
580.439/639  Homework #2 Solutions 

Problem 1 

Part a)  Using the principle of conservation of mass, the time rate of change of 
concentration in the ith well is given by the difference between the flux into the well and the flux 
out of the well. Let Ci be the concentration at the ith location in the membrane. Note that, because 
the wells are discrete locations, it makes sense to consider Ci to have units of moles/area, i.e. the 
x direction through the membrane is considered to be discrete and not continuous. Then 

 dCi
dt

 = flux into ith site  - flux out of ith site  = Ji-1 - Ji 

In the steady state, dCi/dt = 0 so that Ji-1 = Ji for all sites. This is a slight adaptation of the 
derivation given in class, differing in the definition of Ci (Note the difference in units in the two 
cases). 

Part b)  There are N flux equations, which can be written as N simultaneous linear 
equations in N as below.  

 

J = λ k0 C0 - k-1C1
J = λ             k1 C1 - k-2C2
                                       etc.
                                       etc.
J = λ                                                        kN-1CN-1 - k-NCN

 

These can be solved simultaneously by successively multiplying them by the products of rate-
constant ratios as 

             J = λ k0 C0 - k-1C1

       k-1
k1

 J = λ             k-1C1 - k-1
k1

 k-2C2

 k-2
k2

 k-1
k1

 J = λ                          k-1
k1

 k-2C2 - k-2
k2

 k-1
k1

 k-3C3

                                       etc.

k-i
ki

∏
i=1

N-1
  J = λ                                                                   k-(N-1) k-i

ki
∏
i=1

N-2
 CN-1 - k-N k-i

ki
∏
i=1

N-1
 CN

 

Summing the equations above gives 
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 J 1 +  k-i
ki

∏
i=1

j

∑
j=1

N-1
 = λ k0 C0 - k-N k-i

ki
  CN∏

i=1

N-1
 

from which Eqn. (*) of the problem set follows: 

 J = λk0 
  C0  - CN k-N

k0
  k-i

ki
∏
i=1

N-1
  

1  +  k-i
ki

∏
i=1

j

∑
j=1

N-1
 (1) 

Note that this equation is a completely general description of a barrier system that obeys 
independence. That is the particular barrier heights (GB and GW) assumed in the statement of this 
problem have not been used in the derivation so far, nor has the distribution of electrical 
potential. 

Part c)  The rate constants are given by the expressions discussed in class.  In writing the 
rate constants, it is assumed that the electrical potential at the ith barrier peak is  (i-0.5).ΔV/N and 
that the electrical potential at the ith potential well is  i.ΔV/N.  That is, we assume that the 
electrical potential varies linearly through the model,. 

 

k0 = (const) e-(GB+zFΔV/2N)/RT

ki = (const) e-(GB-GW+zFΔV/2N)/RT       for i=1, . . . N-1

k-i = (const) e-(GB-GW-zFΔV/2N)/RT       for i=1, . . . N-1

k-N = (const) e-(GB-zFΔV/2N)/RT

 (2) 

To evaluate Eqn. (1), we need ratios of the rate constants as follows: 

 

k-N
k0

 = (const) e-(GB-zFΔV/2N)/RT

(const) e-(GB+zFΔV/2N)/RT
 = ezFΔV/NRT

k-i
ki

 = (const) e-(GB-GW-zFΔV/2N)/RT

(const) e-(GB-GW+zFΔV/2N)/RT
 = ezFΔV/NRT       for i=1, . . . N-1

 (3) 

Part d)  Now substituting the expressions in Eqns. (2) and (3) into Eqn. (1) gives 

 J = λ (const) e-GB/RT  e-zFΔV/2NRT     C0 - CN ezFΔV/NRT ezFΔV/NRT N-1  

1   +   ezFΔV/NRT j∑
j=1

N-1
 (4) 

The sum in the denominator can be evaluated using the relationship 

 xn∑
n=0

N-1
 =  1 - xN

1 - x  
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by noting that 

 1   +   ezFΔV/NRT j∑
j=1

N-1
 = ezFΔV/NRT j∑

j=0

N-1
 = 1 - ezFΔV/RT

1 - ezFΔV/NRT
 

so that Eqn. (4) becomes 

 J = λ (const) e-GB/RT  e-zFΔV/2NRT  1 - ezFΔV/NRT      C0 - CN ezFΔV/RT

1 - ezFΔV/RT
 (5) 

Converting Eqn. (5) to current density by multiplying by -zF, reversing the sense of the positive 
flow as usual, gives 

 I = zFλ (const) e-GB/RT  e-zFΔV/2NRT  ezFΔV/NRT - 1      C0 - CN ezFΔV/RT

1 - ezFΔV/RT
 (6) 

where the minus sign has been used to reverse one of the exponential terms.  Eqn. (6) is 
essentially the same as the GHK constant-field equation, except for the exponential terms in 
front of the ratio.  If N is large enough that zFΔV/NRT << 1, then these terms can be 
approximated as 

 
e-zFΔV/2NRT  ezFΔV/NRT - 1  = ezFΔV/2NRT - e-zFΔV/2NRT                  

                                               ≈ 1 + zFΔV
2NRT  - 1 - zFΔV

2NRT  = zF
NRT ΔV

 

where use has been made of the approximation exp(1+ε) ≈ 1 + ε  for ε << 1.  Now Eqn. (6) can 
be written as 

