❏ηi❑ is in Aα ∩ ❏ηi❑ and conversely, it follows that they are
the same set. Hence (6) holds.

This shows that (7) and the associated operational test for intersectivity provide
necessary and sufficient conditions for intersectivity. In other words, the operational
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test for intersectivity precisely corresponds to the notion expressed in set theoretic
terms. In particular, if an adjective does not satisfy (7), then it is not intersective,
and if it does satisfy (7), it is guaranteed to be intersective.

When does intersectivity fail? This can be deduced directly from condition (5).
If ¬ (5), then for any set A, ∃ηi, x.x ∈ ❏α❑❏ηi❑ 6↔ x ∈ A∩❏ηi❑. That is, for all sets A,
there is some individual that falls under the denotation of ❏α❑❏ηi❑ but not A ∩ ❏ηi❑,
or conversely. If A exists, then minimally A must contain every x ∈ ❏α❑❏η❑ for each
η; otherwise, there would be some x ∈ ❏α❑❏η❑ that is not in A∩ ❏η❑. But in the case
of a subsective non-intersective adjective, there is some individual falling under a
predicate ❏η❑ that is this set (the generalized union of denotations for the adjective
and its noun arguments), but not in ❑α❏❏η❑. The intuitive idea that there is no
unified concept, represented as a set, that a non-intersective adjective corresponds
to thus has this precise set-theoretic meaning. Consider a concrete example: Fred is
a ❏big❑❏animal❑ and Fred is a ❏big❑❏elephant❑. Clearly if Frank is a baby elephant,
he may be considered a big animal without being at the same time considered a big
elephant. Then there is no set that may be identified as the meaning of big. Instead,
big must be considered to be some function whose denotation is dependent on the
meaning of the noun it is applied to.

It should be noted that the definition of intersective adjectives proposed as con-
ditions (5) and (6) is not uncontroversial, and there exists literature defending al-
ternative accounts of the semantics of intersective adjectives. For instance, pointing
to the availability of predicative uses of non-intersective adjectives such as Jumbo
is small, Heim and Kratzer (1998) argue for first-order e → t type for apparently
non-intersective adjectives. As an example, they provide the following denotation
for small :

❏small❑ = λx.x’s size is below c, where c is the size standard

made salient by the utterance context

(Heim and Kratzer, 1998, p. 71)

(9)

Given this typing, Heim and Kratzer can account for the failure of entailment of,
for example, Jumbo is a small animal 6→Jumbo is a small elephant by appealing
to context updates forced by the noun argument elephant, which changes the size
parameter dictated by the context. At the same time, they are able to maintain
that the adjective has a first-order type like that of (9). However, it seems to me
that this commitment to a first-order type for the denotations of context-sensitive
adjectives is not tenable, since clearly context update must be a function that has
the adjective’s noun argument as one of its parameters. Although the details are
debatable, it is reasonable to suppose that the contextual size parameter is given
as a function of ❏elephant❑, so that the updated context c is something resembling
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(10).

c = a where a is the average of height(x) for every x in ❏elephant❑ (10)

Composing ❏small❑ with this contextual update function and then abstracting out
the noun ❏elephant❑ returns a function that is at least second-order (I am not
committed to the idea that the noun denotation is the only parameter to the
context update function). So while the adjective function may be called first-
order, in an attributive use, it is really covertly second-order or above, with type
(...× (e → t)× ...) → (e → t). Such a denotation is sharply different from one sat-
isfying the intersectivity condition laid out above, in that the operation performed
by the adjective changes as a function of the noun it is applied to.

Detailed examination of these claim is beyond the scope of this paper. However,
I have provided a defense of the more restrictive notion of intersectivity encoded
in conditions (5)/(6). Although alternative accounts of intersectivity will be con-
sidered, the focus will be on non-context-dependent adjectives. For these context-
dependent adjectives identified by Heim and Kratzer, Partee (2007), following Siegel
(1976), shows that such adjectives can be singled out by examining their distribu-
tion in as- and for-phrases, a test employed later in the computational experiments
reported on here.

It is worth noting that, as long as we recognize the distinction between context-
dependent and non-context-dependent adjectives, it is unnecessary to dwell for very
long on whether they are to be classed as intersectives. So long as all essential terms
are properly defined, the choice of whether to call any class of adjectives intersective
versus non-intersective versus intersective but context-dependent is mostly stipu-
lative and of no inherent interest. It suffices to say that by intersective, I mean
adjectives that satisfy the intersectivity condition (5)/(6). Adjectives like small,
with denotations like (9) are instead referred to as context-dependent. In Section
6, some evidence from a computational experiment indicates that context-sensitive
adjectives have more in common with non-intersective adjectives, in distributional
terms, than they do with intersectives, a fact which somewhat strengthens the choice
to consider context-sensitive adjectives to be part of the class of non-intersectives.

3.3 Problems with non-intersective adjective denotations

The principle of compositionality, speaking somewhat roughly, is the contention
that the meanings of expressions are given by the meanings of their constituent sub-
expressions and their means of combination. The characterization of non-intersective
adjective meanings as maps between properties, maps that vary widely widely de-
pending on the denotations of their arguments, poses no problems for the com-
positionality. Non-intersective adjectives are a problem for this principle, and for

14



linguistic theory in general, because the functions denoted by non-intersective at-
tributives are fundamentally underdetermined.

Put another way, even given all available information about the meanings of
the constituent parts of the expression, one still cannot specify the meaning of
the expression built up through the combinatorial rules of the language. Hence,
the meaning of the whole cannot be determined from the meanings of the parts
and their means of combination—the essence of compositionality. Even given a
set corresponding to the non-intersective adjective used in a predicative position,
its meaning when the type of the expression shifts from a predicate to a function
over predicates remains unspecified. The adjective functions, in the case of non-
intersectives, have missing parameters.

Non-intersectivity of attributive adjectives poses a problem for compositionality.
However, the relevant problem may be more one of the insufficiency of a particular
theory rather than in the nature of the adjectives themselves. The issue from the
standpoint of a semantic theory is that the particular function corresponding to a
non-intersective adjective is not known, once the sets denoted by the adjective and
all its possible arguments are given. However, a speaker necessarily does possess
knowledge of the denotation of the intentional adjectives she uses. So the speaker
clearly implements a compositional procedure for combining the adjective with its
noun argument. So, again adopting the view that adjectives are functions over sets,
we might argue that there is no need to specify the particular collection of sets
that an adjective function maps its arguments to, so long as we can state some
nontrivial conditions on that interpretation. An example is the condition that the
interpretation of a subsective attributive be a subset of its argument.

In addition to the problems they pose for compositionality, non-intersective ad-
jectives are also highly challenging from the point of view of providing an adequate
explanatory account of natural language semantics that accounts for the acquisition
of the semantics of a language. A semantic theory should describe structures such
that they could be learned by a speaker upon an encounter with the normal range
of data about meanings. From this point of view, it is clear that one who wishes to
learn the meanings of non-intersective adjectives faces a daunting task, since such a
learner must internalize a method of deriving, for any arbitrary noun which may be
combined with an adjective, what the denotation of the adjective-noun compound
will be.

In the worst-case scenario, where the meanings of nouns are simply identified with
their denotations, the space of possible meanings for an adjective is massive. Taking
the traditional picture of the denotations of adjectives as being functions from sets
to sets, then, I lay out some implications for the size of the learning problem involved
for acquiring the meaning of an adjective. The learning problem is as follows. An
adjective maps a set–the denotation of a noun–into another set. Hence a speaker
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with knowledge of the language must have knowledge of the function, which may
be a partial function. A function can be characterized as a set of ordered pairs of
arguments and images under the function. Hence, learning an adjectival function
involves learning a (partial) map from the denotations of nouns in the language back
into subsets of the domain of individuals. Specifically, an adjective is a function from
the power set of the domain P(U) back into the same power set. Let us assume
a language L with n nouns comprising a set N ⊆ P(U) such that N = {Ni}.
Furthermore, let each Ai ∈ A be an attributive-type adjective. Then learning the
meaning of each adjective involves learning a set of functions A such that:

A ⊆ {f : N f−→ P(U)} (11)

In words, each Ai in A is a partial endofunction on P(U). Without any specifi-
cation of what the adjective maps should look like, the space of possible functions is
truly immense. To illustrate this, I will consider the relatively trivial case of subsec-
tive adjectives. Each adjective maps a noun to a subset of itself, so the image of each
noun Ni is in P(Ni). There are |P(Ni)| = 2|Ni| such functions for each noun. Hence,
for a language with n nouns, each subsective adjective must be learned assigning
to each noun an image in its power set. Counting these possible functions, we find
their number is given by:

n
∏

i=1

2|Ni| = 2
∑

i |Ni| (12)

Consider a hypothetical language L0 with a single adjective A0 and three nouns
N1, N2, N3, each denoting 10 individuals. A learner of this language has to consider
230, or over 109 hypotheses. In the special case of intersective adjectives, there is
a shortcut that uniquely identifies the subset of Ni denoted by A(Ni). However,
for the non-intersective subsective cases, it is clearly unreasonable to suppose that
all of these possibilities are entertained. The situation is even worse with the non-
subsective adjectives. Consider the privative adjectives. In these cases, we replace
Ni in (12) with its complement set NC

i , which is very large for most nouns.
Remarkably, it is not even possible to make this number smaller when the de-

notations of the nouns overlap. Consider the sets of bankers and doctors. The
intersection of these sets is nonempty. Now, it might be hoped that when an adjec-
tive like skillful is applied to these sets, it would identify the same subset of each
argument set. But not even this condition is true.

Formulated as a learning problem involving the selection of a target set for
each application of an adjective to any noun, non-intersective adjectives present
immense difficulties for a speaker attempting to learn the semantics of a language,
and given the poverty of the stimulus about adjective meanings, it is unlikely that
a learning procedure based on assignment of denotations will realistically account
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for the mature knowledge of a speaker with command of the denotations of non-
intersective adjectives.

