

CATEGORICAL LOGIC
AND TYPE THEORY

STUDIES IN LOGIC
AND

THE FOUNDATIONS OF MATHEMATICS

VOLUME 141

Honorary Editor:

P. SUPPES

Editors:

S. ABRAMSKY, London
S. ARTEMOV, Moscow

R.A. SHORE, Ithaca
A.S. TROELSTRA, Amsterdam

ELSEVIER
AMSTERDAM • LAUSANNE • NEW YORK • OXFORD • SHANNON • SINGAPORE • TOKYO

CATEGORICAL LOGIC
AND TYPE THEORY

Bart JACOBS
Research Fellow of the

Royal Netherlands Academy of Arts and Sciences

Computing Science Institute^
University of Nijmegen, P.O. Box 9010, 6500 GL Nijmegen,

The Netherlands

1999

ELSEVIER
AMSTERDAM • LAUSANNE • NEW YORK • OXFORD • SHANNON • SINGAPORE • TOKYO

ELSEVIER SCIENCE B.V.
Sara Burgerhartstraat 25

P.O. Box 211, 1000 AE Amsterdam, The Netherlands

© 1999 Elsevier Science B.V.. All rights reserved.

This work and the individual contributions contained in it are protected under copyright by Elsevier Science
B.V., and the following terms and conditions apply to its use:

Photocopying
Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission
of the publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying,
copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available

for educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier Science Rights & Permissions Department, PO Box 800, Oxford
0X5 IDX, UK; phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may
also contact Rights & Permissions directly through Elsevier's home page (http://www.elsevier.nl), selecting first

'Customer Support', then 'General Information', then 'Permissions Query Form'.

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, USA; phone: (978) 7508400, fax: (978) 7504744, and in the UK through the
Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London WIP OLP,
UK; phone: (+44) 171 436 5931; fax: (+44) 171 436 3986. Other countries may have a local reprographic rights

agency for payments.

Derivative Works
Subscribers may reproduce tables of contents for internal circulation within their institutions. Permission of the

publisher is required for resale or distribution of such material outside the institution.
Permission of the publisher is required for all other derivative works, including compilations and translations.

Electronic Storage or Usage
Permission of the publisher is required to store or use electronically any material contained in this work, including any

chapter or part of a chapter. Contact the publisher at the address indicated.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written

permission of the publisher.
Address permissions requests to: Elsevier Science Rights & Permissions Department, at the mail, fax and e-mail

addresses noted above.

Notice
No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of
products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas
contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent

verification of diagnoses and drug dosages should be made.

First edition 1999

Library of Congress Cataloging in Publication Data
A catalog record from the Library of Congress has been applied for.

ISBN: 0 444 50170 3

@The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992
(Permanence of Paper).

Printed in The Netherlands.

Preface

This book has its origins in my PhD thesis, written during the years 1988 -
1991 at the University of Nijmegen, under supervision of Henk Barendregt.
The thesis concerned categorical semantics of various type theories, using
fibred categories. The connections with logic were not fully exploited at the
time. This book is an a t t empt to give a systematic presentation of both logic
and type theory from a categorical perspective, using the unifying concept of
a fibred category. Its intended audience consists of logicians, type theorists,
category theorists and (theoretical) computer scientists.

The main part of the book was written while I was employed by NWO,
the National Science Foundation in The Netherlands. First, during 1992 -
1994 at the Mathematics Department of the University of Utrecht, and later
during 1994 - 1996 at CWI, Center for Mathematics and Computer Science, in
Amsterdam. The work was finished in Nijmegen (where it s tar ted): currently, I
am employed at the Comput ing Science Insti tute of the University of Nijmegen
as a Research Fellow of the Royal Netherlands Academy of Arts and Sciences.

This book could not have been written without the teaching, support , en-
couragement, advice, criticism and help of many. It is a hopeless endeavour
to list them all. Special thanks go to my friends and (former) colleagues at
Nijmegen, Cambridge (UK), Utrecht and Amsterdam, but also to many col-
leagues in the field. The close cooperation with Thomas Streicher and Clau-
dio Hermida during the years is much appreciated, and their influence can
be felt throughout this work. The following persons read portions of the
manuscript and provided critical feedback, or contributed in some other way:
Lars Birkedal, Zinovy Diskin, Herman Geuvers, Claudio Hermida, Peter Lietz,
Jose Meseguer, J aap van Oosten, Wesley Phoa, Andy Pi t ts , Thomas Streicher,

vi Preface

Hendrik Tews and Krzysztof Worytkiewicz. Of course, the responsibility for
mistakes remains entirely mine.

The diagrams in this book have been produced with Kristoffer Rose's X<̂ -pic
macros, and the proof trees with Paul Taylor's macros. The style files have
been provided by the publisher.

Bart Jacobs,
Nijmegen, August 1998.

Contents

Preface v

Contents vii

Preliminaries xi

0. Prospectus 1
0.1. Logic, type theory, and fibred category theory 1
0.2. The logic and type theory of sets 11

1. Introduction to fibred category theory 19
1.1. Fibrations 20
1.2. Some concrete examples: sets, ct/-sets and PERs 31
1.3. Some general examples 40
1.4. Cloven and split fibrations 47
1.5. Change-of-base and composition for fibrations 56
1.6. Fibrations of signatures 64
1.7. Categories of fibrations 72
1.8. Fibrewise structure and fibred adjunctions 80
1.9. Fibred products and coproducts 93
1.10. Indexed categories 107

2. Simple type theory 119
2.1. The basic calculus of types and terms 120
2.2. Functorial semantics 126

viii Contents

2.3. Exponents, products and coproducts 133
2.4. Semantics of simple type theories 146
2.5. Semantics of the untyped lambda calculus as a corollary 154
2.6. Simple parameters 157

3. Equational Logic 169
3.1. Logics 170
3.2. Specifications and theories in equational logic 177
3.3. Algebraic specifications 183
3.4. Fibred equality 190
3.5. Fibrations for equational logic 201
3.6. Fibred functorial semantics 209

4. First order predicate logic 219
4.1. Signatures, connectives and quantifiers 221
4.2. Fibrations for first order predicate logic 232
4.3. Functorial interpretation and internal language 246
4.4. Subobject fibrations I: regular categories 256
4.5. Subobject fibrations II: coherent categories and logoses 265
4.6. Subset types 272
4.7. Quotient types 282
4.8. Quotient types, categorically 290
4.9. A logical characterisation of subobject fibrations 304

5. Higher order predicate logic 311
5.1. Higher order signatures 312
5.2. Generic objects 321
5.3. Fibrations for higher order logic 330
5.4. Elementary toposes 338
5.5. Colimits, powerobjects and well-poweredness in a topos 346
5.6. Nuclei in a topos 353
5.7. Separated objects and sheaves in a topos 360
5.8. A logical description of separated objects and sheaves 368

6. The effective topos 373
6.1. Constructing a topos from a higher order fibration 374
6.2. The effective topos and its subcategories of sets, u;-sets, and PERs 385
6.3. Families of PERs and u;-sets over the effective topos 393
6.4. Natural numbers in the effective topos and some associated principles . . 398

7. Internal category theory , . 407
7.1. Definition and examples of internal categories 408
7.2. Internal functors and natural transformations 414
7.3. Externalisation 421
7.4. Internal diagrams and completeness 430

Contents ix

8. Polymorphic type theory 441
8.1. Syntax 444
8.2. Use of polymorphic type theory 454
8.3. Naive set theoretic semantics 463
8.4. Fibrations for polymorphic type theory 471
8.5. Small polymorphic fibrations 485
8.6. Logic over polymorphic type theory 495

9. Advanced fibred category theory 509
9.1. Opfibrations and fibred spans 510
9.2. Logical predicates and relations 518
9.3. Quantification 535
9.4. Category theory over a fibration 547
9.5. Locally small fibrations 558
9.6. Definability 568

10. First order dependent type theory 581
10.1. A calculus of dependent types 584
10.2. Use of dependent types 594
10.3. A term model 601
10.4. Display maps and comprehension categories 609
10.5. Closed comprehension categories 623
10.6. Domain theoretic models of type dependency 637

11. Higher order dependent type theory 645
11.1. Dependent predicate logic 648
11.2. Dependent predicate logic, categorically 653
11.3. Polymorphic dependent type theory 662
11.4. Strong and very strong sum and equality 674
11.5. Full higher order dependent type theory 684
11.6. Full higher order dependent type theory, categorically 692
11.7. Completeness of the category of PERs in the effective topos 707

References 717

Notation Index 735

Subject Index 743

This Page Intentionally Left Blank

Preliminaries

A brief account will be given of the organisation of this book, of what is
presupposed, and of some of the notions and notations tha t will be used.

Organisation of the book

The contents form a mixture of logic, type theory and category theory. There
are three Chapters 1, 7 and 9 dealing explicitly with (fibred) category the-
ory. The other chapters have mixed contents. Chapter 1 s tar ts off with an
introduction to the basic concepts of fibred category theory. This material
will subsequently be used in the Chapters 2, 3, 4, 5, and 8, respectively on
simple type theory, equational logic, first and higher order predicate logic
(over simple type theory) and on polymorphic type theory. Only basic fibred
category theory is needed here, since there is no type dependency. The first
few sections (of these chapters) give introductions to the relevant systems of
logic and type theory. It should be possible to skip the first chapter and start
reading the beginning of these subsequent Chapters 2, 3, 4, 5, and 8. A return
to Chapter 1 may then take place on a call-by-need basis. In such a way, the
reader may oscillate between logical and type theoretical expositions on the
one hand, and categorical expositions on the other. Towards the end of Chap-
ter 8 on polymorphic type theory some extra material on the effective topos
(from Chapter 6) and on internal categories (from Chapter 7) is used.

In the last two Chapters 10 and 11 on first and higher order dependent
type theory the distinction between logical and type theoretical elements on
the one side and categorical elements on the other, becomes less pronounced.

Preliminaries

Familiarity with fibred category theory (from Chapters 1, 7 and 9) is assumed
at this stage.

The essential dependencies between the various chapters are sketched in the
following diagram.

1. Introduction to
fibred category theory

9. Advanced fibred
category theory

10. First order
dependent type theory

11. Higher order
dependent type theory

Prerequisites

The reader is assumed to be familiar with the basic notions of category the-
ory, such as adjunctions, (co)limits and Cartesian closed categories (CCCs).
Familiarity with predicate logic is assumed, and also some nodding acquain-
tance with type theory is presupposed. But this is not essential, for example
for readers who are mainly interested in categorical aspects. Also, in examples
of models we shall use some basic notions and results from domain theory and
recursion theory.

Preliminaries xiii

We shall be more specific, especially about notational conventions.

Category theory
Arbitrary categories will be written as A, B, C , . . . in open face. Specific cat-
egories like S e t s , P o S e t s and EfF will be written in bold face. (But also
arbitrary internal categories A, B , C , . . . will be in bold face.) We use capital
letters for objects, and write X E C to express that X is an object of the cat-
egory C Small, non-capitalised letters are used for morphisms in a category
(also called maps, or arrows). The homset (or class) C{X,Y) is the collection
of morphisms from X to Y in a category C. The notations / : X —> Y and

X -^ Y are also used for / G C{X,Y). We use special arrows X >^ Y for
monic maps (also called monos) and X ^^ Y for epic maps (or epis). We
recall tha t a category C is called locally small if all its collections C{X,Y) of
homomorphisms are small sets (as opposed to proper classes). And C is called
small if additionally its collection of objects is a small set. The opposite of a
category C will be written as C ° P . In the context of a fibration we generally
use letters like I,J,K and u^v^w for objects and morphisms of the "base"
category and letters like X,Y,Z and f,g,h for objects and morphisms of the
"total" category.

The identity morphism on an object X is idx* X -> X , or simply id: X -^
X . Composition of morphisms f:X-^Y and g:Y -^ Z is usually written as
g o f: X -^ Z. Sometimes we write gf: X ^ Z for this composite, especially
when / and g are functors. Occasionally we use a double arrow notation
f,g:X =t Y to express tha t / and g are two parallel morphisms. A natural
transformation a between functors F , G: A =^ IB is usually written with double
arrow => as a: F => G, for example, in a diagram:

A

This => notation will, more generally, be used for 2-cells in a 2-category. And it
will sometimes also occur as alternative X =>Y = Y^ for an exponent object
Y^ in a Cartesian closed category (CCC). We generally use 1 for a termi-
nal object (also called final object or empty product) in a category. Binary
Cartesian products are written as X x Y with projections 7r:X x Y -> X ,
7r':X X Y ^ Y and tuples {f,g):Z -^ X x Y for / : Z ^ X and ^: Z -> Y.
As a special case of tupleing, we often write S or S[X) for the diagonal
(id , id) :X ^ X x X on X , and S or S{I,X) for the "parametrised" diag-
onal (id ,7r ') : / x X ^ (7 x X) x X , which duplicates X , with parameter 7.

xiv Preliminaries

Associated with the abovementioned exponent object Y^ in a CCC there are
evaluation and abstraction maps, which will be written as ev: Y^ X X -^Y
and A(/): Z -^ Y^, fov f: Z x X -^ Y,

An initial object (or empty coproduct) is usually written as 0. For binary
coproducts we write X-{-Y with coprojections K: X -^X-{-Y,K':Y-^X-\-Y

and cotuples [f,g]: X + Y -^ Z, where f:X -^ Z and g:Y -^ Z. The codiag-
onal V = [id, id]: X + X —> X is an example of a cotuple.

For functors F:A-^M and G: IB -> A in an adjunction {F H G) the homset
isomorphism M{FX,Y) = A{X, GY) is often written as a bijective correspon-
dence between morphisms / : FX —^ Y and g: X —> GY via double lines:

FX -

X —

f
^Y

-^GY
e.g. for exponents:

ZxX ^Y

^Y"" =X =>Y
9

In such a situation, transposition is sometimes written as (/: FX —> y) i-̂
iPiX^ GY) and {g:X -^ GY) ^ {g'^'.FX ^ Y), or more ambiguously, as
f ^-^ f and g ^'g. We reserve the symbols r] for the unit natural transforma-
tion id => GF, and e for the counit natural transformation FG =^ id of an
adjunction (F H G). We recall that these natural transformations have com-
ponents rix — (id^x)^ and SY — (iday)^- In case both 77 and e are (natural)
isomorphisms, the categories A and B are called equivalent. This is written as
A c:̂ B.

For the rest, we generally follow usual categorical notation, e.g. as in
the standard reference [187]. Another (more recent) reference text is [36].
And [186, 19, 61] may be used as introductions.

Logic
Logic as presented in this book differs from traditional accounts in three as-
pects. (1) We standardly use many-typed (predicate) logic, in which variables
occurring in predicates need not be restricted to a single type (or, in more
traditionally terminology, to a single sort). (2) We do not restrict ourselves to
logic over simple type theory, but also allow logics over polymorphic and de-
pendent type theories. (3) Contexts of variable declarations will be explicitly
written at all times.

Hence a logical entailment

n - f 5 = 7 l - n = 2

is seen as incomplete, and will be written with explicit variable declaration as

7 z : N | n - | - 5 = : 7 f - n = : 2 .

Preliminaries xv

The sign ' | ' is used to separate the type theoretic context n: N from the logical
context rz 4- 5 = 7. These contexts will also be present in derivation rules.
The reason for carrying contexts explicitly along comes from their impor tant
categorical role as indices.

We use as propositional connectives ± for falsum (or absurdity), V for
disjunction, T for t ru th , A for conjunction and D for implication. Negation
-I will be defined as -xp = (p D L. Existential 3 and universal V quantifi-
cation will be written in typed form as 3x:a.ip and \/x:a.(p. And we simi-
larly use the notation =^a for typed equality (on type a). All these proposi-
tion formers will be used with their s tandard rules. (But for 3,V and =(j we
also use the equivalent—but less standard—adjoint rules, see Lemmas 4.1.7
and 4.1.8.) Higher order logic will be described via a distinguished (con-
stant) type Prop: Type, which enables quantification over propositions, like
in Va: Prop. (f.

By default, logic will be constructive logic. Non-constructive, classical logic
(with the additional double negation rule: -^-^(p entails (p) will not be very im-
portant , since the logic of most of the models that we consider is constructive.
See [67, 23, 335] for more information on constructive logic.

Type theory
Mostly, s tandard type theoretical notation will be used. For example, exponent
types are written as cr -^ r and (dependent) product types as Hx.a.r. The
associated introduction and elimination operations are lambda-abstract ion
Xx:a.M and application M - N, OT simply MN. (Sometimes we also use
"meta-lambda-abstraction" ^x.f{x) for the actual function x i—)• f{x), not
in some formal calculus.) We standardly describe besides "limit types" also
"colimit types" like coproduct (disjoint union) a + r, dependent sum Ex: a. r ,
equality Eq(j(x, x') and quotient a/R. There is no established notat ion for the
introduction and elimination operations associated with these type formers.
The notation tha t we shall use is given in Figure 0.1. The precise rules will
be given later. For these "colimit" type formers there are typical "commuta-
tion conversions" (involving substitution of elimination terms) and "Frobenius
properties" (describing commutat ion with products). We write (e,g. in the
above table) M[N/x] for the result of substi tuting N for all free occurrences
of X in M. This applies to terms, types or kinds M , N. In a type theoretic
context, an equation M = N between terms usually describes convertibility.
We shall use = to denote syntactic equality (following [13]).

Familiarity with the propositions-as-types correspondence (between deriv-
ability in logic and inhabitat ion in type theory) will be convenient, but not
necessary. For basic information on type theory we refer to [14, 98]. Also the
s tandard textbook [13] on the untyped lambda calculus is relevant, since many

Preliminaries

<7 + T

Ea7:<j. T

Eqa(x,x')

a/R

introduction

KM:(T + T, K'NIO- + r

(for M:a,N:T)

{M,N):Y.x:a.T

(iov M:(J,NXT[MIX])

ra(M):Eq^(M,M)

(fovMia)

[M]R:a/R

(for M: a)

elimination

unpack P as [KX in Q.n'y in P]

(for P'. <7 + T,Q(x),R(y): p where x: a, y: r)

unpack P as (x,y) \n Q:p

(for P: Dor: <7. r , Q(a7, y): p where x: a, y: r)

Q with a:' = a; via P:p

(for P:EqCT(a7,2:'), Q(a7):p[a:/a:'] where x, x': a)

pick X from P in Q: p

(for P:a/R,Q(x): p where xia)

Fig. 0.1. Introduction and eHmination terms for "coHmit" types

of the typed notions stem from the untyped setting.

Order theory
We briefly mention some of the ordered sets that will be used. A set X =
{X, <) carrying an "order" relation <C XxX which is reflexive and transitive
is called a preorder. And it is a partially ordered set (or poset, for short) if
the order is additionally anti-symmetric. A function f: X -^ Y between the
underlying sets of two preorders or posets X, Y is called monotone if it satisfies
X < a?' => f{x) < f{x') for all x^x' G X. Posets with monotone functions
form a category PoSets . A poset is a lattice if it contains a bottom element
JL G X, a top element T G X, a meet x A y E X and a join x V y E X
for all elements x,y G X. Such a lattice is a Hey ting algebra (HA) if it
additionally admits an operation D: X x X —> X with z < x D y if and
only if z A X < y. Hence a Heyting algebra is a poset bicartesian closed
category. A Boolean algebra (BA) is a Heyting algebra in which ->-^x < x
holds, where ->x = x D ± . Heyting algebras and Boolean algebras form models
of constructive and classical propositional logic (respectively).

A poset X is called a complete lattice if every subset a C X has a join
y a G X. Every subset a C X then also has a meet given hy /\a =
\/{x I X is a lower bound of a}. A complete Heyting algebra (CHA)—also
called a frame, or a locale—is a Heyting algebra, which is complete as a poset.
A poset X is a directed complete partial order (dcpo) if every directed subset

Preliminaries xvii

a C X has a join \/ a £ X, where a subset a C X is directed if a is non-empty
and satisfies: for all x,y G a there is a 2: E a with x < z and y < z. For
emphasis we sometimes write \/ instead of \ / for a join of a directed subset.
A function f.X^Y between dcpos is (Scott-) continuous if it is monotone
and preserves suprema of directed subsets. Dcpos with continuous functions
form a category D c p o , which is Cartesian closed. Also complete lattices with
continuous functions from a CCC. For more information, see e.g. [69, 3, 170].

Recursion theory
The categories of PERs and of cj-sets (and also the effective topos) will occur
in many examples. They involve some basic recursion theory. We assume some
coding (v^n)n6N of the partial recursive functions, and use it to describe what
is called Kleene application on natural numbers:

_ / V^n(^) if V^n(^) i (2-e. ii (pn{^ is defined)
~ 1̂ t otherwise {i.e. undefined, otherwise).

For a partial recursive function / : N " x N —)• N we let £ H^ Ay.f{x,y) be
the partial recursive function s"(e ,—):N" -> N that is obtained from the
"s-m-n-theorem" by writing

f{x,y) = <fe{x,y) =fs-ie,x){y)-

Then (Ay. f{x, y)) • z c:^ / (x , z), where ^ is Kleene equality; it expresses that
the left hand side is defined if and only if the right hand side is defined,
and in tha t case both sides are equal. We further use a recursive bijection
(—,—):N X N =̂)- N with recursive projection functions p , p ' : N =4 N. See
e.g. [66, 294, 236] for more information.

This Page Intentionally Left Blank

Chapter 0

Prospectus

This introductory chapter is divided into two parts. It first discusses some
generalities concerning logic, type theory and category theory, and describes
some themes that will be developed in this book. It then continues with a
description of the (standard) logic and type theory of ordinary sets, from the
perspective of fibred category theory—typical of this book. This description
focuses on the fundamental adjunctions that govern the various logical and
type theoretic operations.

0.1 Logic^ typ^ theory^ and fibred category theory

A logic is always a logic over a type theory. This statement sums up our ap-
proach to logic and type theory, and forms an appropriate starting point. It
describes a type theory as a "theory of sorts", providing a domain of reason-
ing for a logic. Roughly, types are used to classify values, so that one can
distinguish between zero as a natural number 0:N and zero as a real number
0:IR, and between addition -|-:N x N -^ N on natural numbers and addition
+:]R X M —> M on real numbers. In these examples we use atomic types N
and M and composite types N x N -> N and M x E —)- M obtained with the
type constructors x for Cartesian product, and -^ for exponent (or function
space). The relation ':' as in 0:N, is the inhabitation relation of type theory.
It expresses that 0 is of type N, i.e. that 0 inhabits N. It is like membership E
in set theory, except that G is untyped, since everything is a set. But a string
is something which does not inhabit the type of natural numbers. Hence we

2 Chapter 0: Prospectus

shall have to deal with rules regulating inhabitation, like

and
0:N succ(n):N

The first rule is unconditional: it has no premises and simply expresses tha t
the term 0 inhabits the type N. The second rule tells that if we know tha t n
inhabits N, then we may conclude that succ(n) also inhabits N, where succ(—)
may be read as successor operation. In this way one can generate terms, like
succ(succ(0)):N inhabiting the type N.

In predicate logic one reasons about such terms in a type theory, like in

Vx:N.3t / :N. 2/> succ(x).

This gives an example of a proposition. The fact that this expression is a
proposition may also be seen as an inhabitat ion statement, so we can write

(Va:: N. 3y: N.y> succ(x)) : Prop

using a type Prop of propositions. In this particular proposition there are
no free variables, but in predicate logic an arbitrary proposition (p: Prop may
contain free variables. These variables range over types, like in:

X > 5: Prop, where x:N or x> b: Prop, where x:M.

We usually write these free variables in a "context", which is a sequence of
variable declarations. In the examples the sequence is a singleton, so we write

x: N h a: > 5 : Prop and a:: M h x > 5 : Prop.

The turnstile symbol h separates the context from the conclusion: we read the
sequent a?: N h a: > 5: Prop as: in the context where the variable x is of type N,
the expression x > 5 is a proposition. Well-typedness is of importance, since
if a: is a string, then the expression x > b does not make sense (unless one has
a different operation > on strings, and one reads ' 5 ' as a string).

This explains what we mean with: a logic is always a logic over a type
theory. Underlying a logic there is always a calculus of typed terms tha t one
reasons about. But one may ask: what about single-sorted logic (i.e. single-
typed, or untyped, logic) in which variables are thought of as ranging over
a single domain, so that types do not really play a role? Then one still has
a type theory, albeit a very primitive one with only one type (namely the
type of the domain), and no type constructors. In such situations one often
omits the (sole) type, since it has no role. But formally, it is there. And what
about propositional logic? It is included as a border case: it can be seen as
a degenerate predicate logic in which all predicates are closed {i.e. do not
contain term variables), so one can see propositional logic as a logic over the
empty type theory.

Section 0.1: Logic, type theory, and fibred category theory 3

We distinguish three basic kinds of type theory:

• simple type theory (STT);
• dependent type theory (DTT);
• polymorphic type theory (PTT) .

In simple type theory there are types built up from atomic types (like N,
M above) using type constructors like exponent —>, Cartesian product x or
coproduct (disjoint union) -h. Term variables x\ a are used to build up terms,
using atomic terms and introduction and elimination operations associated
with the type constructors (like tuples and projections for products x) . Types
in simple type theory may be seen as sets, and (closed) terms inhabiting
types as elements of these sets. In dependent type theory, one allows a term
variable x\a to occur in another type T[X): Type. This increases the expressive
power, for example because one can use in D T T the type Matrlx(n,m) of
n X m matrices (say over some fixed field), for n : N and m : N terms of type
N. If one thinks of types as sets, this type dependency is like having for each
element i G / of a set / , another set X{i). One usually writes Xj — X{i) and
sees [Xi)i^i as an /-indexed family of sets. Thus, in dependent type theory
one allows type-indexed-types, in analogy with set-indexed-sets. Finally, in
polymorphic type theory, one may use additional type variables a to build up
types. So type variables a may occur inside a type <T(a), like in the type list(a)
of lists of type a. This means that one has types, indexed by (or parametrised
by) the universe Type of all types. In a set theoretic picture this involves a set
XA — X[A) for each set A. One gets indexed collections (X^)^^se t s of sets
XA-

These three type theories are thus distinguished by different forms of in-
dexing of types: no indexing in simple type theory, indexing by term variables
x'.am dependent type theory, and indexing by type variables a\ Type in poly-
morphic type theory. One can also combine dependent and polymorphic type
theory, into more complicated type theories, for example, into what we call
polymorphic dependent type theory (PDTT) or full higher order dependent
type theory (FhoDTT) .

Wha t we have sketched in the beginning of this section is predicate logic over
simple type theory. We shall call this simple predicate logic (SPL). An obvious
extension is to consider predicate logic over dependent type theory, so that
one can reason about terms in a dependent type theory. Another extension is
logic over polymorphic type theory. This leads to dependent predicate logic
(DPL) and to polymorphic predicate logic (PPL) . If one sees a typed calculus
as a (rudimentary) programming language, then these logics may be used as
program logics to reason about programs written in simple, dependent, or
polymorphic type theory. This describes logic as a "module" that one can

4 Chapter 0: Prospectus

plug onto a type theory.
This book focuses on such structural aspects of logic and type theory. The

language and techniques of category theory will be essential. For example, we
talked about a logic over a type theory. Categorically this will correspond to
one ("total") category, capturing the logic, being fibred over another ("base")
category, capturing the type theory. Indeed, we shall make special use of
tools from fibred category theory. This is a special part of category theory,
s temming from the work of Grothendieck in algebraic geometry, in which
(continuous) indexing of categories is studied. As we already mentioned, the
various forms of type theoretic indexing distinguish varieties of type theory.
And also, put t ing a logic on top of some type theory (in order to reason about
it) will be described by put t ing a fibration on top of the categorical s tructure
corresponding to the type theory. In this way we can put together complicated
structures in a modular way.

Fibred category theory is ordinary category theory with respect to a base
category. Also, one can say, it is ordinary category theory over a base cate-
gory. Such a base category is like a universe. For example, several concepts in
category theory are defined in terms of sets. One says that a category C has
arbitrary products if for each set I and each /-indexed collection {Xi)i^j of
objects Xi E C there is a product object Yliei ^^ ^ ^ together with projec-
tion morphisms TTJ: {Yiiei ^i) ~^ ^j^ which are suitably universal. In category
theory one is not very happy with this privileged position of sets and so the
question arises: is there a way to make sense of such products with respect to
an object / of a 'universe' or 'base category' B, more general than the cate-
gory S e t s of sets and functions? This kind of generality is needed to interpret
logical products 'ix:a.(p or type theoretic products Ux: a. r when the domain
of quantification a is not interpreted as a set (but as some ordered set, or
algebra, for example).

Another example is local smallness. A category C is locally small if for each
pair of objects X, F G C the morphisms X -^ Y in C form a set (as opposed
to a proper class). Tha t is, if one has homsets C{X,Y) E S e t s as objects in
the category of sets. Again the question arises whether there is a way of saying
tha t C is locally small with respect to an arbitrary universe or base category
IB and not just with respect to Se t s .

Fibred category theory provides answers to such questions. It tells what it
means for a category E to be 'fibred over' a base category B. In tha t case we

E

write i , where the arrow E ^ B is a functor which has a certain property
tha t makes it into a fibration. And in such a situation one can answer the
above questions: one can define quantification with respect to objects / G B
and say when one has appropriate hom-objects Hom(X, Y) G B for X, Y G E.

Section 0.1: Logic, type theory, and fibred category theory 5

The ways of doing this will be explained in this book. And for a category
Fam(C)

C there is always a 'family fibration' 4- of set-indexed families in C
Sets

The fibred notions of quantification and local smallness, specialised to this
family fibration, are the ordinary notions described above. Thus, in the family
fibration we have our s tandard universe (or base category) of sets.

There are many categorical notions arising naturally in logic and type the-
ory (see the list below). And many arguments in category theory can be
formulated conveniently using logic and type theory as "internal" language
(sometimes called the "Mitchell-Benabou" language, in the context of topos
theory). These fields however, have diff'erent origins: category theory arose in
the work of Eilenberg and Mac Lane in the 1940s within mathematics , and
was in the beginning chiefly used in algebra and topology. Later it found ap-
plications in almost all areas of mathemat ics (and computer science as well,
more recently). Type theory is also from this century, but came up earlier
in foundational work by Russell in logic (to avoid paradoxes). Recently, type
theory has become important in various (notably functional) programming
languages, and in computer mathematics : many type theories have been used
during the last two decades as a basis for so-called proof-assist ants. These are
special computer programs which assist in the verification of mathematical
s tatements , expressed in the language of some (typed) logic. The use of types
in these areas imposes certain restrictions on what can be expressed, but fa-
cilitates the detection of various errors. We think it is in a sense remarkable
tha t two such fundamental fields (of category theory and of type theory)—
with their apparent diff'erences and different origins—are so closely related.
This close relationship may be beneficial in the use and further development
of both these fields.

We shall be especially interested in categorical phenomena arising within
logic and type theory. Among these we mention the following.

(i) Every context of variable declarations (in type theory) or of premises
(in logic) is an index. It is an index for a 'fibre' category which captures the
logic or type theory that takes place within tha t context—with the declared
variables, or under the assumptions. The importance of this categorical role
of contexts is our motivation for paying more than usual attention to contexts
in our formulations of type theory and logic.