 I = zF 2  λ (const) e-GB/RT

NRT
  ΔV     C0 - CN ezFΔV/RT

1 - ezFΔV/RT
 

which is identical to the GHK constant-field equation with the mobility u defined as 

 u =  λ
2 (const) e-GB/RT

RT  

Use has been made of the fact that the thickness of the membrane, d, equals Nλ. Note that the 
depth of the potential wells GW does not enter into the result, as is always the case when 
independence is assumed, i.e. when the number of sites in the model is assumed to be large, so 
that the system is working far from saturation.  In this situation, permeation is controlled by the 
energy peaks GB only. 

Problem 2 

Part a)  Rewrite Eqn. (*) from the problem set as follows: 

 J = λk0
C0 − CN f (ΔV )
g(ΔV, Gi{ })  (1) 
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where the sums and products of rate constants from Eqn. (*) of the problem set have been 
summarized into the functions f() and g(). f() depends on membrane potential only, as will be 
shown below. g() may also depend on barrier heights, that is on the set {Gi}.  The unidirectional 
fluxes predicted by Eqn. (1) can be obtained by setting either C0 or CN to 0.  That is, if there is 
no ion on side 0 (C0=0), the the net flux equals the unidirectional flux from side N and vice-
versa.  Independence is necessary to this definition of unidirectional flux because we assume that 
the fluxes from the two sides add linearly in producing the net flux in Eqn. (1).  To see that this 
is so, look back through the derivation of Eqn. (*) and notice that nothing changes if C0 is 
assumed to be 0 at the start. 

With this assumption, the unidirectional fluxes J0→Ν and JN→0 and the flux ratio are 
given by (ΔV = VN-V0) 

 
J0→ N = λk0C0 g(ΔV, Gi{ })          and          JN→ 0 = λk0CN f (ΔV ) g(ΔV, Gi{ })

flux
ratio =

J0→ N

JN→0

=
C0

CN f (ΔV )

 

(2)

 

The minus sign that should appear in the equation for JN→0 has been deleted because it is the 
magnitudes of the fluxes we care about. 

To evaluate f(ΔV), consider the general barrier system sketched below. The notation here 
is the same as for Problem 1. 

*gN-1*g2
g1

gN
g1*

g2

k0

k-1

k1

k-2

kN-1

k-N

* * *0 λ1 λ1 λ2 λ2 λΝ−1 λΝ 1  

The barrier heights are expressed in normalized form, i.e. as g1 = G1/RT.  The λi are fractions of 
the transmembrane potential that appear at each barrier, so that the membrane potential at barrier 
g1 is λ1v, where v = zFΔV/RT.  The components of Eqn. (*) can now be written as follows. 
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k−i
ki

=
(const)e− gi+λi v−gi*−λ i*v[ ]

(const)e− gi+1+λi+1v−gi *−λi*v[ ] = egi+1−gi+ (λi+1 −λ i )v

k−N
k0

=
(const)e− gN +(λN −1)v[ ]

(const)e− g1 +λ1v[ ] = eg1 −gN +(λ1−λN +1)v

k−N
k0

k−i
ki

= eg1−gN +(λ1 −λN +1)v exp gi +1 − gi + (λi+1 − λi )v
i=1

N−1

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = ev

i=1

N−1

∏

 

(3)

 

With this result, the flux ratio Eqn. (2) now takes the Ussing form.  Note that this derivation 
depends directly on the independence assumption because if independence is not true, then there 
will be terms involving concentrations in the denominator of Eqn. (*) in the problem set. 
However, this assumption does not depend on any details of the barrier system or of the 
distribution of electrical potential through the membrane (i.e. no constant-field assumption). 

Note that we could have argued that f(ΔV) = ev because of the necessity that J=0 at 
equilibrium in Eqn. (*). This is the way the argument is usually made. 

If independence does not hold, then the unidirectional fluxes take the form of Eqn. 11 of 
problem 2 above 

 I1→2 = f (V ) A1

g(V ,A1,A2 = 0, Gi{ })
     and     I2→1 = f (V ) A2e

zFV /RT

g(V ,A1 = 0,A2 , Gi{ })
 

where the denominator function g(..) now depends on the concentrations and is different for the 
two unidirectional fluxes, giving a flux ratio that varies with concentration. 

Part b)  The Hodgkin-Huxley independence test involves the ratio of the currents 
obtained with two different sets of concentrations of an ion S in the bounding solutions. From 
Eqn. 1 above, with the independence assumption, 

 ′IS
IS

= ′So − ′Si f (ΔV )
g(ΔV , G ′S{ })

g(ΔV , GS{ })
So − Si f (ΔV )[ ]  (4) 

where S and S’ are two different concentration gradients for the ion in question. Eqn. 4 can be 
simplified using the fact (Eqn. 3) that f(ΔV)=ev=ezFΔV/RT and the fact that  the function g(..) is the 
same for the two different ion concentrations, with the independence assumption. Then 

 ′IS
IS

= ′So − ′Si f (ΔV )
So − Si f (ΔV )

 

which is the HH independence test. Note that g(ΔV,{GS’}) = g(ΔV,{GS})  because the barriers are 
the same, regardless of ion concentration. 