These considerations lead to the conclusion that an adequate account of the se-
mantics of non-intersectives must lie within a class of theories that add additional
parameters to the representations of word meanings. Many such theories are pos-
sible, including type-drive combinatorial theories such as the Generative Lexicon
Pustejovsky (1991) or the framework presented in Asher (2011) that directly pro-
vide an interface with model-theoretic intepretations. In line with common sense,
models differentiating words based on co-occurrence data that all language learners
are exposed to gives one surely important set of parameters that language learners
employ individuate and relate lexical entries. In addition, the mathematical rela-
tions obtaining between these representations can be studied using new sets of tools
applicable both novel and traditional semantics topics. The relation between the
two broad classes of models is best thought of as complementary–examining related
phenomena at different levels of granularity, using different data.

4 A probabilistic model of word meaning

4.1 Basic concepts

The distributional model of word meaning is based on the hypothesis, that even
if the meaning of word may not be identified with its patterns of co-occurrence
with other words, that such patterns are indicative of semantic distinctions. This
is a semantic counterpart of the distributional techniques of analysis employed in
syntax and phonology for identifying substitution classes of expressions that indicate
their commonality at some level of representation. In other words, distributional
data preserve some subset of psychologically relevant relations and distinctions:
synonymy, semantic incompatibility, perhaps hypernymy and others. The model
of word meaning assumed in this framework may be formulated as follows.

Let Σ be a message-emitting machine that produces symbols µ serially. When
Σ emits a sequence of messages µ1µ2...µk drawn from an alphabet M = {µn}, we
write:

Σ : µ1 µ2 ... µk (13)

Consider the information available to an observer O recording the output of Σ. Such
an observer is a position to predict the future distribution of messages by Σ based
on its prior output. Such predictions come in the form of conditional probabilities
P (µi|µi−1). A model of Σ thus constructed is essentially a finite state machine. From
it, one can readily compute the probability of any sequence of messages emitted by
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Σ. This elementary characterization may be extended to provide a way of comparing
distributions.

An observer O recording the output of Σ will, given enough data, be able to
develop an elementary model of the output of Σ in the form of a probability distri-
bution over the messages of Σ. Such a distribution would minimally include P (µi|µ)
for any message µ and any possible context µi. It may also be possible, however,
for O to compare distinct messages µj, µk based on the similarity of distribution of
other messages around them–speaking very informally, the patterns of distribution
for other messages around the modelled messages µj, µk. This characterization may
be rendered more vivid if we refer to lexical states σ corresponding to every message
µ, and encoding the patterns of distribution of messages in various context positions
around µ.

Definition 1. A lexical state σ indexed to a message µ is the state of a message-
emitting machine Σ when Σ produces µ.

Correspondingly, the state space of Σ is the set of all states that Σ may be found
in.

Given a probability distribution over contexts, lexical states may be compared
with one another, such that states having similar patterns of contextual distribution
are found to be “close together” in some sense. The experimental meaning of this
asserted relation between lexical states is that the expected distribution of outcomes
in the vicinity of the messages indexed to these states are similar.

The class of language models assumed in this framework can be characterized as
follows. A model of a language L includes, for any message µ, the probability that
any message µj will be emitted at distance k to the left/right of µ. A model of σ
thus consists of an ensemble of probabilities of emitting each µi. Each observation
of a context of σ can be conceptualized as the outcome of a random experiment, in
which state σ results in the outcome of a context µi with probability pi.

P (µi|σ) = pi (14)

For arbitrary states σ corresponding to messages µ, an elementary model of σ can be
constructed from counts of the production by Σ in state σ producing µ of contexts,
say, immediately to the right of µ, a situation depicted in (15).

Σ(σ) : ... µ µj ... (15)

Clearly, for any pair of distinct messages µi, µj, observations of µi and µj as con-
texts of µ in this position are mutually exclusive. That is, P (µi, µj|σ) = 0. More-
over, the entire vocabulary M spans the space of possible context messages; that
is,
∑m

i=1 P (µi|σ) = 1. Hence our model of σ is a discrete conditional probability
distribution over messages emitted by Σ in state σ.
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4.2 Lexical state vectors

Given the above stipulations, how will a model for Σ be represented? The model of
word meaning characterized above can be given a compact mathematical represen-
tation in vector spaces. The main advantage of this presentation is that it provides
a way of computing probabilities for context outcomes, as well as providing simi-
larity relations between lexical states. These will be briefly touched on in section
4.3, but are not the main focus of the exposition. Following (Nielsen and Chuang,
2010), I will use the Dirac notation for writing down state vectors and operators over
them.1 The mathematical presentation follows notational conventions designed for
applications in quantum physics and quantum information theory, but the thread
of exposition is designed to make clear the formalism’s relation to the linguistic
structures at issue in the present analysis.

Each lexical state σ is associated with a state vector written as a column vector
or “ket” |σ〉 which is a superposition (weighted sum) of basis vectors {|βi〉}i with
coefficients {γi}i in the interval [0, 1]:

|σ〉 = γ1 |β1〉+ γ2 |β2〉+ ...+ γn |βn〉 (16)

The set of basis vectors is chosen to be orthonormal. That is, for each i, j:

〈βi|βj〉 =
{

1, if i = j.

0, otherwise.
(17)

Each lexical state vector is represented by a “ket” |σ〉 in a vector space V , and has a
dual vector in the dual vector space V ∗ denoted by the “bra” 〈σ|, which is obtained
by transposing |σ〉 and taking the complex conjugate of each of is components. If
|σ〉 = γ1 |β1〉+ γ2 |β2〉+ ...+ γn |βn〉, then:

〈σ| = γ∗1 〈β1|+ γ∗2 〈β2|+ ...+ γ∗n 〈βn| (18)

where each γ∗i is equal to the complex conjugate of γi.
2 This distinction is cru-

cial in quantum mechanics, where states have coefficients ranging over the complex
numbers. However, the co-occurrence vectors constructed in the contexts of distri-
butional semantics have coefficients ranging over the real numbers. Equivalently,
γ∗ = γ for each γ. Hence, in this restricted domain, the distinction between bras
and kets can be viewed simply as a distinction between row and column vectors
(Nielsen and Chuang, 2010, p. 62).

1The essentials of this notation are reviewed here, but more detail may be found in (Nielsen
and Chuang, 2010).

2The complex conjugate of a complex number a+ bi is simply the same number with its imag-
inary portion negated. That is, (a+ bi)∗ = a− bi.
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The inner product (|φ〉 , |ψ〉) between two vectors is written 〈φ|ψ〉. The norm
of a vector is the square root of its inner product with itself, that is: norm(|σ〉) =
√

〈σ|σ〉, and is additionally the definition of the “length” of a given vector. The
normalization condition for state vectors states that if |σ〉 is a state vector, then |σ〉
has a unit norm, or 〈σ|σ〉 = 1. Therefore, the state space of Σ is equal to the set of
all unit-length vectors in some vector space V .

4.3 Computing probabilities from state vectors

If basis vectors are conceived as indexes over possible emissions of messages, and the
product of conjugate coefficients γ∗i γi is thought of as the probability of the outcome
µi given state σ, it is clear that |σ〉 defines a probability distribution over possible
contexts, which are the outcomes of observations of the lexical state σ. Understood
this way, the normalization condition has the meaning that the probability of any
outcome is 1 (the sum of probabilities of all disjoint outcomes is 1) Susskind and
Friedman (2014). Probabilities for any given outcome µi can be computed from the
state vectors in the following way.

Let σ be a lexical state and |σ〉 = γ1 |β1〉+ γ2 |β2〉+ ...+ γn |βn〉 its state vector
written as a superposition of orthonormal basis vectors {|βi〉}i indexed to outcomes
{µi}. Clearly for any vector |βi〉 in the basis, 〈σ|βi〉〈βi|σ〉 = γ∗i 〈βi|βi〉γi〈βi|βi〉 = γ∗i γi.
Moreover, 〈σ| (∑i |βi〉 〈βi|) |σ〉 =

∑

i〈σ|βi〉〈βi|σ〉 =
∑

i γ
∗
i γi = 1 by the normaliza-

tion condition. So |σ〉 encodes a probability distribution over the outcomes µi.
Given this fact, it makes sense to associate each observable Oi = |βi〉 〈βi| with an

elementary event in the outcome space (Susskind and Friedman, 2014). This leads
to the following definition.

Definition 2. Let µi be a (co-occurrence) outcome and |βi〉 an orthonormal basis
element indexed to µi. Then

P (µi|σ) = 〈σ|βi〉〈βi|σ〉
= 〈σ|Oi |σ〉

where Oi is the observable corresponding to µi.

The objects |βi〉 〈βi| are the outer products of basis vectors of |βi〉, and cor-
respond to projections onto one-dimensional subspaces induced by the individual
basis elements. The outer product |φ〉 〈ψ| between two vectors |φ〉 =∑n

i γi |φi〉 and
|ψ〉 =

∑n

j δj |ψj〉 is
∑

i,j γ
∗
i δj |φi〉 〈ψj| and can be represented as an m × n matrix

M with entries Mij = γ∗i δj. Consider an observable Oi to correspond to a random
experiment in which the result is 1 if µi is observed, and 0 otherwise. Then

〈Oi〉 = 〈σ|Oi |σ〉 = P (µi|σ) (19)
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is the expected value of this experiment. In the distributional semantics setting,
then, 〈Oi〉 gives the expected value of observations (Kartsaklis, 2014, Susskind and
Friedman, 2014) of a co-occurrence context µi when the signaller Σ is in state σ.