(ii) Appropriately typed sequences of terms give rise to morphisms be-
tween contexts. This is the canonical way to produce a category from types
and terms. These context morphisms induce substitution functors between
fibre categories. The structural operations of weakening (adding a dummy as-
sumption) and contraction (replacing two assumptions of the same kind by a
single one) appear as special cases of these substitution functors: weakening

6 Chapter 0: Prospectus

is substi tution along a projection TT, and contraction is substitution along a
diagonal S. These TT and S may be Cartesian projections and diagonals in sim-
ple and polymorphic type theories, or 'dependent ' projections and diagonals
in dependent type theory.

(iii) The basic operations of logic and type theory can be described as
adjoints in category theory. Such operations standardly come with an intro-
duction and an elimination operation, which are each other 's inverses (via
the so-called (/?)- and (77)-conversions). Adjoint correspondences capture such
situations. This may be familiar for the (simple) type theoretic constructors
1, X, 0, -h and —> (and for their propositional counterparts T, A, _L, V and
D) , since these are the operations of bicartesian closed categories (which can
be described via s tandard adjunctions). But also existential 3x:a.{—) and
universal Vx: a. (—) quantification in predicate logic over a type cr, dependent
sum T,x: a. (—) and product Jlx: cr. (—) in dependent type theory over a type
a, and polymorphic sum E a : Type. (—) and product Ua: Type. (—) in polymor-
phic type theory over the universe Type of types, are characterised as left and
right adjoints, namely to the weakening functor which adds an extra dummy
assumption x:a, or a : Type. Moreover, equality =a on a type a is charac-
terised as left adjoint to the contraction functor which replaces two variables
x,y:ahysi single one (by substituting x for y). By 'being characterised' we
mean tha t the s tandard logical and type-theoretical rules for these operations
are (equivalent to) the rules that come out by describing these operations as
appropriate adjoints.
The most impor tant adjunctions are:

existential 3, sum D H weakening

weakening H universal V, product 11

equality H contraction

t ru th H comprehension (or 'subsets types')

(but also: equality H comprehension, via a different functor)

quotients H equality.

The first four of these adjoints were recognised by Lawvere (and the last two
are identified in this book). Lawvere first described the quantifiers 3, V as left
and right adjoints to arbitrary substitution functors. The above picture with
separate adjoints to weakening and to contraction functors is a refinement,
since, as we mentioned in (ii), weakening and contraction functors are special
cases of substi tution functors. (These operations of weakening and contraction
can be suitably organised as a certain comonad; we shall define quantification
and equality abstractly with respect to such comonads.)

Section 0.1: Logic, type theory, and fibred category theory 7

(iv) As we mentioned above, the characteristic aspect of dependent type
theory is tha t types may depend on types, in the sense that term variables
inhabit ing types may occur in other types. And the characteristic aspect of
polymorphic type theory is that type variables may occur in types. Later we
shall express this as: types may depend on kinds. These dependencies amount
to certain forms of indexing. They are described categorically by fibred (or
indexed) categories. Thus, if one knows the dependencies in a type theory, then
one knows its underlying categorical structure. The additional type theoretic
structure may be described via certain adjunctions, as in the previous point.

(v) Models of logics and type theories are (structure preserving) functors.
From a specific system in logic or type theory one can syntactically build a
so-called 'classifying' (fibred) category, using a term model—or generalised
Lindenbaum-Tarski—construction. A model of this system is then a (fibred)
functor with this classifying (fibred) category as domain, preserving appropri-
ate structure. We shall make systematic use of this functorial semantics. It
was introduced by Lawvere for single-typed simple type theories. And it ex-
tends to other logics and type theories, and thus gives a systematic description
of models of (often complicated) logics and type theories.

(vi) If cr =: a{a) is a type (in polymorphic type theory) in which a free type
variable a occurs, then, under reasonable assumptions about type formation,
the operation r i-> cr[r/a] of substi tuting a type r for a, is functorial. This
functoriality is instrumental in describing the rules of (co-)inductively defined
da ta types in terms of (co-)algebras of this functor. And the reasoning princi-
ples (or logic) associated with such da ta types can also be captured in terms
of (co-)algebras (but for a different functor, obtained by lifting the original
functor to the logical world of predicates and relations).

(vii) A logical framework is a type theory T which is expressive enough so
that one can formulate other systems S of logic or of type theory inside T.
Categorically one may then describe (the term model of) S as an internal
category in (the term model of) T . We briefly discuss dependent type theory
as a logical framework in Section 10.2, but we refer to [87] for this connection
with internal categories.

This is not a book properly on logic or on type theory. Many logical and
type theoretical calculi are described and some illustrations of their use are
given, but there is nothing about specific proof-theoretic properties like cut-
elimination, Church-Rosser or strong normalisation. Therefore, see [14]. The
emphasis here lies on categorical semantics. This is understood as follows.
Category theory provides means to say what a model of, say predicate logic,
should look like. It gives a specification, or a hollow structure, which captures

8 Chapter 0: Prospectus

the essentials. A proper model is something else, namely an instance of such a
structure. We shall describe both these hollow structures, and some instances
of these. (But we do not investigate the local structure or theories of the
example models, like for example in [197] or in [13, Chapter 19].)

So what, then, is the advantage of knowing what the categorical structures
are, corresponding to certain logics and type theories? Firstly, it enables us to
easily and quickly recognise that certain mathematical structures are models
of some logical or type theoretical calculus, without having to write out an
interpretation in detail. The latter can be given for the 'hollow categorical
s tructure ' , and need not be repeated for the particular instances. One only has
to check tha t the particular structure is an instance of the general categorical
structure. For example, knowing that a particular category (of domains, say)
is Cartesian closed yields the information that we can interpret simple type
theory. Secondly, once this is realised, we can turn things around, and start
using our calculus (suitably incorporating the constants in a signature) to
reason directly and conveniently about a (concrete or abstract categorical)
model. This is the logician's view of the mathematic ian 's use of language:
when reasoning about a particular mathematical structure (say a group G),
one formally adds the elements a G G as constants a to the language, and
one uses the resulting "internal" language to reason directly about G. The
same approach applies to more complex mathematical structures, like a fibred
category of domains: one then needs a suitable type theoretic language to
reason about such a complex (indexed) structure. The third advantage is
tha t a clear (categorical) semantics provides a certain syntactic hygiene, and
deepens the understanding of the various logical and type theoretical systems.
For example, the principle that a (possibly new) operation in logic or type
theory should correspond to an adjoint gives certain canonical introduction,
elimination and conversion rules for the constructor. Fourthly, models can
be used to obtain new results about one's logical or type theoretical system.
Consistency, conservativity and independence results are often obtained in
this manner. Finally, and maybe most importantly, models provide meaning to
one's logical or type theoretical language, resulting in a better understanding
of the syntax.

There are so many systems of logic and type theory because there are certain
"production rules" which generate new systems from given ones.

(i) There are three basic type theories: simple type theory (STT), depen-
dent type theory (DTT) and polymorphic type theory (PTT) .

(ii) Given a certain type theory, one can construct a logic over this type
theory with predicates <f{x): Prop containing free variables x inhabiting types.
This allows us to reason about (terms in) the given type theory.

Section 0.1: Logic, type theory, and fibred category theory 9

(iii) Given a logic (over some type theory), one can construct a new type
theory (extending the given one) by a propositions-as-types upgrade: one con-
siders the propositions ^^ in the logic as types in the new type theory, and
derivations in the logic as terms in the new type theory.

This modulari ty is reflected categorically in the following three points.

(i) There are three basic categorical structures: for S T T (Cartesian closed
categories), for D T T (what we call closed comprehension categories) and for
P T T (certain fibred Cartesian closed categories).

(ii) Put t ing a logic on a type theory corresponds to put t ing a preorder
fibration on top of the structure describing the type theory. For logic one
uses preorder structures, since in logic one is interested in provability and not
in explicit proofs (or proof-terms, as in type theory), which are described as
non-trivial morphisms.

(iii) Under a propositions-as-types upgrade one replaces a preorder fibra-
tion by an ordinary fibration (with proper fibre categories), thus making room
for proof-terms as proper morphisms.

(Both second points are not as unproblematic as they may seem, because one
may have complicated type theories, say with two syntactic universes of types
and of kinds, in which there are many ways of put t ing a logic on top of such
a type theory: one may wish to reason about types, or about kinds, or about
both in the same logic. Categorically, there are similarly difi'erent ways in
which a preorder fibration can be imposed.)

By the very nature of its contents, this book is rather descriptive. It contains
few theorems with deep mathematical content. The influence of computer
science may be felt here, in which much emphasis is put on the description of
various languages and formalisms.

Also, it is important to stress that this is not a book properly on fibred
category theory. And it is not intended as such. It does contain the basic
concepts and results from fibred category theory, but only as far as they are
directly useful in logic or type theory (and not in topology, for example).
Some of these basic results have not been published previously, but have been
folklore for some t ime already. They have been discovered and rediscovered by
various people, and the precise flow of ideas is hard to track in detail. Wha t
we present in this book is not a detailed historical account, and we therefore
apologise in advance for any misrepresentation of history.

We sketch what we see as the main lines. In the development of fibred
category and categorical logic one can distinguish an initial French period
starting in the 1960s with Grothendieck's definition of a fibration [i.e. a fibred
category), published in [107]. It was introduced in order to study descent. The

10 Chapter 0: Prospectus

ensuing theory was further developed by Grothendieck and (among others)
Giraud [100] and Benabou. The lat ter 's work is more logical and foundational
in spirit than Grothendieck's (involving for example suitable fibred notions
of local smallness and definability), and is thus closest to the current work.
Many of the basic notions and results stem from this period.

In the late 1960s Lawvere first applied indexed categories in the study of
logic. Especially, he described quantification and equality in terms of adjoints
to substi tution functors, and showed tha t also comprehension involves an
adjunction. This may be seen as the start of categorical logic (explicitly, in his
influential "Perugia Lecture Notes" and also in [192, 193]). At about the same
time, the notion of elementary topos was formulated, by Lawvere and Tierney.
This resulted in renewed attention for indexed (and internal) categories, to
study phenomena over (and inside) toposes. See for example [173, 169] and
the references there.

Then, in the 1980s there is the start of a type theoretic boom, in which
indexed and fibred categories are used in the semantics of polymorphic and
dependent type theories, see the basic papers [306, 307, 148] and the series
of PhD theses [45, 330, 75, 185, 318, 252, 260, 7, 154, 89, 217, 86, 60, 289,
125, 4, 198, 133]. This book collects much material from this third phase.
Explicitly, the connection between simple type theory and Cartesian closed
categories was first established by Lawvere and Lambek. Later, dependent
type theory was related to locally Cartesian closed categories by Seely, and to
the more general "display m a p categories" by Taylor. The relation between
polymorphic type theory and certain fibred (or indexed, or internal) Cartesian
closed categories is due to Seely, Lamarche and Moggi. Finally, more compli-
cated systems combining polymorphic and dependent systems (like the calcu-
lus of constructions) were described categorically by Hyland, Pi t ts , Streicher,
Ehrhard, Curien, Pavlovic, Jacobs and Dybjer. This led to the (surprising)
discovery of complete internal categories by Moggi and Hyland (and to the
subsequent development of 'synthetic ' domain theory in abstract universes).

Interestingly, fibred categories are becoming more and more important in
various other areas of (theoretical) computer science, precisely because the as-
pects of indexing and substitution (also called renaming, or relabelling) are so
fundamental . Among these areas we mention (without pretension to be in any
sense complete): database theory [295, 151, 9], rewriting [12], au tomata the-
ory [175, 10], abstract environments [279], dataflow networks [310], constraint
programming [219], concurrency theory [345, 131], program analysis [230, 25],
abstract domain theory [146] and specification [152, 327, 48, 159].

Many topics in the field of categorical logic and type theory are not discussed
in this book. Sometimes because the available material is too recent (and un-
settled), sometimes because the topic deviates too much from the main line.

Section 0.2: The logic and type theory of sets 11

but mostly simply because of lack of space. Among these topics we mention
(with a few references): inductively and co-inductively defined types in depen-
dent type theory [70, 71], categorical combinators [63, 290, 116], categorical
normalisation proofs [147, 238, 5], fixed points [16], rewriting and 2-categorical
structure [308, 278], modal logic [93], //-calculi [313], synthetic domain the-
ory [144, 331, 264], a fibred Giraud theorem [229], a fibred adjoint functor
theorem [47, 246], descent theory [168] (especially with its links to Beth de-
finability [208]), fibrations in bi-categories [315, 317], 2-fibrations [127], and
the theory of stacks [100].

The choice has been made to present details of interpretation functions for
simple type theory in full detail in Chapter 2, together with the equivalent
functorial interpretation. In later chapters interpretations will occur mostly in
the more convenient functorial form. For detailed information about interpre-
tation functions in polymorphic and (higher order) dependent type theories we
refer to [319, 61]. As we proceed we will be increasingly blurring the distinction
between certain type theories and certain fibred categories, thus decreasing
the need for explicit interpretations

0,2 The logic and type theory of sets

We shall now try to make the fibred perspective more concrete by describing
the (familiar) logic and type theory of ordinary sets in fibred form. Therefore
we shall use the fibrations of predicates over sets and of families of sets over
sets, without assuming knowledge of what precisely constitutes a fibration. In
a well-known situation we thus describe some of the structures that will be
investigated in more abstract form in the course of this book. We shall write
Sets for the category of (small) sets and ordinary functions between them.

Predicates on sets can be organised in a category, tha t will be called Pred ,
as follows.

o b j e c t s pairs {I,X) where X C / is a subset of a set / ; in this
situation we consider X as a predicate on a type / , and
write X{i) for i E X to emphasise tha t an element i £ I
may be understood as a free variable in X. When / is clear
from the context, we sometimes write X for the object
{X C /) .

m o r p h i s m s (/, A") -^ (J, Y) are functions u: I -^ J between the under-
lying sets satisfying

X[i) implies Y[u{i)), for each i E / .

Diagrammatically, this condition on such a function

12 Chapter 0: Prospectus

u'.I-^J amounts to the existence of a necessarily unique
(dashed) map

X ^Y

Y

/ ^ J

indicating that u restricts appropriately.
There is an obvious forgetful functor P r e d —> Sets sending a predicate to
its underlying set (or type): [I,X) i-> / . This functor is a "fibration". And
although it plays a crucial role in this situation, we do not give it a name, but

Pred
simply write it vertically as ^ to emphasise that it describes predicates as

Sets
living over sets.

For a specific set / , the "fibre" category P r e d / is defined as the subcategory
of P r e d of predicates {X C /) on / and of morphisms that are mapped to
the identity function on / . This category P r e d / may be identified with the
poset category (P(/) , C) of subsets of/, ordered by inclusion. For a function
u'.I -^ J there is "substitution" functor u*:P{J) -> P{I) in the reverse
direction, by

(YCj)^{{i\uii)eY}Cl).
Clearly we have Y C Y' => u*{Y) C u*(Y'), so that u* is indeed a functor.
Two special cases of substitution are weakening and contraction. Weakening
is substitution along a Cartesian projection TT: / x J —> / . It consists of a
functor

P(I) - ^ ^ P{I X J) sending X ^ {{ij) \ieX and j G J]

by adding a dummy variable j E J to a, predicate X. Contraction is substitu-
tion along a Cartesian diagonal (J: / —> / x / . It is a functor

P{I X /) - ^ P{I) given by Y ^ {i e I \ (i, i) E Y},

It replaces two variables of type / by a single variable.
Each fibre category P{I) is a Boolean algebra, with the usual set theoretic

operations of intersection fl, top element (/ C /) , union U, bottom element
(0 C /) , and complement /\(—)• These operations correspond to the propo-
sitional connectives A,T,V,±,-> in (Boolean) logic. They are preserved by
substitution functors u* between fibre categories.

The categorical description of the quantifiers 3,V is less standard (than
the propositional structure of subsets). These quantifiers are given by oper-
ations between the fibres—and not inside the fibres, like the propositional

Section 0.2: The logic and type theory of sets 13

connectives—since they bind free variables in predicates (and thus change the
underlying types). They turn out to be adjoints to weakening, as expressed
by the fundamental formula:

3 H TT* H V.

In more detail, we define for a predicate Y C / x J ,

3 (7) = {iei\3jeJ.[i.j)eY]

v (y) ^ { i G / | V i G J . (2 , i) G y } .

These assignments Y \-^ 3 (y) and Y i-^ V(y) are functorial P{I x J) =t
P (/) . And they are left and right adjoints to the above weakening functor
TT*: P{I) -^ P(I X J) because there are the following basic adjoint correspon-
dences.

y C 7 r * (X) o v e r / x J 7r*(X) C y over / x J
=======^^^^ and ===^=:==^==^^^

3{Y) C X over / X C V(y) over /

(Where the double line means: if and only if.)
For a set (or type) / , equality i = i' for elements i, i' G / forms a predicate

on / X / . Such equality can also be captured categorically, namely as left
adjoint to the contraction functor S*:P{I x I) ^ f^i^)- One defines for a
predicate X C I the predicate Eq(X) on / x / by

Eq(X) = {(i, i')e I X I \i = i' and i G X}.

Then there are adjoint correspondences

Eq(X) C y over I x I

X C j * (y) o v e r /

Notice tha t the predicate Eq(X) is equality on / for the special case where X
is the top element / . See also Exercise 0.2.2 below for a description of a right
adjoint to contraction, in terms of inequality.

The operations of predicate logic can thus be identified as certain structure
Pred

in this fibration I , namely as structure in and between its fibres. Moreover,
Sets ' -̂ . . .

it is a property of the fibration that this logical structure exists, since it can
be characterised in a universal way—via adjoints—and is thus given uniquely
up-to-isomorphism. The same holds for the other logical and type theoretical
operations tha t we identify below.

Comprehension is the assignment of a set to a predicate, or, as we shall
say more generally later on, of a type to a predicate. This assignment takes
a predicate to the set of elements for which the predicate holds. It also has
a universal property. Therefore we first need the " truth" functor l : S e t s —>

14 Chapter 0: Prospectus

Pred , which assigns to a set / the truth predicate 1(7) = {I C. I) on 7; it is
the terminal object in the fibre over 7. Comprehension (or subset types, as
we shall also say) is then given by a functor { —}: P r e d -> Sets, namely

{{Y C J)} = {jeJ\ Yij)} = Y.

Hence { —}:Pred -> Sets is simply {Y C J) \-^ Y. It is right adjoint to
the truth functor l :Se ts —> P r e d since there is a bijective correspondence
between functions u and '̂ in a situation:

1(7) —^ (y C J) in P r e d

-^ {{Y C J)} in Sets

In essence this correspondence tells us that Y{j) holds if and only if j E {{Y C

Quotient sets can also be described using the fibration of predicates over
sets. We first form the category Rel of (binary) relations on sets by pullback:

Rel ^ P r e d

J
Sets ^ Sets

7 K ^ 7 X 7

Via this pullback we restrict ourselves to predicates with underlying sets of
the form 7 x 7 . Explicitly, the category Rel has

objects pairs (7, 7̂) where 7? C 7 x 7 is a (binary) relation on
7 e Sets.

morph i sms (7, R) -^ {J, S) are functions u: I -^ J between the under-
lying sets with the property

R{i, i') implies S{u[i)^u[i'))^ for all i, i' G 7.

The functor Rel -^ Sets in the diagram is then (7, R) \-^ 7. It will turn out to
be a fibration by construction. The abovementioned equality predicate yields
an equality functor Eq: Sets -^ Rel, namely

J ^ E q (J) = { (i , i) | i e J } .

Quotients in set theory can then be described in terms of a left adjoint Q to
this equality functor Eq: a relation R C I x I is mapped to the quotient set
7/7?, where R C I x I is the least equivalence relation containing R. Indeed

Section 0.2: The logic and type theory of sets 15

there is an adjoint correspondence between functions v and u in:

Q(/, R) = I/^ —^ J in Sets

R ^ Eq(J) in Rel

This correspondence can be reformulated as: for each functon u: I -^ J with
u{i) — u{i') for all i, i' £ I for which R{i,i') holds, there is a unique function
v: I/R —-> J in a commuting triangle

quotient

Finally we mention that predicates over sets give us higher order logic.
There is a distinguished set 2 = {0,1} of propositions, with special predicate
({1} C 2) for truth: for every predicate [X C /) on a set / , there is a unique
function char(X C I): I ^ 2 with

(X C /) = char(X C /)*({!} C 2).

This existence of "characteristic morphisms" is what makes the category of
sets a topos. It allows us to quantify via this set 2 over propositions.

This completes our first glance at the fibred structure of the logic of sets. In
the remainder of this section we sketch some of the type theoretic structure of
sets, again in terms of a fibration, namely in terms of the "family" fibration
Fam(Sets)

I of set-indexed-sets. It captures the dependent type theory (with
type-indexed-types) of sets.

The category Fam(Sets) of families of sets has

objects pairs (/, X) consisting of an index set / and a family X =
{Xi)i^j of/-indexed sets Xj.

morphisms (/ , ^) -^ {J,y) are pairs (w,/) consisting of functions

- ^ J and / = [Xi ^ y^,(o). ei

There is a projection functor Fam(Sets) -> Sets sending an indexed family
to its underlying set index set: (/, X) i-> / . It will turn out to be a fibration.
Essentially this will mean that there are (appropriate) substitution or rein-
dexing functors: for a function u: I -^ J between index sets, we can map a

16 Chapter 0: Prospectus

family Y = {Yj)j^j over J to a family over / via:

{Yj)jeJ '—y {Yu{i))iei'

We shall write u* for this operation. It extends to a functor between "fibre"
categories: for an arbitrary set K, let Fam(Sets)i<- be the "fibre" subcategory
of Fam(Sets) of those families {K,X) with A' as index set, and with mor-
phisms (idx, /) with the identity on K as underlying function. Then w.I^J
yields a substitution functor t/*: Fam(Sets)j —>• Fam(Sets)/.

Notice that there is an inclusion functor Pred <^ Fam(Sets) of predicates
into families, since every predicate [X C /) yields an /-indexed family {Xi)i^i
with

''• - \ 0 oth. otherwise.

It is not hard to see that this yields a full and faithful functor Pred <^
Fam(Sets), which commutes with substitution. It is a 'morphism of fibra-
tions'.

Our aim is to describe the dependent coproduct JJ and product Y\ of fami-
lies of sets as adjoints to weakening functors, in analogy with the situation for
existential 3 and universal V quantification in the logic of sets. But in this sit-
uation of families of sets we have weakening functors TT* induced not by Carte-
sian projections TT: I x J —^ I, but by "dependent" projections w: {I \ X} —>• / ,
with domain {/ | X} given by the disjoint union:

{I\X} = {{i,x) I 2 G / and X G Xi}

which generalises the Cartesian product. The weakening functor TT* associated
with this dependent projection TT: {I \ X} -> / sends a family Y = {Yi)i^i
over / to a family 7r*{Y) over {/ | X} by vacuously adding an extra index x,
as in:

(As we shall see later, the projection TT: {I \ X} -^ I arises in a canonical way,
since the assignment (/, X) i-̂ {/ | X} yields a functor Fam(Sets) -> Sets,
which is right adjoint to the terminal object functor l :Se ts -^ Fam(Sets),
sending a set J to the J-indexed collection ({*})JGJ of singletons. The counit
of this adjunction has the projection TT as underlying map. Thus, the operation
(/ ,X) H-> {/ I X} is like comprehension for predicates, as described above.)

The claim is that the dependent coproduct]J and product f| for set-indexed
sets are left and right adjoints to the weakening functor TT* . Therefore we have

Section 0.2: The logic and type theory of sets 17

to define coproduct]J and product W as functors

u
Fam(Se t s){ / | x) -^—TT* F a m (S e t s) /

n
{I\X)

acting on an {/ | X}-indexed family Z = (^(i,a;))»g/,reA', and producing an
/-indexed family. These functors are given by

]\{Z)i = {{x,z) \xeXi and z € Z(.-,^)}

Y[{Z)i = {<p: Xi ^ Ux€X. Z(i,,) I Vx e Xi.ip(z) € Z(,-,^)}.

We then get the fundamental relation

u H TT- H n

since there are bijective adjoint correspondences between families of functions
/ and g in:

/ /
Z ^ 7 r * (y) o v e r { / | X } 7r*{Y) ^Z over { / | X }

^^^==^=^=^=^=^^== and = = = = = = = = = =
I J (^) ^ Y over / Y ^ I K ^) over /

Also in this situation, there are adjoints to contraction functors S* (induced
by dependent diagonals), given by equality and inequality. But we do not
further pursue this mat ter , and conclude our introduction at this point. Wha t
we have sketched is tha t families of sets behave like dependent types, and tha t
subsets behave like predicates, yielding a logic over (dependent) type theory.
We have shown tha t the basic operations of this logic and of this type theory
can be described by adjunctions, in a fibred setting. In the course of this book
we shall (among many other things) be more precise about what it means
to have such a logic over a type theory and we shall axiomatise all of the
structure found above, and identify it in many other situations.

Finally, the next few exercises may help the reader to become more familiar
with the structure described above.

18 Chapter 0: Prospectus

Exercises

0.2.1. Define a left adjoint F:Fam(Sets) -> P r e d to the inclusion functor

F

P r e d ^ 7 Fam(Sets)

Sets

such that: (1) F makes the triangle commute (so it does not change the
index set), and (2) F commutes with substitution.

0.2.2. Define for a subset X C / the relation nEq(X) C / x / by

nEq(X) = {(i, i') I i ^ I or i G X }

and show that the assignment X H^ nEq(X) is right adjoint to contraction
J*: P (/ X /) -> P (/) . Notice that nEq(X) at the bottom element X = 0 is
inequality on / .

0.2.3. Show that the equality functor Eq: Sets —> Rel also has a right adjoint.
0.2.4. Check that the operation (/ ,X) >-> {/ | X } yields a functor Fam(Sets) -^

Sets , and show that it is right adjoint to the terminal object functor Sets -^
Fam(Sets), mapping a set J to the family of singletons ({ * }) J G J . Describe
the unit and counit of the adjunction explicitly.

Chapter 1

Introduction to fibred category theory

This first proper chapter starts with the basics of fibred category theory; it
provides the foundation for much of the rest of this book. A fibration, or fibred
category, is designed to capture collections (C /) / ^ ! of categories C/ varying
over a base category B, generalising for example collections of sets {Xi)i^j
varying over a base, or index, set / . The main categorical examples are the
indexed collections of categories

(W/),,„ (sub(/)),^^ (i///),^„
consisting of slice categories B / / over / , posets Sub(/) of subobjects of/ , and
what we call 'simple slice categories' M//I over / . The ordinary slice categories
will be used for dependent type theory, the posets of subobjects for predicate
logic, and the simple slice categories for simple type theory (whence the name) .
The slice categories B / / will be used as leading example in the first section
when we introduce fibrations. The other examples Sub(/) and M//I will be
introduced soon afterwards, in Section 1.3.

In all of these cases, a morphism u: I ^ J in the base category B induces a
substitution functor, commonly written as w*, acting in the reverse direction.
Tha t is, there are substi tution functors:

- ^ B / / Sub(J) - ^ Sub(/) M//J - ^ M//I

Weakening functors and contraction functors arise as special cases of sub-
stitution functors u*, namely (respectively) as TT*, where TT is a projection
morphism in B, and as J*, where J is a diagonal morphism in B.

19

20 Chapter 1: Introduction to fibred category theory

These two aspects—indexing and substitution—will be studied systemati-
cally in this first chapter, in terms of fibrations. The notion of'fibred category',
or 'fibration', is due to Grothendieck [107].

This chapter develops the basic theory of fibrations and shows how various
notions from ordinary category theory—such as adjunctions, products and
coproducts—make sense for fibred categories as well. In the last section 1.10
we describe the notion of 'indexed category', a common alternative formu-
lation of variable category, and explain why an indexed category should be
regarded as simply a particular kind of fibrations (namely as a 'cloven' one).
Chapter 7 describes internal categories, which also correspond to certain fi-
brations, namely to so-called 'small' fibrations.

The ten sections which together form this chapter contain the essentially
standard, first part of the theory of fibrations, geared towards use in categor-
ical logic and type theory. The main notions are: Cartesian morphism, sub-
stitution functor, change-of-base, fibred adjunction, fibred (co)product and
indexed category. These will be introduced together with many examples.
Sometimes the theory is further developed in exercises, but mostly, the ex-
ercises of a section serve to familiarise the reader with the new material in
that section. There is a later chapter (Chapter 9) which continues the study
of fibrations.

1.1 Fibrations

Basically, a fibration is a categorical structure which captures indexing and
substitution. Since the formal definition of a fibration is a bit technical—see
Definition 1.1.3 below—we start with the following introductory observations.
These focus on the special case of a codomain fibration, and will lead to
the general definition of fibration towards the end of this section. The exer-
cises contain many elementary results about fibrations, which should help the
reader to get acquainted with the concepts involved.

Indexing

Suppose we wish to consider a family of sets, ranging over some index set / .
There are two ways of doing so.

(a) Pointwise (or split) indexing: as a collection (Xf),^/, where each Xi
is a set. Probably this way is most elementary and comes first to one's mind.
One can think of this collection as being given by a function (or functor)
/ -^ Sets, namely i H^ XJ.

Section 1.1: Fibrations 21

Xi Xi

(a) (b)

Fig. 1.1. Pointwise indexing (a) and display indexing (b) of set-indexed-sets

(b) Display indexing: as a function (p: X —^ I. The sets in the family
then appear as fibres "over i"

(f-\i) = {x£X \ (p{x) = i}

for each i £ L
A picture suggesting the difference between these ways of indexing is pre-

sented in Figure 1.1.
These descriptions are equivalent: given a collection {Xi)i£i as in (a), take

X to be the disjoint union U^-^/-^i = {(h^) | « G / and x £ X,}; it comes
equipped with a projection function TT: JĴ -̂ j Xj -> / sending {i,x) »-> i. Up-
to-isomorphism, the fibre 7r~^(i) over i is the original Xi. Conversely, given a
function <̂ : X ^ / as in (b), put Xi = (p~^{i). This yields a collection (X,),-^/
as in (a), together with an isomorphism U^^/ Xi = X.

(For the set theoretic purist we remark that the passage from (a) to (b)
relies on the Axiom of Replacement. Also we should mention that the fibres
<f~^{i) in (b) are necessarily disjoint, whereas the sets Xi in (a) need not be
disjoint. But that is not essential at this stage.)

Although pointwise indexing (a) seems more natural at first, display in-
dexing (b) has the great advantage that it generalises to arbitrary categories,
since it only involves the notion of a morphism, see Definition 1.1.5 below.

22 Chapter 1: Introduction to fibred category theory

Hence in the sequel we often describe a family of sets as a function (p: X ^ I
as in (b). We then loosely speak about the fibres Xi — p~^{i) and say that
X is a family over / and that y? displays the family {Xi). In order to em-
phasise that we think of such a map P̂ as a family, we often write it vertically

as I y^ I. A constant family is one of the form I i ^ 15 where TT is the

Cartesian product projection; often it is written simply as P{X). Notice that
all fibres of this constant family are (isomorphic to) X.

/ X \
Such families I y*̂ j of sets give rise to two categories: the slice cate-

gory S e t s / / and the arrow category Sets"*". The objects of S e t s / / are the

/-indexed families, for a fixed set /; the objects of Sets"^ are all the /-indexed

families, for all possible / . Here are the definitions.

S e t s / / objects families

morphisms are functions f.X -^ Y

making the following diagram commute.

/
^Y

Notice that / can thus be seen as a collection of functions ff. Xi —> Yi—where
Xi = <p~^{i) and Yi = ijj~^{i) are the fibres involved (for i G /) . Composition
and identities in S e t s / / are inherited from Sets.