The ratio fails in the absence of independence because g(..) is then a function of ion 
concentration. 
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Problem 3 

The figure at right shows definitions of the rate 
constants for use in this problem. 

Part a)  Steady state means the fraction of 
channel in each state is fixed in time. As argued in 
class, that means the net transitions across each energy 
peak are zero, so that 
 Ji→i+1 = kixi − ki+1xi+2 = 0 , 

where Ji→i+1  is the net flux from energy well i to well 
i+1 and xi is the fraction of the channel in the ith well. 
Note that x1 + x3 + x5 + x7 + x9 = 1. Writing a similar flux equation for each energy peak and 
applying the zero-flux condition gives the following ratios 

 
 

x1
x3

=
k2
k1

=
const e−(G2 −G3 )/RT

const e−(G2 −G1 )/RT
= e−(G1 −G3 )/RT  1  , 

and 

 x3
x5

=
k4
k3

= e−(G3 −G5 )/RT < 1, x5
x7

=
k6
k5

= e−(G5 −G7 )/RT < 1, x7
x9

=
k8
k7

= e−(G7 −G9 )/RT > 1 , 

where the relative sizes of the ratios follow from the energy differences in the diagram. 

The fractions can be obtained by solving successively, using the fact that the xi ‘s sum to 
1: 

 

1 = x1 + x3 + x5 + x7 + x9

=
k2
k1

k4
k3

k6
k5

k8
k7

+
k4
k3

k6
k5

k8
k7

+
k6
k5

k8
k7

+
k8
k7

+1
⎡

⎣
⎢

⎤

⎦
⎥ x9

x9 = 1
k2
k1

k4
k3

k6
k5

k8
k7

+ k4
k3

k6
k5

k8
k7

+ k6
k5

k8
k7

+ k8
k7

+1
⎡

⎣
⎢

⎤

⎦
⎥ = 1 / Z

 

and 

 x7 =
k8
k7

Z, x5 =
k6
k5

k8
k7

Z, x3 =
k4
k3

k6
k5

k8
k7

Z , x1 =
k2
k1

k4
k3

k6
k5

k8
k7

Z   . 

Note that these simplify when written in terms of energies 

x9 = 1/ Z, x7 = e
−(G7−G9 )/RT Z, x5 = e

−(G5−G9 )/RT Z, x3 = e
−(G3−G9 )/RT Z , x1 = e

−(G1−G9 )/RT Z
 (*) 
 Z = 1+ e−(G7 −G9 )/RT + e−(G5 −G9 )/RT + e−(G3 −G9 )/RT + e−(G1 −G9 )/RT  . 

For the activated state, the solution is the same except that G1 is replaced by ′G1  and G9 is 
replaced by ′G9 . Note that the relative sizes change so that x1/x3<1 and x7/x9<1. 
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The same result could be obtained by assuming that the conformations are in 
thermodynamic equilibrium so that 
 Gi + RT ln xi = Gj + RT ln x j so that xi = x je

−(Gi −Gj )/RT  , 

and so on. 

Part b)  From the relative sizes given above, most of the unactivated molecule is in state 
1 which has a much lower energy level than the other states. After the molecule is activated, state 
1 becomes the highest energy state and the molecule changes conformation so that most of it 
ends up in state 9’. The photon absorbtion thus drives a change of state of the molecule.  

Part c)  Using the rate constants above, the differential equations for the conformations 
can be written as 

 

dx1

dt
= − ′k1x1 +     k2x3

dx3

dt
=   ′k1x1 − (k2 + k3)x3 +     k4x5

dx5

dt
=                k3x3       − (k4 + k5 )x5 +    k6x7

dx7

dt
=                                     k5x5      − (k6 + k7 )x7 + ′k8x9

dx9

dt
=                                                          k7x7      − ′k8x9

. 

The primes mark the rate constants that change with activation. Notice that these equations are 
redundant because any one can be obtained by adding and subtracting the others; for example 
dx9/dt is the sum of the other equations.. Using the fact that x1 + x3 + x5 + x7 + x9 = 1 allows the 
last equation to be eliminated and the x9 term in the d7/dt equation to be written as follows: 

 

dx1

dt
= − ′k1x1 +     k2x3

dx3

dt
=   ′k1x1 − (k2 + k3)x3 +     k4x5

dx5

dt
=                k3x3       − (k4 + k5 )x5 +         k6x7

dx7

dt
= − ′k8x1 −   ′k8x3        + (k5 − ′k8 )x5 − (k6 + k7 + ′k8 )x7 + ′k8

. 

The problem didn’t ask for exact initial conditions, but these are given in the solution to part a). 

 