I will now give a concrete construction of lexical state vectors derived from a
corpus that satisfy these requirements. Each modelled word µ is associated with
a vector |c〉 with components that are raw counts of the co-occurrence frequency
for each word µi that co-occurs with it. An indexation of context words µi to
orthonormal basis elements |βi〉 is assumed. Therefore each raw frequency vector is
given by

|c〉 =
∑

i

count(µi, µ) |βi〉 (20)

where count(µi) is the frequency of µi occurring in a particular contextual position
with respect to the target word µ. Since all contexts are recorded,

P (µi|σ) =
count(µi, µ)

∑

j count(µj, µ)
(21)

where
∑

j count(µj, µ) is the frequency of occurrence of µ in any context. The lexical
state vector |σ〉 is given by:

|σ〉 =
∑

i

√

count(µi, µ) |βi〉
√

∑

j count(µj, µ)
(22)

To verify that |σ〉 satisfies our requirements for a state vector, we check that it meets
the two conditions laid out above.

1. |σ〉 is normalized.

〈σ|σ〉 =
∑

i

√

count(µi, µ)
2

√

∑

j count(µj, µ)
2 〈βi|βi〉 = 1

2. For any basis element |βi〉 indexed to outcome µi, 〈σ|βi〉〈βi|σ〉 = P (µi|σ).

〈σ|βi〉〈βi|σ〉 =
√

count(µi, µ)
√

∑

j count(µj, µ)
〈βi|βi〉

√

count(µi, µ)
√

∑

j count(µj, µ)
〈βi|βi〉

=
count(µi, µ)

∑

j count(µj, µ)

= P (µi|σ)
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Hence a state vector produced from co-occurrence statistics in this way defines a
probability distribution over all context outcomes for µ.

States can be compared by an analogue of the measurement procedure. An ex-
ample is given by states in complementary distribution. The state σ can only be
identified on the basis of some number of observations large enough to determine
the expectation of each observation. However, orthogonal states are perfectly dis-
tinguishable. For instance, if a system is known to be either in state σa or σb where
a 6= b, an observation O = |βi〉 〈βi|, i = a or i = b, will determine with certainty
which of the two states the system is in. This is because

〈σa|σb〉 =
∑

i

γai γ
b
i 〈βi|βi〉 = γai γ

b
i (23)

where obviously γai 6= 0 and γbj 6= 0 for some i, j, since these are normalized state
vectors. Clearly then either γai or γbi must be zero for every i for the products all
to be zero, which means that σa and σb are in complementary distribution. Hence,
an observation of any outcome µi for which 〈σa|βi〉 6= 0 conclusively determines the
state to be σa, and similarly for σb.

Non-orthogonal states are somewhere between the same and different. They oc-
cur in overlapping contexts, and so are not completely distinguishable. However,
some states are more similar to one another than others, in that there is more over-
lap between their contexts, and the probability with which they occur in various
contexts is similar. Whereas each member of the canonical basis is associated to
a canonical observable Oi, each state σ may likewise be associated with a projec-
tion onto the one-dimensional subspace it defines, given by Oσ = |σ〉 〈σ|. Clearly,
〈σ|Oσ |σ〉 = 〈σ|σ〉〈σ|σ〉 = 1, and for any state vector |ψ〉 6= |σ〉, 〈σ|Oψ |σ〉 < 1.
Since state vectors have length 1, this last equation is just the square of the cosine
distance of Equation (2), which varies monotonically with cosine distance. Hence
this generalization of the observables to arbitrary state vectors defines an appropri-
ate distance ordering between states.

4.4 A mixed state picture of adjective meanings

Given a corpus of sufficient size, one can construct a model of the signaller Σ of
the form specified in section 4 on the basis of the co-occurrence statistics of each
word µ. Co-occurrence statistics are then directly recoverable from the state space
representation of σ corresponding to µ.

However, as seen in section 3, there are good reasons for assigning a sharply
different type to adjectives than holds for nouns. Under the compositional semantic
model, adjectives are minimally functions from noun-type denotations into noun-
type denotations. In the model-theoretic case, these noun-type denotations are
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properties corresponding to extensional predicates. In the distributional case, I fol-
low Baroni and Zamparelli (2010) and Mitchell and Lapata (2010) in assuming that
noun denotations are state vectors and adjective denotations are maps between state
vectors. There are good reasons for assuming this typology. Common nouns and
ANs form a syntactic substitution class. Given any instance of a noun occurring in
some syntactic context, the noun may be substituted for an AN, preserving gram-
maticality. Similarly, common nouns and ANs are members of the same semantic
class, in that they have the same type of denotation. In particular, both have the
denotation of predicates, or functions e → t. Hence, there is convergent evidence
that they are expressions of the same basic type. Accordingly, they are assigned the
same type in the distributional model, namely, that of lexical states. Adjectives,
however, as in type-logical truth-conditional semantics, are assigned the type of a
function over noun types. In the truth-conditional contexts, adjectives are modelled
as functions of type (e→ t) → (e→ t). Correspondingly, adjectives are modelled as
functions between lexical states, whose particular representations are derived from
co-occurence contexts in corpora.

The theoretical model adopted here conceptualizes an adjective as a function
over the noun state. We have evidence about the nature of this adjective function
from the initial state of the noun and the terminal state represented by the state of
the AN. The mapping is thus given for some finite set of a cases, from which it is
possible to generalize about the action of the adjective in general. The analytical
problem of characterizing the action of an adjective on a noun meaning thus has the
form:

A := ~n −→ ~an (24)

where A is an unknown process with the known property that it maps from any ~n
to a corresponding A~n = ~an.

Each A can therefore be thought of as a preparation process for noun states. A
is a function that takes the lexical state of a noun as input, and produces a new
lexical state as output. Even if the process itself remains impenetrable, the inputs
and outputs may be observed; they are the states of nouns and ANs respectively.
The relevant process may be imagined as a black box we wish to analyze. Though
the equation mapping each input to each output is unknown, the map itself is known
for some set of observed states.

The study of such functions is rendered difficult by the fact that they cannot be
directly observed. Instead of directly modelling the adjective function, it is possible
to study its properties from a more abstract point of view, without specifying the
equation mapping inputs to outputs. The structure of the current study is obser-
vational. Given observational data about the input states (noun vectors) and the
output states (AN vectors) of the adjective-process, we investigate how adjectives
act on the whole spread of noun states they apply to.
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This approach to modelling word meaning is, as far as I am aware, unique.
Unlike other frameworks, such as (Baroni and Zamparelli, 2010), no assumption is
made about the form of the adjective map, other than the stipulation that adjectives
map distributions onto distributions. By comparison, Baroni and Zamparelli (2010)
directly estimate adjective maps, in particular assuming that adjective functions
have the form of linear maps over noun vectors. It is not at all clear, a priori, that
this is the right model to learn for an adjective. While I assume that adjectives
are maps from noun vectors into other vectors of the same type (living in the same
space), I do not estimate the adjective maps directly. I only assume the presence of
a hidden adjectival map.

4.5 Density operators: Mixed states

One additional formal device will enable the characterization of the uncertainty
associated with adjective meanings. Consider a collection of states {σi} any of which
a system may be in when it is observed. This corresponds to the model laid out
above for the meanings of adjective-noun pairs. We wish to consider the properties of
a statistical ensemble defined by the presence in each case of the modelled adjective
modifying the noun. For example, the adjective “big” will occur with the meaning
of “big dog”, “big elephant”, and “big flea”, each of which has some probability pi
of occurring, and none of which individually captures the range of variation for the
meaning of “big”. It is expected, in light of the generalization that the members of
a set corresponding to a given adjective α have some property in common, that this
fact will have a distributional effect reflected greater proximity between the ANs
corresponding to the adjective. These adjectives will tend to be found in a similar
region of the overall space. Conversely, non-intersective adjectives, whose meanings
differ depending on the argument they are applied to, would exhibit a greater range
of variation in their eventual location after being affected by the adjective. Density
operators have been proposed for linguistic applications in (Blacoe et al., 2013), but
to my knowledge, the first proposal for their use in analyzing polysemy using the
von Neumann entropy is (Kartsaklis, 2014).

A model of the range of states that an adjective maps its noun arguments to
will therefore consist of distinct observations of ANs, each of which is in a different
state. Application of an attributive adjective therefore produces a “mixed state”
of AN states, where, depending on which particular sample is drawn (which noun
argument the adjective has been applied to), the resulting state of the AN will differ.
In this mixed state, there are two types of uncertainty. There is uncertainty about
the outcome of a random experiment given that the system is in any given state.
In addition, there is uncertainty about what state the system will be in when it
is observed. Such mixed states can be characterized, and the probabilities of any
given outcome of a random experiment on them calculated, using density operators
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conventionally denoted by the letter ρ.
Let {〈|σi〉 , pi}i be an ensemble of states paired with the probability that the

system is in that state. The density operator corresponding to this mixture is:

ρ =
∑

i

piρi =
∑

i

pi |σi〉 〈σi| (25)

A special case of a density operator is the pure state, which can be written as the
outer product of a state vector |σ〉 〈σ|.In calculations, each ρi is represented by a
square density matrix whose i, jth entries are the products of the corresponding
entries of the state vectors |σ〉, 〈σ|.

Theorem 1. Spectral Theorem Let Q be any normal operator on a vector space
V. Then Q is diagonal with respect to some orthonormal basis for V.3

ρ is a Hermitian operator (equal to its own conjugate transpose) and that, in the
real numbers, it is represented by a symmetric matrix. The spectral theorem gives
a canonical decomposition for Hermitian operators that is based on the eigenvectors
of such operators. As a special case of the spectral theorem, a Hermitian operator
can be decomposed into a weighted sum of outer products of its eigenvectors, all of
which are pairwise orthogonal. This gives the spectral decomposition for ρ (Nielsen
and Chuang, 2010).

Definition 3. Spectral Decomposition Let ρ be an arbitrary density operator, and
hence Hermitian. By (1), ρ has a spectral decomposition

∑

i

λi |λi〉 〈λi| (26)

where the |λi〉s are orthonormal eigenvectors of ρ with corresponding eigenvalues
λi.