Sets objects families I j] ̂ for arbitrary sets / .

morphisms («,/) are pairs of functions

u: I-^ J and f:X—^Y for which the following

Section 1.1: Fibrations 23

diagram commutes.

X

^

- ^ y

^

-^ J

Hence, objects in the arrow category Sets"^ involve an extra function u be-
tween the index sets. Notice that one can now view / as a collection of func-
tions fi'.Xi -^ Yu{i), since for x G (p~^{i), f{x) lands in ip~^{u{i)). Composi-
tion and identities in Sets"^ are component-wise inherited from Sets.

We further remark that there is a codomain functor cod: Sets^ -> Sets;
it maps

[j ^ J K^/ and {uj)^u.

Also, for each / , there is a (non-full) inclusion functor Se t s / / M- Sets^.

Substitution

Suppose a family over a set J is given. Substitution involves changing

the index set J . More specifically substitution along a function u: I -^ J
involves creating a family of sets with the domain / of t/ as new index set and
with fibres Y^^i) for i E / . Thus the family {Yj)j^j is turned into a family
{Xi)i^i with Xi — yu(f). This family {Xi)i^j can be obtained in the following
way. Form the puUback of ij) against u\

«*(v)

That is, form the set X

^ (*)

/ 7. ^ J

{(i,y) E / X y I u{i) — tp{y)} with obvious

over /
/ X '

projection functions I ^ X -^Y. One obtains a new family I 'Y

with fibres

Xi = ̂ -\i) ^{yeY\ rPiy) = uii)} = ̂ -'("(O) = y„(.)-

24 Chapter 1: Introduction to fibred category theory

One normally writes w*(^) for the result 9? of substituting ij) along u.

1.1.1. Examples. The following four special cases of substitution along a
map u are worth mentioning separately.

(i) Suppose u is an element j E J, that is, u is of the form j:l —> J
where 1 = {*} is a one-element (terminal) set. Then u*{'tp) = j*(ip) becomes

the family I j I. It can be identified with the fibre Xj. Thus, substituting

along a specific element j yields the fibre Xj over this element j .
(ii) Substitution of an ordinary (non-indexed) set X, described as a family

fX\
[\ I over a singleton set 1, along the unique map / —> 1 yields the constant

family I* (X) = I | I. This is because the pullback of two maps 7 ^ 1

and X —^ 1 with the terminal object 1 as common codomain, is the Cartesian
product / X X of their domains.

(iii) In case w is a projection TT: J x / —)• J, then 7r*{ij;) is V̂ x id, since the
following diagram is a pullback square.

One obtains as fibre over (j, i) E J x I

ir*(^r'(j,i) = (V X id)-\j,i) = {(y,j,i) I V(y) = j} = r\3) X /

which shows that there is an extra "dummy" index variable i in the family
7r*(<̂) which plays no role. Later in Section 3.1 (explicitly in Example 3.1.1) we
shall see that in logical terms, substitution along a projection is weakening
[i.e. adding an extra assumption).

(iv) The dual (in some sense) of (iii) is substitution along a diagonal S: J -^

J X J. For a family (r ^^) the fibre oiS*{iP) over 7 G J is

which is the family ^(jj/) restricted to j = f. This is contract ion: replacing
two variables j , f by a single one via substituting [j/f].

Notice that the pair (w,/) in the pullback diagram (*) above is a mor-
phism u*(ip) ^ ^ in the arrow category Sets"^. For a moment let us call this

Section 1.1: Fihrations 25

pair {u,f) the "substitution morphism" (later it will be called a Cartesian
morphism). This substitution morphism has a universal property: suppose we
have another morphism,

in Sets"^ such that v: K —> J factors through u: I -^ J, say via w. K —)• /
with t? = w o It;, as in

Then there is a unique morphism

Z \ [w,h) (X

K
w

in Sets"^ which is sent to w by the codomain functor cod: Sets
and for which the composite

|)(-i'i(f)i!l::a(T z \ {v,g) (Y

This holds because X was constructed as a pullback:

9

Sets,

The presence of such 'best possible substitution morphisms' u*{'ip) —^ ip
is the cardinal property of the codomain functor cod:Sets~^ —)- Sets that

26 Chapter 1: Introduction to fibred category theory

makes it a fibration. Definition 1.1.3 below captures this property abstractly
in purely categorical terms. And in Section 1.4 we shall see how this property
induces—by choosing substitution morphisms—substitution functors u*.

We introduce some notation and terminology. Let p: E -> IB be a functor. It
/ E \

can be seen as a (display) family (i^) of categories: for an object / G B,

the fibre or fibre category E/ = p~^{I) over / is the category with

objects X eE with pX = L

morphisms X ^ Y in E/ are morphisms / : X —> Y in E for which pf
is the identity map on / in B.

An object X G E such that pX — I {i.e. an X G E/) is said to be above
/ ; similarly, a morphism / in E with pf = u is said to be above u. This

E

terminology is in accordance with our 'vertical' notation ^P . A morphism
in E will be called vertical if it is above some identity morphism in B, that
is, when it is in a fibre category. For X,Y £ E and u:pX —> pY in B we
sometimes write

E^(X, y) = {f:X -^Y i n E | / i s a b o v e w } C E (x , Y) .

>nsidering such a family oj
gory and E the total category.

E

When considering such a family of categories -^P , we call B the base cate-

Sets~^

1.1.2. Examples, (i) Consider the codomain functor i . An object

above 7 G Sets is a family I y^ I over / ; a vertical morphism has the form

Thus the fibre category above / G Sets can be identified with the slice cate-
gory Se t s / / of families over / and commuting triangles. Notice that the fibre
Sets/1 (or slice) over a singleton (terminal) set 1 can be identified with the
base category Sets itself.

(ii) For a functor p-.E -> B, the fibre category Ej over / G B can be

Section 1.1: Fibrations 27

constructed via a pullback: one has a pullback of categories

just like

is a pullback of sets, as described in Example 1.1.1 (i).

Finally, we come to the definition of 'fibration'.

1.1.3. Definition. Let p:E —> IB be a functor.
(i) A morphism / : X —> Y in E is Cartesian over u: I —^ J in M if pf = u

and every g: Z -^ Y inE for which one has pg = u o w for some w.pZ —> / ,
uniquely determines an h: Z ^ X inlE above w with f o h = g.lm. diagram:

Z

E
^Y

We call / : X -^ y in the total category E Cartesian if it is Cartesian over its
underlying map pf in B.

(ii) The functor p: E —> B is a fibration if for every y G E and u: I —^ pY
in B, there is a Cartesian morphism / : X —>• y in E above u. Sometimes a
fibration will be called a fibred category or a category (fibred) over B.

We often say that a Cartesian morphism f:X —> Y above u: I -^ pY is a
terminal or Cartesian lifting of u in a, situation:

X
f

^Y

(Later, in Section 9.1, we shall describe 'opfibrations' as functors p:E -
which one has 'initial' or 'opcartesian' liftings of maps pX —^ J in B.)

m

28 Chapter 1: Introduction to fibred category theory

The previous two diagrams embody a convention that will be used through-
out: if a diagram is drawn in two parts, one above the other, then "above" in
the diagram means "above" in the categorical sense described before Exam-

E

pie 1.1.2. Further, a fibration is written vertically as | and is pronounced as
'E over B'. Often the name of the functor is omitted if it is clear what 'over'
means.
1.1.4. Propos i t ion . Cartesian liftings are unique up-to-isomorphism (in a
slice): if f and f with cod/ = cod/' are both Cartesian over the same map,
then there is a unique vertical isomorphism (p.X^X' with f'o(p = f, D

(The proof is left as Exercise 1.1.1 (i) below.)
The reader is now invited to check that with respect to the codomain functor

cod: S e t s ^ -^ Sets the Cartesian morphisms in Sets"*" are precisely the
pullback squares in Sets and that the functor cod is a fibration.

The following is a mild generalisation of what has been considered above
for the category of sets.

1.1.5. Definition. For an arbitrary category B, the arrow category B"^

(^ has families I ^^) as objects; thus maps ^: X -^ / in B are objects of I

A morphism I t I "^ I t ^ J in B"*" consists of a pair of morphisms

u: I -^ J, / : X —> y in B such that tp o f = u o cp.
For an object 7 E B the slice category B / / is the subcategory of B~̂ of

families over / (i.e. with codomain /) and morphisms {u, f) where w = id/.
Sometimes, a slice category is simply called a slice.

1.1.6. Propos i t ion . Consider the codomain functor cod: W^ —^M.
(i) The fibre category over I EM is the slice category B / / .

(ii) Cartesian morphisms in B"^ coincide with pullback squares in B.
(iii) The functor cod is a fibration if and only if B has pullbacks. In that

case it called the codomain fibration on B. •

(The proof is also left as an exercise.)
The notation B"*" for the category of arrows of B comes from the fact that

B~̂ can be seen as the category of functors from • ̂ • to B, and natural
transformations between them. Similarly we write B"^^ for the category of
functors from • -> • ^ • to B. Notice that B~^"^ is not the same as (B"^) .

Alternatively, one can see B~*" as the comma category (B J, B), see [187]. In

writing i we always refer to the codomain fibration on B (and not to the
domain fibration described in Exercise 1.1.8 below).

Section 1.1: Fibrations 29

We started this section by describing set-indexed families of sets, either as

X
(a) pointwise (X,),-^/ or as (b) display | .

We emphasise tha t it is important to have both pictures in mind "at the same
t ime" . There is a great similarity with indexed families of categories; they can
be presented either as

(a) (E/) /eB or as (b) J .

In (b) one gets a picture as given by fibrations, and in (a) as given by so-called
'indexed categories'. It turns out tha t there is also a way of switching between
(a) and (b) for categories, given by the 'Grothendieck construction', which
is an extension of what we have for sets. The details are in the last section
of this chapter, together with a short discussion on fibrations versus indexed
categories.

For the t ime being however, we concentrate on (b) for categories, in order
to become more familiar with fibred categories. But it is good to keep (a) in
mind. For example, when confronted with a fibration, always ask what the
fibres are.

Exercises 1-4 collect some useful facts about Cartesian morphisms and fi-
brations. We will often make use of them.

Exercises

1.1.1. (i) Prove Proposition 1.1.4.
(ii) Suppose / is Cartesian and g and h are above the same map. Show

that f o g = f o h implies g = h.
1.1.2. Let p: E -> B be a functor; assume / : X ^ y is in E and put u = pf. Show

that / is Cartesian if and only if for each Z G E and v:pZ —> pX in B, the
function

E . (Z, X) ^ Eaov[Z, Y)

is an isomorphism.
1.1.3. Consider the total category of a fibration. Show that

(i) every morphism factors as a vertical map followed (diagrammatically)
by a Cartesian one;

(ii) a Cartesian map above an isomorphism is an isomorphism. Especially
a vertical Cartesian map is an isomorphism.

E
1.1.4. Let zP be a fibration. Prove that

1
(i) all isomorphisms in E are Cartesian;

30 Chapter 1: Introduction to fibred category theory

(ii) if -^ -> is a composable pair of Cartesian morphisms in E, then also

their composite -^-^ is Cartesian.
Hence it makes sense to talk about the subcategory Cart(E) M- E having
all objects from E but only the Cartesian arrows. We write |p| for the
composite Cart(E) M- E -> B.

(iii) Let —)• A be a composable pair in E again. Show now that if g and
g o f are Cartesian, then / is Cartesian as well.

(iv) Verify that a consequence of (iii) is that the functor |p|: Cart(E) -^ B
is a fibration. From (ii) in the previous exercise it follows that all fibres
of IPI are groupoids [i.e. that all maps in the fibres are isomorphisms).

[This IPI will be called the f ibrat ion of objec ts of p.]
1.1.5. Verify that the following two results—known as the Fullback Lemmas—are

a consequence of (ii) and (iii) in the previous exercise. Consider

(i) If (A) and (B) are pullback squares, then the outer rectangle is also a
puUback square.

(ii) If the outer rectangle and (A) are pullback squares, then (B) is a pull-
back squcire as well.

1.1.6. Consider a functor p: E ^ B. We describe a slightly weaker notion of Carte-
sianness, than the one above. Call a morphism f:X -^ y in E weak C a r t e -
sian if for each g\ Z ^ Y with pf = pg there is a unique vertical h: Z ^ X
with f o h = g. Show that the functor p is a fibration if and only if both
(a) every morphism u: I —¥ pY in B has a weak Cartesian lifting f:X —)• Y;
(b) the composition of two weak Cartesian morphisms is again weak Carte-

sian.
1.1.7. Check that the following are (trivial) examples of fibrations

I X C 1 1 ^
|fst >|,id i i
1 1 1={*} ^

where X, / are sets {i.e. discrete categories).
1.1.8. For an arbitrary category B, consider the domain functor dom: B"^ —>• B.

(i) Describe the fibre category above / G B. It is usually called the opslice
ca tegory or simply opslice and written as / \ B .

(ii) Show that dom is a fibration (without any assumptions about B).
(iii) Show also that for each / € B the domain functor domj :B/ / -^ B is a

fibration.
1.1.9. Assume B is a category with pullbacks. Show that the functor B"^"* —> B"^

sending -> -^ to -4 is a fibration..Is the composite B"*""̂ —> B"*" —>• B
also a fibration?

Section 1.2: Some concrete examples: sets, ixi-sets and PERs 31

1.1.10. Show that the object functor Ca t —)• Sets is a fibration. Also that the
forgetful functor Sp -> Sets is a fibration—where Sp is the category of
topological spaces and continuous functions.

1.1.11. Let Fid be the category of fields and field homomorphisms; Vect is the
category of vector spaces: objects are triples (A', V, •) where K is a field of
scalars, V is an Abelian group of vectors and •: A" x V̂ ^ V̂ is an action
of scalar multiplication (which distributes both over scalar and over vector
addition). A morphism (A', V, •) -^ (L, W^ •) in Vect is a pair (w, /) where
u: A" ̂ L is a field homomorphism and f-.V^Wa. group homomorphism
such that / (a • x) = u{a) - f{x) for all a G K and x £ V.
Check that the obvious forgetful functor Vect -^ Fid is a fibration. What
are the fibres? Which maps are Cartesian?

1.2 Some concrete examples: sets, cv-sets and PERs

In this section we shall describe some specific fibred categories which will be
used as leading examples. They involve firstly families indexed over sets and
secondly the categories of u;-sets and of partial equivalence relations (PERs) .
The latter will provide important examples of models of various type theo-
ries. Later we shall describe the three categories of sets, a;-sets and PERs as
(reflective) subcategories of the effective topos EfF. This topos thus provides
a framework for studying them together. The subsections about u;-sets and
PERs contain little fibred category theory; they only contain the basic def-
initions and properties of cj-sets and PERs . Fibred aspects will be studied
later.

Set-indexed families

Assume C is an arbitrary category. We will describe a category Fam(C) of
set-indexed families of objects and arrows of C As objects of Fam(C) we take
collections {Xi)i^j where for each element i of the index set / , Xi is an object
of C Objects of Fam(C) may thus be seen as pairs (/, X) with / a set and X
a function X: 1 ^ Co—where Co is the collection of objects of C.

Wha t , then, is a m a p {Xi)i^j -^ (Yj)j^j7 We take it to consist of a function
u: I ^ J between the index sets together with a collection of morphisms
fi'.Xi —> Yu(i) in C, for i E /• Composition in Fam(C) is done as follows.
Given two morphisms

32 Chapter 1: Introduction to fibred category theory

involving for i E / and j G J maps in C:

Thus, for each i E I, "we can form a composite in C

fi 9u{i)
Xi >- Yuii) ^ Zy(u(i))-

So that we obtain a composite morphism [v o w, {gu{i) o fi)i^i) in Fam(C)
from the family {Xi)i^j to the family {Zk)keK'

There is a projection functor p: Fam(C) -^ Sets which maps families to
their index sets:

{Xi)i^i ^ I and {u,{fi)i^i)^u.

From what we have seen in the previous section we may expect that such a
functor from indexed collections to index sets is a fibration. And indeed p is a
fibration: given a function u: I —^ J and an indexed collection {Yj)j^j above
J we can find a Cartesian lifting in a diagram

(??i)i€/ • - - ^ {yj)jeJ

J

The obvious choice is to take ??f = ^^(i). Then as map ---> one can take
(t/, (idy^.^Jig/), which is above u. The verification of the required universal
property of this lifting is left to the reader.

Fam(C)
1.2.1. Definition. The above fibration i will be called the family fi-

Sets "^

bration of C. The fibre over / G Sets is the (functor) category C^ of I-
indexed families of objects and arrows in C.

Recall that the category C is a parameter in this construction. Especially
we can take C = Sets (like in the Prospectus). The resulting family fibration
Fam(Sets)

i of set-indexed sets gives a precise description of pointwise indexing

of families of sets as in (a) in the beginning of the previous section. On the
Sets"^

other hand, the arrow fibration i captures display indexing as con-
sidered under (b). The fact that pointwise indexing of sets is essentially the
same as display indexing finds its precise categorical formulation in the state-
ment that the categories Fam(Sets) and Sets"^ are equivalent. In fact, the

Section 1.2: Some concrete examples: sets, uj-sets and PERs 33

Fam(Sets) S e t s ^

fibrations I and i are equivalent in a sense appropriate to
fibred category theory, see Section 1.7. For the time being, we formulate this
as follows.
1.2.2. Proposition. There is an equivalence of categories in (the top line
of) a commuting triangle

Fam(Sets) = ^ Sets"^

/
cod

Sets

where the functor Fam(Sets) -^ Sets"^ sends

{Xi)i^j 1-̂ the projection I j] ^

(jj-Sets

Our next example in this section involves the category cj-Sets of so-called
omega sets. It combines the set-theoretic with the recursion-theoretic and
will play an important role in the sequel. An informative source is [143], but
see also [199] and later sections in this book.

Recall that we write e • n for Kleene application: e • n is the outcome (pe{n)
of applying the e-th partial recursive function (pe to n. A code or index for a
partial recursive function / will be written as Ax. f{x).

1.2.3. Definition. An u;-set {i.e. an object of the category cj-Sets that we
are about to describe) is a set X together with for each element x E X di
non-empty set of natural numbers, written as

E{x) C N

One calls E the existence predicate of the u;-set. We then write {X, E)—or
sometimes (X, Ex)—for the object itself. A morphism / : (X, E) -^ (Y, E) in
a;-Sets is a function f:X ^Y between the underlying sets, for which there
is a code e G N which tracks / in the sense that

for x E X and n G Ex{x) one has: e • n is defined and e • n G E'y (/(x)).

Notice that only the existence of such a code and not the code itself, is part
of the definition of a morphism. The identity function (X, E) -^ {X, E) is then
tracked by a code Kx.x for the identity function on N. And for morphisms

(X, E) -4 (y, E) A {Z, E) in cj-Sets, say with / tracked by e and g by d, the

34 Chapter 1: Introduction to fibred category theory

composite {X, E) —> [Z^ E) is tracked by a code \x. d'[e'x) for the function
X y-^ d' [e • x). This constitutes a category which will be denoted by cj-Sets.
It comes with an obvious forgetful functor u;-Sets -> Sets which forgets the
existence predicate.

In the future, in writing e -n G E{f{x)) as above, we implicitly assume that
e • 71 is defined.

1.2.4. Proposition. The category LJ-Sets has finite limits and exponents.

Proof. The constructions on the underlying sets are as for sets. Some extra
care is needed to deal with the codes. For example, one has a Cartesian product

{X, E) X (y, E) = {X X y, E)

with

E{x, y) = {(n, m) G N I n G E{x) and m G E{y)}

where (—, —) is an effective coding of N x N into N. The projections in u;-Sets
are the projections X f - X x y ^ y in Sets tracked by codes for the
projection functions associated with the effective coding. The exponent is
given by

(X, E) =^ (y, E) = {{f eY^ \f is tracked by some e G M}, £")

with

E{f) = {e G N I e tracks / } . D

a;-Sets~^
Since the category a;-Sets has pullbacks, the codomain functor i

is a fibration, see Proposition 1.1.6. This yields display families I . ^ . I of

ct;-sets indexed by u;-sets, as described in (b) in the beginning of the previous
section. At the end of Section 1.4 it will be shown how to describe u;-set-
indexed cj-sets pointwise as in (a), and how to get an equivalence result like
Proposition 1.2.2 for cj-sets.

Next we describe the relation between sets and c<;-sets as: Sets is a reflective
subcategory of u;-Sets. Obviously any set X can be turned into an u;-set (X, E)
with E{x) — N for each x E X. One obtains a functor V: Sets -^ a;-Sets in
this way, since for a function f.X -^Y any code of a total recursive function
can be used to get / : VX -^ V y in cj-Sets. Thus V is full and faithful.

This functor V turns out to be right adjoint to the forgetful functor

Section 1.2: Some concrete examples: sets, uj-sets and PERs 35

a;-Sets -> Sets, since there is a bijective correspondence

/
(X, E) ^ V y in cj-Sets

X ^ Y in Sets
/

One uses the fact that the code of / in a;-Sets is irrelevant in this case. Thus
Sets is a reflective subcategory of a;-Sets, in a situation,

forget

Sets c ^ cj-Sets with forget H V.
V

full and faithful

Later in Section 6.2 we shall see that the categories of Sets and cj-Sets
can be described as the categories of sheaves and separated objects for the
double negation nucleus in the eff'ective topos EfF. It explains the reflection
Sets <t̂ cj-Sets.

Partial equivalence relations

Next we introduce the category PER of partial equivalence relations (on the
natural numbers) and show how it forms a reflective subcategory of the above
category cj-Sets. PERs were first introduced in [302], and have since then been
used extensively in the semantics of various type theories, see e.g. [143, 41,
199, 81, 31, 26, 197], or [33] for a recent reference—where categories of PERs
are identified within exact completions—with many pointers to the literature.

1.2.5. Definition. A partial equivalence relation (abbreviated as 'PER')
on N is a subset i? C N x N which, as a relation, is symmetric and transitive.
For such a PER R one writes

\R\ = {n G N I nRn} for domain

[n] — [n]R — {m E N I mRn]

n/R = {[n] I n e \R\} for quotient

PER = {RCNxn\Risa PER}.

Notice that a PER R is an equivalence relation on its domain |i^|, so formally
we should write |i?|/i? instead of N/7? for the quotient. But the latter notation
is clearer. Every equivalence relation 5 on a subset of N forms a PER S C
N X N, see Exercise 1.2.5.

36 Chapter 1: Introduction to fibred category theory

It is easy to see that PERs are closed under arbitrary intersections. Hence,
ordered by inclusion, they form a complete lattice with joins

\J,Si^[^{ReVER\R2[j,Si].

A category of PERs is formed with

objects R e PER.

morph i sms R -^ S are functions / : N/R -^ N/S between the quotient
sets, which are t racked (or, have a code). That is, for
some code e E N, one has

^ne\R\.f{[n]R) = [e-n]s.

We shall write PER to denote this category.

1.2.6. Proposition. The category PER has finite limits and exponents.

Proof. As terminal PER one can take {(0, 0)}, or N x N. For the product of
R and S one can use the relation

R X S = {(n, m) | pnRpm and p'nS'p'm}

where p, p' are the recursive projection functions associated with the effective
pairmg (- , -) : N X N -=> N. The equaliser oi f,g: R^ S is R' ^ R where

R' = {(n,m) e R\ f{[n]) = g{[m])}.

And the exponent of R, S is

R^ S = {(n, n') I Vm, m' E N. mRm' ^ n • mSn' • m'}. D

Since the category PER has finite limits, we have a codomain fibration
PER"^

4- of PER-indexed PERs in display style (like in (b) in the beginning
PER

of the previous section). As for sets and for C(;-sets, there is also pointwise
indexing as in (a) for PERs, see Proposition 1.5.3.

An important point to note at this stage is that the category PER is a full
subcategory of the category u;-Sets of c<;-sets introduced earlier in this section.
The inclusion PER ^-^ cj-Sets is given by

R^{N/R,e)
where G is the existence predicate E {[n]) = [n] = {m E N | uRm}. Indeed a
morphism / : (N//?, E) -> {E/S, E) in u;-Sets is a function / : n/R -^ N/S' for
which there is a code e E N such that

V[n] E n/R. \/me[n].e'me f{[m])

Section 1.2: Some concrete examples: sets, uj-sets and PERs 37

But this is equivalent to

VmG | i ^ | . [e - m] = : / ([m])

and this precisely says tha t / is a morphism i? -> 5 in P E R , tracked by e.
Thus we have a full and faithful functor P E R ^^ c<;-Sets, which is the identity
on morphisms.

One can show tha t this functor P E R <̂-> u;-Sets preserves finite limits
and exponents. This is left to the reader. Wha t we will describe is a left
adjoint r(—):u;-Sets -^ P E R to this inclusion, which is obtained by forcing
the existence sets E[x) C N to be disjoint, see explicitly in Exercise 1.2.9. For
an a;-set (X, E) with elements x,x' G X, put

x ^ x' ^ E{x)C^E{x') i^%

and write ~ for the transitive closure of -̂̂ in X . Define

r (X , E) = {(m, m) \ 3x, x eX.me E{x) and m G E{x) and x - x}.

There is then a bijective correspondence in

/
r{X,E) ^R in P E R

(X, E) ^ {N/R, G) in u;-Sets

given as follows.

• Assume f:r{X,E) -^ R in P E R , say tracked by e. Define a transpose
r : (X, E) -^ {N/R, G) in u;-Sets by

f^[x) — / ([m]) , where m G E[x) is arbitrary
(recall E{y) / 0 for each y ^ X)
and where [m] is the class of m in r (X , E).

Then e also tracks / ^ in a;-Sets .
• Conversely, given g: {X,E) —> {^/R,E) in a;-Sets, say tracked by d, then

one easily checks tha t g is constant on ^-equivalence classes, i.e. tha t :

X r^ x' ^ g{x) — g{x').

But then we may define a transpose ^^: r (X , E) -^ Rm P E R by

g^{[m]) = g{x), where m G E{x).

This yields a well-defined function, which is tracked in P E R by d.

38 Chapter 1: Introduction to fibred category theory

It is easy to see that the passages f ^ f^ and g ^ g^ are each others inverses.
Thus, also P E R is a reflective subcategory of cc;-Sets:

P E R c ^ u ; - S e t s with r H N / (-) .

N / (-)
full and faithful

The relations tha t we have established between sets, a;-sets and PERs are
summarised in the following result.

1.2.7. P r o p o s i t i o n . There is a diagram of functors,

Sets

Lj-Sets

P E R

in which the ^^ 's are full and faithful functors (preserving finite limits and
exponents), with the arrows in opposite direction as left adjoint. Thus both
S e t s and P E R are reflective subcategories of to-Sets. •

Exercises

1.2.1. Prove that a morphism {u,{fi)i^i) in Fam(C) is Cartesian if and only if
each fi is an isomorphism in C.

1.2.2. Consider a map / = {fi'.Xt —)• Yi)t£i in the fibre Fam(C)/ = C^ over
/ G Sets. Prove that / is a mono in this fibre if and only if each fi is a
mono in C.

1.2.3. For an arbitrairy category B, let B ^ be the category with pointed families
/ X \

as objects; these are pairs (I y I, s) where 5 is a section of ip [i.e. a map

s:I ^ X with if o s = id). A morphism {(j ^ I ' >̂ —^ ((/ ^ I ' 0

in Bi^ consists of a pair of morphisms u: I —^ J, f:X -^ K in B with
ip o f = u o Lp and also f o s = t o u. Thus morphisms of pointed families
preserve the points {i.e. sections) of the families. Prove that

Section 1,2: Some concrete examples: sets, co-sets and PERs 39

(i) if the category IB has puUbacks then the functor B ^ -^ B sending
/ X \

(I y I , 5) to the index object / is a fibration;

(ii) for B = Sets, there is an equivalence of categories Fam(Sets») -=^
Setsi^ like in Proposition 1.2.2, where Sets» is the category of po in ted
sets: objects are sets containing a distinguished base point, morphisms
are functions preserving such points.

1.2.4. Check that for a PER R one has R C \R\^,
1.2.5. Let / be a set. A pa r t i t i on of / is a collection Q C P{I) of subsets of /

satisfying (1) every set in Q is non-empty (2) if a,6 G Q and a fl 6 7̂ 0,
then a = 6 (3) y Q = / . A par t ia l pa r t i t ion of / is a subset Q C P{I)
satisfying (1) and (2) but not necessarily (3). Show that
(i) there is a bijective correspondence between partitions and equivalence

relations and between partial partitions and partial equivalence rela-
tions (on /) ;

(ii) there is a bijective correspondence between partial equivalence rela-
tions on / and equivalence relations on subsets of / .

1.2.6. Notice that for R G P E R , the "global sections" or "global elements" homset
P E R (l , i ?) is isomorphic to the quotient M/R. And also that all homsets
in P E R and in u;-Sets are countable.

1.2.7. (i) Prove that for each cj-set {I, E) the slice category u}-Sets/{I, E) is
Cartesian closed, i.e. that a;-Sets is a locally Cartesian closed category
(LCCC).

(ii) Show that also P E R is an LCCC.
1.2.8. Show that a map VX -> (N//^, G) in a;-Sets is constant (where X is a set

and Ris a PER).
1.2.9. (i) Prove that the unit r]i^x,E) of the reflection P E R ^ u;-Sets at (X, E) G

C4;-Sets is an isomorphism if and only if the existence predicate E: X -^
PN has disjoint images [i.e. satisfies E[x) n E{y) / 0 => x = y).
Conclude that P E R is equivalent to the full subcategory of u;-Sets on
these objects with such disjoint images. These u;-sets are also called
modes t sets (after D. Scott). In this situation the existence predicate
E\ X ^ P¥\ may equivalently be described via a surjective function
U -^ X^ where U C N {i.e. via a subquotient of N), see e.g. [143,
Definition 1.1].

(ii) In view of (i), describe the reflector r: a;-Sets -^ P E R as 'forcing
images to be disjoint', by taking a suitable quotient

(X -> PN) h-> (X / - ^ PN) .

1.2.10. (i) Let Eq(N) = {(n,n) | n G N} C N x N be the 'diagonal' PER. Show
that it is a natural numbers object (NNO) in P E R . Also that the
resulting u;-set Â = (N , G) with G (n) = {n} is NNO in a;-Sets.

(ii) Check that the maps Eq(N) -^ Eq(N) in P E R , i.e. the maps N ^ N
in a;-Sets, can be identified with the (total) recursive functions N —)• N.

40 Chapter 1: Introduction to fibred category theory

1.2.11. Show that the category u;-Sets has finite colimits. And conclude, from the
reflection P E R ^ a;-Sets that P E R also has finite colimits.

1.2.12. Prove that the reflector r:u;-Sets -^ P E R preserves finite products, but
does not preserve equalisers.

[Hint. For a counter example, consider in Sets on the two-element set 2 =
{0,1} the identity and twist maps id, -•: 2 =4 2, with empty set 0 ^^ 2 as
equaliser. By applying V: Sets -^ a;-Sets we get an equaliser diagram in
a;-Sets (since V is right adjoint). But it is not preserved by the reflector r,
since r(V2) is terminal, and r(V0) is initial.]

1.2.13. (i) Prove that Fam(—):Cat -> C a t is a (2-)functor. (One has to ignore
aspects of size here, because categories Fam(C) are not small; for ex-
ample, Fam(l) is isomorphic to Sets.)

(ii) Show that Fam(C) is the free completion of C with respect to set-
indexed coproducts. This means that Fam(C) has set-indexed coprod-
ucts and that there is a unit C —)• Fam(C) which is universal among
functors from C to categories D with set-indexed coproducts O ig / ^» '

(iii) Prove that a category C has arbitrary coproducts if and only if the
unit C -> Fam(C) has a left adjoint.