4

Each |λi〉 〈λi| are pure states. It is readily seen that the sum of the diagonal
elements of each pure state ρi is equal to the inner product 〈σ|σ〉, and that when
the |σi〉 are unit vectors weighted with factors pi summing to 1, the sum of diagonal
entries has value 1.

This quantity, called the trace Tr[ρi], is invariant across matrix representations
of the density operator, and hence the trace is equal for density operators and

3If all eigenvalues for ρ are distinct, then these eigenvectors are orthogonal. If the eigenspace
of ρ is degenerate, an orthonormal eigenbasis can be built for the degenerate subspace using the
Gram-Schmidt procedure. These results will not be proven, but are well-known and thus assumed.
For more detail, the reader is referred to (Nielsen and Chuang, 2010).

4For any operator A, ~v is an eigenvector of A if A~v = λ~v for some scalar λ. In this case, λ is
called the eigenvalue corresponding to eigenvector ~v.
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their spectral decompositions5. The measurement statistics for a given observable
O corresponding to some message µ given a statistical mixture ρ are given by the
trace:

〈O〉 = Tr [ρO]

= Tr

[

∑

i

pi |σi〉 〈σi|O
]

=
∑

i

pi 〈σi|O |σi〉

=
∑

i

pi × P (µ|σi)

The trace Tr[ρO] is equivalent to the probability of outcome µ for each state mul-
tiplied by the probability of that state (Nielsen and Chuang, 2010). The measure-
ment statistics for a statistical ensemble of states can therefore be recovered from
the mixed state expressed as a density operator.

Example 1. Consider a density operator that is a weighted sum of two pure states
|φ〉 and |ψ〉 represented in a lexical state space with only two basis elements |cat〉,
|dog〉:

|φ〉 = |dog〉 P (φ) =
1

3
(27)

|ψ〉 = |cat〉√
2

+
|dog〉√

2
P (ψ) =

2

3
(28)

ρ =
1

3
|φ〉 〈φ|+ 2

3
|ψ〉 〈ψ| (29)

The density operator ρ represents a state that is a weighted mixture of these two
pure states.

dog

cat

1
3
|φ〉

2
3
|ψ〉

5Let {βi}i be any orthonormal basis for vector space Φ and A any linear operator on Φ. Then
Tr[A] =

∑

i
〈βi|A |βi〉.

26



Since these vectors are non-orthogonal, the orthogonal decomposition returns a new
pair of vectors λ1 |e1〉 , λ2 |e2〉 that are orthogonal and capture the same co-occurrence
statistics as |φ〉, |ψ〉.

4.6 Entropy of statistical mixtures

In addition to their link with co-occurrence statistics for uncertain distributions of
lexical states, density operators are associated with a measure of entropy, which
makes it possible to measure the degree of uncertainty about what state a given
system is in. The application of this method to the analysis of semantic ambiguity
is the work of Kartsaklis (2014).

Entropy is a quantity associated with a probability distribution that, depending
on the interpretation, measures the uncertainty associated with the outcome of a
random experiment–the distribution’s level of bias towards some subset of possible
outcomes–or expected value of the average number of bits needed to communicate
the outcome of a random experiment given an optimal encoding of outcomes. Given
random variable X with values xi such that P (xi) = pi, the Shannon Entropy H(X)
is

H(X) = −
∑

i

pilog(pi). (30)

The Shannon Entropy is minimized when a single outcome has probability 1, and
maximized when every outcome has equal probability. A generalization of the Shan-
non entropy for vector spaces was given by Von Neumann as the formula:

S(ρ) = −Tr[ρlog(ρ)] (31)

Since each density operator is equal to its spectral decomposition, in calculations,
this quantity can be given as:

S(ρ) = −Tr
[

∑

i

λi |λi〉 〈λi|
]

(32)

= −
∑

i

λilog(λi) (33)

where
∑

i λi |λi〉 〈λi| is the spectral decomposition for ρ. The symmetry between
the formulae for the classical and von Neumann entropy is readily seen. In fact, the
Shannon entropy is just the von Neumann entropy when the states are orthogonal
(Petz, 2001).

The equality implies that the two distributions–the orthogonal decomposition
and the original mixture of states and their probabilities–are equivalent in the mea-
surement statistics that they produce. In general, there exist many decompositions
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for a given non-pure ensemble ρ that are equivalent in this sense. Different decom-
position of mixed states are indistinguishable on the basis of the results of measure-
ments on them. However, the orthogonal decomposition is central in that its sum-
mands are pairwise orthogonal, and therefore represent entirely distinct states. The
spectral decomposition gives the minimum number of vectors, along with weights
between zero and one, needed to generate the co-occurrence statistics encoded in ρ.

For any pure state ρs = |σ〉 〈σ|, there is only a single eigenvector |σ〉, and it has
eigenvalue 1. Hence S(ρs) = log(1) = 0. Correspondingly, there is no uncertainty
about the state of the system; it is unambiguously in state |σ〉. For mixed states,
however, the system may be in any of several states, and moreover, these states
may not be orthogonal–that is, they are somewhere between the same and different.
However, their distributional properties, by the spectral theorem, can be reduced to
the statistics produced by a set of orthogonal vectors. The von Neumann entropy
is defined for these vectors.

4.7 Entropy of composite systems

In the experiments reported on here, nouns were modeled as composite systems
consisting of one-word left and right contexts. However, primarily for computational
reasons due to the large space of outcomes operated over in the characterization of
lexical states, it is necessary to decompose systems into smaller systems assumed
to be independent. The computation of entropy for joint independent systems,
however, is thankfully straightforward.

Joint systems are produced from distinct systems via the tensor product ⊗. Let
Φ, Ψ be state systems with bases {|φi〉}mi and {|ψj〉}ni . Then their tensor product
Φ⊗ Ψ has the basis {|φi〉 ⊗ |ψj〉}mni,j , or more compactly, {|φiψj〉}mni,j . For arbitrary
scalar z and |φ〉 ∈ Φ, |ψ〉 ∈ Ψ, the tensor product satisfies:

1. z |φ〉 ⊗ |ψ〉 = |φ〉 ⊗ z |ψ〉 = z(|φ〉 ⊗ |ψ〉)

2. |φ〉 ⊗ (|ψi〉+ |ψj〉) = |φ〉 ⊗ |ψi〉+ |φ〉 ⊗ |ψj〉

3. (|φi〉+ |φj〉)⊗ |ψ〉 = |φi〉 ⊗ |ψ〉+ |φj〉 ⊗ |ψ〉

The tensor product of operators is also defined. If A, B are operators over vector
spaces Φ, Ψ, then the operator A ⊗ B is an operator over the vector space Φ ⊗ Ψ
with the property in (34).6.

(A⊗ B)(|φ〉 ⊗ |ψ〉) = A |φ〉 ⊗ B |ψ〉 (34)

6For more details about the tensor product, with graphical representations of tensor states in
a linguistic context, the reader is referred to Section 3 of (Clark, 2013)
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It can be verified that if both |φi〉 and |ψj〉 are of unit length, then their tensor
product |φi〉 ⊗ |ψj〉 is of unit length as well. Hence, the tensor product of two state
vectors also defines a state vector, and likewise defines a probability distribution
over outcomes. Specifically, the tensor product of two states gives the distribution
of joint probabilities of outcomes on the two states when the two distributions are
stochastically independent. We can therefore define:

Definition 4. Let µi, µj be outcomes indexed to observables Oi, Oj, and let σ, φ be
independent states.

P (µi, µj|σ, φ) = P (µi|σ)P (µj|φ) = 〈σφ|Oi ⊗Oj |σφ〉 (35)

This picture generalizes to the density operator formalism, where the product of
two independent mixed states ρ1 and ρ2 is simply obtained via their tensor product
ρ1 ⊗ ρ2. However, the representations of joint systems grow quite large. In the
linguistic distributional model, each context position is a separate system. Each pair
of distinct outcomes for that contextual position is mutually exclusive (orthogonal),
and the probability of all outcomes in that position is equal to 1. Hence, for a given
state σ of Σ, corresponding to µ, the first right and left contexts are outcomes of
distinct systems, and so on for the second right and left contexts, and for the n+1th

right and left contexts. The representations for such systems grow exponentially,
and thus are difficult to compute over. The following theorem relates the entropy
of a joint system to the entropy of the individual systems7.

Theorem 2. For a pair of density operators ρA, ρB, S(ρA ⊗ ρB) = S(ρA) + S(ρB).

Proof. Since ρA, ρB are density operators, they have orthogonal decompositions
∑

i λiρi,
∑

j λjρj where each ρk = |λk〉 〈λk|. It is clear that each |λi〉 ⊗ |λj〉 is an

eigenvector of ρA ⊗ ρB with eigenvalue λiλk, since:

(ρA ⊗ ρB)(|λi〉 ⊗ |λj〉) = ρA |λi〉 ⊗ ρB |λj〉
=
∑

k

λk |λk〉 〈λk|λi〉 ⊗
∑

ℓ

λℓ |λℓ〉 〈λℓ|λj〉

= λi |λi〉 ⊗ λj |λj〉
= λiλj |λi〉 ⊗ |λj〉

The vectors |λi〉 ⊗ |λj〉 are pairwise orthogonal and form a basis for A⊗ B, and so

7This is stated as a theorem in (Nielsen and Chuang, 2010, p. 514), but not proven. The proof
is original as far as I am aware.
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they provide an orthogonal decomposition for ρA ⊗ ρB. Therefore,

S(ρA ⊗ ρB) = S

(

∑

i

λiρi ⊗
∑

j

λjρj

)

= S

(

∑

i,j

λiλj |λi〉 〈λi| ⊗ |λj〉 〈λj|
)

=
∑

i,j

λiλjlog(λiλj)

=
∑

i,j

λiλjlog(λi) + λiλjlog(λj)

=
∑

i,j

λiλjlog(λi) +
∑

i,j

λiλjlog(λj)

=
∑

i

λilog(λi) +
∑

j

λjlog(λj)

= S(ρA) + S(ρB)

This means that the joint entropy of two systems is the sum of the entropy for
the systems considered separately. This is essential from a computational point of
view, since the size of joint systems grows exponentially with the the number of
subsystems. In the experiments described in 5, I treat the right and left contexts as
independent systems.