[The Fam(—) operation forms a so-called 'KZ-doctrine', see [180].]

1,3 Some general examples

So far we have seen codomain fibrations i for categories B with puUbacks
JB

Fam(C)

(in Proposition 1.1.6), and family fibrations 4- (in Definition 1.2.1) for

arbitrary categories C. In this section we shall introduce 'simple fibrations'
s(B) Sub(]B)

i , for categories B with Cartesian products, and fibrations 4- and
B B

Rel(B)
I of subobjects and relations (for categories B with pullbacks).
B

Simple fibrations

This first construction will be of central importance in the next chapter on
simple type theory. Let B be an arbitrary category with Cartesian products
X. We write s(B) for the category having

o b j e c t s pairs (I^X) of objects of B.

m o r p h i s m s {1,^) -^ i^^^) ^^^ pairs of morphisms {u,f) in B with
w : / - > J a n d / : / x X - > y .

Section 1.3: Some general examples 41

The composite of (/ , X) ^ ^ {J,Y) ^ ^ {K,Z) is {v o u, g o {u o TTJ)),

where the second component is obtained as composite

(UOTTJ) g
I xX ^ J xY ^ Z

And the identity on (/, X) is the pair (id/,7r') with TT' the second projection
I X X -^ X. There is then an obvious projection functor s{M) —> B given by

(/ , X) i - > / and [u,f)y-^u.

Intuitively, maps / : X ^ y in the fibre s(]B)/ over / E B are /-indexed families
fi'.X -^ y , for i G / , where the objects are kept fixed. Remember the family
fibration from the previous section where we had maps fi'. Xi —y Yi over / .

The above functor will be written as s i : s (B) —>• B and called the s i m p l e
f ibrat ion on B. It is a fibration indeed, since for {J,Y) E s(B) and u: I -^ J
in B one finds a Cartesian lifting of w as:

{I^Y)--'--'-^{J,Y)

J

1.3 .1 . De f in i t ion . For a category B with Cartesian products, the s i m p l e
s(]B)

fibration on B is the above projection functor i .

The fibre s(B)/ over / E B will often be written as M//I and called the
s i m p l e s l ice over / . (Its objects are X E B and its maps X -^Y are I x X -^
Y in B.)

Notice tha t all these simple slices M//I have the same objects, namely the
objects from B. There is an obvious functor / * : B —)• M//I by X t-)- X and

/ / x X \
/ ! -) > / o 7̂ ^ There is a similar functor /* : B -^ B / / given by X i-> I \^],

and / H^ id/ X / , as used earlier in Section 1. We write /* for both these
functors B —)- M//I and B -> B / / . These simple and ordinary slices have much
in common (see Exercises 1.3.2 - 1.3.4 below, and Corollary 1.10.16). For
example, if B additionally has a terminal object 1, then for both the simple
and the ordinary slice there are isomorphisms of categories

B -^—^ B//1 and B - ^ B/1

42 Chapter 1: Introduction to fibred category theory

It is useful to present an immediate generalisation of this 'simple' construc-
tion. It is based on the following notion from [156].

1.3.2. Definition, (i) A CT-structure is a pair (B, T) where B is a cate-
gory with finite products and T is a non-empty collection of objects from B.
Such a CT-structure will be called non-trivial if there is at least one object
X ET equipped with an arrow I -^ X from the terminal object to X.

(ii) A morphism of CT-structures from (B, T) to (A, S) is a finite prod-
uct preserving functor A^ B -> A which satisfies K[T] C S [i.e, X ET implies
KX E 5).

This condition of non-triviality for CT-structures usually expresses that
some domain is non-empty and can be seen as a non-degeneracy condition.
The ' C and the 'T ' in 'CT-structure' stand for 'context' and 'type'. As will be
explained in the next chapter, in such a CT-structure (B, T) one can view B as
a category of contexts and T as a collection of types; the inclusion T C Obj B
can then be seen as identification of a type a with the corresponding singleton
context (x:a). The two extreme cases are T is Obj B and T is a singleton.

An example of a CT-structure is B = cj-Sets and T = objects of the form
VX (where X is a set).

1.3.3. Definition. Suppose (B, T) is a CT-structure. Let s(T) be the cate-
gory with

objects pairs (/, X) with / G B and X £T.

morphisms (I^X) -^ {J^^) ^re pairs {u, f) in B with u\ I ^ J and
f:I xX ^Y.

This generalises the earlier definition of s(B) by restricting the second com-
ponent of objects to the types T.

s(T)
As before, one obtains a fibration W . It will be called the simple fi-

B

bration associated with the CT-structure (B, T).
Notice that the original construction SB:S(B) -^ B is the special case

ST:S(T) -^ B where T consists of all objects of B. The other extreme is
where T is a singleton, say T — {Q}. We then omit the curly braces { —} and
write sn:s(fi) -^ B for the resulting simple fibration. CT-structures with one
type {i.e. of the form (B, fi)) will be used for the semantics of the untyped
lambda calculus—because 'untyped' is the same as 'typed with a single type',
see Section 2.5.

The generalised "CT" version of a simple fibration involves a restriction to
a subset of the objects. A similar generalisation exists for codomain fibrations,
involving a restriction to a subset of the arrows. This leads to the notion of

Section 1.3: Some general examples 43

a display m a p category and—in a further generalisation—to the notion of a
comprehension category. The details are in Chapter 10 on dependent type
theory, especially in Section 10.4.

Monos and subobjects

In the codomain fibration ^ we took all maps of IB as families. An obvious
restriction is to consider monic maps X ^-^ I only. In the case IB = Sets , a
fibre of such a monic (injective) m a p can have at most one element, so it
is either empty or a singleton. We write Mono(IB) for the full subcategory
of IB^ consisting of monic families. If the category IB has pullbacks, then

Mono(l)

the (restricted) codomain functor i is a fibration; it will be called the

f ibrat ion of m o n o s (of B). This functor is a fibration because a pullback

of a mono along an arbitrary map is a mono again. Notice tha t the fibres of
Mono(B)

this fibration 4- are all preordered categories. Such a fibration will be
called p r e o r d e r e d , or a f ibred preorder . But notice that the total category
Mono (IB) itself, is not a preorder.

The preorder C. of monos, say in the fibre over / , is given as follows. For
m n

X y-^ I and Y >-^ I one has m E n if and only if there is a (necessarily
unique, monic) m a p f: X —^ Y with n o f — m. One can then form the
"poset reflection" of this preorder C on the monos over / . It yields a poset
with equivalence classes of monos as elements (where m ^ n li and only if
both m C n and n C m, if and only if there is an isomorphism i^'.X ^ Y
with n o ip — m). These equivalence classes are called subobjects (of /) ; the
resulting poset will be written as Sub(/) .

Usually one does not distinguish notationally between a mono and the corre-
sponding subobject. We write Sub(B) for the category obtained from Mono(B)

Sub(]B)
by taking subobjects as objects. One gets the f ibrat ion i of s u b o b -

IB

j e c t s in B. The fibres Sub(/) are partial orders. For B = S e t s the subobject
Sub(Sets) P red

fibration 4- was written as ^ in the Prospectus. For a specific set
Sets Sets ^ ^

/ E Se t s , the fibre Sub(/) above / is the (partially ordered) category (P / , C)
of subsets of / .
1.3.4. R e m a r k . At this stage we have already seen the three fibrations tha t

s(l)
will play a crucial role in this book. They are the simple fibration i , the

B
B"^ Sub(B)

codomain fibration i and the subobject fibration 4- . The last fi-
B *̂ B

bration will be used to describe the so-called internal (predicate) logic of B;

44 Chapter 1: Introduction to fibred category theory

this will become clear in Chapters 3 and 4. The first two will be used in the
categorical description of type theories. The simple fibration will be used for
simple type theory and the codomain fibration for dependent type theory. We
therefore often jointly refer to these two fibrations as the t y p e t h e o r e t i c
f ibrat ions .

Rela,tions

A (binary) r e la t ion on an object / in a category IB with finite limits is a
subobject R >-^ I x I. The category Rel(B) has such relations as objects; a
morphism from Ry^IxI to S>-^JxJ in Rel(IB) is a map u: I —^ J in M
giving rise to a commuting diagram

R
Y

I X I

^S

-^ J X J
U X U

Notice tha t there is no need to mention the (name of the) top dashed ar-
row, because there can be only one such map . Set-theoretically the diagram
expresses tha t iRi' implies u{i)Su{i'). The functor Rel(B) -^ M sending a re-
lation R ^^ I X I to its carrier / is then a fibration—again, since monos are
stable under pullback.

Often we are interested in special relations. Categorically, a relation
{ri ^ r2): R >-^ I X I is called

(i) ref lexive if the diagonal Sj = (id, id): / -̂̂ / x / factors through R v-»
I X I, i.e. if there is a riiap

Ix I

(ii) s y m m e t r i c if there is a 'swap' m a p

R

Ix I

^ R
Y

.e. if

i^',^)
^ I xl

R ^ R

(n , r2)
I xl

(iii) transitive if, after forming the pullback T of triples (in which both

Section 1.3: Some general examples 45

the first two and the last two components are related by R) as on the left

^23
T

1 J
T

^ R

\
r\

1
one gets

T
\
, \
t \

/
/ /

/ {ri,r2)
ri2

R ^ I Ix I
r2

where t = {vi o r i2, ^2 o r23):T —> / x / . It is not hard to see that in S e t s
these definitions coincide with the usual formulations.

Then, a relation R y-^ / x / is called an equ iva l ence re la t ion if it is
reflexive, symmetric and transitive. It is a part ia l equ iva lence re la t ion
if it is symmetric and transitive, but not necessarily reflexive. One obtains

ERel(l) Per(l)
corresponding fibrations 4- and i

Exercises

s(B)
1.3.1. (i) Show that in the total category s(IB) of a simple fibration i a mor-

B
phism (u, f):(I,X) —^ (-̂) ^) is Cartesian if cind only if there is an
isomorphism h: I xX ^ I xY inM such that TT o h = n and TT' o h = f.

/ / x X \
(ii) Show that the assignment (I,X) i-̂ I*{X) = 1 j] extends to

a full and faithful functor s(IB) —> B"*". Prove that it maps Cartesian
morphisms to pullback squares.
[This functor restricts to a full and faithful functor M//I —)• B//.]

s(B)
1.3.2. Consider a simple fibration 4- for a category B with finite products (1, x) .

B
Prove that
(i) each fibre B / / has finite products, and /* :B -> M//I preserves these

products;

(ii) the following are equivalent:
(a) B is Cartesian closed;
(b) each fibre M//I is Cartesian closed;
(c) each functor /* :B -)• M//I has a right adjoint / => (-) .

1.3.3. In case a category B has finite limits {i.e. additionally has equalisers with
respect to the previous exercise), prove that B is Cartesian closed if and
only if for each / G B, the functor /* :B —)• B / / (to the ordinary slice)

/ / x X \
mapping X to I*{X) = 1 i ^ 1» ^^^ a right adjoint flj-

46 Chapter 1: Introduction to fibred category theory

/ X \
[Hint. One obtains a right adjoint ["[r by mapping a family I j ^ 1 to

the domain of the equaliser e in

1.3.4. Let B be a category with finite products and / an object in B.

(i) Show that the functor / x (—):B -> B forms a comonad on B.

(ii) Show that the simple shce B / / is the Kleisli category of this comonad
/ X (—) and that the ordinary shce B / / is its Eilenberg-Moore category.

1.3.5. Let B have finite limits. Prove that a map of families I y) ~^ I 7) ^̂

a mono in B"^ if and only if both its components I -^ J and X ^ Y are
monos in B.

1.3.6. A regular mono is a mono that occurs as an equaliser. Write RegSub(B)
for the full subcategory Sub(B) consisting of (equivalence classes of) regular

RegSub(B(
monos. Show that the codomain functor 4- is a fibration.

1
1.3.7. Let B be a category with finite limits.

(i) Show that if B is a CCC then also B"*" is a CCC and ^ is a functor
which strictly preserves the CCC-structure.

(ii) Show that the same holds for Sub(B) instead of B~^.

/ X \ / ^ \
[Hint. For famihes I y I and I y I construct the exponent family

(p =^ tp over the exponent object / =^ J in B as in the following pullback
diagram.

ip =^ il)

U ^ (X =̂ Y)

X^tP

(/ => J) - ^ (X^J)]

1.3.8. Give a categorical formulation of anti-symmetry of a relation R >-^ I x I.

Section 1.4- Cloven and split fibrations 47

1.3.9. Verify in detail that the following functors are fibrations.

Sub(B) Rel(B) Per(IB) ERel(B)

Y Y Y y

1.3.10. Define an alternative category of relations R >-^ I x J on two possibly
different objects in a category B, which is fibred over B x B.

E

1.3.11. Let -j^P be a fibration. Prove that p is preordered {i.e. all its fibre categories
are preorders) if and only if above each map pX —>• pY in B there is at
most one arrow X —> y in E (i.e. if p is faithful). Conclude that in the totcil
category of a preorder fibration, a vertical morphism is monic.

1.4 Cloven and split fibrations

The definition of a fibration is of the form "for every x and y there is a z
such tha t ...". This does not imply tha t v^e are given for each pair x , y an
explicit z, unless we make use of the Axiom of Choice. The differences in
the way the structure of a fibration may be given will concern us in this
section. Briefly, a fibration is called c loven if it comes together with a choice
of Cartesian liftings; and it is called spl i t if it is cloven and the given liftings
are well-behaved in the sense tha t they satisfy certain functoriality conditions.
These fibrations behave more pleasantly, and therefore we prefer to work with
fibrations in split form (if this is possible). Cloven and split fibrations give
rise to so-called indexed categories B ° P —> Cat . These generalise set-valued
functors (or presheaves) W^ -> S e t s .

E

We recall tha t a functor ^P is a fibration if for every map u: I ^ J in the
base category B and every object X G E above J in the total category, there
is a Cartesian lifting • —>• X in E. Assume now we choose for every such u
and X a specific Cartesian lifting and write it as

u(X)
u^{X) ^X

(By Proposition 1.1.4 we can only choose up-to vertical isomorphisms.)
We claim that , having made such choices, every m a p u: I -^ J in M deter-

mines a functor u* from the fibre E j over J to the fibre E/ over / . (Note the
direction!) The recipe for u*:Ej -> E/ is as follows.

• for an object X E E j one has pX = J and so we take w*(X) E E/ to be the
domain of the previously determined Cartesian lifting u{X):u*{X) -^ X;

48 Chapter 1: Introduction to fibred category theory

• for a map f:X ^Y in E j , consider the following diagram in E.

u*[X) —^ ^X

Y uiY) \
u-[Y) L J ^ y

-^ J

The composite / o u[X):u*[X) -> y is above u, since / is vertical. Because
u{Y) is by definition the terminal lifting of u with codomain Y, there is a
unique map u*[X) —• u'{Y), call it t/*(/), with u[Y) ou*{f) = f o u(X).

By uniqueness, u* preserves identities and composition. Thus one obtains a
functor ti*:Ej —> E/. Such functors u* are known under various names: as
reindexing functors, substitution functors, relabelling functors, inverse
image functors or sometimes also as change-of-base or as puUback func-
tors. We mostly use the first two names.

1.4.1. Convention. An unlabelled arrow u*{X) —>• X in a diagram is always
a (chosen) Cartesian morphism u{X):u*{X) -> X as above. Omitting these
labels makes diagrams more readable. Choosing an object u*{X) will often be
called substitution or reindexing (along u).

1.4.2. Example. Assume B is a category with chosen pullbacks and consider

the codomain fibration i . Recall that the fibre over / G B can be identi-
B

fied with the slice B / / . A morphism u\ I —^ J induces by the above recipe a
substitution functor u*:M/J —>- M/I by pullbacks (as described before Exam-
ple 1.1.1). Usually it is called the pullback functor induced by t/. As a special
case we have /*: B = B/1 —)• B/7 resulting from the unique map !/: / ^ 1 from
/ to the terminal object 1 G B. It sends an object X G B to the Cartesian

IxX projection (|

We return to our general fibration -jrP (with chosen liftings). A good ques-
B

tion is the following: given two composable morphisms
u V

I ^ J ^ K

Section 1.4'- Cloven and split fibrations

in B, are the two resulting functors E/c z:̂ E / , namely

^ * ^ Ej ^ ^*

49

{v o w)*

equal? It turns out that in general they are not equal but naturally isomorphic:
one gets a unique mediating m a p as in the diagram on the left below.

u*v*{X) -
I

^ I

Y

(vouYiX)

v^{X) X
I

= I
Y

id

-^ X id*(X) -^ X

-^ J -^ K
id

This isomorphism u'v*{X) ^ [v o uY[X) arises because Cartesian morphisms
are closed under composition, so tha t there are two Cartesian liftings oi v o u
at X , as indicated.

There is a similar phenomenon for identities, as in the diagram on the
right, since identities are Cartesian. Hence, in general the substitution functor
(id/)* induced by the identity on / G B, is only naturally isomorphic—and
not equal—to the identity functor on the fibre category E / .

Sometimes these morphisms t/*t;*(X) - = ^ {v o u)*(X) and X -=^ id*(X)
are identities—we then call the fibration sp l i t—but often this does not hap-
pen (e.g. in the above pullback example with B = S e t s and with canonical
pullbacks in S e t s) .

(The case of identities is not problematic since we can always choose
(id/)* = i d E , .)

It is not hard to check tha t the maps determined in the diagrams (for every

X) yield natural isomorphisms id ==> (id)* and u*v* = ^ [v o u)*. Moreover,
they satisfy certain coherence conditions, which will be given below.

Thus, when we work with reindexing functors, lots of (coherent) isomor-
phisms crop up. It is t ime to sum up the above discussion in a few definitions
and results.

1.4.3. Def in i t ion , (i) A fibration is called c loven if it comes equipped with
a c l eavage ; that is, with a choice of Cartesian liftings. This cleavage then
induces substitution functors u* between the fibres.

50 Chapter 1: Introduction to fibred category theory

(ii) A split fibration is a cloven fibration for which the induced substitution
functors are such that the canonical natural transformations are identities:

id = > (id)* and u*v* => (v o u)*.

The cleavage involved is then often called a splitting.

Fam(C)

The family fibration i is an example of a fibration which can be
equipped with a splitting. In f?Lct the choice of lifting described in the begin-
ning of Section 1.2 makes the fibration split.

By using a version of the Axiom of Choice of suitable strength in the meta-
theory, one can always provide a fibration with a cleavage. We usually indicate
explicitly when we do so. Later in Corollary 5.2.5 it will be shown that every
fibration is equivalent (in a fibred sense) to a split one. The construction used
there involves the fibred Yoneda Lemma. For some codomain examples, like for
set-indexed sets in Proposition 1.2.2, and similarly for c<;-sets and PERs below,
we can give an elementary equivalent split description, see Propositions 1.4.9
and 1.5.3 below.

By choosing substitution functors one obtains from a cloven fibration i an
JB

assignment / i-> E/ which is almost a functor W^ —)• Cat. It yields a so-called
'pseudo-functor'.

1.4.4. Definition, (i) An indexed category —or, to be more precise, a
B-indexed category—is a pseudo functor ^ : B ° P —> Cat. It consists of
a mapping which assigns to each object / G B a category ^ (/) and to each
morphism w: / -> J a functor ^(i/): ^ (J) -> ^ (/) ; note the reverse direction.
Such a functor ^(w) is often simply denoted by u* when no confusion arises.
Additionally, a pseudo functor involves natural isomorphisms

r]i: id = > (id/)* for / E B

fiu,v • u*v* ==^ [v o u)* for / —> J —y K in B

which satisfy certain coherence conditions:

for / A J

Section 1.4' Cloven and split fibrations 51

-> u*{w o v)*

^u,vUJ
r J U J V J. W J.

l^u,wov tor 1 —y J —> A —> L

[v o w)*it;* >• [w o V o u)*
f^vou ,w

There is a formal similarity with the diagrams for a monad. It is made explicit
in Exercise 1.10.7.

(ii) A spl i t i n d e x e d ca tegory is a functor ^ : W^ -^ Cat; it is an indexed
category for which the ry's and /i's in (i) are identities.

Wha t we have said in the beginning of this section can now be summarised
in the following result.

E

1.4.5. P r o p o s i t i o n . Let j^P be a fibration with a cleavage. The assignment

/ 1-̂ E/ and u \-^ {the substitution functor u*)

determines a M-indexed category. This indexed category is split whenever the
cleavage of p is a splitting. •

Notice tha t in this definition of indexed category, the coherent isomorphisms
r],/j, are part of the structure. In fibrations, one does not have such structure,
but it follows from the universal property of lifting, once a choice of liftings is
made. For a more detailed discussion on fibrations versus indexed categories,
see 1.10.4.

We have seen in Proposition 1.2.2 that the non-split codomain fibration
S e t s ^ Fam(Sets)
^ ^ can equivalently be described as a split family fibration i
Sets Sets

Remember tha t the codomain fibration captures display indexing with substi-
tution by pullback, whereas the family fibration captures point wise indexing
with substi tution by composition. The latter gives a split fibration. There are
similar phenomena for a;-sets and for PERs.

(Later, in Section 1.7 we will see.that the equivalence below is an equivalence
in a sense appropriate for fibred categories.)

1.4.6. De f in i t ion . Let UFam(u;-Sets) be the category of "uniform families"
of ct;-Sets. It has:

o b j e c t s omega-sets (/, E) together with for each element i G / an

cj-set {Xi,Ei). We shall often simply write {Xi, Ei)i^(^j^E)
for such objects.

52 Chapter 1: Introduction to fibred category theory

morphisms (^f, ^i)i6(/,£:) ^ O^j^ ^j)je{J,E) are pairs (u,{fi)i^i)
where u: (/, E) —)• (J, E) is a morphism in a;-Sets between
the underlying index objects and {fi'.Xi -^ yu{i))i^i is a
collection of functions between the fibres, which is 'tracked
uniformly': there is a code e G N such that for every i E I
and n E E[i) one has that e • n tracks / j . Explicitly, for
some e G N, we have

Vi eL^ne E{i).yx G X,-. Vm G Ei{x).

en me Eui^i)(fi{x)).

We leave it to the reader to verify that one obtains a category. There is a
first projection functor UFam(a;-Sets) —> u;-Sets—which is a split fibration,
much in the same way as for Sets. This category UFam(u;-Sets) captures
cj-sets pointwise indexing u;-sets. It is related to the arrow category c<;-Sets~^,
capturing display indexing, in the following manner.

UFam(a;-Sets)
1.4.7. Propos i t ion . The projection functor I given by the map-

CJ-Sets
ping {Xij Ei)i^(^i^E) *~^ [^^E), is a split fibration. Moreover, there is an equiv-
alence of categories in a commuting triangle.

UFam(a;-Sets) = ^ cj-Sets"^

cod
a;-Sets

where the functor UFam(a;-Sets) —>• a;-Sets~^ sends

with the existence predicate E on the disjoint union U^^j Xi given by

E{i, x) — {(n, m) I n G Ei[%) and m G Ei{x)}.

UFam(a;-Sets)
Proof. The functor i is a fibration because for u:(I,E) —^ (J, E)
in a;-Sets, and a family (Yj, EJ)J^(^J^E) over {J,E), we can form a fam-
ily u*{{Yj,Ej)j^i^j^E)) over {I,E) as (Y^(^i),Ei), where Ei{y) = ^^(^(y)-
There is then an associated Cartesian lifting {u,{id)):u*{{Yj, EJ)J^(^JE)) -^
(Yj, Ej)j^(^j^E) over u. This choice of liftings forms a splitting.

The projection TT is well-defined, since it is tracked by a code for the first
projection (n,m) •-> n. We get a functor P : UFam(u;-Sets) -^ a;-Sets~^ by

Section I.4: Cloven and split fibrations 53

sending a morphism

to the square

iUiei^i'E) ^""^^ ^ iUjeJyj'E)

iI,E) ^(J,E)

where {u, / } is the function (i, x) i-> (u(i), fi{x)), tracked by Az. {e • (p^:), d •
(pz) • {p'z)), in which e is a code for u and d is a code for the family of
functions / = {fi)iei' We leave it to the reader to verify that "P is a full and
faithful functor.

In the reverse direction, one maps a family in a;-Sets~^ to the

family {Xj^Ei), where for i E I the set Xi is the fibre <f>~^{i) over i E / ,
and Ei{x) — Ex{^)- This is evidently functorial, and yields an equivalence
UFam(u;-Sets) -=-> a;-Sets"^, commuting with the functors to u;-Sets. •

UFam(u;-Sets)
Notice that in the split fibration i one has substitution by com-

u;-Sets"^
position, whereas in i one has substitution by pullbacks. The former
is evidently functorial, whereas the latter is only 'pseudo-functorial'. This is

Fam(Sets) Sets"*"
precisely as for i and ^^ in Proposition 1.2.2.

Sets Sets

Recall that there is a full subcategory P E R "—^ a;-Sets of partial equivalence
relations inside the category of u;-sets. One may thus restrict the indexed ob-
jects in the definition of the category UFam(a;-Sets) to PERs. This yields
a category UFam(PER) of c<;-set-indexed-PERs, instead of u;-set-indexed-

UFam(PER)
a;-sets. We get another example of a split fibration i , which will

CJ-Sets

play an important role in the sequel. Therefore we spell out its definition in
detail.
1.4.8. Definition. Let UFam(PER) be the category with

objects collections (Ri)i^j of PERs i?,- indexed by an a;-set (/, E).
As above, these are often written as {Ri)i£(j^E)-

54 Chapter 1: Introduction to fibred category theory

m o r p h i s m s {Ri)ie{i,E) —̂ {Sj)je{J,E) are pairs (u, /) where u: (/, E) -^
(y, E) is a morphism in u;-Sets and / = (/f: Ri —> Su{i))iei
is a collection of functions between the fibres, which is
tracked uniformly: there is an e G N such that for every
2 G / and n G E{i) the code e • n tracks fi in P E R .

UFam(PER)

1.4.9. P r o p o s i t i o n . The first projection I rnapping {Ri)i^{^jE) ^

(/, E) is a split fibration. Substitution is by composition, precisely as above. D

In the next section we shall see how one can further restrict the index
objects to P E R <^ u;-Sets via what is called change-of-base.

We close this section with a simple lemma which turns out to be very useful
in calculating with fibrations. It is essentially a reformulation of Exercise 1.1.2,
and tells us tha t a morphism in a total category corresponds to a morphism
in the basis together with a vertical map . It enables us to switch smoothly
between global structure in the total category and local structure in the fibres.

E

1.4.10. L e m m a . Let -j^P be a fibration. For every cleavage one has an iso-

morphism of sets (or classes)

E(X, y) ^]J ^x(x,u'{Y))
u:pX-)-pY

where]J is disjoint union. The isomorphism is natural in X and Y, between
functors IE?P x E =1 Se t s .

Proof . Given / : X -> Y in E take u = pf.pX -^ pY and f: X -^ u*{Y) to
be the vertical part of / , i.e. the unique vertical m a p with u(Y) o f — f.
Conversely given u:pX -> pY and f'\X -^ w*(^) above pX one obtains
/ =: u{Y) o f: X -^ Y. Naturali ty is left as exercise. •

Finally, there is a principle of mathematical purity tha t deserves attention.
One should not define a property for fibrations in terms of a specific cleavage;
definitions should be 'cleavage-free' or 'intrinsic'. Sometimes it can be subtle
tha t a certain property is intrinsic: consider as example,

"every substitution functor u* has a left adjoint JJ^"

This property does not depend on a cleavage: two diff'erent cleavages induce
naturally isomorphic substitution functors (see Exercise 1.4.3 below); so one
of them has an adjoint if and only if the other has an adjoint.

Exercises

1.4.1. Describe weakening functors TT* and contraction functors 6* (both on
objects and on morphisms) for projections TT: I x J —^ I and diagonals

Section 1.4' Cloven and split fibrations 55

S = (id, n'): I X J -> {I x J) x J in a family fibration, a codomain fibra-
tion, a subobject fibration, and in a simple fibration.

1.4.2. Prove t ha t if a m a p u: I -^ J in the base category of a fibration is an
isomorphism, then so is a Cartesian lifting u{X):u*{X) -^ X, for each X
above J .

1.4.3. Given a fibration with two cleavages. Show tha t for each morphism in the
basis the two induced subst i tut ion functors are natural ly isomorphic.

E

1.4.4. Let iP be a fibration, and consider the squares (a) in E over (b) in B.
IB

h P^
^ X PU ^ X

(a) Y over pg\ (b)

V ^ Y pV
pk

where h and k are bo th Cartesian. Prove t ha t (a) is a puUback square in E
if and only if (b) is a pullback square in B.
[Notice t ha t as a result, the square defining u* on morphisms in the begin-
ning of this section, is a pullback in the to ta l category.]

1.4.5. Show tha t any poset fibration (all of whose fibre categories are posets) is
split.

1.4.6. Assume functors B —)• C ^ A and form the comma category {K X L). Show
[KiL)

t ha t the (first) projection functor i is a split fibration.
IB

[The second projection is an "opfibration", see Lemma 9.1.6.]
1.4.7. Show tha t the split indexed category induced by the family fibration

Fam(C)

i sends a set / to the (functor) category C^ of / - indexed families

of objects and morphisms of C W h a t is the morphism par t of this functor?
1.4.8. T h e following tells t ha t choosing a cleavage is functorial—in a suitable

sense. Let p: E -> B be a functor. Form the pullback in C a t

(B ; J 9) = E X B B ^ ^ B ^

p*(cod) •

E

and define a functor FrE"^ —> E x ^ B"" by (/ : X' -^ X) ^ {X,pf). Prove
t ha t p is a cloven fibration if and only if F has a 'r ight-adjoint-right-inverse' ,
i.e. a right adjoint with identity FG —^ id as counit .
[This result may be found in [105], where it is a t t r ibu ted to Chevalley.
It shows the 'algebraic na tu r e ' of the concept of (cloven) fibration; it is

56 Chapter 1: Introduction to fibred category theory

1.4.9.

1.4.10.

comparable to the result that chosen products x may be given by an adjoint
functor. The result forms the basis for a 2-categoriccd formulation of the
concept of fibration in [315, 317], see Definition 9.4.1 later on.]
Check that the natural isomorphisms r/: id ==^ id* cind ^:u*v* ==^ {v o u)*
in a cloven fibration make the diagrams in Definition 1.4.4 commute.
Later in Section 1.10 it will be shown that each indexed category gives rise
to a cloven fibration; the latter is split whenever the indexed category is
split. Try to find this construction now already.
[Hint. Have another look at the first part of Section 1.1 and try to generalise
the disjoint union which is used to go from pointwise to display indexing.]

1.5 Cha,nge-of-ba.se and composition for fibrations

So far we have seen several examples of fibrations. In this section we introduce
two basic techniques for constructing new fibrations from old, namely change-
of-base (or pullback) and composition. This will give rise to new examples of
fibrations, but also to a rediscovery of some old ones.

1.5.1. L e m m a (Change-of-base). Let -jrP be a fibration andK.A

functor. Form the pullback in Cat

be a

A X B E - ^ E

K^ip) J

In this situation, the functor K* {p) is also a fibration. It is cloven or split in
case p is cloven or split.

We should point out tha t we are using the ordinary pullback of categories
here: A Xi E has pairs / E A, X G E with KI = pX as objects. So we use
equalities between objects, instead of isomorphisms.

Proof. Given an object [J^Y) G A XB E (so KJ — pY) and a morphism
w: / ^ J in A. Let / : X ^ Y in E be a Cartesian lifting of Ku: KI -^ KJ in
B. The pair (t / , /) is then A'* (p)-Cartesian over u\

XffiE {LX)-----^{J,Y)

K*{p)

A -^ J D

Section 1.5: Change-of-hase and composition for fibrations 57

1.5.2. E x a m p l e s . In general change-of-base is a useful tool for defining (fi-
bred) categories. For example, it can be used to take out a certain part of a
fibration.

(i) Let F i n S e t s -̂> S e t s be the category of finite sets. Change-of-base

FinFam(C)

J

F i n S e t s ^

Fam(C)

S e t s

FinFam (c)
yields the fibration 4- of finite families of objects and arrows in C.

. FinSets **

Such a diagram will often be called a change-of -base s i t u a t i o n .
(ii) Let C be a locally small category with terminal object 1. By change-

of-base along the global sections functor F = C(l , —):C —> S e t s one obtains
the so-called s c o n e Sc(C) and the in jec t ive s cone iSc(C) in

>• Sub(Sets) Sc(C)

^
J

'

^ Sets"^

'
cod and

iSc(C)

\
1

'

c S e t s C S e t s

The previous lemma yields tha t the scone and injective scone of C are fibred
over C. Sometimes the scone Sc(C) is called the Freyd cover of C, see [85]
or [186]. It can also be described as the comma category (Se t s I F) .

Next we show how two specific fibrations tha t we already know can be re-
constructed via change-of-base. For the first example, recall from the previous

UFam(PER)
section the fibration i of cj-set-indexed-PERs. This fibration can be

CJ-Sets
turned into a fibration of PER-indexed PERs by restricting the index objects
to P E R <̂ ^ u;-Sets via change-of-base. What we get is a split fibration, which
turns out to be equivalent to the codomain fibration on PERs .

UFam(PER)
1.5.3. P r o p o s i t i o n . Form the split fibration i

PERs in the following change-of-base situation.
P E R

of PER-indexed

U F a m (P E R)

J
P E R ^—

UFam(PER)

- ^ a;-Sets

58 Chapter 1: Introduction to fibred category theory

There is then an equivalence of categories in a commuting triangle:

UFam(PER) = ^ PER"'

cod
PER

relating pointwise and display indexing of PERs.

Using the same notation UFam(PER) for different total categories here may
seem confusing, but is rather convenient, and should not lead to problems as

UFam(PER) UFam(PER)
long as we use the entire fibration, as in i and i , i.e. the

^ . ' PER U;-Sets . '

total category together with the base category; then one can still see the
difference.
Proof. One maps a family of PERs {R[n])[n]e^/A indexed by a PER A, to
the projection w: {A \ R} -^ A, where {A \ R} is the PER

{A I i?} = {(n, m) I pnApm and p'n/?[p„]p'm}

and TT is the projection given by [(n, m)] »-> [n].
f R \

In the reverse direction, one maps a family I ^^ j in PER~^ to the

collection R[n] ioT n E \A\ where R[n] is the fibre

R[n] = {{m,m')eR\^{[m]) = [n]}.

Further details of the equivalence are left to the reader. •

UFam(PER)
Notice that we have obtained a fibration i by change-of-base

PER
P E R ^

which is equivalent to the fibration i . In such a situation we also say
PER

that there is a change-of-base situation
PER-^ ^ UFam(PER)

PER ^ ^ cj-Sets

But notice also that this diagram is not a pullback in Cat, in the sense that
we used before. We shall be similarly sloppy in the next result.

But first recall (e.g. from [42]) that in a category C with finite limits and
finite coproducts (0,+) one says that coproducts are universal if in a dia-

Section 1.5: Change-of-base and composition for fibrations 59

gram,
X'

J

X

^ z *- L
y

- * x + y ^
(*)

the left and right squares are pullbacks, then the top row is (also) a coproduct
diagram (i.e. the induced cotuple X' + Y' -> Z is an isomorphism). And
coproducts are called disjoint if the coprojections K, K' are monos and form
a pullback square

0 ^ y

J

X -^X^Y

Below we use the fact that if coproducts are universal, then the initial object
0 is strict: every map X ^ 0 is an isomorphism, see Exercise 1.5.6.

Notice that these notions easily extend to coproducts Ujc/ ^i indexed by
an arbitrary set / . This is what we shall use.

1.5.4. Propos i t ion . Let C be a category with finite limits and set-indexed
coproducts Ui^j Xi, which are universal and disjoint. There is then a copower
functor

Sets
u

c by / • l = U.-6/(l)

where I £ C is the terminal object. This yields an equivalence of categories

— r
C/L[(^) ^ C , natural in / E Sets.

Then we can obtain the family fibration on C in a change-of-base situation,

cod

Sets — >• C

Fam(C)
J

u
By this result, we have a correspondence between pointwise indexing (X,),-^/

/ X \
of an /-indexed family in C and display indexing I jj\j. I, over index objects

60 Chapter 1: Introduction to fibred category theory

LJ(^) — IJie/ ^ ^ ^—assuming that C has a suitably rich coproduct-structure.

Proof. For a function u: I —^ J one takes II(^)-IJ(^) "^ \1{J) ^^ ^^ ^^^
unique map with Y[{u) o KJ = Ku(i)-1 -^ lljeJ ^ ~ LI(*^)-

One can define two functors

Fj

Gj

c/U(^)

as follows. For a collection X = (X,)^^/ in C^, take

where TTX is the unique map with TTX O ̂ i = KI O !X, . In the reverse direction,
one takes

G(Jr,) = (^*-
where each Zi (for i £ I) is obtained in a pullback square:

There is a natural isomorphism FG = id since by universality the maps
Zi —^Zin this diagram yield a cotuple isomorphism U- Zi -=>• Z. In order
to prove GF = id one applies the definition of G to F((X,),-^/), leading
to pullbacks of TTX (as above) along /c,-. This gives us the original collection
(Xi)i^j, since there are pullback squares

Xi

J

Section 1.5: Change-of-base and composition for fibrations 61

by the following argument. Assume u: K -> U i e / "̂ « ^^^"^ TT^ o w = «,- o I^ .
Then for each j ^ I, one can form the pullback square as on the left

Kj

J
^ K

Xi - * Uiei ^i

which yields
(for i ^ j)

SO tha t we get an isomorphism Kj = 0 (since the initial object 0 is strict) .
Hence K =. U j e / ^^J ~ ^^^^ which yields the required mediating m a p K -> Xi.

D

The second way of constructing new fibrations is simply by composition.
This shows that repeated indexing is a form of indexing.

E B

1.5.5. L e m m a . Let ^P and {^ be fibrations.
E

(i) The composite ^^ ^^ then also a fibration, in which

f in E 25 rp-Cartesian <=> / is p-Cartesian and pf is r-Cartesian.

In case both p and r are cloven (or split), then the composite fibration rp is
also cloven (or split).

(In such a situation one often calls p a fibration over r, see also Sec-
tion 9.4')

(ii) For each object I £ A one obtains a functor pj from E/ = (rp)~^(I)
to IB/ = r~^(I) by restriction. All of these pj 's are fibrations.

Proof, (i) Given y G E and u: I —^ rp(Y) in A. Let / be an r-Cartesian
lifting of u and g a p-Cartesian lifting of / ; one obtains that g is rp-Cartesian
over u:

P(Y)

rp(Y)

62 Chapter 1: Introduction to fibred category theory

(ii) Left to the reader. D

1.5.6. E x a m p l e . Let B be a category with pullbacks, and write

—> '' • —y {n times)

for the linear order of length n, considered as a category. Consider then the
sequence of functor categories and generalised codomain functors:

- ^ B"^-^ ^ B"^ ^ B ^ 1

sending

/n, fn-l fl^\ ffn-l

^)

Then each of these functors is a fibration, and all (finite) composites are
fibrations.

The last two exercises 1.5.6 and 1.5.7 below contain some useful facts about
universal and disjoint coproducts, which are there for future reference. For
more information, see [42, 51]. There, a category C with coproducts is called
extensive if the canonical functors C/X xC/Y -^ C/(X-\-Y) are equivalences.
This definition does not require C to have pullbacks: it can be shown tha t the
relevant pullbacks for universality and disjointness are induced.

(A comparable property for 'extensive fibrations' may be found in Exer-
cise 9.2.13 (iii))

Exercises

1.5.1. See the difference between the (total) categories FinFam(Sets) and
Fam(FinSets) .

1.5.2. Define a split fibration of PER-indexed-a;-sets by change-of-base.
E B

1.5.3. Consider the fibrations Ĵ ^ and y in the'composition'Lemma 1.5.5.
B A

(i) Prove Lemma 1.5.5 (ii).
(ii) Let f:X —^ Y be a morphism in E and write / = pX G B. Show

that / is p-Cartesian if and only if it can be written as g o h with g
rp-Cartesian and h pj-Ccirtesian.

1.5.4. Consider the scone construction from Example 1.5.2 (ii), and prove: if C is
Cartesicin closed, then so is Sc(C), and the functor Sc(C) —^ C preserves
this structure.
[This result can also be proved via more advanced fibred techniques, see
Example 9.2.5 (i).]

1.5.5. Let A be a complete lattice. Check that coproducts Vie /^* ^^ ^ ^^^ ^ ^ "
verscd if and only if yl is a frame, i.e. satisfies y A (Vjc/ ^t) — V te / l^ ^ ^O-
And that coproducts are disjoint if and only if A has at most two elements.

Section 1.6: Change-of-base and composition for fihrations 63

1.5.6.

1.5.7.

(Cockett, see e.g. [51]) Let B be a distributive category, i.e. a category
with finite products (1, x) and coproducts (0,+) which are distributive:
the canonical maps (Z x X) -\- {Z x Y) -^ Z x (X -\- Y) are isomorphisms.
(Alternatively, universality of coproducts as in diagram (*) on page 59
holds for the special case where Z -^ X -\- Y is a Cartesian projection
z X (X + y)-> X + y.)
(i) Use distributivity to show that morphisms of the form

X xX
AC X i d

-^ (x + y) x x

are split monos.

(ii) Prove that coprojections X -^ X -\-Y <^ Y are monos.

[Hint. For f^g.Z^X with K o f = K o g^ consider the diagram:

a/) X x X ^
K X id

(x + y) x x

This slightly simplifies the argument in the proof of [51, Lemma 3.1].]

(iii) Show that the canonical maps 0 ^ 0 x Z are isomorphisms. (Hence
a distributive category is characterised by: functors (—) x Z preserve
finite coproducts.)

[Hint. Notice that the codiagonal V = [id, id]: (0 x Z) + (0 x Z) ^ 0 x Z
is an isomorphism. Hence the two coprojections K^K'.OXZ =4 (Ox
Z) -|- (0 X Z) are equal, and so ciny two maps 0 x Z =1 y are equal.]

(iv) Conclude from (iii) that 0 is a strict initial object: every map Z —)• 0
is an isomorphism.

Prove that in a category IB with disjoint and universal coproducts, diagrams
of the form

/ - ^ J

I-\-K
u -\- V

K
t

- ^ J-\-L

V

u -{- u

I

V

are pullback squares. Show also that the coproduct functor -f:B x
preserves puUbacks.

64 Chapter 1: Introduction to fibred category theory

1.6 Fibrations of signatures

Signatures will be used in this book as the basic structures that generate a
logic or a type theory. They contain the basic types and function symbols
(possibly also predicate symbols) which are used to build a logic or type
theory on. The aim of this section is twofold: first to define signatures and
organise them in suitable (fibred) categories. It turns out that these categories
of signatures can be introduced most conveniently by change-of-base. The
second aim is to use signatures, together with categories of models, to illustrate
the organisational power of fibrations.

In universal algebra and traditional logic one uses 'sort' for what we prefer
to call 'type'. A typical signature consists of a set of basic types, say {N, B , . . . } ,
together with a set of typed function symbols, containing for example

+
succ

A
=

IM,N -
N —^
B , B -
N,N-

- ^ • N

>N
- > B
—^B

A signature is called single-typed if it has only one basic type and many-
typed otherwise. Many-typed signatures are of fundamental importance for
algebraic data types and specifications, see e.g. [77]. Here (and in the next
chapter) we investigate 'pure' signatures without equations. The latter are
included in Chapter 3 on equational logic. And in Chapter 4 on first order logic
we shall have signatures with (many-typed) predicate symbols. Signatures
underlying higher order logic in Chapter 5 have a distinguished type Prop for
propositions.

Alternative, older names for 'many-typed' are 'many-sorted' and 'heteroge-
neous' (as used for example in [34]), which are in contrast with 'single-sorted'
and 'homogeneous'. Mathematical interest has been focussed mainly on single-
typed signatures, but the more general many-typed signatures are standard
in computer science.

Formally, a many-typed signature E is a pair (T, T) where T is a set
of (basic) types and !F:T^ x T -^ Sets is a mapping which assigns to every
sequence of types (cri , . . . , cr„) G T^ and (Tn+i G T a set T{{(TI, . . . , cr„), (Tn+i)
of function symbols taking inputs of type (J i , . . . , cr„ and yielding an output
of type (Jn+i- In order to simplify the notation, we shall write for a signature
s = (r,j-),

Section 1.6: Fibrations of signatures 65

for the underlying set of types, and

F:(Ji, . . .,an —> o'n-\-i if F £ T{{(TI, . . ., cr„), cr^_|.i).

(Notice that these sets T[a) for a G T^ x T need not be disjoint, so we may
have overloading of function symbols, like in:

H-:N,N—>N and +: R, R —> R.

See also Exercise 1.6.3 below.)
A morphism I] —> S' of many-typed signatures consists of a function

u\\Ti\ —> |E'| between the underlying sets of types together with a family
of functions (/«) between sets of function symbols such that

F : (7 1 , . . . , CTn >Crn-\-l => / a (F) : i / ((7 i) , . . . , i i ((7 n) > u[(Tn^\)

where the subscript a is ((0^1,..., cr„), cr„_|_i). Thus one obtains a category
Sign together with a forgetful functor Sign -^ Sets sending a signature S to
its underlying set of types |E|. It is a split fibration because for a signature E
and a function u:S ^ |E| one can form a many-typed signature over 5 with
function symbols,

F:(Ti,...,cr„—XTn+i ^ F:u(ai),...,u{an)—y u{an+i) in E.

This is captured all at once in the following definition of the category of
signatures. (We hope the reader will appreciate its conciseness.)

1.6.1. Definition. The category Sign of many-typed signatures is de-
fined in the change-of-base situation

Sign >• Fam(Sets)

J
Sets >• Sets

T^T" X T
where T^ is the free monoid of finite sequences on T (the "Kleene star"). As an

Sign

immediate consequence of Lemma 1.5.1 we get that 4- is a split fibration.
Often we simply use 'signature' for 'many-typed signature'.

1.6.2. Convention. A morphism 0: E —)• E' of signatures consists of a pair
(K, (/)) as describe above. We usually write <}> both for u and for all of the
/ ' s . Thus we get

F : (Ti,..., o-„ —> (Tn^i in E

^ (l){F):(l){ai),...,(t>(an)—^Ho-n+i) in E'.

This is notationally rather convenient and not likely to cause much confusion.

66 Chapter 1: Introduction to fibred category theory

Terms

The description below of the terms associated with a signature is as in univer-
sal algebra: it is based on indexed sets of term variables. In the next chapter
we shall give a more type theoretic description (which will be used in the
subsequent remainder of the book), based on a fixed infinite set of term vari-
ables {vo,vi,...] which are linked to a type in a context containing type
declarations of the form Vi'. ai.

Suppose E is a signature with T = |E| as underlying set of types. A
T-indexed collection of sets X — {Xa)o£T can be seen as providing a set of
variables X^ for every type a ET. One can form a new T-indexed collection

(Terms, (X))^^^

where TermSr(X) is the set of terms of type r. These collections are defined
as follows.

• Xr CTermSr(X);
• if F : n , . . . , r„ —> Tn+i in E and Mi G Terms^j (X) , . , . , Mn E Termsr^ (X)

then F (M i , . . . , M „) E Termsr^^,(X).

Hence a term is a (well-typed) string consisting of variables x G U<7GT ^ ^ ^^^
function symbols F from E. There are associated notions of free variable
and substitution:

FV(x) = {x}

FV(F(Mi , . . . ,M„)) = FV(Mi)U- . .UFV(Mn)

and for y £ Xr and N G TermSr(X),

r A r / 1 (N if X = y

^f^/^] = { X else
F{Mi,...,M„)[N/y] = F{Mi[N/y],...,Mn[N/y]).

In a similar way one defines simultaneous substitution M[N/y\. Notice that
the dependence on the signature E is left implicit in the above definition of
terms.

(Set theoretic) semantics

Let E be a signature, once again with T = |E| as its underlying set of types. A
model or algebra for E consists of a T-indexed collection {Aa)(7eT of carrier
sets together with a collection of suitably typed functions: for each function
symbol F:cr i , . . . , cr„ —y (Tn+i in E, an actual function [lF]]:yl<7i x- • xAa^ -^
Aa^^i between the corresponding carrier sets.

Section 1.6: Fibrations of signatures 67

Thus a model consists of a pair ({A(j)aeTj I - !)-

1.6.3. Example. An obvious way to model a signature containing one func-
tion symbol

if:B,N,N —>N

for an if-conditional on the natural numbers, is to use carriers

A^ = {0,1} AN = N, the set of natural numbers

and a function

[[if]]: AB X AN X AN —> AN
(h) (n ii b — I

\ m otherwise.

Of course, one can more generally interpret 'If in a distributive category
(with natural numbers object N and B = 1 -h 1, see Section 2.6), but here we
restrict ourselves to set theoretic models.

Such a model ({Aa)aeT, I-]]) for S can be used to interpret E-terms: sup-
pose we have a collection of variable sets X = (X(j)aeT together with a
valuation

{pa:Xa - ^ A ^) ^ ^ ^ .

Such a valuation consists of functions assigning values in the model to the
variables. Then there is an interpretation consisting of functions

given by

I ^ L = Pr(^) for X e Xr

For readability's sake we have omitted the superscripts r in [[—]]^. One obtains
a bijective correspondence between valuations and interpretations:

[Xa ^Aa) (76T

(Terms, (X) r " ^ ^ r) . GT

For a valuation [p^'-Xa -^ Aa) together with elements x E X^j and a ^ A^
one defines a new valuation p{x i-> a) by

a if y = x p(. ̂ a}{y) = { «̂ ^̂ 2 .^

68 Chapter 1: Introduction to fibred category theory

A term M G TermSr(X) contains only finitely many variables, say xi G
Xay^,... ,Xn £ X(j^. Such a term thus induces a function

Aa, X • • • X Aa^ ^ Ar

by

In the expression on the right hand side, the valuation p does not play a role
anymore. Interpreting a term as such a map (without valuations) gives a more
categorical description.

1.6.4. Definition. The category S-Mo del of (set theoretic) models of many-
typed signatures has

objects (E, {Aa), H-J) where {{Aa), [[-]]) is a model for E.

morphisms (0, (H,)): (E, (A,), 14) - ^ (E', «) , ^.f) consist of

• a morphism of signatures 0: E —)- E'
• a IE [-indexed collection of functions

Ha'. Ao >• '̂̂ 0(<7)

such tha t for each function symbol

F : CTi,. . . , cr„ —> cr„_|_i in E

the following diagram commutes.

Hai X • • • X Har,
Aa^X" xAa^ ^ A'^^^^^ X • • • X

A.
r ^

> 4 '
^O^n + 1

n̂ + l)

v

Such set theoretic models of many-typed signatures and their morphisms
are studied in some detail in [34].

There are a projection functors

S-Model ^ Sign ^ Sets

(E,(A,),[[_1) I - E I - | E | .

They will play a role below; but first we describe syntactically constructed
models.

Section 1.6: Fihrations of signatures 69

1.6.5. Example. Let E be a signature with T = |E| as set of basic types,
and let X — {Xa)aeT be a collection of typed variables. The sets of terms
TermSr (X) (for r ^T) form carriers for the so-called term model of E, with
variables from X. A function symbol F : r i , . . . , r„ —y rn_|_i has an interpre-
tation as a function

Terms^-j {X) x • • • x Terms^^ (X) >• TermSj^.^! {X)

described by

The term model on the empty collection of variables (0)(7ET is usually called
the initial model of E. It is initial object in the fibre category over E of the
fibration described in (i) below.

S-Model

1.6.6. Lemma, (i) The functor } sending a model to its underlying
signature is a split fibration. The fibre over E G Sign is the category of models
with signature E.

S-Model

(ii) The functor ^ which sends a model to its underlying set of types
is a split fibration. The fibre over T G Sets is the category of models of
signatures with T as set of types.

(iii) For every set of types T, the fibre category (models of signatures over
T) is fibred over the category (signatures over T).
Proof, (i) Given a model (E', (^4'), [[-]]') and a signature morphism (/>: E ^
E' one obtains a model {{Aa), J-]]) over E by putting

A^^:MA'^^^^ and [[Fl1^'[[0(F)r.
Sign

(ii) -h (iii) Directly by Lemma 1.5.5, using that 4- is a split fibration. •

This lemma exhibits a general pattern which can be described roughly as
follows. Given a notion V and another notion Q{a) involving a parameter a
of type V, then, in general, the category of Q(a)'s is fibred over the cate-
gory of "P's, provided the Q(a)'s are suitably closed under substitution along
morphisms of P's . To put it more concisely as a slogan:

if Q's depend on "P's then Q's are fibred over V's

In the above lemma, we have models—involving signatures and thus sets of
types—fibred over signatures and thus fibred over sets. A similar example is
given by the vector spaces which involve fields and are fibred over fields, see
Exercise 1.1.11.

70 Chapter 1: Introduction to fibred category theory

However, this slogan is not entirely correct since the Q's can also be 'op-
fibred' over the P's, which happens in case substitution acts covariantly (see
Section 9.1).

But the point is that fibrations have a great organisational strength. They
provide appropriate ways of layering mathematical structures, by making ex-
plicit what depends on what. This is the reason which makes elementary
lemmas like the above one important.

In later chapters, this aspect will be crucial in modelling logics and type
theories: for a type theory with, say, propositions depending on types (in a
sense to be made precise in Section 11.5) the underlying structure involves a
category of propositions fibred over a category of types.

Single-typed signatures

1.6.7. Definition, (i) We recall that a signature S is called single-typed
if its underlying set of types |E| is a singleton.

(ii) The category SignsT of single-typed signatures is defined by the
change-of-base situation

SignsT ^ Sign

J
1 ^ Sets

1

where 1 is the (one-object one-arrow) terminal category and the functor 1 : 1 ^
Sets points to a singleton set.

(iii) The category S-ModelsT of (set-theoretic) models for single-typed
signatures arises in the change-of-base situation

S-ModelsT ^ S-Model

J
SignsT ^ Sign

where the functor SignsT -^ Sign comes from (ii). Thus also models of
single-typed signatures are fibred over their underlying signatures.

As we mentioned earlier, many mathematical texts on signatures are re-
stricted to the single-typed case. A signature for a monoid acting on a set is
then not described by function symbols

m:M,M—>M, e : () ^ M , a :M,X—^X

Section 1.6: Fibrations of signatures 71

but by a collection of function symbols

a^: X —> X

one for each element z in the carrier A M of M . Such a single-typed description
is not only artificial but it also involves a mixture of syntax and semantics
(namely M and -AM). Such practices which have arisen in mathemat ics are
not necessarily well-fitted for applications in computer science.

Exercises

1.6.1. Write down a (single-typed) signature for groups and also a (many-typed)
signature for vector spaces.

1.6.2. A many-typed signature is called finite if it has only finitely many types and
function symbols. Define the subcategory of F inSign ^^ Sign consisting
of finite signatures by change-of-base.

1.6.3. Many-typed signatures are sometimes defined (like in [343] or in [282, 2.2.1])
as objects of the category Sign' which arises in the following change-of-base
situation.

Sign' ^ Sets""

cod

Sets ^ Sets

Ty^T'' xT

(i) Describe the category Sign' in elementary terms.
(ii) Show that the categories Sign and Sign' are equivalent.
(iii) One often prefers Sign to Sign' because signatures in Sign allow over-

loading of function symbols: for example the use of -f both for addition
of integers and for addition of reals. Explain.

Sign
[Another advantage of Sign is that l is a split fibration.]

1.6.4. Describe the category S-ModelsT of models of single-typed signatures in
detail.

1.6.5. The category Sign captures signatures of functions. A s igna tu re of
p red ica tes consists of a set of types T together with predicate symbols
/?: (Ti,. . . , (Tn where each CTJ is a type (element of T). Define an appropriate
category of such signatures of predicates by change-of-base. Define also a
category with both function and predicate symbols by change-of-base.
[Such a category will be introduced in Definition 4.1.1.]

1.6.6. Let E be a signature and T = |I]| its set of types. We write S-Model(E)
S-Model

for the fibre category over E of the fibration } . This is the category

of E-models.

72 Chapter 1: Introduction to fibred category theory

(i) Show that the assignment

X = (Xo-)cr6T H- (Termsr(X)j^^^

extends to a functor from the category Fam(Sets)T = Se t s^ of
T-indexed famihes of sets to S-Model (D).

(ii) Assume (^O-)O-GT, I - I) is a E-model. Verify that an interpretation
[[_]]p:Termsr(A') ^ >lr is a morphism of E-models.

1.6.7. Let ((^<T), I - l) be a E-model cind p a valuation {X<j -^ Aa)-
(i) Show that

lM[iV/:r]]p = I M l p (, ^ I ^ I ^) .

(ii) Let ((5 < T) , [[-]) be another E-model and {Ha'.Aa -^ Ba) be a mor-
phism of E-models [i.e. a morphism in the fibre of S-Model over E).
Show that

1,7 Categories of fibrations

In this section we shall introduce and study "fibred functors" as appro-
priate morphisms between fibred categories (preserving the relevant struc-
ture) . Also we shall describe "fibred natural transformations" between such
fibred functors—just like ordinary natural transformations are morphisms be-
tween morphisms of ordinary categories (i.e. functors). We shall describe four
(2-)categories of fibrations according to the following table.

split

not necessarily split

1 over a fixed basis B

Fib,pHt(B)

1 Fib(B)

over arbitrary bases

Fibgpiit

Fib

By laying down what appropriate morphisms of fibrations are, we can use
categorical language to talk about fibrations as objects. This enables us to ex-
press some elementary facts about fibrations. Also, we say what fibred natural
transformations (2-cells) are. Then we can apply various 2-categorical notions
in the context of fibrations, like equivalence, and adjointness; the latter is
studied in the next section.

We start with the category named F ib , because it is most general among
the categories in the table: it contains the other three as subcategories.

Section 1.7: Categories of fihrations 73

1.7.1 . Def in i t ion , (i) A m o r p h i s m (VP \ -^

sists of a pair of functors / i ' : B —> A and i J : E ^ D such that the diagram

t^ 1 o f fibrations con-

commutes and H sends Cartesian morphisms in E to Cartesian morphisms in
D. Such a functor H will be called fibred. This yields a category which will
be written as F ib .

(ii) The subcategory Fibgpiit ^^ F ib has split fibrations as objects and
morphisms {K, H) as above where H preserves the splitting on-1he-nose (that
is, up-to-equality and not up-to-isomorphism).

Notice that in (i) we require the square to commute on-the-nose, not up-
to-isomorphism. As it s tands, the notion of morphism of fibrations is easy to
work with and does what we want. For a more abstract approach, see [317].

Here is a first result tha t we can now express.

1.7.2. L e m m a . The functors

F i b

Cat

and

Fibgpiit

Cat

sending a (split) fibration to its base category are fibrations themselves. Rein-
dexing is done by change-of-base, see Lemma 1.5.1. •

1.7.3. Def in i t ion , (i) For a fixed category B, the category Fib(B) of fibra-
tions with B as base category is defined to be the fibre over B of the above

Fib
fibration i . It thus has fibrations with basis B as objects. A morphism

E '

1

ID) \

-^ \ ji^ j in Fib(B) is then determined by a functor i J : E

making the triangle
H

E ^ D

74 Chapter 1: Introduction to fibred category theory

commute and preserving Cartesian morphisms. We call such a functor a fibred
functor (as before) or a functor over B.

(ii) Similarly the category Fibspiit(B) is defined to be the fibre over IB of
Fib^piit

the fibration I . Morphisms in Fibspiit(B) are fibred functors H as in
the triangle, which preserve the splitting on-the-nose. They will be called split
functors.

(iii) If i / :E —>• D is a fibred or split functor as in (i) or (ii), then for each
object / G B one obtains by restriction a functor E/ —^ D/ between the fibres
over /; it will be written as Hj.

Often the name 'Cartesian functor' is used for what is called a 'fibred func-
tor' here. This predicate 'Cartesian' is not very appropriate, because such
functors are not Cartesian morphisms for some fibration.

Notice that the category Fib(l) of fibrations on the terminal category 1
can be identified with the category Cat of categories.

1.7.4. Lemma. The categories Fib(B) and Fibspiit(B) have finite products;
these are preserved by change-of-base.

1
Proof. The identity functor i is terminal object, and the Cartesian product

of two fibrations tP and j - ^ on B is defined in:
B B

E X B D ^ D

p*(g) pxq

E ^ B
P

This yields a fibration p x ^ by Lemmas L5.1 and L5.5 (since it is obtained
by change-of-base and composition). •

The next two lemmas give examples of morphisms of fibrations.

1.7.5. Lemma. Let A and B be categories with puUbacks and let K:A -^ B
be a pullback preserving functor. There are then extensions of K to morphisms

/ Sub(A) \ / Sub(B) \ f ^'^ \ f ^~' \

between the corresponding subobject and codomain fibrations.

Section 1.7: Categories of fibrations 75

P roo f . The functor K preserves monos, since m: X -> / is a mono if and
only if the following diagram is a pullback.

X -

id
1

X -

id
^ X

T

^ I

m

Thus one can define a functor Sub(A) -^ Sub(IB) by

/ m \ / Km \
[X> ^ I) I ^[KX> ^KI).

It preserves Cartesian morphisms because K preserves pullbacks.
The extension to codomain fibrations is obvious. D

1.7.6. L e m m a . Let K: (A, 5) —>• (IB, T) be a morphism of CT-structures (see
Definition 1.3.2). One obtains an extension of I{ to a morphism between the

s(5) s(T)

corresponding simple fibrations i —^ i which preserves the splitting on-

the-nose.

Proo f . By definition K preserves finite products, so let ^ij:I\I x AV ^
I\[I X J) be the inverse of the canonical map {K-K^J-C-K'). One can define a
functor s (/ i) : s (5) -^ s(T) on objects by {I^X) \-^ {I{I,I{X) and on arrows
{uJ):(I,X) -^ (J, y)—where w: / ^ J and / : / x X -> Y—hy {uj) ^
{I{u, I{f o 7/ ,x)- The splitting is preserved since

s{I<){u, TT') = {K{u), K{w') 0 7) = {K{u), TT'). D

As special case, a finite product preserving functor A ^ IB induces a mor-
s(A) s(B)

phism i ^ 4- between the corresponding simple fibrations.
A B

2-categorical structure

It turns out tha t the homsets

F i b (p , q) and F i b (B) (p , q)

(and their split versions) are categories themselves. One thus gets 2-categories
of fibrations. This extra structure enables us to express various 2-categorical
notions—like adjunctions, equivalences or (co)monads—for fibred categories.
In general, these notions will be quite different in F i b and in F ib(B) , see [125-
127] for an investigation. We shall not make deep use of the 2-categorical

76 Chapter 1: Introduction to fibred category theory

aspects. And we usually spell out the details of the 2-categorical notions that
we use for fibrations. But we do find it convenient to have the language of
2-categories at hand.