5 Experimental implementation

The implementation developed here for testing the effects on entropy of differing
word classes in English is based on the formalism developed above that models lex-
ical entries as probabilistic states derived from co-occurrence statistics in corpora.
These experiments showed an unexpected, negative relationship between distribu-
tional entropy and intersectivity, with intersective adjectives having lower mean
entropies than their non-intersective counterparts. Recall that intersective adjec-
tives correspond to a set that is invariant across all attributive uses of the adjective,
whereas non-intersective adjectives lack this property. In fact, non-intersective ad-
jectives vary in meaning across predications, as a function of the meanings of their
noun arguments. Despite results that contradicted the predictions of the theory,
however, significant group differences between intersectives and non-intersectives
were brought into sharp relief through measurements of their distributional entropy.
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5.1 Corpus

In order to obtain the most accurate estimates of the distributional probabilities of
each modeled lexical entry, a large 2.5-billion-word corpus was prepared based on a
2014 dump of Wikipedia concatenated with the British National Corpus (BNC). The
Wikipedia corpus was cleaned using tools provided free by LinguaTools (Kolb, 2015).
The corpus was lemmatized and tagged for part of speech using the TreeTagger
(Schmid, 1995). POS tagging was necessary in order to identify nouns, ANs, and
relevant contextual features.

Lemmatizing the corpus is a parametric choice. In this case, it was motivated by
a belief that the distributional features relevant to determining semantic represen-
tations involve generalizing over derivational morphological variations of the same
words. Whether a modelled noun or adjective-noun combination occurs to the left
(or right) of eat, eating, or ate does not make a difference for determining its rela-
tionship to eating. Pre-processing the data in this way assumes a certain amount
of grammatical knowledge among the language users being modelled; however, this
does not seem like an unreasonable assumption.

5.2 Word vector models

Because the parts of speech of interest were exclusively attributive adjectives, these
were isolated by finding adjacent pairs tagged as adjectives and nouns. Co-occurrence
vectors were prepared by collecting all of the contexts of each modelled noun or AN,
with a window of 1, and tagging each context as occurring either to the left or to
the right of the modelled word. Co-occurrence vectors were constructed separately
for nouns and ANs, in order to compare the entropy values for noun and AN lexical
states.

All contexts were included in the raw counts, although eventual basis truncation
was carried out as explained in section 5.5. However, only content words were
separately counted in the model. These included nouns, verbs, other adjectives, and
adverbs, but excluded determiners and other function words, since it was was not
believed that these context words would contribute much to a model of meaning. For
the remaining contexts, a dummy basis element |φ0〉 was included in the model to
capture the contribution to the co-occurrence counts of these non-included elements.

Lexical vectors were compiled using two different formulae: normalized co-occurrence
vectors, and lexical state vectors as defined in section 4.3. It is standard in distri-
butional semantics to prepare word vectors as normalized versions of co-occurrence
count vectors, or normed co-occurrence vectors (NCVs). These vectors are given by

norm(
−−−→
word) =

−−−→
word

√−−−→
word · −−−→word

(36)
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where
−−−→
word is the raw co-occurrence count vector for word and

−−−→
word · −−−→word is the

dot product of this vector with itself. The computation of lexical state vectors from
raw co-occurrence counts followed the formula given by Equation 22, repeated here
for convenience:

|σ〉 =
∑

i

√

count(µi, µ)
√

∑

j count(µj, µ)
|βi〉 (37)

This model corresponds to the lexical state vectors discussed in section 4.3, and is
preferred to the NCV model of (36) on theoretical grounds, due to the lexical state
model’s clear relation to co-occurrence probabilities. Moreover, the results reported
in section 6 show that the effects on entropy of various word classes show up more
prominently in the lexical state model. However, results for both sets of vectors are
reported there.

Density operators for each adjective, modelled as a mixed state, were constructed
from the state vectors for the ANs corresponding to the same adjective, and sepa-
rately for the nouns that occurred somewhere as arguments of the given adjective.
The probabilities assigned to each noun state in the construction of the noun density
matrices were the probabilities of the noun occurring as an argument of the adjec-
tive, on the principle that what was being modeled was the action of the adjective
on the set of nouns N = {ηi} occurring as arguments of the adjective in the ratios
{pi}.

5.3 Joint left-right context model

Co-occurrence counts were gathered for a lexical state model including contexts to
the left and right of the target word w in a window of 1, with the counts for the left
and right window kept separate. Separate models were therefore compiled for the
left and right contexts, with the lexical state for a modelled word being represented
in a joint system Φr ⊗ Φℓ.

In preparing the models for each lexical state |σℓ〉 ⊗ |σr〉, it was assumed that
the left and right states were independent. It was therefore assumed that states in
the product space Φℓ⊗Φr could be obtained as tensor products of the single-system
states σℓ ∈ Φℓ and σr ∈ Φr, motivating the separate collection of counts for each
subsystem.

It was assumed that the subsystems are independent, which is equivalent to the
assumption that each product state can be obtained as a tensor product of the
single-system states. That is:

|σℓσr〉 = |σℓ〉 ⊗ |σr〉 (38)

Following Theorem 2, entropy calculations for the product states are expressed as a
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simple sum of the entropies for each state individually, using the formula:

S(ρℓr) = S(ρℓ ⊗ ρr) = S(ρℓ) + S(ρr) (39)

where each ρk =
∑n

i pi |σik〉 〈σik| for every lexical state σik included in the statistical
ensemble.

To be explicit about the alternative, it is in principle possible to directly collect
observations of the product state |σℓ〉 ⊗ |σr〉 by taking counts of paired context oc-
currences. That is, for each pair 〈wi, wj〉 of context words corresponding to basis
elements |βi〉, |βj〉 in Φℓ, Φr, collect counts of contexts 〈wi, wj〉 to determine su-
perposition coefficients for product spaces basis elements |βi〉 ⊗ |βj〉. Clearly, this
results in a basis space of size |Φr| × |Φℓ|, and since the joint entropy cannot be
decomposed into a sum of independent subsystems, the corresponding density op-
erators the square of that size, a truly immense space in which entropy calculations
are clearly not feasible without severe basis truncation.

5.4 Adjective dataset

The sample of adjectives modeled was selected from the 400 adjectives in the corpus
occurred most frequently in the attributive position, that is, immediately preceding
a noun. The adjectives in this class occurred between 50,000 and 400,000 times,
ensuring that sufficient evidence was available about the distribution of the ANs for
each adjective to build adequate lexical state models for them. Only a handful of
adjectives were excluded from this dataset in principle. Instead, the adjectives were
manually coded for a number of semantic features indicated in 1, so that controls
for each category could be selectively applied.

The semantic tags covered intersective (I) and non-intersective (N) adjectives,
as well as some other classes like non-subsective (O) and intensional/privative (T).
Given the relationship of the hypothesis to potential polysemy among uses of the
adjective, polysemous words were also tagged with one of two characteristics: strong
polysemy and weak polysemy. This ensured that a controlled comparison of non-
intersective polysemy with other types of polysemy could be conducted. Unfor-
tunately, the polysemy classifications could not help but be subject to a level of
arbitrariness, since there are no clear, universally accepted standards for identifying
polysemous words. Therefore, words were tagged in consultation with their dictio-
nary entries in the Merriam-Webster Online edition (Merrian-Webster, 2015). If a
word had multiple dictionary entries that were strongly related or very similar, they
were not considered polysemous. However, if they had multiple entries that were
somewhat related (Pw) or unrelated or only very loosely related (Ps), they were
classified as polysemous.

Intersective and non-intersective adjectives were classified on the basis of the
attributive propagation test. An adjective α was deemed to be intersective if, given
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Tag I N O
Meaning Intersective Non-intersective Non-subsective
Examples japanese federal possible

black economic potential
foreign poor past
dead racial future
annual north initial
christian powerful

Tag C Ps Pw
Meaning Context-Dependent Polysemous (strong) Polysemous (weak)
Examples short classical direct

old lead physical
young civil historical
long critical open
strong right global
low free visual

Table 1: Examples of words coded with various semantic tags

the following premises, we have the conclusion:

x is an α η1 (Premise 1)
x is an η2 (Premise 2)
x is an α η2 (Conclusion)

for every η1, η2 which is defined for α. As discussed in 3.2, this test is a better crite-
rion for intersectivity than the predicative descent test, in which one asks whether
the the adjective always licenses a deduction from the attributive use of the adjective
to the predicative use.

Additionally, adjectives ruled non-intersective by the attributive propagation
test were coded as context-dependent (C) if they satisfied the criterion proposed by
Siegel (1976) and Partee (2007). According to these authors, certain adjectives are
only apparently non-intersective–in reality, they are dependent on a context that
shifts as a function of, among other things, the noun argument of the adjective.
These adjectives can be identified by their distribution in as- versus for-phrases.
While intersective but context-dependent adjectives like tall appear in predications
like John is tall for a jockey, they seem very odd in contexts like #John is tall as a
jockey with the noncomparative meaning that John is tall when he is considered in
his capacity as a jockey. Conversely, true non-intersectives like skillful, in this version
of the typology, readily appear in as-phrases, as in John is skillful as a jockey.
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The entire dataset of adjectives, along with their associated tags, can be found
in the Appendix.