1.7.7. Definition. Assume [K,H) and {L,G) are morphisms

(f ^ j in Fib (i.e. 1-cells) as below. A 2-cell {K,H) ^ {L,G) in Fib

consists of a pair of natural transformations a: K => L and r: H ^ G in a,
diagram:

H ^

G

K

L

E

A

such that T is above cr; that is, for X G E, the component TX is above the
component Cpx - This may be expressed as: the two 2-cells qH => qG and
Kp => Lp in the diagram are equal. One obtains that Fib is a 2-category,
with identities and composition of 2-cells inherited from Cat .

The 2-cells in the category Fibgpiit are as in Fib. And a 2-cell in Fib(B)
or Fibgpiit (B) is given by a diagram

in which every component of r is vertical. Such a 2-cell in Fib(B) or
Fibspiit(B) is often called a vert ical or fibred natural transformation.

Since 'equivalence' is a 2-categorical notion we have that two fibrations
E P

•j<P and -jrQ with the same basis B are equivalent (formally: equivalent
in Fib(B), or over B) if there are fibred functors F : E -> D and G:D ^ E
with vertical natural isomorphisms GF =. id^ and FG = idp. Several of the
equivalences between total categories that we have seen before (see Proposi-
tions 1.2.2, 1.4.7, 1.5.3 and Exercise 1.2.3) are actually/i6rec/ equivalences.

Section 1.7: Categories of fibrations

1.7.8. P r o p o s i t i o n . There are fibred equivalences over Se t s ;

Fam(Se ts) — = - ^ Sets"^ Fam(Sets») ~ > S e t s ;

77

S e t s

and over u-Sets and P E R ;

S e t s

UFam(u;-Sets) -^ a;-Sets U F a m (P E R) ^ P E R "

a;-Sets P E R n

are split, because they involve Noti(^e tha t all the fibrations on the left of
pointwise indexing.

We mention two lemmas involving fibred 2-cells. The first one is easy.

1.7.9. L e m m a . Let / i : A -^ IB 6e a functor. Change-of-base along K yields
a 2-functor / i * : F i b (B) -^ F ib (A) .

It restricts to Fibspiit(B) -^ Fibspii t(A). D

The second lemma is more involved and may be skipped at first reading.
The essential point about fibrations is tha t (single) morphisms in the base
category can be lifted. By the universal property of such liftings one can also
lift a natural transformation. This is the content of the next result. Since a
natural transformation consists of a family of arrows, one needs to lift many
maps at the same time, and so we require a cleavage.

1.7.10. Lemraia. Assume that two functors K^L.A are given with a

natural transformation a: K => L between them. Let ^P be a cloven fibration;

then there is a lifting a: K'{cr)

A X K E

/ i*(p)

L in a diagram,

78 Chapter 1: Introduction to fibred category theory

where (a) is the functor which sends {I,X) to {I,a*j{X)), The pair {o-,W) is a
2'Cell in F ib from {K^I{'{a)) to (L,L'). All components of the lifted natural
transformation '& are Cartesian.

This lifting of cr to â enjoys a certain universal property, which will not be
made explicit here. But the reader may consult [171] (or also [252, II, 1.7]).
In [171] such lifting of natural transformations is described as lifting of 2-cells
in a 2-category, and used to give a definition of when a 1-cell E ^ B is a,
fibration (in this 2-category). This yields an alternative to the (2-categorical)
definition based on Exercise 1.4.8.

(Later in Exercise 9.3.8 we shall relate (families of) adjoints to reindex-
ing functors CTJIEL/ —> E^/ between fibres to adjoints to the above functor
(a): A x / ^ E ^ A x ^ E between total categories.)

Proof. The component of o" at {I,X) E Ax^, E is obtained from the cleavage,
as:

A f / ^l{X) .
i^)(i.x) = {l<'{<^){I>^) = K'iLaUX)) = aUX) X = L'(I,X))

using that X G E is above the codomain of aj: I{I —^ LI = pX in B. This
a" is a natural transformation since for a morphism (w, /) : (/, X) —>• (J, Y) in
A XL E—where u: I -^ J in A and / : X ^- Y in E with pf — Lu—one has a
naturality square in B:

KI
(^i

KJ

-^ LI = pX
Lu = pf

^ LJ = pY
o-j

And above this diagram in E:

a}{X)

K'{a){uJ) = Ku " ^

i^){i,x)

^}{y)

^ X

i^){J,Y)

where the dashed arrow is the unique one above Ku making the square com-
mute (because (o^)(j,y) is Cartesian). Thus, basically, a" is a natural transfor-
mation by definition of (a). D

Section 1.7: Categories of fihrations 79

Exercises

1.7.1. Show that the categories F i b and Fibgpiit both have finite products.
E ED

1.7.2. Let ^P and ^^ be fibrations and / / : E -> D a functor with qH = p.
1 1 .

(i) Assume H is full and faithful; prove that H reflects Cartesianness,
i.e. that Hf is Cartesian imphes that / is Cartesian.
[Hint. Use Exercise 1.1.2]

(ii) Assume now that / / is a fibred functor, i.e. that it preserves Carte-
sianness. Show that

/ / : E ^ D is full <^ every Hi: E/ -> D/ is full.

And that the same holds for 'faithful' instead of 'full'.
1.7.3. Let 2 be the two-element poset category { ± , T } with ± < T. Describe an

Fam(2) Sub(Sets)
isomorphism of fibrations i = I in Fib(Sets) .

Sets Sets
/ F a m (C

1.7.4. Verify that the assignment C i-̂ I i I extends to a (2-)functor
\ Sets '

Ca t -^ Fibspiit(Sets).

1.7.5. Check that the assignment / H^ I >|,dom/ j yiel̂ Js ^ functor

Fibspiit(B) which preserves finite products.
1.7.6. Let A, B be categories with finite products and let A': A —)• B be a functor

s(A) s(l)
preserving these. Lemma 1.7.6 yields a map (A', s(A")): i ^ i be-

A 1

tween the associated simple fibrations. Show that the functor s(A"):s(A) —>
s(B) between the total categories, restricted to a fibre A / / —>• M//KI, pre-
serves finite products (see also Exercise 1.3.2).

1.7.7. (See [105, Theorem 3.9].) Notice that (as a special case of Exercise 1.4.6),
(liF)

for every functor F : A —>• B, the projection functor 4- from the comma
1

category to B is a split fibration. Prove that the assignment A (T)
yields a functor C a t / B -^ Fit>spiit(B), which is left adjoint to the inclu-
sion (in the reverse direction). Describe concretely how each functor factors
through a split fibration.

1.7.8. Verify that (a) in Lemma 1.7.10 is a fibred functor L*{p) -^ K*{p).
E

1.7.9. Let •^P be a fibration. A fibred m o n a d on p is a monad on p in the
1

2-category Fib(B). It is thus given by a fibred functor T: E ^ E together
with vertical unit r/: id(C =^ T and vertical multiplication ^:T^ => T, satis-
fying {J. o Trj = '\d = iJ. o riT and ^ o T^j, = ^ o ^T as usual.

80 Chapter 1: Introduction to fibred category theory

(i) Show that the (ordinary) Kleisli category lEV is fibred over B.
(ii) Show also that the Eilenberg-Moore category of algebras E^ of the

monad T is fibred over B. (Note that every algebra is automatically
vertical.)

E T E ^

[These fibrations i and ^ are the Kleisli- and Eilenberg-Moore-
objects in the 2-category Fib(B) (see [314] for what this means). The con-
structions in Fib are quite diff'erent, see [129].]

1.8 Fibrewise structure and fibred adjunctions

In ordinary categories one can describe binary products x or coproducts + in
familiar ways, for example in terms of their universal properties. The question
arises whether such structure also makes sense for fibred categories, and if
so, what does it mean. One answer here will be: products x in every fibre,
preserved by reindexing functors u* between these fibres. This gives "fibrewise
structure". It will be our first concern in this section.

In a next step one notices tha t (chosen) products x for ordinary categories
can equivalently be described in terms of ordinary adjunctions; tha t is, in
terms of adjunctions in the 2-category Cat of categories. It turns out tha t such
fibrewise structure can similarly be described in terms of suitable adjunctions
between fibrations. Formally, such "fibred" adjunctions are adjunctions in a
2-category of fibrations Fib(B) over a fixed base category B. This will be our
second concern.

(There is also an alternative answer which is of a global nature and will
be of less interest here. It involves structure defined by adjunctions in the
2-category F i b of fibrations over arbitrary bases. See for example Exer-
cises 1.8.10 and 1.8.11. In the latter one finds how adjunctions in F i b reduce
to adjunctions over a fixed basis.)

1.8.1 . Def in i t ion . Let <C> be some categorical property or structure (for ex-
ample some limit or colimit or exponent)

(i) We say a fibration has fibred <0>'s (or also, fibrewise O's) if all fibre
categories have O's and reindexing functors preserve <0>'s. A split fibration has
spl i t fibred O's if all fibres have (chosen) O's and the reindexing functors
induced by the splitting preserve O's on-the-nose.

(The predicate 'fibred' is sometimes omitted, when it is clear tha t we talk
about fibred categories.)

f ^ \ (K L) f ^ \
(ii) A morphism (^P j —^ (j - ^ 1 of fibrations with O's preserves

(fibred) O's if for each object / E B the functor L / : E / —^^KI preserves O's.

Section 1.8: Fihrewise structure and fibred adjunctions 81

For the split version, one requires preservation on-the-nose.

The following notion deserves explicit attention because of its frequent use.

1.8.2. Definition. A (split) fibred CCC or Cartesian closed fibration
is a fibration with (split) fibred finite products and exponents.

1.8.3. Examples, (i) Usually, ordinary categorical structure exists in a cat-
egory C if and only if the corresponding fibred structure exists in the family

Fam(C)

fibration i . For example:
S e t s

Fam(C)

C is a CCC (with chosen structure) -O* i is a split fibred CCC.

The implication (=>) follows from a pointwise construction: e.g. the Cartesian
product of families {Xj)j^j and {Yj)j^j in the fibre over J is {Xj x Yj)j^j.
Reindexing preserves this structure on-the-nose: for u: I —^ J in Sets we get:

= {Xu{i) X Yu(,))i6/

- (Xu{ij)i&I X {Yu(i))i^I

= u'{(Xj)jej)xn'{{Yj)j^j).

The implication (<=) in the reverse direction follows from the fact that the
category C is isomorphic to the fibre Fam(C)i above the terminal object 1—
which is a CCC, by assumption.

(ii) Exercise 1.3.1 almost contains the result that for a category B with
s(B)

finite products, the simple fibration i has split finite products. The only
B

requirement that should still be verified is that reindexing functors preserve
the fibrewise structure. This is easy. Moreover, this result can be extended to:
s(B)

i is a split fibred CCC if and only if B is a CCC.
(iii) For a category B with finite limits, the codomain fibration ^ on

B always has fibred finite limits. The same holds for the subobject fibra-
Sub(B)

tion i on B. And for a finite limit preserving functor F:A -> B be-
B

tween categories A, B with finite limits, the induced morphisms of fibrations
A"^ B"^ Sub(A) Sub(B)

4- -^ i and i -> i (see Proposition 1.7.5) preserve fibred
finite limits.

(iv) A category B with finite limits is a locally Cartesian closed cate-
gory (LCCC)—i.e. all its slice categories B / / are Cartesian closed—if and

82 Chapter 1: Introduction to fibred category theory

only if the codomain fibration ^ is a fibred CCC. The (if)-part of the
IB

statement is obvious by definition of LCCC. For (only if), it remains to verify
that the reindexing functors (given by pullback) preserve the exponents in
the fibres (often called local exponentials). This will be postponed until
Exercise 1.9.4 (iii).

(v) Recall from Section 1.2 that the categories PER and u;-Sets have
finite limits and are Cartesian closed. By a pointwise construction (as in (i)
above) this structure lifts to split fibrewise finite limits and exponents for the

UFam(u;-Sets) UFam(PER) UFam(PER)
fibrations i , i and i of cj-sets and PERs over

CJ-Sets U;-Sets P E R

u;-sets, and of PERs over PERs.

The following result is often useful.
1.8.4. Lemma. Let ^ be as in Definition 1.8.1. If a (split) fibration p has
(split) fibred (^'s, then so has a fibration K*{p) obtained by change-of-base.
Moreover, the associated morphism of fibrations K*{p) -^ p preserves ^^s.
Proof. Suppose p has fibred ^ ' s . The fibre of K*(p) above / is isomorphic
to the fibre of p above KI. Hence K*{p) has <)'s in its fibre categories. They
are preserved under reindexing, since the reindexing functors of K*{p) are
obtained from those of p. •
1.8.5. Example. The category Sets has all (small) limits and colimits.

Fam(Sets)
Hence by Example 1.8.3 (i) the family fibration i of set-indexed sets
has these limits and colimits in split form. Recall from Definition 1.6.1 that the

Sign
fibration 4- of many-typed signatures is obtained by change-of-base from

Sets
this family fibration. Hence the fibration of signatures has split limits and

Sign Fam(Sets)
colimits. Moreover, the morphism of fibrations i —)• 4- preserves

Sets Sets
these.
Adjunctions between fibred categories

We begin the study of fibred adjunctions with an example. Recall that an
ordinary category C has a terminal object if and only if the unique functor
C —• 1 from C to the terminal category 1 has a right adjoint (written as
1:1 -> C). The situation is similar for fibred categories. Consider for example

a codomain fibration i . Every fibre B/J has a terminal object, namely
IB

f J\
the identity family I J = I j] • The assignment J H-> 1J then extends to

a functor 1: B —>• B"^ . It has the following properties.

Section 1.8: Fibrewise structure and fibred adjunctions 83

(i) This functor 1 can be described as a fibred functor i d i —)• cod as in

where the identity functor id© is the terminal object in the category Fib(B)
of fibrations over IB.

(ii) The functor 1 is right adjoint to the unique morphism cod —-• id© in
Fib(IB): there are obvious adjoint correspondences

m

^ J i n B

Moreover, the unit and counit of this adjunction are vertical in the above
triangle.

These two points establish tha t the fibred terminal object functor 1:B —y
B"^ obtained by taking fibrewise terminal objects, is a 'fibred right adjoint ' to
the functor cod —^ idi—^just like in the case of ordinary categories a terminal
object in C is given by a right adjoint to the functor C —-• 1.

Below we present the general formulation of the notion of fibred adjunction.
Formally, it is an adjunction in a 2-category of fibrations over a fixed base
category.

E B

1.8.6. Def in i t ion , (i) Let j-P and ^^ be fibrations with the same base

category B. A fibred a d j u n c t i o n over B is given by fibred functors F , G in

together with vertical natural transformations rj: idE => GF and e: FG => idp
satisfying the usual triangular identities Ge o r]G — id and e F o FT/ = id. This

84 Chapter 1: Introduction to fibred category theory

is an adjunction in the 2-category Fib(B); it obviously involves an ordinary
adjunction [F -\G).

(ii) A split fibred adjunct ion over IB is an adjunction in the 2-category
Fibspiit(B); it consists a fibred adjunction as above in which the fibrations
p and q are split and also the functors F and G are split [i.e. preserve the
splitting).

Notice that verticality of the unit 77 of an adjunction [F H G) between fibred
functors as above implies verticality of the counit, and vice-versa.

1.8.7. Examples , (i) Every ordinary adjunction [F H G) in:

lifts to

cC

a split fibred adjunction (F

Fam(C) '^

F
1

G

'am(F) H

Fam(F)

H^IZ

'^^

Fam(G)) over

2^ Fam(D)

Sets in:

Sets

by a pointwise construction. Essentially this follows from the 2-functoriality
of Fam(—) in Exercise 1.7.4.

(ii) In a similar way, the reflection

P E R C ^ cj-Sets

from Proposition 1.2.7 lifts to a fibred reflection

UFam(PER) c ^ UFam(a;-Sets)

cj-Sets

again by a pointwise construction.
(But this lifting over a;-Sets is less trivial than over Sets in the previous

example, since one needs to check that the (pointwise defined) units and
counits have uniform realisers.)

Section 1.8: Fihrewise structure and fibred adjunctions 85

The earlier example involving fibred terminal objects for a codomain fibra-
tion can now be described for arbitrary fibrations.

E

1.8.8. L e m m a . A fibration -^P has a fibred terminal object if and only if

the unique morphism from p to the terminal object in Fib(B) has a fibred right

adjoint, say I, in
I -

Proof . Assume that each fibre category E/ has a terminal object 17, and
that these terminal objects are preserved by reindexing functors: for u: I ^ J
in B one has u*{lJ) ---> 1/ over / . Then one gets a functor 1:B ^ E, since a
morphism u: I ^ J in M can be mapped to the composite II = u*{lJ) ^ IJ
over u. Thus p o I = id®. Moreover, 1 is a fibred functor in the above diagram,
since each m a p Iw is Cartesian by construction. Further, there are adjoint
correspondences

pX — ^ J in B

X ^ I J i n E
/

given by w M- (X —> IpX —)• I J) and / i-^ pf. The resulting unit is the unique
map \: X —^ IpX (which is p-vertical) and counit is the identity plJ ^ J
(which is id]B-vertical).

Conversely, if the above functor p: p —^ id^ has a fibred right adjoint 1: B ^
E, then for each object / E B the object 1 / is terminal in the fibre E/ over
/ : the counit component Sj is idi-vertical and therefore an identity pll ^- I.
Hence the transpose of a map f:X —>• 1/ is pf.pX —)• / , so that there is
precisely one vertical map X -^ II.

Further, reindexing functors preserve these fibred terminal objects: a map
u: J ^ I in M is id^-Cartesian over itself; hence IwAJ -^ 1/ is j9-Cartesian
over u, since 1 is by assumption a fibred functor. But by definition, also the
lifting u{ll):u*{ll) -> 1/ is Cartesian over u. This yields an isomorphism
u*{ll) -=̂ -> U , since Cartesian liftings are unique, up-to-isomorphism. n

Having seen this lemma, one expects tha t in general the structure induced
by a fibred adjunction is induced fibrewise and is preserved under reindex-
ing. The following result states that this is indeed the case. The preservation

86 Chapter 1: Introduction to fibred category theory

is expressed by a so-called 'Beck-Chevalley condition', which may be a bit
puzzling at first sight. We elaborate later on.

(We should emphasise that not all fibrewise structure comes from fibred ad-
junctions. For example, a fibration may have fibrewise a monoidal structure.)

E ID)

1.8.9. Lemma. Let ^ and ^ he fibrations and let i7:E ^ D 6e a fibred
functor. This functor H has a fibred left (resp. right) adjoint if and only if
both

(a) For each object I £ M the functor Hj.lEj —> D/ restricted to the fibres
over I has a left (resp. right) adjoint /i (/).

(b) The Beck-Che valley condition holds, i.e. for every map u: I -^ J inM
and for every pair of reindexing functors

^ u* ^ ^ u"^ ^
Ej ^ E/ D J ^ D/

the canonical natural transformation

A'(/)t/# =^ u^'KiJ) {resp. u*K{J) =:^ K{I)u'^)

is an isomorphism.

The lemma describes global adjunctions K H H (or H H A") in terms of
local adjunctions K(I) H Hj (or Hi H A^(/)) which are suitably preserved by
reindexing functors. In the local left adjoint situation:

^ E /

K{J)\-\\Hj K{I)U\HJ

^ D /
U^

the canonical map K[I)u^ => u*K{J) arises as the transpose of

u^in) ^
w# ^ t/# Hj K{J) ^ HI U* K{J)

Section 1.8: Fibrewise structure and fibred adjunctions 87

Alternatively, it may be described as the following (pasting) composite.

K(J)

Proof. First, in case /\ :D ^ E is a fibred left or right adjoint to H, then one
obtains adjunctions between the fibres since the unit and counit of a fibred
adjunction are vertical. For a morphism u: I -^ J in M and an object y G O
over J G B, we get two Cartesian liftings of i< at y in a situation:

I<(^^{y)) K{u{Y))

KY

u*{KY) ii{I<Y) (*)

J

An appropriate diagram chase shows tha t this m a p K(u'^{Y)) -=^̂ u*{KY) is
the canonical isomorphism induced by the adjunction.

Conversely, assume local adjunctions satisfying Beck-Che valley. We shall do
the left adjoint case. We claim that for each object Z G D, say above I EM,
the (vertical) unit component rjz'Z —> H{K{I){Z)) is a (global) universal
m a p from Z to H. Indeed, for a morphism f:Z -^ HY in D, say above
w: / -^ J in B, write / = H{u{Y)) o f:Z ^ H{u*{Y)) -^ HY. By the local
adjunctions K{I) H Hj we get a unique vertical m a p f":K{I){Z) -^ u'^iY)
with H{f") or]z = f . Then / ^ = u{Y) o f":K{I){Z) ^ y is the required
unique m a p with H[f^) o rjz — f in:

H{K{I){Z)) K{I)(Z)
I

y

u*{Y) -

r

u(Y)
^ Y

88 Chapter 1: Introduction to fibred category theory

The assignment Z i-> K[pZ)[Z) now extends to a functor / \ : D -> E, which
is left adjoint to H (see e.g. [187, IV, 1, Theorem 2]). Wha t remains is to
show tha t K is a fibred functor. This follows because, by universality of ry, the
triangle of the above diagram (*) commutes. •

There is a similar result for split fibred adjunctions.

1.8.10. L e m m a . Let (^ 1 —y (^ \ be a split functor between split

fibrations. Then H has a split fibred left/right adjoint if and only if one has
like in the previous lemma, (a) and the Beck-Chevalley condition (b), but this
time with the canonical map being an identity. •

1 .8 .11 . Excurs o n t h e B e c k - C h e val ley c o n d i t i o n . The above lemmas
express tha t a (split) fibred adjunction corresponds to fibre wise adjunctions,
involving adjunctions between fibres and reindexing functors preserving this
s tructure. The latter is formulated by a Beck-Che valley condition, which re-
quires a certain natural transformation to be an isomorphism. We shall have
a closer look at this condition via an example.

Let C be an ordinary category with Cartesian products, given by a right
adjoint x : C x C -^ C in Cat to the diagonal A : C -> C x C. The unit r}z
is usually described as the diagonal {\Az,\dz)'.Z -^ Z x Z and the counit
^(x,y) as the pair (TT, TT'): (X X Y, X X Y) —> (X, Y) of projections in C x C.
If D is another category with Cartesian products then one says that a functor
F : C ^ D preserves these products if the pair F['KX,Y), F{'K'XY) forms a
Cartesian product diagram in D. Put a bit difi'erently, one requires tha t the
canonical m a p

(F(7rx ,y) ,F(7r^ ,y)) , .
F{X X Y) ^ FX X FY ^ '

is an isomorphism. It arises as transpose of the pair

(F(7rx,y),F(7r^_y))
(F(X X Y), F{X X y)) ^ {FX, FY)

in D X D. Tha t is, of

(F X F)(£(x,y))
{F X F){X xY,X xY) ^ (F x F){X,Y)

which is a specific case of the above general description of canonical map . We
have thus shown that the canonical map formulation as used in the Beck-
Chevalley condition corresponds to the usual formulation of preservation for

Section 1.8: Fibrewise structure and fibred adjunctions 89

Cartesian products. The correspondence is a general phenomenon, which is
described in more detail in Exercise 1.8.7 below.

In the above Lemma 1.8.10, dealing with split fibred adjunctions and ad-
junctions between fibres, it is required that the canonical map is the identity.
In the example of Cartesian products, the requirement that the map (*) is the
identity contains much more information than merely F{X xY) = FX x FY:
it implies that [F x F){ex,Y) — ^'px FY -> where e' is the counit of the adjunc-
tion associated with the Cartesian products on D. It also implies F(T]Z) — fl'pz^
since

irz = {^FZ,FZ,7rFz,Fz) o {F{idz),F(idz))

= (F (7rz ,z) ,FK^^))oF(idz , idz)

= F{idz,idz)

= Firjz)-

Thus, the requirement that the canonical map (*) is an identity morphism
leads to a so-called "map of adjunctions" (see [187]), namely from the ad-
junction (A H x) on C to the adjunction (AH x) on D, as in the following
diagram.

C

/ \

C x C
F X F

A H

- ^ D x D

Conversely one easily establishes that if this diagram forms a map of ad-
junctions, then the canonical map (*) is an identity. Again, this holds more
generally, as made explicit by the next lemma below. The proof is easy and
left to the reader.

1.8.12. Lemma. Let
E

H
1

be a split functor between split

fibrations p and q. Then H has a split fibred left/right adjoint if and only if
both

(a) For each object I E M the functor Hj:¥.j
over I has a left (resp. right) adjoint K{I)'

D/ restricted to the fibres

90 Chapter 1: Introduction to fibred category theory

(b) for every map u: I —^ J inM, the pair of reindexing functors i/*: E j —^'Ej,
w ^ : D j ^ D / induced by the splitting, forms a map of adjunctions in

Hjl A ' (J) Hjl \K(I)

In the sequel we shall often describe a specific fibred adjunction by a col-
lection of fibrewise adjunctions and leave verification of the Beck-Chevalley
condition as an exercise. It usually follows in a straightforward way when the
adjunctions between the fibres are defined in a suitably uniform manner .

Since a fibred adjunction involves ordinary adjunctions between fibre cate-
gories it is immediate that a fibred right adjoint preserves fibred limits, and
tha t a fibred left adjoint preserves fibred colimits (see e.g. [187, V, 5, Theo-
rem 1]). There are also fibred versions of the adjoint functor theorems, but
we shall not need them and we refer the interested reader to [47] and [246].
They involve suitable fibred notions of generators and well-poweredness.

Exercises

1.8.1. Explain in detail what a 'fibred LCCC is.
1.8.2. Let (B, T) be a non-trivial CT-structure. Prove that the associated simple

s(T)
fibration i has a fibred terminal object if and only if the collection of

B

types T contains a terminal object (in B).
1.8.3. (i) Prove that a category with Cartesian products has distributive coprod-

ucts (see Exercise 1.5.6) if cind only if its simple fibration has fibred
(distributive) coproducts.

(ii) And similarly, that a category with puUbacks has (finite) universcil
coproducts if and only if its codomain fibration has fibred (universal)
coproducts.

E
1.8.4. Show in detail (as in Lemma 1.8.8) that a fibration -j^P has fibred Carte-

B
si an products x if cind only if the diagonal A:p —)• p x p in Fib(B) has a
fibred right adjoint.

E P
1.8.5. Consider fibrations -^P and -^^ together with a (not necessarily fibred)

functor F : E -> D with right adjoint G such that (a) qF = p and pG = g,
and (b) the unit and counit of the adjunction (F -\ G) are vertical. Prove
that G is then a fibred functor.

Section 1.8: Fibrewise structure and fibred adjunctions 91

[Hint. For a short proof, use Exercise 1.1.2, but see also [344, Lemma 4.5].]
1.8.6. Let SignVar be the category of 'signatures with variables' obtained in the

following change-of-base situation,

SignVar ^ Fam(Sets)

Sign >- Sets
i-i

Thus an object of SignVar is a many-typed signature Z) together with a
IE[-indexed collection X = (X<T)«r6|i;| °f sets (of variables). Show that the
term model assignment

(E,X)h->(Termsr(X))

described in Example 1.6.5 extends to a left adjoint to the forgetful functor
S-Model -^ SignVar which sends a model (E, (ACT), I - l) to (E, (ACT)) in

SignVar S-Model

Sign

Check that it is not a fibred adjunction (as noted by Meseguer).
1.8.7. Consider two adjunctions in the following (non-commuting) diagram.

K

c ^c

F\-i]G F' HlG'

D ^ID/

Following [157] we say that a pseudo-map of adjunctions from (F H G)
to {F' H G') consists of a pair of functors K: C -^ C , L:D -^ D/ together
with natural isomorphisms ip: F'K ^ LF and ip: G'L ^ KG satisfying
ipF 0 G'if 0 T]'K = Krf and Le o (pG o F'xf) = e'L, where r/, e and r/', e' are
the unit and counit of the adjunctions [F -\ G) and [F' H G').
[A map of adjunctions, as defined in [187], has (̂ = id and ^ = id. But
see also loc. cit. Exercise IV 7 4, where there is a weaker notion (due to
Kelly—with natural transformation ip and ^~^ as above, except that they
need not be isomorphisms.]
(i) These isomorphisms (/? and ^ turn out to determine each other: given

an isomorphism F'K = LF, show that one ol^tciins a pseudo-map

92 Chapter 1: Introduction to fibred category theory

of adjunctions if and only if the canonical map KG => G'L is an
isomorphism. The latter is obtained by transposing F'KG = LFG =>
L.

(ii) Formulate and prove a dual version of (i).
(iii) Show that a result like Lemma 1.8.12 can be obtained for arbitrary

(non-split) fibrations with 'map of adjunctions' in (b) replaced by
'pseudo-map of adjunctions'.

E
1.8.8. Let JI be a category (thought of as index) and j^P be a fibration.

(i) Show that the composition functor (p o —):E —)• tf between functor
categories is a fibration.

Let (̂ : B -^ ff be the diagonal functor which maps / G B to the constant
functor J -^ B that maps everything to / {i.e. the exponentiad transpose of
the projection B x J -^ B). Form the exponent fibration p by change-of-
base,

B xm Ê

P'
>

J
1

^ E J

\
(po

'

(ii) Describe the resulting fibred diagonal functor A:p —)• p over B.
(iii) Show that the fibration p has fibred limits (resp. colimits) of shape J

if cind only if this A has a fibred right (resp. left) adjoint,
(iv) Give a similar analysis for split (co)limits.

1.8.9. Exponents in an ordinary category can be described in terms of adjunctions
involving a parameter, see [187]. This approach does not generalise readily
to fibred categories. We sketch an alternative approach, as taken in [157].
Let C be a category with Cartesian products, say described by the functor
x: C X C —> C. Write |C| for the discrete category underlying C, of objects
only. We extend the Cartesian products to a functor prod: |C| x C —)• |C| x C
by {X,X')y^{X,X x X').
(i) Check that the category C has (chosen) exponents if and only if this

functor prod has a right adjoint.
E

(ii) Show that for a fibration -j^P with Cartesian products, one can define
IB

in a similcir way a fibred functor prod: |p| x p —> \p\ x p , where \p\ is the
object fibration associated with p, as introduced in Exercise 1.1.4.

(iii) Prove now that such a fibration p has fibred exponents if and only if
this functor prod has a fibred right adjoint.

E

(iv) Assume next that j ^ is a split fibration with split Cartesian prod-

ucts. Write Split (E) for the subcategory of E with cirrows obtained from

Section 1.9: Fibred products and coproducts 93

Split (E)
the splitting and J'IIPII for the resulting split fibration. Show that p

B
has split exponents if and only if the spht functor prod: ||p|| xp —)• ||p|| xp
has a split fibred right adjoint.
[For a split fibration p, ||p|| (instead of |p|) is the appropriate fibration
of objects of p.]

1.8.10. Definition 1.8.6 describes adjunctions in the 2-category Fib(]B) for a fixed
base category B. One can also consider adjunctions in the 2-category Fib
of fibrations over arbitrary bases.
(i) Describe such adjunctions in Fib in detail.
(ii) Recall from Exercise 1.7.1 that the category Fib has Cartesian prod-

ucts. Show that a fibration p has fibred Cartesian products plus
Cartesian products in its base category if and only if the diagonal
A:p —)• p X p in Fib has a right adjoint in Fib, i.e. if p has Cartesian
products in Fib.

1.8.11. In this exercise we relate adjunctions in Fib(—) and adjunctions in Fib,
E

following [125-127]. Consider a fibration ^P and a functor F : A -)- B.

(i) Show that a (ordinary) right adjoint G: B —)• A to F induces a right
adjoint in Fib to F*{p) -^ p.
[Hint. For X G E above / G B, consider the pair {GI,e*{X)) in the
total category Ax]^ E of F*(p), where e is the counit of the adjunction
(F H G).]

ED

(ii) Assume now that F has a right adjoint G. Let j ^ also be a fibra-
tion and let F ' : D —)• E form together with F : A —)• B a morphism
(F, F'): q ^ p in Fib . Show that there is a right adjoint (G, G'):p —>• q
in F ib to (F, F') if and only if there is a right adjoint in Fib(A) to the
induced functor q -> F*{p).

1.9 Fibred products and coproducts

In the previous section we have studied structure inside the fibres of a fi-
bration. Now^ we move to structure between the fibres, given by adjoints to
(certain) substitution functors. It will be described as fibred products Yl and
coproducts] J .

Two forms of such quantification Yl^U ^^ ' ' ^^ discussed in this section:
the first one is "simple" quantification along Cartesian projections in a base
category, and the second one is quantification along arbitrary morphisms (in
a sense to be made precise). These two forms of quantification will turn out
to be instances of a general notion, to be described in Section 9.3. For the
moment we are satisfied with elementary descriptions.

94 Chapter 1: Introduction to fibred category theory

Recall that an ordinary category C has set-indexed products if for every set
/ and every /-indexed collection {Yi)i^j of objects in C, there is a product
object Yliei ^' ^̂ ^ ' ^^^ differently, if each diagonal A/: C ^ C^ has a right
adjoint Ylj (using the Axiom of Choice). We can express this also in terms of

Fam(C)

the family fibration 4- on C The category C^ is isomorphic to the fibre

Fam(C)/ over / and the diagonal A/ is the composite

It
C ^ Fam(C)i — ^ Fam(C)/ ^ C^

where 1} is the reindexing functor associated with the unique map !/: / —->• 1.
Thus, set-indexed products in C can be described in terms of right adjoints to

Fam(C)
certain reindexing functors of the family fibration i on C. It is precisely

E

this aspect which is generalised in the present section: in a fibration ^P the
objects and morphism in the total category E are understood as indexed by
B. Thus right adjoints to reindexing functors !J (for / G B) will yield suitably
generalised products of an /-indexed collection X G E/ in the fibre over / . In
this way one defines quantification with respect to an arbitrary base category
B—and not just with respect to Sets. This leads to a truly general theory of
quantification, which finds applications later on in describing V, 3 in logic and
n , E in type theory.

Actually, it will be more appropriate to describe quantification in terms
of adjoints to reindexing functors TT* induced by Cartesian projections
TT: I X J -> / , instead of just to !}. The latter then appear via projections
TT: 1 X / —-> 1. Such a description involves quantification with a parameter.

E

1.9.1. Definition. Let B be a category with Cartesian products x and j^P
be a fibration. We say that p has simple products (resp. simple coprod-
ucts) if both

• for every pair of objects / , J G B, every "weakening functor"

E/ ^ E / x j

induced by the Cartesian projection TTJJ:! X J -^ I, has a right adjoint
0(7,J) (resp. a left adjoint IJ(/,j));

• the Beck-Che valley condition holds: for every u: K -^ I inM and J G B, in

Section 1.9: Fibred products and coproducts 95

the diagram

E/ ^ EK

'-., () '- {)
E / x J ^ E K X J

{u X id)*

the canonical natural transformation

^* Il{i,j) =^ UiK,j) (^ X id)*

(resp. U(K,J) (^ X id)* = > ^* LJ(/,J))

is an isomorphism.

Later, in Section 9.3, this form of quantification will be described in terms
of simple fibrations. T h a t is why we call this 'simple' quantification. As in the
previous section, the Beck-Chevalley condition guarantees tha t the induced
structure is preserved by reindexing functors (and hence that it is essentially
the same in all fibres). This Beck-Chevalley condition is not a formality: it
may fail, see Exercise 1.9.10 below. Recall from Example 1.1.1 (iii) tha t we
call functors of the form TT* 'weakening functors' because they add a dummy
variable.

One can formulate appropriate versions of quantification (in Definition 1.9.1
above and also in Definition 1.9.4 below) for split fibrations. The canonical
isomorphism mentioned in the Beck-Chevalley condition is then required to
be an identity (for the adjoints to the reindexing functors induced by the
splitting).

The next result shows tha t the above simple quantification gives us what
we expect in the situation of the s tandard fibration over sets.

1.9.2. L e m m a . For an arbitrary category C one has:

Fam(C)

the family fibration i has (split) simple products/coproducts

^ C has set-indexed products/coproducts.

Proof. We shall do the case of products.
(<=) For sets / , J one defines a product functor J^/^ jxi Fa jn(C) /x j ->

Fam(C)/ by

Then one obtains the following isomorphisms, establishing an adjunction

96 Chapter 1: Introduction to fibred category theory

^I,J ~^ U{I,J)'

Fam(C)/x J {n}j{{Xi)i^i), {Y(^i,j))(i,j)eixj)

= F a m (C) / x j ((X i) (i j) g / x j , {y{i,j)){i,j)eixj)

= n c(x,, y(,-,-))
(i,j)eixJ

- n n c(^n Y^ij))
i€l jeJ

S F a m (C) / ((X ,) i g / , n (/ , j) ((> ' (i j)) (i , i)€ /x j)) .

Beck-Chevalley holds, by an easy calculation.
(=>) Let 1 be a one-element, terminal set. For each set / , the diagonal

functor A / : C —> C^ is the composite,

C ^ Fam(C)i ^ Fam(C) ix / = C ^

Since this weakening functor TT̂ J has a right adjoint Y[(i /)? ^ilso the diagonal
A / has a right adjoint. Thus C has /-indexed products, for each set / . •

1.9.3. P r o p o s i t i o n . Let IB 6e a category with finite products.
s(B)

(i) The simple fihration 4- on B always has simple coproducts.

(ii) And it has simple products if and only ifM is Cartesian closed.
Proof , (i) For a projection n: I x J —^ I we can define a coproduct functor

U(/..)
s(B)/x J = M//(I X J) ^ M//I = s(M)i

between the corresponding simple slices hy X >-> J x X, since:

! / / (/ X J){x, n*(Y)) S ! ((/ X J) X X, Y)

S l (/ x (JxX), y)

(ii) If the category IB is Cartesian closed, we can define a product functor
Y[^jjyM//{I X J) -> M//I by X ^ J ^ X. This yields simple products. And
conversely, if the simple fibration has simple products, then B is Cartesian
closed by Exercise 1.3.2 (ii), because each functor / * : B -^ M//I has a right

adjoint (since it can be written as composite B = B / 1 - ^ W/^)- ^

Section 1.9: Fibred products and coproducts 97

We turn to the second "non-simple" form of quantification; it does not deal
with quantification solely along Cartesian projections, but along all morphisms
in a base category.

E
1.9.4. Definition. Let B be a category with pullbacks and a fibration
on M. One says that p has products (resp. coproducts) if both

for every morphism w: 7 ^ J in IB, every substitution functor u*:Ej -^ E/
has a right adjoint Ylu (resp. a left adjoint U^);
the Beck-Chevalley condition holds: for every pullback in IB of the form

•

•

u

the canonical natural transformation

* * n . ^ n . *̂ (resp. U . r * = : > . * U J

is an isomorphism.

It is easy to see that this second form of quantification is really an extension
of the earlier 'simple' one. If one has quantification along all morphisms, then
in particular along Cartesian projections; and the Beck-Chevalley condition
holds since for every u: K ^f- I and J ^ B the following diagram is a pullback.

t/ X id
K X J >- I X J

J

-^ /

We emphasise that the simple form of quantification is described in terms
of adjoints to weakening functors TT* (induced by Cartesian projections TT)
and the subsequent one in terms of adjoints to arbitrary substitution functors
u*. The latter is the formulation first identified by Lawvere in [192]. For the
quantifiers V, 3 in logic and 11, E in simple or polymorphic type theory, it
suffices to have quantification along projections. But in dependent type theory
the above Cartesian projections will have to be generalised in a suitable way
to 'dependent' projections, see Section 10.3.

Equality can be captured in terms of (left) adjoints to contraction functors
S* induced by diagonals J, see Chapter 3.

98 Chapter 1: Introduction to fibred category theory

It is probably worth noting the following. Adjoints are determined up-to-
isomorphism, so the left and right adjoints]J-^ and]^j^ to an identity substi-
tution function id* = id are themselves (naturally) isomorphic to the identity:
]J.^ = id = Ylid' ^^^ composable maps v.uin the base category, there is an
isomoporphism {v o u)* = t/* o v*, see Section 1.4. It leads to isomorphisms
Uvou -Uv '>Uu and n^oti -Uv ""Uu since adjunctions can be composed,
see [187, Chapter IV, 6 8].

Our first example of this second form of quantification again involves fam-
ily fibrations. It extends Lemma 1.9.2. Notice the explicit use of equality in
the definition of Yiu in the proof. It returns in more abstract form in Exam-
ple 4.3.7.

1.9.5. Lemma. Let C be an arbitrary category. Then:
Fam(C)

the family fibration I has (split) products/coproducts

<=> C has set-indexed products/coproducts.
Proof. The interesting part is the implication (<:=). For u: I ^ J m Sets
define product and coproduct functors flw Uw* ^ani(Q/ ^ Fam(C)j by

UFam(PER)
1.9.6. Lemmia. The fibration i of PERs over uj-sets has both prod-

CJ-Sets
ucts and coproducts (along all maps in cj-Sets^.
Proof. This follows in fact from the fibred reflection UFam(PER) ^
UFam(u;-Sets) c:^ cj-Sets"*' over u;-Sets in Proposition 1.8.7 (ii), using the
reflection lemma 9.3.9 later on. Here we give the explicit formulas: for a mor-
phism u\ {I,E) -^ {J, E) in cj-Sets and a family R = {Ri)ie{l,E) over {I,E)
we get a product and coproduct over (J, E) by

lUR)j = {{n,n')\'iieLu{i)=j ^ ym,m' e E{i).n - ruRiu' - m'}

where r is the left adjoint to the inclusion PER M- c<;-Sets, and E is the
existence predicate on the disjoint union U^^/n-j N/iZ,- given by E{i, [n]R^) =
{(n, n') \ne E(i) and n' E Mil J . D

The following result is often quite useful. The proof is left as an exercise.

1.9.7. Lemma. Consider a fibration for which each reindexing functor has
both a left JJ and a right Y\ adjoint. Then Beck-Chevalley holds for coproducts
W if and only if it holds for products f|. D

Section 1.9: Fibred products and coproducts 99

The next result for codomain fibrations is the analogue of Proposition 1.9.3
for simple fibrations. The third point is due to Freyd [83].

1.9.8. Proposition. For a category B with finite limits, the codomain fibra-

tion i on M has
1

(i) coproducts U^; they are given by composition;
(ii) simple products Y\(i j) if cind only ifM is Cartesian closed;

(iii) products Y[u if and only ifM is locally Cartesian closed.

Proof, (i) For u: I ^ J one defines a coproduct functor Uu* W-̂ ~^ W*^ ^y

(X A /) Ĥ (X ""A^ j) and fipl^jp] ^ f{u oip)^{uo V̂) J .

The adjunction (JJ^ H u*) then follows from the bijective correspondence
between maps / :]J^ (p -^ ip over J and g:(p -^ *̂(V)̂ over / in:

Beck-Chevalley follows from the Fullback Lemma (see Exercise 1.1.5).
(ii) The proof is essentially as in Exercise 1.3.3, except that we have to deal

with an extra parameter object. In case B is Cartesian closed we can form a
/ X \

simple product of a family I r ̂ 1 over I x J along a projection TT: I x J -^ I

as the family I J over / , in the pullback diagram:

Ylii,j)M J

^ j=^[lxj)
A(id/xj)

Informally, P consists of the pairs (i , /) with <p{f{j)) = (i^j), for all j .

100 Chapter 1: Introduction to fibred category theory

Conversely, if the codomain fibration has simple products, then in particular
each functor /*:B -> IB// has a right adjoint. Hence B is Cartesian closed by
Exercise 1.3.3.

(iii) If B has finite limits, then each slice B / / has finite products. Hence

B is an LCCC O each slice B / / is Cartesian closed

<^ for each object w: J ^ / in B / / , the functor

w*:B// —>(B//)/ t / =:B/J

has a right adjoint f|̂ (see Exercise 1.3.3)

<^ the codomain fibration ^ has products W^.

This last step is justified by the fact that Beck-Chevalley always holds by the
previous lemma. •

For an explicit formulation of the Cartesian products and exponents in the
slices B / / in terms of]J and f̂ , see Exercise 1.9.2 below.

1.9.9. Corollary. If a category M with finite limits is Cartesian closed/locally
Sub(l)

Cartesian closed, then its subobject fibration I has simple/ordinary prod-

ucts Yl-

Proof. Since right adjoints f| preserve monos, they restrict to functors be-
tween (posets of) subobjects. •

The following result tells how simple and ordinary products are related. It
shows that ordinary products are simple products relativised to all slices of
the base category. This is sometimes called localisation, see e.g. [246].

E

1.9.10. Theorem. Let -^P be a fibration on a base category B with pull-
backs. For each object / G B, write I* {p) for the fibration obtained by change-
of-base in

M/I x i E ^ E

J r{p)=dom}{p)

dom/

Then p has (ordinary) products Ylu ^f ^^^ ^^h ^f ^^^^ fibration I* (p) has
simple products Yl{v,w)'

A similar result holds for coproducts]J.

Section 1.9: Fibred products and coproducts 101

Proof. Assume p has products Yiu ^long an arbitrary morphism u in B. Let
v: K -^ I and w: L -^ I he objects of the slice M/I and consider their pullback

K XT L
TTl

^ L

TTO V X W

^ I

A simple product Y[(y w) ^l^ng the Cartesian projection TTQ: v x w —> v in M/I
is then given by

As a result of the Beck-Chevalley condition for products in p one gets in /* (p)
that for u: J -^ K,

where AQ is the first projection {v o u) x w ^ (v o u) in M/I. This is the
appropriate formulation of Beck-Chevalley for simple products.

Conversely, assume that each fibration /*(p) has simple products. Then
for a map u: J ^ I in M, the fibration P {p) has a product Yl^ along the
'projection' \u = u:u —-> id/ in M/I. Beck-Chevalley also holds: for v: K -^ I
consider the following pullback square in

v' — \y X id
V X U ^ U

v^{u) J I — = u

id.

It yields i;* Hu - X\v*{u) ^'* ^^ required. D

1.9.11. Definition. A fibration is called complete if it has products Y\u
and fibred finite limits. Dually, a fibration is cocomplete if it has coproducts
W^ and fibred finite colimits.

The codomain fibration associated with a locally Cartesian closed cate-
gory is thus complete. And fibrations that we know to be equivalent to

Fam(Sets) UFam(U;-Sets)
codomain fibrations of LCCCs are complete, like i , i and

Sets CJ-Sets
UFam(PER) UFam(PER)

i . Also i is complete, see Lemma 1.9.6. And the family
P E R CJ-Sets

fibration of a complete category is complete.

102 Chapter 1: Introduction to fibred category theory

Ordinary categories are complete in case they have arbitrary products and
equalisers. Above we have required all finite limits instead of just equalisers.
Under certain technical assumptions, it is possible to obtain fibred finite prod-
ucts from products Yl^ and fibred equalisers, so that we get all fibred finite
limits, see Exercise 9.5.11. But in general it is more convenient to require
explicitly the presence of all fibred finite limits.

In Section 7.4 it will be shown how every small diagram in a complete
fibration has a limit. The diflficulty in getting such a result lies in saying what
a small diagram in a fibred category is.

The following technical result will be used frequently in the categorical de-
scription of logics and type theories. It deals with distribution of coproducts
]J over Cartesian products x in the fibres. It is a generalisation of the distri-
bution of V over A in a frame, see Exercise 1.9.6. In logic it corresponds to the
equivalence of 3x: a. {(fAip{x)) and (f A 3x: a. V (̂ar), if x does not occur free in
(f. It also occurs as an equivalence between z/x. (P || 7r*{Q)) and {i/x. P)\\Q in
process theory, where u is restriction and || is parallel composition, see [219].

E

1.9.12. Lemma (Frobenius). Let iP be a fibred CCC.

(i) Suppose p has simple coproducts. For each pair of objects / , J G B in
the basis and each pair of objects Y GlKj, Z GlKjxj in appropriate fibres, the
canonical morphism

Uii.j)i^lj(Y) X Z) ^ Y X Uii,j)iZ)

is an isomorphism.

(ii) Suppose now p has coproducts. Then for each u\ I ^ J tnM, Y E¥.J
and Z E^i, the canonical morphism

U„(«*WxZ) ^YxUJZ)

is an isomorphism.

Proof. We do only (i). First of all, the Frobenius map is obtained as transpose
of the composite

n}^j(Y) X Z "^""l^ , ^*JY) X 7r}^j(U^ij^(Z))

^},Ay X Uii,j)iz)).

Section 1.9: Fibred products and coproducts 103

It is an isomorphism by Yoneda:

Uii,j)(^*i,jiy) X z) — ^ w

IT} AY) X Z ^ 7r},(W)

- ^lAY) ^ ^},jm = 7T*jAY => W)

U(i,j)(Z) ^Y ^W

Y X Uii,j)(Z) W •

Notice tha t the Frobenius m a p is an isomorphism because reindexing func-
tors preserve exponents. Even if there are no fibred exponents around, the
Frobenius m a p can still be an isomorphism. In that case we shall speak of
(s imple) c o p r o d u c t s w i t h t h e F r o b e n i u s p r o p e r t y , or briefly, of (s im-
ple) c o p r o d u c t s sat i s fy ing Froben ius .

Finally we should also say what it means for a morphism of fibrations to
preserve the above (simple) products and coproducts.

/ E X , ^ ^ . f ^ \
1.9 .13. Def in i t ion . Let (^P 1 —^ (j - ^ 1 be a morphism of fibra-
tions.

(i) Assume tha t p and q have simple products (resp. coproducts). Then
(/\, L):p -^ q preserves s i m p l e p r o d u c t s (resp. coproduct s) if both

• K:M -^ A preserves binary products, say with 7 / j as inverse of the canon-
ical m a p K{I X J) -> KI x KJ]

• for each pair I, J EM, in

TT

E/ ^ OKI

^KI,KJ

^K(/xJ) ^^KIxKJ)

the canonical natural transformation

^ ii{I,J) = ^ Y[{KI,KJ) 7/,J ^

(resp. U{KI,KJ) 7/*,j H=> H U(/,j)]

is an isomorphism.

104 Chapter 1: Introduction to fibred category theory

(ii) Assume now that p and q have products (resp. coproducts). The m a p
{K,L):p -> q preserves p r o d u c t s (resp. c o p r o d u c t s) if both

• K:M -^ A preserves pullbacks;
• for every w: / -^ J in IB, the canonical natural transformation,

HUu^ UKU H (resp.]1KU H =^ H W^)

is an isomorphism.

This notion occurs in the following useful lemma on quantification and
change-of-base.

E

1.9.14. L e m m a . Let ^P he a fibration and K:A -> IB a finite limit (prod-

uct) preserving functor. Then

p has (simple) products/coproducts

=> / i * [p] has (simple) products/coproducts.

Moreover, the morphism of fibrations K*{p) —> q preserves these. •

Fam(Sets)
1.9.15. E x a m p l e . By Lemma L9.5 the family fibration i has both

Sign
products and coproducts. Hence also the fibration i of many-typed signa-

Sets
tures has products and coproducts, because it is obtained by change-of-base,
see Definition L6 .1 , and because the functor T i-> 7 ^ x T preserves pullbacks.

Sign Fam(Sets)
The morphism of fibrations i -^ I then preserves these induced

Sets Sets

products and coproducts.

Exercises

1.9.1. Fill in the details of the proof of Lemma 1.9.5 and pay special attention to
the Beck-Che valley condition.

1.9.2. Assume IB is a category whose codomain fibration 4- is complete. By
]B

Proposition 1.9.8 (iii) we know that B is then locally Cartesian closed. Show
that for objects ip, tp in the slice B / / , the Cartesian product and exponent
are given by the formulas:

^><^ = u^'p*w ^^^ ^ ^ ^ = ^c^^*(^)•
l.9.3. Conclude from Propositions 1.9.3 (ii) and 1.9.8 (iii) that (finite) coproducts

are automatically distributive in a CCC, and universal in an LCCC.
1.9.4. (i) (Lawvere [193], p.6) Show that Lemma 1.9.12 (ii) can be strengthened

in the following way. Consider a fibration with fibred finite products

Section 1.9: Fibred products and coproducts 105

and coproducts] J ^ , in which each fibre category has exponents . Then:

the Frobenius proper ty holds
4^ reindexing functors preserve exponents .

(ii) Assume B has finite limits; show tha t the codomain fibration i

has coproducts satisfying the Frobenius property.

(iii) Conclude from (i) and (ii) t ha t if B is locally Car tes ian closed {i.e. every
slice is Cartes ian closed), then the codomain fibration on B is Cartesian
closed. This fills the gap in Example 1.8.3 (iv).

E

1.9.5. Let a fibration -^P have coproducts] J . Prove t ha t for a mono m: I' >—^ I

in B the coproduct functor J J ^ ^ E / / -^ E / is full and faithful.

[Hint. Write the mono in a puUback square, and use Beck-Che valley.]

1.9.6. Let C be a category with finite p roduc ts and set-indexed coproducts . T h e
Fam(C)

family fibration 4- then has fibred finite p roduc ts and (simple) coprod-
Sets

uc ts . Show tha t the Frobenius proper ty holds if and only if the coproducts
in C are distributive {i.e. if functors X x (—): C -> C preserve coproducts:
the canonical maps]J^(A' x Yt) —)• X x (] J ^ ^ t) are isomorphisms).

Fam(A)
[Especially, for every frame A the family fibration i has fibred finite

p roduc ts and coproducts satisfying Frobenius.]
E

1.9.7. Let i-P be a fibred C C C with simple p roduc t s and coproducts .
M

(i) Show tha t for X G E / x j and y G E / there is an isomorphism over /

(U,/,.)^)=^^ = n(/,,)(-^^^*m)
[Recall from logic the equivalence of ((3x: a. (p) 3 ?/>) and (VJ;: a. {ip 3
xp)) if X is not free in ip.]

(ii) Formulate and prove a similar result for non-simple coproducts J J
and products Y[•

1.9.8. Let B be an L C C C . Describe the associated coproduct] J and product J][
along morphisms in B as fibred functors in a si tuation:

1.9.9. Let B be an L C C C . Show tha t complete distr ibutivi ty (or the Axiom of

106 Chapter 1: Introduction to fibred category theory

Choice, see Exercise 10.2.1) holds: the canonical map

is an isomorphism—where u' is the pullback of u along]~Iu('^) ^^^ ^ ^̂ *'̂ ^
counit of the adjunction (w * H n)^t<^.

1.9.10. Let Dcpo be the category of directed complete partial orders (dcpos) and
(Scott-)continuous functions. A subset ^ of a dcpo X is Scott-closed if A
is a lower set closed under directed joins. (This means that A is closed in
the Scott topology on X.)
(i) Define a fibration of Scott-closed subsets (ordered by inclusion) over

Dcpo.
(ii) Show that a left adjoint W>^ y^ along a projection T::X xY -> X

exists and is given by

Ay^{xeX \3y£Y.{x,y)eA}

where (•) is Scott-closure,
(iii) Show that in case Beck-Che valley would hold, one would get

^^LI(x,y)(^) ^ 3yGy.(x,y)G>l

i.e. that {x ^ X \3y ^Y. (x^y) G A} is already Scott-closed.
[Hint. Consider the pullback oi n: X x Y —^ X and x:l —^ X.]

(iv) Check that the latter is not the case: consider X = N U {oo} with the
usual total order of N plus a top element, and Y = N U {oo} with
discrete order. Take A = {{x,y) G N x N | a ; <i^ y} C X x Y , where
<I^ is the usual order on N.

[This gives an example where one has left adjoints to 7r*'s but no Beck-
Chevalley. This example (or counter example) is due to Pitts (see also [61,
Chapter 1, Exercise (7)].]

1.9.11. In Exercise 1.2.13 one finds that a category C has set-indexed coproducts
if and only if the unit C -^ Fam(C) has a left adjoint. We describe an
analogue of this result (due to Benabou) for fibred categories.

E

Let ^P be a fibration, where IB has puUbacks. Define the fibration Fam(p)

to be the composite cod o dom*(p) in

^ Famp(E) ^ E

Fam(p)

dom*(p)

dom
P

cod

and define r/p:E -^ Famp(E) = 1 " ^ X]B E by X H^ (idpx, X) .

Section 1.10: Indexed categories 107

(i) Show that rjp is a fibred functor p —>• Fam(p).
(ii) Prove that p has coproducts if and only if rip has a fibred left adjoint.

1.10 Indexed categories

We recall from the first section 1.1 that there are two ways of describ-
ing /-indexed families of sets: (a) pointwise indexing via indexed collections

{Xi)i^j, or (b) display indexing via functions (^) • The collection in (a) may
be described as a functor from the discrete category / to Sets. Equivalently
as a functor / ° P —> Sets. It has been shown that (a) and (b) are essentially
the same for sets.

The reader may already have noticed that similar descriptions exist for
indexing of categories: one has (a) indexed categories W^ -^ Cat and (b)

E
fibrations jrP ^ giving pointwise and display indexing for categories. Propo-

JB
sition 1.4.5 describes how to go from (b) to (a)—for a cloven fibration—by
mapping an object / of the base category B to the fibre category E/ over
/ . In this section one finds the so-called 'Grothendieck construction' which
establishes a passage in the reverse direction from (a) to (b). It occurs in
Grothendieck's original paper [107] on fibred categories.

A discussion on fibrations versus indexed categories is included.
1.10.1. Definition (Grothendieck construction). Let ^ : B ° P -^ Cat be an
indexed category. The Grothendieck completion f^i"^) (or simply J ^) of
^ is the category with

objects (/, X) where / G B and X G ^ (/) .

morphisms {^,X) -^ {J^^) ^r^ pairs (w,/) with u: I -^ J in B and
f:X ^ u*{Y) = ^(t/)(y) in ^ (/) .

Composition and identities in /^(^) involve the isomorphisms r} and /i from
Definition 1.4.4. The identity (/ ,X) -^ {I,X) in / ^ is the pair (id,7//(X)),
where /// is the natural isomorphism id^(/) -=> (id/)*. And composition in J ^
of

(I,X) ^ '-^ (J,Y) > (K,Z)

i.e. of

I -

X

^ J

u*{Y)
and

J

Y

-* K

108 Chapter 1: Introduction to fibred category theory

is defined as

u V
I ^ J ^ K

X - — t/*(y) — - - - u^v'{Z) = — - {v o uY{Z)
J u*{g) f^u,v{Z)

The required equalities for identity and composition follow from the coher-
ence diagrams in Definition 1.4.4. In fact, these coherence conditions capture
precisely what is required for J ^ to be a category.

1.10.2. Proposition, (i) The first projection I is a cloven fibration. It is

split whenever the indexed category ^ is split.
(ii) Turning a cloven fibration first into an indexed category (as in Proposi-

tion 1.4-5) and then again into a fibration yields a fibration which is equivalent
to the original one.

(iii) Also, turning an indexed category first into a fibration and then into an
indexed category yields a result which is "essentially the same" as the original.

Proof, (i) For u: I ^ J in M and Y £'^{J) there is a cleavage

(if, id)
{i,u^{Y)) - (j , y)

-^ J

(ii) Easy.
(iii) In order to make the statement precise one first has to introduce a

notion of equivalence for indexed categories. We leave this to the meticulous
reader. Below one does find the appropriate notions for split indexed cate-
gories. D

Fam(C)

1.10.3. Examples, (i) The family fibration i arises by applying the
Grothendieck construction to the split indexed category Sets^^ -^ Cat given
b y / H - > C ^

(ii) The previous example can be extended to categories in the following
way. For a fixed category C one obtains a split indexed category Cat"^P -> Cat
by A Ĥ [the functor category C^]. The resulting split fibration will be written

Fam(C)
as i and called the family fibration over Cat.

Cat "̂

Section 1.10: Indexed categories 109

(iii) For a category B with finite products, one gets a split indexed category
IB°P -> Cat by mapping / G B to the simple slice category M//1. The resulting

s(B)
fibration is the simple fibration i on B.

(iv) For a category B with explicitly given pullbacks, the assignment / H->
B / / extends to an (in general non-split) indexed category W^ —> Cat . Its

B~^

associated fibration is the cloven codomain fibration i

Later on in this section, these latter two type theoretic fibrations will reap-

pear in connection with indeterminates.

1.10.4. D i s c u s s i o n . We have seen tha t the two ways (a) (= pointwise) and
(b) (= display) of indexing sets (and the associated pictures) as described in
Section 1.1 extend to categories: indexed categories correspond to pointwise
indexing (a) and (cloven) fibrations to display indexing (b). In the following
comparison of these two forms of indexing (for categories), we shall discuss
one conceptual diff'erence and a number of technical diff'erences.

(i) The notion of indexed category involves some explicit structure
(namely reindexing functors and mediating isomorphisms id -=>• id* and
u* o v"" ^ [v o uY in Definition 1.4.4), which is left implicit in fibrations.
So an indexed category has a structure where a fibration has a property. The
defining property of a fibration determines such structure once a choice of
cleavage has been made, see Section 1.7. In general in category theory one
prefers properties to structures.

We mention the following two disadvantages of working with explicit rein-
dexing functors and mediating isomorphisms.

(a) It means that one has to check every t ime explicitly whether a property
is intrinsic or not, i.e. whether or not it depends on the specific structure. For
instance, in the indexed category / i-> B / / in Example 1.10.3 (iv) above, each
reindexing functor (given by pullback) has a left adjoint (by composition).
This property does not just hold for the given indexed category arising from
the explicitly given pullbacks, but for all such indexed categories arising from
all possible choices of pullbacks. In fibred category theory one leaves this
structure implicit, which enables a natural and intrinsic formulation of this

property of the codomain fibration i , see Proposition 1.9.8 (i).

(b) Dealing explicitly with the mediating isomorphisms rj: id •=>• id* and
p.: (t/* o tJ*) -^ (i; o uY (and the associated coherence conditions) is cumber-
some. Of course one can ignore them, but that means pretending there is no
problem. This is dangerous, because coherence conditions may fail.

(ii) In Section 1.6 we saw that fibrations are closed under composition.
Of course a similar result can be formulated for indexed categories (try it!).

110 Chapter 1: Introduction to fibred category theory

but it lacks the smoothness and clarity that one has with fibrations. Thus
simple and clarifying results like Lemma 1.6.6 fall outside the direct scope of
indexed categories. Later we shall make crucial use of this closedness under
composition in the categorical description of logics and type theories which
involve different levels of indexing, see Sections 8.6, 9.4, 8.6, 11.2 and 11.3.

(iii) This last point is related to another advantage of fibrations over
indexed categories, namely that the notion of fibration makes sense in a
2-category, see e.g. [317, 171]. This is like display indexing of families, which
makes sense in any category.