5.5 Basis truncation

Distributional semantics typically works with very large co-occurrence vectors that
are intended to capture co-occurrence preferences of different words. In practical
applications, it is common to employ dimensionality reduction techniques such as
singular value decomposition. However, such transformations lose their direct inter-
pretability as states giving rise to the observed distribution of contexts, and hence
they are avoided here. However, for the purposes of computation, it is crucial to
realize that the vectors operated over in this study, though quite large, were trun-
cated versions of the observed states. The size of co-occurrence bases for adjective-
noun pairs were manageably small, but those for nouns were immense when all
co-occurrences were taken into account–on the order of 105 on average. However,
computing density matrices requires computing outer products for n-dimensional
vectors, involving n2 multiplications and addition of n2-cell matrices. Given the
computing resources available, these operations could not be performed in a reason-
able for input vectors of greater than n = 10, 000.

In order to render the computations feasible, the lexical state vectors were trun-
cated to a basis of k = 104 basis vectors. That is, for each lexical state vector
|σ〉 = Σn

i γi |σi〉, only the reduced vector |σr〉 was employed, with coefficients γi
giving the weight for each basis element.

|σr〉 = |σ〉 −
n
∑

j=k+1

γj |σj〉 =
k
∑

i=1

γi |σi〉 (40)

However, by itself, this operation distorts the true co-occurrence statistics, since it
is equivalent to the false assumption that γi = 0 for k < i ≤ n, or the stipulation
that the distribution of contexts is fully biased in favor of the included contexts.

Given that the full co-occurrence vectors cannot be used in entropy calculations
due to computational limitations, a maximally plausible model of the remaining
contexts can be obtained by making some simplifying assumptions that render the
construction of density matrices possible. I will assume that the set of n observed
co-occurring words spans the space of possible outcomes of σ, and correspondingly,
that the n basis elements corresponding to these co-occurrence words span the space
of possible observations Oi such that 〈σ|Oi |σ〉 6= 0. The simplest assumption con-
sistent with the data included in the density operator computations is the maximum
entropy principle. This principle holds that the unobserved outcomes (in this case,
the wilfully ignored ones) should be distributed in such a way as to reflect maximal
uncertainty for the result of a probabilistic experiment on this space of outcomes,
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i.e. the distribution of outcomes on this part of the space is fully unbiased. The
maximally uncertain distribution is the one in which the probability of all outcomes
is equal. Hence, we hold that holds that for each lexical state σ and each pair of
basis words wi, wj such that k < i ≤ j ≤ n,

P (wi|σ) = P (wj|σ) (41)

This is just the null hypothesis with respect to the distribution of these words, i.e.
that they occur randomly in state σ. However, these contexts should satisfy maxi-
mum entropy subject to an additional set of constraints, namely that the probability
of each included outcome wi is equal to the expected value 〈Oi〉 of its associated
projective operator.

P (wi|σ) = 〈σ|βi〉〈βi|σ〉 = 〈σ|Oi |σ〉 = 〈Oi〉 (42)

The first n − k elements of the basis should therefore be left untouched; they
should reflect the probabilities the outcomes they are indexed to. However, the
omitted portions should be represented in the vector computations in a way that
satisfies the requirement of maximum entropy for those omitted outcomes. This can
be done by setting γi = γj for all k < i ≤ j ≤ n, that is, for all elements after the
cutoff.

Since the probabilities for each omitted wi must be equal, we have that

P (wi|σ) =
1

(n− k)
∑n

i=k+1 ci
(43)

This leads to a constraint on lexical state vectors |σ〉 with omitted basis words
{wi}k+1,n.

Proposition 1. Let |βo〉 = |βk+1〉 + |βk+2〉 + ... + |βn〉 be the sum of basis vectors
corresponding to omitted context words {wi}k+1,n. Then for any state vector |σ〉, the
projection |βi〉 〈βi|σ〉 of |σ〉 onto any |βi〉 such that k < i ≤ n is equal to γ |βi〉 for
some fixed γ.

n
∑

i=k+1

〈σ|βi〉〈βi|σ〉 =
n
∑

i=k+1

P (wi|σ)

=

∑n

i=k+1 ci
∑n

j=1 cj

=
n
∑

i=k+1

1

(n− k)
∑n

i=k+1 ci

=
1

∑n

i=k+1 ci
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An immediate corollary is that the projection |βo〉 〈βo|σ〉 = δ |βo〉 for a fixed δ

given by (n− k)γ. This shows that the projection of any state vector onto the sub-
space spanned by {|βi〉}k+1,n is always a scalar multiple of a single vector |βo〉. The
significance of this result is mainly pragmatic. It means that, given the assumption
of maximum entropy for lexical states with omitted basis elements, the omitted por-
tion of the full co-occurrence vector can be expressed as a scalar multiple of single
basis element |βo〉. Hence, the corresponding density operators can be expressed as
sums of outer products of much smaller vectors

∑

i pi(|σi〉+ γoi |βo〉)(〈σi|+ γo∗i 〈βo|),
with the value of γoi given by the count of contexts omitted from the model.

These facts enable a dramatic simplification of the entropy calculations, since
they amount to the replacement of all omitted basis elements with a single basis
element, call it |βo〉, that projects equally into each one-dimensional subspace defined
by the omitted elements of the canonical basis. It is easy to see that, for any
1 ≤ i ≤ k, 〈σi|βo〉 = 〈βi|βo〉 = 0. Moreover,

〈σ|βo〉〈βo|σ〉 =
n
∑

i=k+1

〉σ|βi〉〈βi|σ〉 =
n
∑

i=k+1

1

(n− k)
∑n

i=k+1 ci

=
n
∑

i=k+1

P (µi|σ) = P (om)

Therefore for any state vector |σ〉, the coefficient γ of |βo〉is
√

P (om).
In practice, it was found that on average, around 98% of left contexts and 96%

of right contexts were found to correspond to observations of the 104 most frequent
co-occurrence words (an instance of “the problem of the long tail”). This suggests
that much of the information about the lexical states could be found in the most
frequent segment of the basis, with the remaining contexts contributing minimally
to the modelled similarity between lexical states, and correspondingly, contributing
little to the entropy values. However, it should also be noted that the some infor-
mation about the meaning of the words being modelled is lost in the truncation. In
particular, it is likely these rarer words carry information about the specialized uses
of a word that discriminate it from near neighbors.

One alternative choice of models for the omitted basis elements bears mention-
ing, though it is not implemented here. Assumption (41) is based on maximum
entropy at the level of lexical states. However, at the level of density operators, the
choice to optimize the entropy of states leads to a minimization of von Neumann
entropy for the density operators encoding mixed states, given the constraint that
the probability of any omitted context is equal to that of any other. This is due to
the fact that the density operator constructed in this way is the lowest-rank possible
choice of density operators to represent the statistical ensemble of truncated states
|σ〉, adding only one linearly independent component to the eigenbasis of the density
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operator ρ. In particular, if the operator corresponding to just the included contexts
ρi has rank ℓ, then the operator for states |σi〉 + |σo〉 has rank ℓ + 1. The entropy
values computed by this method should therefore be considered lower bounds on
the true entropy values. It is expected that the true entropy values are higher, since
the omitted components are highly unlikely to be linearly dependent. However, the
true values are prohibitive to calculate.

Maximal von Neumann entropy is given by the density operator for the omitted
portion of each summed pure state vector is fully biased in a direction orthogonal
to all others. That is, for each pair of pure states |σa〉, |σb〉 such that |σj〉 =
(

∑k

i=1 γi |βji 〉
)

+ |βjo〉, 〈βao |βbo〉 = 0. While this alternative was not carried out in the

present study, it is important to be aware of it as a modelling choice.

5.6 Linking hypothesis

The link between von Neumann entropy and the set-theoretic characteristics can be
summed up in the notion of uncertainty. Since the denotational meanings of non-
intersectives are highly mutable, in that they vary with the arguments that they
are applied to, it was expected that the distributionally-obtained meaning models
for lexical entries should vary as well. Correspondingly, non-intersective ANs should
be found scattered throughout the semantic space, projected into various various
regions of it by the adjective map depending on which region they started in. The
von Neumann entropy provides a means of quantifying the number of independent
senses needed to characterize the spread of senses represented in a mixture of lexical
states, as well as their relative probabilities of occurring.

From another point of view, we can consider directly what the effect of set inter-
section is on the entropy of a predicate calculus space. A binary predicate calculus
may be considered a special case of a vector space calculus, one in which probabil-
ities are either 1 or 0. To link the distributional hypothesis about entropy to the
truth-conditional specification of the properties of different classes of adjectives, I
will construct an explicit semantic space that expresses the relevant notions, and
show the entropic effects of different adjective classes on this space manifest them-
selves. Finally, I will tentatively link this construction to the distributional vector
space, which is the main empirical domain available to study.

To every distinct atomic predicate Pi is associated a space Bi spanned by an or-
thonormal basis {|0i〉 , |1i〉}. A semantic space is a set {⊗i |σ〉j ∈ Bi s.t. j〈σ|σ〉j =
1}j. That is, a semantic space is a tensor product of systems, each of which rep-
resents an elementary predicate. If the predicate Pi is true, then |σi〉 is set to |1i〉,
and it is set to |0i〉 if Pi is false. If the predicate Pi is neither true nor false–if it is

undetermined–then |σi〉 is some superposition of |0i〉 and |1i〉, perhaps |0i〉√
2
+ |1i〉√

2
.

Any adjective is a function from predicates to predicates. If an adjective A is
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intersective, then for some Pi, A sets Pi to True; that is, A |σi〉 = |1i〉, and this
its only effect. This is just a direct translation of the set-theoretic definition of an
intersective adjective. In this setting, an intersective “flips” Pi to |1i〉, where Pi is
the intersected set. The density operator for this subsystem is then

∑

i pi |1i〉 〈0i| for
each i. Since each state |σ〉 is by construction part of an independent joint system,
by theorem 44, its total entropy can be expressed as a sum of the entropies of the
individual subsystems.

S(ρ) = S(ρ1) + S(ρ2) + ...+ S(ρi) + ...+ S(ρn) (44)

Moreover, since each |σi〉 in the joint system is set to |1i〉 by A, the density operator
ρi is in a pure state. Hence it has entropy 0. Supposing that even one |σi〉 6= |1i〉
prior to adjectival modification, the resulting entropy of the whole system will be
less than prior to the modification. Hence, whatever the starting state of the system,
as long as the intersection is nontrivial–that is, as long as some subsystem did not
start out in position |1i〉–its entropy declines due to the adjectival modification.
This proves that intersective modification reduces entropy in a predicate calculus.

Conversely, consider the model of a non-intersective adjective within this frame-
work. In the intersective case, there is some set of spaces {Bi}i such that the
adjective maps each |σ〉i to |1〉i. That is: A |σ〉i = |1〉i. The non-intersectivity
condition states that there is no set P =

⋂

i Pi such that the denotation of the ad-
jective is an intersection with the set Pi. Assuming subsectivity, every |σ〉i that is
equal to either |0〉i or |1〉i is mapped back to itself; informally, determinate results
of an observation of σ remain determinate. So the map A is the identity on these
elements. As for the rest, their state may be altered by A in an undetermined way,
with uncertain results on entropy. But the non-intersectivity condition guarantees
that there is no subsystem |σ〉)i on which the values for each state affected by the
adjective map will match. While this does not guarantee that the reduction in en-
tropy for an intersective adjective will in each case decline to a greater degree than
that for a non-intersective, it indicates that intersectives reliably decline in entropy
in this boolean model, while this is not the case for non-intersectives.

The linking hypothesis rests on the empirical supposition that distributional
patterns are correlated with, if not strictly determined by, the predicates entailed
by the associated lexical entry. A strong version of this hypothesis is that there is
some function from predicates to distributions such that the distributional contexts
available to a given word are fully determined by the predications compatible with
it. Various factors make this strong version of the distributional hypothesis unlikely
to hold. For instance, the ubiquity of polysemy in language, which is reflected in
a one-to-many mapping of words onto logical predicates, means that words can
appear in contexts where some predicate they are related to is false, leading to non-
complementary occurrence between these (sometimes) contradictory predicates and
words.
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A weaker version of this hypothesis states that distributional contexts are corre-
lated with predicational attributes, and that this correlation leads to overall trends
that can be analyzed with relatively large samples. It is not within the scope of
this project to test these alternatives, or to decide the extent of the correspondence,
in general, between model-theoretic characteristics of adjectives and their distribu-
tional similarities. However, I do evaluate one possible source of variation in the
level of observed distributional entropy for adjectives, and link these to the model-
thereoretic characterization of adjective meanings in an attempt to bring the two
models closer together.

6 Results

The entropy values for both the AN and corresponding noun samples were compiled
into a simple measure of the relative entropy quotient (REQ) pre- and post-adjectival
modification.

Definition 5. Relative entropy quotient The relative entropy quotient for an
adjective is given by:

S(ρAN)

S(ρN)
(45)

where ρAN and ρN are, respectively, the density operators for the ANs corresponding
to the adjective, and the adjective’s noun arguments.

In order to assert a relationship between intersectivity and entropy, it is necessary
to reject the null hypothesis that intersectivity has no effect on entropy. To evaluate
the null hypothesis, I employ a standard t-test to compare the means of each sample.

The distinction between intersective and non-intersective adjectives is a binary
classification, so a difference of means test for two independent samples is appropri-
ate. The two-sample t-test compares the difference between means of two samples
as a proportion of sample standard deviation. Table 2 gives the two-sample t-test
statistic and associated p-values for several sub-samples of the dataset screened for
a number of different features, using the NVC vectors. The test results are given for
intersective and non-intersective adjectives, with strongly and weakly polysemous
adjectives removed in turn.

The sign of the t-score indicates the direction of the effect. The theory-derived
prior motivated by the linking hypothesis connecting entropy to interectivity pre-
dicted that entropy would be reduced for intersective adjectives. Contrary to these
predictions, entropy was observed to textitincrease for intersective adjectives rela-
tive to their non-intersective counterparts. Moreover, this result has high confidence,
given that p ≤ .005 for all three trials, even controlling for polysemy. The robustness
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Group 1 Group 2 Excluded t-score p-value
N (n = 197) I (n = 91) ∅ −2.9711 .003
N (n = 181) I (n = 80) Ps −2.8489 .005
N (n = 130) I (n = 64) Ps, Pw −2.9863 .003

Table 2: t-statistic and p-value for REQs of intersective and non-intersective sample
(NVC model)

of this result is indicated by the persistence of the effect of intersectivity on entropy
when polysemous adjectives are removed.

Table 3 displays the same results for the lexical state vectors model. The results
from this set of word vectors indicate the same effect as those obtained from the
normed NVC vectors, except that the observed effect is even stronger, and the con-
fidence even greater. As with the vectors produced in the NVC model, the effect
persists even when polysemous adjectives are removed from the sample, again dis-
playing the robustness of the relationship between intersectivity and entropy. The
increased magnitude and significance of the effects of intersectivity on entropy sug-
gest that the lexical state model is superior to the usual NVC method of constructing
word vectors, at least with respect to the measurement of differences in adjective
meaning.

Group 1 Group 2 Excluded t-score p-value
N (n = 197) I (n = 91) ∅ −4.8737 .00001
N (n = 181) I (n = 80) Ps −4.3198 .00003
N (n = 130) I (n = 64) Ps, Pw −4.1889 .00005

Table 3: t-statistic and p-value for REQs of intersective and non-intersective sample
(state vectors model)

While the NVC model showed no statistically significant difference between pol-
ysemous and non-polysemous adjectives, a substantial difference was found in the
lexical state model, again suggesting that this model is more sensitive to the dis-
tributional effects of variations in meaning among adjectives. Table 4 shows the

Group 1 Group 2 Excluded t-score p-value
Ps (n = 33) Sub (n = 194) Pw 1.0896 .2771
Ps (n = 33) Sub (n = 194) Pw 1.0896 .2771

Ps, Pw (n = 102) Sub (n = 194) ∅ 2.1548 .032

Table 4: t-statistic and p-value for REQs of polysemous and non-polysemous sub-
sective adjectives (lexical state model)
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Figure 1: Box and whiskers plot of entropy ratios for intersectives and non-
intersectives, controlling for strong and weak polysemy (state vectors model)

t-statistics for the REQ values of polysemous and non-polysemous adjectives in
the lexical state model. The tag Sub indicates subsective (intersective or non-
intersective) adjectives that were not polysemous, so the two samples compared
in each row of Table 4 were disjoint. In the lexical state model, strong polysemy
exhibited a small positive effect on entropy, though this effect was not statistically
significant. Especially given that the sample of strongly polysemous adjectives was
small (n = 33), the slight effect of strong polysemy on distributional entropy may
have been produced by chance. However, when strongly and weakly polysemous
adjectives were compared with non-polysemous subsective adjectives, the results
conformed to the predictions delivered by the distributional hypothesis that lexical
polysemy, and hence uncertainty about the meaning of any given instance of an ad-
jective, is reflected in greater distributional entropy (Kartsaklis, 2014) (p = 0.032).
This indicates that, for nouns and adjective-noun compounds, the positions of lex-
ical state vectors in distributional space vary as a function of their spread of their
variety of senses.

As a final test of the power of intersectivity to predict entropy levels, context-
sensitive adjectives were separated from non-context-sensitive non-intersective ad-
jectives, with the former being found to behave like their non-context-sensitive
kin. Recall that context-sensitive adjectives are those for which the meaning of
the adjective-noun compound appears to depend crucially on its context, rather
than the noun argument (Partee, 2007). In this view, the noun argument is only a
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part of the context, and hence the meaning of the adjective-noun compound is an
intersection with a set, albeit one whose identity is set by the context. The meaning
of such context-sensitive adjectives can therefore be modelled as a function with two
arguments, a noun and a context. The denotation of such an adjective is thus:

λC.λN.a(C) ∩N (46)

where a is a function of type (e → t) → (e → t). Such adjectives can be thought
of as “intersective” even if they do not satisfy the attributive propagation test, in
that the denotation of such an adjective applied to a noun η is the intersection of a
contextually-determined set a(C) and ❏η❑.

As observed earlier, if the contextual argument includes the noun argument, and
if the meaning of the context-sensitive adjective shifts as a function of the noun as
part of the context, then the meaning of the adjective will indeed shift as a function
of the meaning of the noun argument. Hence, context-sensitive “intersectives” are
predicted to behave like non-intersective adjectives. The results from this further
segmentation of the dataset reported in Table 5 bear out this prediction. The tag
C refers to context-context-dependent adjectives. Again, the groups compared are
disjoint; if a tag X appears in the second column, it should be read X and not C.

Group 1 Group 2 Excluded t-score p-value
C (n = 34) N (n = 163) ∅ −0.512 .6092
C (n = 28) N (n = 102) Ps, Pw −0.1116 .9113
C (n = 34) I (n = 91) ∅ −3.9942 .0001
C (n = 28) I (n = 64) Ps, Pw −3.45899 .0008

Table 5: t-statistic and p-value for REQs of context-dependent adjectives (lexical
state model)

In these results, context-sensitive adjectives are clearly seen to exhibit the same
properties as non-intersectives, providing further evidence that they do not belong
to the latter group. In rows 1 and 2, context-sensitive adjectives are compared with
non-intersectives, controlling for polysemy in row 2. In both cases, the results are
not statistically significant, showing that context-sensitive are not clearly separable
from non-intersective adjectives that are not context-sensitive. This group relation-
ship is further confirmed by rows 3 and 4, in which the same test is performed
with intersectives. Rows 3 and 4 can be compared with rows 1 and 3 of Table 3,
where similar values obtain between non-intersectives and intersectives. The same
relationship is found between between context-sensitive adjectives and intersective
adjectives as between non-intersective adjectives and intersective adjectives, indi-
cating that context-sensitive adjectives belong in the same group as non-intersective

43



adjectives. Crucially, this further test displays the robustness of the relationship
between distributional entropy and intersectivity.

The fact that non-intersective adjectives, which are more polysemous when con-
sidered from an extensional point of view, actually exhibit lower distributional en-
tropy than their intersective counterparts, remains a puzzle that will have to be
disentangled. However, this lack of correspondence between predicative entropy,
as modelled in Section 5.6, and distributional entropy should not obscure the fact
that the model successfully discriminated these two groups based on their levels of
distributional entropy. While the observed direction of the effect is not currently un-
derstood, it clearly should be investigated further. These results indicates a strong
connection between the two models of meaning that, at a superficial level, might not
be expected to be connected at all. They also exhibit the capacity for distributional
characteristics of lexical entries, even those whose meanings are one-place functions
on other lexical categories, to predict rather fine-grained semantic properties.

From a practical point of view, the group differences observed between inter-
sective and non-intersective adjectives in this study indicate the potential for an
entropy-based approach in semantic classification tasks. Although probably not
serviceable by itself as a single-feature classifier, it is clear that measurements of
distributional entropy for adjectives provide a highly informative feature for pre-
dicting intersectivity, as well as polysemy. Identifying the inferential properties of
lexical entries is essential to constructing computer programs that are able to reason
using natural language, and so the identification of adjectives that license different
entailments is an important task for computational linguists. Incorporating dis-
tributional entropy-based features into semantic classification systems promises to
facilitate the automation of discovery processes for semantic types. In addition, the
lexical state vectors collected for this study are both more theoretically motivated,
and empirically more sensitive to polysemy than the typical normed vectors of dis-
tributional semantics, indicating that lexical state vectors could be a superior choice
for applications that rely on semantic classification.

7 Conclusion

This study has taken several steps forward towards establishing the correspondence
between the model-theoretic characterization of meaning employed in formal seman-
tics, and the statistical representations of word meanings derived from analysis of
corpora in distributional semantics. The relationship between these two aspects of
word meaning are still poorly understood, but it is clear that progress is possible,
and that such points of contact do exist.

In this paper, I motivated an empirical hypothesis about the level of entropy
associated with two classes of attributive adjectives. In the model-theoretic charac-

44



terization, intersective adjectives are distinguished by the invariance of their inter-
pretations across all uses, in the crucial sense that they always perform the same
(extensional) operation on their noun arguments: intersection with a designated
set. Non-intersective adjectives, by contrast, are highly mutable; their meanings
vary across uses, generally as a function of the nouns that they are applied to.
While other definitions of intersectivity do exist, this is the fundamental distinction
between intersectives and non-intersective adjectives. The former are conjoined,
across all uses, with a single property whose denotation always corresponds to the
meaning contribution of the adjectives when they are used attributively. In the
simplest analysis, intersective adjectives can simply be identified with this property.
Non-intersective adjectives cannot be accounted for in this way.

In Section 4, I provided an explicit account of the model of word meaning un-
derlying distributional semantic work, showing its clear connection to co-occurrence
statistics derived from corpora of natural language. These statistics are interpreted
in light of a model of probabilistic language states that, under observation, yield
information about the similarity of distribution and, by hypothesis, the similarity of
meaning of two lexical entries, when the state vectors representing them are mathe-
matically compared. While these observable patterns of distribution are not directly
identified with meanings, it is suggested that they are connected by some hidden
function. Adjectives were modelled as statistical ensembles represented as density
matrices, which are simply a representation the uncertainty associated with a lexical
state.

From a density matrix representing a statistical mixture of lexical states, it is
shown how to obtain a measure of uncertainty, the von Neumann entropy, asso-
ciated with such statistical ensembles, and how this measure can be exploited to
characterize the amount of uncertainty associated with the meaning of an adjective,
modelled as a process affecting lexical distributions. These objects are exploited in a
computational experiment described in Section 5. The results presented in Section 6
revealed a tight connection between distributional entropy and intersectivity, though
the direction of this link was unexpected. Intersectivity was found to strongly pre-
dict an increase in entropy, in spite of the fact that intersective adjectives, unlike
non-intersective adjectives, are model-theoretically monosemous in that they can be
effectively identified with a single property.

These results were shown to be highly robust to controls for polysemy. Signifi-
cantly, they provided confirmation of the exceptional nature of adjectives satisfying
the strict definition of intersectivity embodied in the attributive propagation test,
over and above alternative definitions of intersectivity. While it is not yet under-
stood why intersective adjectives should have this unexpected property, the property
itself is most assuredly observed, and deserves further study.
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7.1 Future work

The present study is a first step into importing the concepts of distributional un-
certainty into the study of compositional meaning construction. However, there
remains much work to be done. While the probabilistic lexical state model of lexical
meaning presented here is the only model I know of where co-occurrence statistics
are treated as experimental results in a systematic fashion, the parameters of the
experimental model employed here are highly limited. In particular, they may suf-
fer from a weakness in feature selection, in that only single-word contexts to the
right and left of the target word are considered. This model assumes extremely
limited grammatical sophistication in the modelled language users. An immediate
extension of this framework would be to investigate the entropy of adjectives in a
dependency-parsed corpus. The features derivable from such a corpus would be ex-
pected to be much more informative than the one-word contexts modeled here, since
they would include, for example, information about what verbs a word occurs as
the subject or object of. Expanding the context window is also a possible extension,
but dramatically increase the intensity of the involved computations.

Further studies should examine other means of measuring the uncertainty as-
sociated with word meanings, especially in a compositional setting. While much
computational work has been focused on automatically identifying polysemy, or else
on classifying instances of a polysemous word into one of its known senses, little
attention has been given to quantifying the amount of semantic variation available
to a single lexical sense depending on its immediate context, a topic which is at
the heart of lexical and compositional semantics. In this thesis, I have shown that
measures appropriate for performing the former task are also appropriate to the
latter, broadening the range of known correspondences between distributional and
set-theoretic features of adjectives.
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8 Appendix: Adjective dataset with semantic tags

(n = 300)

short C N
current N Pw
old C N
good Pw N
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personal Ps
human I
young C N
long C N
important C N
private Pw I
average C N
full N Ps
common C N Ps
total N
popular N Pw
japanese I
modern N
official N
late Ps
natural Ps
external N Pw
australian I
notable N
regular N Pw
recent C N
top Ps N
black I Pw
economic N
female I
canadian I
italian I
real N Pw
western I Ps
free I Ps
historical I Pw
financial N
religious I Pw
legal Pw
medical I
commercial N Pw
white I
significant N Ps
indian I
little C N
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musical N Pw
regional N Pw
administrative N
civil N Ps
foreign I
central N Pw
chinese I
traditional N Pw
federal N Pw
live I Ps
numerous N
independent N Pw
square I Ps
russian I
open N Pw
strong C N Pw
annual I
low C N Pw
cultural N Pw
senior Pw
spanish I
successful N
heavy C N
southern N
wide C N
northern N
physical I Pw
historic N Pw
jewish I
famous N
academic N Pw
greek I
active N Pw
key N
secondary N
minor N
whole N
right N Ps
red I
lead N Ps
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irish I
direct N Pw
scientific N Pw
christian I
big C N
present N
eastern N
future O
rural I
critical N Ps
complete N
industrial N Pw
male I
digital I Pw
basic N Ps
technical N Pw
light C Pw N
ancient C N
limited N
dutch I
urban I
literary N Pw
soviet I
close N Pw
nuclear N Pw
standard N
upper N
electric I Ps
african I Pw
polish I
environmental N Pw
possible O
poor C N Pw
true N Pw
online N Pw
prominent N
positive N Ps
double N Ps
global N Pw
extensive N Pw
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chief N
classical Ps I
contemporary I Ps
racial N
west N
executive N
royal N Pw
swedish I
domestic N Pw
municipal N
electronic I
permanent N
presidential N Pw
internal N
actual N
democratic I Pw
comic N
unique N
normal C N
native N
serious N Ps
agricultural N
south N Pw
naval N
scottish I
green I
daily I Pw
blue I
simple Pw N
east N
past O
north N
dark C N
principal N
nearby I
hard Ps
formal Ps
korean I
gold I
front N Pw
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fictional I
assistant N
electoral N
extra N
brief N
alternative N Pw
powerful C N
criminal I Pw
mexican I
defensive I Ps
considerable N
potential O
bad N Pw
residential I Pw
norwegian I
visual N Pw
related N Ps
ethnic N
solo I
huge C N
provincial N Pw
secret N Pw
catholic I
conservative N Pw
junior N
maximum N
mobile I
wooden I Pw
parliamentary N
deep C N
corporate N
negative N
mental N
complex N
olympic N
mixed N Pw
tropical I
coastal I
artistic N
turkish I
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latin I
outstanding N
armed I
legislative N
prime N
swiss I
israeli I
brazilian I
temporary N
sound I Pw
architectural N
amateur N Pw
unincorporated I
yellow I
hot C N
spiritual N
effective N
severe N Pw
fine N Pw
electrical N
immediate N
selected N
danish I
left N
medieval I Pw
creative N
clinical N
dry N Ps
founding N
inner N
portuguese I
massive C N
weekly I
classic N
vocal N
silver I
substantial N
rare N
typical N
strategic N
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underground I Pw
muslim I
mass I
proper C N
marine N
colonial N
advanced N
rear N
grand C N
austrian I
animated I Ps
wild C N
rapid C N
martial N
constitutional N
beautiful N
narrow C N
detailed C N
vast C N
experimental C N
islamic I
clear C N Ps
unknown N
broad C N
operational N
asian I
distinct N
acoustic N
retail N
communist I
extreme N
straight Ps I
competitive N
hungarian I
indigenous N
romantic I Ps
honorary N
vertical N
diplomatic N
frequent N
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civilian I Pw
mechanical N Ps
imperial N
excellent N
eldest N
solid Ps
outer N
solar N
extended N
moral N
constant N Pw
arab I
egyptian I
welsh I
first-class N
dead I
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