(iv) Some constructions are easier for indexed categories. Change-of-base is
slightly simpler (for indexed categories) because it is done by composition (see
Proposition 1.10.6 below). Considerably more elementary is the construction
which yields the opposite: for an indexed category ^ one takes the opposite of
the fibre categories ^ (/) . Probably the easiest way to understand the opposite
of a fibration is: first turn it into an indexed category, take the opposite fibre-
wise and turn the result back into a fibration. An explicit fibred construction
is described in Definition 1.10.11 below.

(v) The categorical semantics of simple and polymorphic lambda calculi
can easily be described in terms of indexed categories, as in [307, 156, 61].
But, if one wishes to use indexed categories also for the semantics of type
dependency, one ends up describing the relevant structure in terms of the
associated Grothendieck completions. In general, if one uses the Grothendieck
completion all the time, one might as well use fibrations from the beginning.

Finally one sometimes hears that indexed categories are more elementary
and easier to understand and use than fibrations. We disagree at this point.
Properly explained and exemplified, fibrations give a clearer picture of index-
ing and are more convenient to use. Eventually, of course, one tends to think of
indexed categories and (cloven) fibrations interchangeably. But, and here we
quote Benabou [29, p. 31, in (v)]: "An indexed category is just a presentation
of a fibred category".

On a more practical note, we shall often use split indexed categories—in
particular, as a means to introduce a split fibration—but hardly ever non-split
ones. In those situations we prefer to use fibrations. In line with this approach
we will describe 1- and 2-cells for split indexed categories only.

1.10.5. Definition. A morphism of split indexed categories from
:̂IBPP -^ Cat to ^ : A°P -> Cat is a pair (/i, a) where K\M -^ A is a functor

and a : ^ => ^ / \ ^ P is a natural transformation. Notice that the components
of a are functors a/: ^ (/) ~> ^(KI). This determines a category ICat.

ICat

1.10.6. Proposition. The functor i , which sends an indexed category to
its base, is a split fibration. The fibre above a category M will be denoted by

Section 1.10: Indexed categories 111

ICat(IB); it contains split indexed categories with base B and natural trans-
formations between them.

Proof. For an indexed category ^:IB^P -^ Cat and an arbitrary functor
A^:A->B, put / i*(^) = \[r o/i°P:A°P ^ Cat and ¥ (^) = (A^ (id^(K/))/6A)
i n l C a t . •

1.10.7. Theorem (Grothendieck). The Grothendteck construction from Def-
inition 1.10.1 gives an equivalence of fibrations:

ICat = ^ Fibspiit

Cat

Proof. The Grothendieck construction determines the object part of a func-
tor ^ : I C a t -^ Fibspiit. For a morphism {K,a):{^:W^ -^ Cat) —y
(<l>: A°P -> Cat) in ICat , one defines G(K,a) = [K,ja), where / a : / ^ ^ ^
/^ $ is layed down by (/, X) i-> (/ i / , oci{X)) and (i/, /) >-̂ (/i w, ai{f))—with
/ the domain of u.

In the reverse direction there is a functor X: Fibgpiit -^ ICat ; it maps a split
E

fibration -j^P to the functor X(p):W^ —> Cat which maps / H^ E/ and u >-^

I/*, as described in Proposition 1.4.5. Clearly, for a morphism (-^P 1 —^

f f̂) in Fibspiit, one takes I{K,H) = {K, (i//)/eA), where HjiEj -^]D>KI

is the restriction to the fibres. Naturality in I is obtained from the fact that
H preserves the splitting on-the-nose. The required fibred equivalence follows
readily. •

Notice that the above result gives a categorical version of the equivalence
Fam(Sets) -^ Sets"^ in Proposition 1.2.2 involving set-indexed families of
sets.

Next we mention 2-cells for split indexed categories. In order not to com-
plicate matters too much, we restrict ourselves to a fixed base category IB
(and so we allow only /\ = id:IB —> B as functor between base categories in
Definition 1.10.5).

1.10.8. Definition. Let ^ and ^ be split indexed categories W^ =t Cat
and Qf,/?:^ =^ <l> natural transformations (i.e. 1-cells in ICat(B)). A 2-cell
cr: a => /? in ICat(B) is defined to be a modification (see e.g. [176]), i.e. a
family aj.aj => fSj of natural transformations such that for each w: / -> J in

112 Chapter 1: Introduction to fibred category theory

B one has

In a diagram:

The proof of the following result is left to the interested reader.

1.10.9. Proposition. The fibred equivalence ICat -^ Fibgpiit in Theo-
rem 1.10.7 gives rise to an equivalence

ICat(B) = ^ Fibspiit(IB)

of 2-categories, for each category B. D

As we already mentioned in the discussion in 1.10.4, there is considerable
difference between taking opposites for (split) indexed categories and for fi-
brations. We shall briefly describe both constructions.

1.10.10. Definition. For a split indexed category ^ : B ° P —> Cat with basis
B, define the opposite split indexed category ^ ° P as the "fibrewise opposite"
^op.jgpp ^ c a t given by

/ ^ ^(/)^P and (/ A j) Ĥ UiJY"^ - ^ ^{lyA .

This definition of opposite for indexed categories is nice and simple. In
contrast, the opposite for fibred categories is rather involved. The opposite
p°P of a fibration p should mean: fibrewise the opposite. The requirement
that such a construction be intrinsic makes the definition below somewhat
complicated. For split fibrations it is much simpler (see Exercise 1.10.9), since
it is essentially as for split indexed categories.

Recall that an arrow in the total category of a fibration factors as a vertical
morphism followed by a Cartesian one. The intuition behind the definition of
the opposite is that all vertical maps in such composites are reversed.

Section 1.10: Indexed categories 113

1.10.11. Definition (Benabou [281). Let \:P be a fibration. A new fibra-
Ml

JE(OP)

tion (with the same basis) written as ;̂ '̂'̂ will be described which is fibre-
wise the opposite of p. Let

CV = {(/i , /2) I / i is Cartesian, /2 is vertical and dom(/i) — dom(/2)}.

An equivalence relation is defined on the collection CV by

{fij2)^ {91,92)
<^ there is a vertical h with 91 o h = fi and g2 o h = f2, ss in

The equivalence class of (/i, /2) will be written as [/i, /2].
The total category E^^P^ of p^^ has A" G E as objects. Its morphisms X -^ Y

are equivalence classes [/i,/2] of maps / i , / 2 as in:

X

-^Y

Composition is described by the following diagram

in which the horizontal dashed arrow is a Cartesian lifting, and the vertical
dashed arrow is induced. The functor p^PiE^^^^ —)• B is then defined by A i-)-
pX and [/ i , / 2] ^ p (/ i) .

The proof of the following result is left to the reader.
E

1.10.12. Lemma. Let jrP be a fibration. One has that

114 Chapter 1: Introduction to fibred category theory

JE(OP)

(i) the functor ^ is a fibration; and a morphism [/ i , /2] in E^^^^ is

Cartesian if and only if the vertical map /2 is an isomorphism;
(ii) this fibration p^^ is the fibrewise opposite of p, that is, for each object

/ E B there is an isomorphism of fibre categories

(E(^P))^^(E/)''^, natural ml;

(iii) there is an isomorphism of fibrations (p°P)°P =p overM. •

In ordinary category theory, a category C has limits of shape J if and only
if the opposite category C ° P has colimits of shape JJ. Similar results exist for
fibred categories, because the opposite of a fibration is taken fibrewise.

1.10 .13 . L e m m a . For a fibration p one has:

p has fibred limits of shape JJ <;^ p^^ has fibred colimits of shape Jf
p has simple products <^ p°^ has simple coproducts;

p has products <^ p°P has coproducts. •

We close this section with an investigation of adjo in ing i n d e t e r m i n a t e s
(or adding elements) to a category. It gives rise to indexed categories, and
shows in particular how the type theoretic simple and codomain fibrations
arise from the same pat tern.

Let IB be a category with terminal object 1 and let / be an object of B. One
can form a new category M[x : /]—or M[x: 1 -> /] in the notation of [186]—by
adding an indeterminate x of type / as follows. Consider the underlying graph
of B and add an extra edge x: 1 —> / , where ar is a new symbol. Let M[x : /] be
the free category with terminal object 1, generated by this extended graph,
incorporating the terminal object 1 G B and the equations tha t hold in B. It
comes equipped with an inclusion r^/: B —> M[x : /] which preserves the termi-
nal object. This functor together with x: 1 -> / in B[l : /] is universal in the
following way. For any terminal object preserving functor F : B —)• C together
with a morphism a: 1 ^ FI in C, there is an (up-to-unique-isomorphism)
unique terminal object preserving functor F\ M[x : /] -> C such that Fx — a
in

Below we are particularly interested in the case where the category B has
finite products or finite limits. This structure can then be extended to M[x : /]
and the universal property holds for functors preserving such structure.

Section 1.10: Indexed categories 115

1.10.14. P r o p o s i t i o n . The assignment I \-^ M[x : /] extends to an indexed
category W^ -> Cat .

Proof . For w: / -> J in B one obtains a functor i/*: B[i/ : J] -^ M[x : /] by the
universal property applied to

X J u J ii^L^.ij n

In the particular cases where the category ® has finite products or finite
limits, there are simpler ways to describe the category M[x : /] . The following
can be found in [186]: (i) in Section I, 7 and (ii) in Exercise 2 in II, 16.

1.10.15. P r o p o s i t i o n , (i) In case IB has finite products, IB[x : /] is equivalent
to the simple slice category M//1.

(ii) In case B has finite limits, M[x : /] is equivalent to the ordinary slice
category B / / .

Proof. It is not hard to verify that the functors /*: B -^ M//I and /*: B ^ :
satisfy the appropriate universal properties. •

1.10.16. Corol lary . Applying the Grothendieck construction to the indexed
category I i-)- M[x : /] from Proposition 1.10.14 yields

s(IB)
(i) the simple fibration I in case B has finite products;

(ii) the codomain fibration ^ in case B has finite limits. D

The ' type theoretic' simple and codomain fibrations thus arise by the
same procedure of adjoining indeterminates. For more information, see [125]
or [129]. There one finds a description of adding indeterminates to fibred cat-
egories.

Exercises

UFam(u;-Sets)
1.10.1. (i) Give the split indexed category yielding the fibration i

CJ-Sets
from Section 1.2 upon application of the Grothendieck construction.

S-Model
(ii) Do the same for the fibration } from Section 1.6.
^ ^ Sign

116 Chapter 1: Introduction to fibred category theory

1.10.2. (i) Show that the Grothendieck construction applied to a (representable)
functor B(—, /):IB^^ -> Cat—which is a split indexed category with

1 / /
discrete fibre categories—yields the domain fibration 4.dom/

B
E

In hne with this result, one calls a fibration ^ r epresen tab le if it is

equivalent (as a fibration) to dom/ for some / G IB.
(ii) Show that a presheaf H: W^ —>• Sets is representable (in the ordinary

sense) if and only if the associated Grothendieck fibration is repre-
sentable (as a fibration).

[Representability will be further investigated in Section 5.2.]
1.10.3. Show that the category ICat(B) of indexed categories with basis B has

finite products.
1.10.4. Show that a (split) indexed category ^ : I ^ P -^ Ca t and a functor A': A -^

B give rise to a pullback diagram of categories:

J (̂ o K) ^ / ^

K

1.10.5. Say that a split indexed category ^ : W P̂ -^ Ca t has (indexed) Car tes ian
p r o d u c t s X if the diagonal A: ^ -)• ^ x ^ in ICat(B) has a right adjoint
in the 2-category ICat(B).
(i) Describe what this means concretely.
(ii) Verify that ^ has indexed Cartesian products if and only if its associ-

ated Grothendieck fibration has spht fibred Cartesian products.

1.10.6. For two fibrations ^ and ^ over B we write Fib(B)(p, g) for the
hom-category of fibred functors p -^ q over B and vertical natural transfor-
mations between them. For / G B consider the assignment

/ i-> Fib(B)(dom7 x p, q).

(i) Show that it extends to a split indexed category B°^ -^ Ca t .
(ii) Write p =f^ q for the resulting spht fibration. Show that there is an

equivalence of categories

Fib(B) (r X p, g) ~ Fib(B) (r, p =^ g) .

(iii) Now assume that the above p, q are split fibrations and consider the
split fibration (for which we also write p =^ q) resulting from the in-
dexed category,

/ i-> Fibgpiit(B)(dom/ x p, q).

Section 1.10: Indexed categories 117

of split fibred functors. Show that one now gets an isomorphism of
hom-categories,

Fibsplit(IB)(r X p, g) S Fibsp,u(IB)(r, p =^ q).

[Thus p =^ q behaves like an exponent, see also [36, 11, Lemma 8.4.4]. Its
definition can be understood in terms of the Fibred Yoneda Lemma 5.2.4.
If p and q are presheaves {i.e. discrete fibrations), then p =^ g is the usual
exponent of presheaves (see Example 5.4.2).]

1.10.7. (i) Check that one gets a category f^ as described in Definition 1.10.1
in case rj and /u are natural transformations satisfying the coherence
conditions (but are not necessarily isomorphisms as in Definition 1.4.4),
but that the result need not be fibred over B.

(ii) Show that a monad (T, r/, fj) on a category A corresponds to a "pseudo-
functor" A: 1*̂*̂ -^ Ca t , without the requirement that the maps rf and
fj are isomorphisms.

(iii) Show that in the situation of (ii), the Grothendieck construction as
in (i) corresponds to taking the Kleisli category of the monad (T, r],fA).

Inv(l)
1.10.8. Let B be a category with finite limits. We write 4- for the opposite

1
M

of the codomain fibration ^ . The category Inv(B) is sometimes called
the inverse arrow category of B.

Inv(]B)
(i) Describe the fibration i in detail.
(ii) Show that its fibre above the terminal object is (isomorphic to) W^.

1.10.9. Let p be a split fibration. Show that the opposite fibration p^^ can also be
obtained by turning p first into a split indexed category, taking the opposite
of all fibres and changing it back into a fibration.

1.10.10. Let p be a Cartesian closed fibration. Describe the (fibred) exponents via
a fibred functor =^:p^P x p -^ p.

s(C)
1.10.11. Let C be a category with pullbacks; consider the simple fibration ŝ sc .

There is a functor { —}:s(C) —> C given by {I,X) \-> I x X and (w,/) i->
{u o 77, /) . Form the fibration q by change-of-base

Sub(Q

and let r be the fibration \S£ o q^^j : D C —)• C Describe the total cate-
gory D C in detail.
[It is the dialect ica ca tegory of de Paiva [243].]

118 Chapter 1: Introduction to fibred category theory

This Page Intentionally Left Blank

Chapter 2

Simple type theory

In this chapter we introduce the first and most elementary type theory, namely
simple type theory (STT), which goes back to Church [49]. Here we use the
terminology simply typed for type theories without type variables and poly-
morphically typed for type theories which do have such type variables. Chap-
ter 8 is devoted to these polymorphic type theories (PTTs) . Although there
are no type variables a: Type in STT, term variables v.cr inhabiting types
cr:Type do exist. But these are allowed to occur only in terms—and not in
types, like in dependent type theories (DTTs) (see Chapter 10).

In the present chapter we give categorical semantics of simple type theory,
both in (traditional) terms of ordinary categories, and also in terms of fibred
categories. We begin with the syntax of calculi of types and terms, starting
from a many-typed signature as defined in Section 1.6. From now on, terms
will be described systematically in contexts. These are finite sequences of
variable declarations vi'.ai, describing the types ai of free variables vi. The
rules for term formation will guarantee that variables only appear free in a
term, if they occur in the context of the term. This calculus types and terms
gives in a canonical way rise to a category, which is commonly called its
classifying category. A model of a calculus can conveniently be described in
terms of a suitable structure preserving functor from its classifying category
into some other 'receiving' category. This is the essence of Lawvere's functorial
semantics. In Section 2.2 it will first be described for ordinary categories. Later
on, this functorial semantics will also be used for fibred categories.

STT is commonly studied with the following constructors for the formation
of new types: exponents -^ (or function spaces), finite products (1, x) and fi-

119

120 Chapter 2: Simple type theory

nite coproducts (0, +) (or disjoint unions). Models of calculi with (->, 1, x) are
easily described in terms of Cartesian closed categories, see e.g. [186, 63, 61].
Additional coproduct types (0, +) can be described with categories having ad-
ditionally finite coproducts. Under the propositions-as-types perspective, the
study of these type formers (-^, 1, x , 0, -f) amounts to the study of the proof
theory of the propositional connectives (D , T , A , ± , V) . It turns out tha t the
minimal calculus, with exponent types only, is most difficult to capture cate-
gorically. This is because categorical exponents are not described in isolation,
but require (binary) products.

Using fibred categories one can resolve this difficulty. In a fibred description
of a type theory (or of a logic), contexts form objects of a base category. The
fibre above such a context contains what happens in that context. This view
is fundamental. For simple type theory it suffices to consider simple fibrations
(introduced in Section 1.3), since types do not contain any (term or type)
variables and hence do not depend on a context. It will turn out tha t exponent
types -^ can then be described by right adjoints to weakening functors TT*,
i.e. by what were called simple products in Section 1.9. This will be done
in Section 2.4. Additionally, Cartesian product types x are captured as left
adjoints to these weakening functors TT*. This description of-^ and x is in fact
a special case of 11 and E in a situation where 11 becomes —> and E becomes
X because there is no type dependency (see also Example 10.1.2 later on).

Historically, Church's untyped A-calculus came before his simple type theory.
In this untyped A-calculus there is no typing discipline and each term may
be applied to every other term (including itself, which gives self-application,
like in the term Xx.xx). But the untyped A-calculus may be understood as
a simply typed A-calculus with only one type, say Q, with Q ^ Q = Q.
Specialising the fibred description of exponents to this particular case with
one type, naturally gives us a notion of model for the untyped A-calculus. This
will be done in Section 2.5. In our fibred approach we thus get (the semantics
of) untyped A-calculi as a special case of (the semantics of) simply typed
calculi. It comes almost for free.

In the final section 2.6 of this chapter one can find how simple fibrations
may also be used to give a suitable description of da ta types with (simple)
parameters .

2.1 The basic calculus of types and terms

Start ing from a many-typed signature we will define various simply typed
calculi: in this section we introduce the basic calculus which gives a detailed
description of the terms associated with a signature. Later, in Section 2.3 we

Section 2.1: The basic calculus of types and terms 121

will define the calculus Al by adding exponent types via a type construc-
tor ->, and extensions of this Al with finite product types (1, x) and finite
coproduct types (0,4-). With all these calculi one associates in a canonical
way a classifying category: it is obtained as a term model (or generalised
Lindenbaum-Tarski) construction. It will play a crucial role in the Lawvere's
functorial semantics in the next section.

Let E be a many-typed signature with T = |E| as its underlying set of
types. We assume a denumerably infinite set Var = {vi, V2T . • •}, elements of
which will be called (term) variables. A context T is then a finite sequence
of variable declarations written as

r = {vi:ai,...,Vn:o'n)-

By convention, we list the variables in a context starting with vi. We can
concatenate contexts F = (^i: cri , . . . , i;„: cr„) and A = {VI'TI, ... ^Vn'-Tm) as

r , A = {vi'-CTi,. . .,Vn:(Tn,Vn^l-Ti, . . . , Vn-{.m'Tm)-

This precise use of variables Vi has two advantages: it prevents name clashes of
variables and is fairly close to a categorical description. There is nothing deep
to it since variables are merely placeholders. The extra book-keeping which it
requires is bearable. And in situations where it does not matter which of the
variables Vi is being used, we freely use met a-variables x, y, z , . . . Especially in
later chapters we shall use mostly these meta-variables, but for the moment
it is better to be precise.

Terms are thus described with respect to a fixed collection of variables,
which receive their types in contexts. And not, as in universal algebra (see
Section 1.6), with respect to various collections {Xa)aeT of sets X^ of variables
which are already typed.

In type theory one uses the notation

r \- M:T

to express that M is a term of type r in context F. In such a situation one
sometimes says that M inhabits r, or just that r is inhabited (by M, in
context F). A typical example of such an inhabitation sequent is

n:N,m:N h plus(times(m, n), m): N.

Such a typing sequent can be obtained by successive applications of the
following basic rules.

identity

vi'.a h vi'.a

122 Chapter 2: Simple type theory

(for F i e r i , . . . , cr„ —y an+i in S)

f u n c t i o n s y m b o l

r h M i : (7 i ••• r \- Mn'.CTn

r h F (M i , . . . , M „) : (7 n + i

Plus the following s t ruc tura l rules:

w e a k e n i n g

vi:ai,...,Vn:(Tn h M:T

c o n t r a c t i o n

T,Vn:(T,Vn + i:0- h M l T

T.Vn'.O- h M[Vn/Vn + l]'r

e x c h a n g e

r,'i;2:crj, i;j_|_i:<7f_|.i, A h M : r

These last three rules allow us to add an extra variable declaration, to replace
two variables of the same type by a single one and to permute assumptions.
Often, these structural rules are not listed explicitly. But here we empha-
sise them, because weakening and contraction play an important role in the
categorical description of type constructors. (Also it is good to be explicitly
aware of such rules, because their use may be restricted, as in linear logic,
see [97, 98].)

We thus have rules for deriving inhabitation sequents F h M:a. Formally
we say tha t such a sequent is der ivable if there is a derivation tree consisting
of the above rules, with the sequent F h M : (j as conclusion. In that case we
sometimes write

• F h M:a

for: F h M : cr is derivable.

As an example, consider a signature with two function symbols:

plus: N , N ^ N , i f : B , N , N ^ N .

Then one can derive an inhabitation statement

vi: B, t'2- N I" if(i^i,^2,pius(t'2,f2))- N.

Section 2.1: The basic calculus of types and terms 123

Formally, this is done as follows.

(Wj
t ; i :B h t ; i : B i ; i :N,t ;2:N l - t ; i :N

?;i: B,i;2: N f - i ; i : B ?;i: N, i»2: N h t;2: N

i ; i :N h t ; i :N i ; i :N h t^i iN

t ; i : N h plus(i ' i, vi): N

i^i:N,i;2:N h plus(i;i, f i) : N
^ (E)

f i : N , f 2 : N h plus(i;2, ^2): N

t^i: B,t;2: N h if(1̂ 1,1̂ 2, plus(?;2,1^2)): N

The annotat ions (W) and (E) indicate applications of the Weakening and
Exchange rules. In similar fashion, one can write a derivation tree for

t; i:N,t;2:N,V3: B,?;4: N.v^: B h \i(v^,p\us{vi,V4),V2):\^.

Intuitively, this may be clear, but the formal derivation is involved. In Exer-
cise 2.1.1 below, we present some extra (derivable) rules which make it easier
to form such terms.

This calculus of types and terms may be called the t e r m calculus of a
signature E.

Substitution M[N/vn] of a term N for a variable Vn in M is best defined
on ' raw' terms (i.e. not necessarily well-typed terms), as

TAT/ 1 I ^ if m = n
Vm[N/Vn\ = Vm else

F (Mi , . . . ,M„) [7VK] = F{Mi[N/vnl....Mn[N/vn]).

As a derived rule one then has

substitution

T.Vn'.o- h M:T r h N:a

r \- M[N/vn]:T

This rule expresses that if the term Â and variable Vn have the same type,
then performing substitution [N/vn] transforms well-typed terms into well-
typed terms. The rule is consequence of a much more general substitution
result, which is presented as Exercise 2.1.2.

It is useful to emphasise once again the difference between the above term
calculus and the sets of terms TermSr(X) of type r , built upon a T-indexed
collection of sets of variables X = {Xa)aeTi as described in Section 1.6. The
main difference lies in the fact tha t in the latter approach the sets of variables
{Xa)aeT form a parameter . This is usual in universal algebra. In the type
theoretic approach in this section (and in the rest of this book) we fix in
advance the set from which variables can be taken.

124 Chapter 2: Simple type theory

There is a way to switch for individual terms between these descriptions.
If r = {vi'.ai,..., Vn:(Tn) and T h M: r in type theory are given, then one
can form sets X^ = {v E Var \ v.a occurs in F}. This yields a collection
X = {Xa)aeT of term variables and the term M can now be described as a
term M G Terms7.(X). In particular, in a E-algebra {Aa, [[— 1) as described
in Section 1.6 the term M yields a function

l r h M : r I =
Aa,X'-'X Aa^ ^ Ar

as described before Definition 1.6.4.
Conversely, assume an arbitrary collection X = {Xa)aeT of term variables

and a term M in Terms,-(X), as in the alternative description. We know that
M is formed in a finite number of steps and can thus contain only a finite
number of variables Xj G Xa,, say, with I < i < n. Replacing these Xi G X^,
by Vi'.ai, one gets a term t;i: cr i , . . . , i;^: cr„ h M[v/x]: r as in type theory.

We close this section by showing how contexts and appropriately typed (se-
quences of) terms form a category. The intuition behind terms-as-morphisms
is the following. A term in context vi: cr i , . . . , i;„: cr„ h M: r may be seen as an
operation which maps inputs a,: ai on the left of the turnstile h to an output
M[alv\: T on the right, via substitution. Thus one expects such a term to form
a morphism

M
ai X ' ' ' X (Tn >- T

in a suitable category, so that, roughly, h becomes —>-. This is formalised in
the next definition. Morphisms will not be individual terms, but sequences of
terms. Such sequences are often called context morphisms.

2.1.1. Definition. The above term calculus on a signature E will serve as a
basis for the classifying category (or term model) C^(E) of E. Its objects
are contexts T of variable declarations. And its morphisms T —> A—where
A = {vi'.Ti,.. .^ Vm''Tm)—are m-tuples (M i , . . . , Mm) of terms for which we
can derive T h Mj-.Ti, for each 1 < i < m.

The identity on an object T = (t;i: (J i , . . . , Vn'-CTn) in C£(E) is the n-tuple of
variables

{vi,...,Vn)
-^r

And the composite of context morphisms

(M i , . . . , M ^) {Ni,...,Nk)
^ A ^ e

Section 2.1: The basic calculus of types and terms 125

is the /?-tuple (L i , . . . , Lk) defined by simultaneous substitution:

Li = Ni[Mi/vu...,Mm/Vm]-

It is then almost immediate tha t identities are identities indeed. Associa-
tivity requires a suitable substi tution lemma, see Exercise 2.1.3 below.

We notice that the construction of a classifying category of a type theory is
like the construction of the Lindenbaum algebra of a (propositional) logic. In
the first case a turnstile h in type theory becomes an arrow -^ in a category,
and in the second case a turnstile h in logic becomes an inequality < in a
preorder (or poset). Under a propositions-as-types reading, the preorder that
one obtains is the underlying preorder of the classifying category.

2 .1 .2 . P r o p o s i t i o n . The classifying category (X{T>) of a signature E has fi-
nite products.

Proof . The empty context 0 is terminal object, since for any context F there is
precisely one morphism F —• 0, namely the empty sequence (). The Cartesian
product of contexts F = {vi'.ci,... ^Vn'-o-n) and A = {VI'.TI, ... ,Vm'-Tm) is
their concatenation F, A with projection morphisms:

F ^ (F ,A) ^ A D

Exercises

2.1.1. Prove that the following 'extended' structural rules are derivable.

F, Vn'- (T, A , Vn-^m: P, © \- M'. T

(i)

(ii)

r , t;„: p, A, Vn+m-- (T, 0 h M[Vn/v„+m

r,Vn:o;A \- M:T

F, A, Vn+m:cr I- M[Vn-\-m/Vn,Vn/Vn-\-l,- - . , Vn+m-l / Vn-^m]: T

F, Vn'- Cr, A , Vn-\-m'-(T, G h M'.T

("i) T,Vn:(T,A,e \-

M[Vn/Vn-{-m /t^n+m+1, . . . , Vn-\-m-\-k-l/Vn-\-m-\-k]''T

F,F I - M : T
(iv)

F h M[vi/Vn-\-l , . . . , Vn/V2n]: T

2.1.2. Derive the following substitution rule.

F,t;„:(T,A h M: r B \- N.a

F , e , A \- M*[N^/vn]:r

126 Chapter 2: Simple type theory

where, assuming A to be of length m and 0 of length A:,

M * = M[Vn-\-k/Vn-\-l,.",Vn-\-k-\-m-l/Vn-\-m]

N* = N[Vn/vi,.,.,Vn-\.k-l/vk].

2.1.3. (i) Prove the following substitution lemma (see also [13], 2.1.16) for
'raw' terms.

M[N/vn][L/vm] = M[N[L/vm]/vn], if Vm is not free in M.

(The sign = is used for syntactical identification, as opposed to con-
version later on.)

(ii) Show that—as a result—composition in classifying categories CC(T>) is
associative.

2.2 Functorial semantics

In Section 1.6 we have seen the notion of model (or algebra) for a many-
typed signature E. It consists of a collection of sets Aa for types cr in S,
and of an actual function [[FJ : A(j^ x • • • x A(j^ —> ^an^i f̂ ^ each function
symbol F : c r i , . . . , o"n —> o-n-\-i in S . Below we shall re-describe, following
Lawvere [191], such a model as a finite product preserving functor (^(E) -^
S e t s from the classifying category of E to sets. This alternative formulation
of model of a signature admits generalisation to model functors C^(E) —)• IB
into receiving categories IB other than Se t s .

S-Model
But first we re-describe set-theoretic models. Recall the fibration 1̂-

Sign
of set theoretic models of many-typed signatures over their signatures from
Section 1.6. The fibre category of E-models will be written as S -Model (E) .

2 . 2 . 1 . T h e o r e m . For each many-typed signature E, there is an equivalence

of categories

S-Model(E) ~ F P C a t (« (E) , S e t s)
where the right hand side denotes the horn-category of finite product preserving
functors and natural transformations between them.

Thus, set-theoretic E-models correspond to finite product preserving func-
tors from the classifying category of E to S e t s and morphisms of E-models to
natural transformations between the corresponding functors. Above, F P C a t
stands for the 2-category which has categories with finite products as objects
and functors preserving such structure as morphisms; 2-cells are ordinary nat-
ural transformations.

Proof . For the passage S-Model(E) —^ F P C a t (f f (E) , S e t s) , let [Aa)oeT
be a E-model, where T = |E | is the set of types underlying E. One defines an

Section 2.2: Functorial semantics 127

associated model functor A:Cl{Ti) -^ S e t s by

(M l , . . . , M „ ^) : r - > A i-> A(ai,.. .,an

= ([[r i - M i : r i]] , . . . , l r h M „ : r „ l) ,

where |[F h Mf: TJ]] is the interpretation of the term T h M -̂: r̂ as a function
Aaj^ X • • • X 4̂(7̂ -> Ar, (as we described before Definition 2.1.1).

As an example we show that A:Ci(T,) -^ Se t s preserves identities.

^ (i d r) = A{vi,...,Vn)

- ; ^ (a i , . . . , a n) . (a i , . . . , a „)

= id>i(r)-

From Exercise 1.6.7 (i) it follows tha t A preserves composition. It is almost
immediate tha t A preserves finite products. But note that products are not
preserved on-the-nose, due to an implicit use of bracketing in A^^ x • • • x Aa^ •

A morphism of S-models [Ha'.Aa —> Ba)^^rp induces a natural trans-
formation A => B between the corresponding functors, with component at
T = {vi:ai,.. ,i;n:crn) given by

%{ai,. ..,an)- {Ha,(ai),. ..,Ha^{an)) = Ha, X • • • X Ha^-

Naturali ty follows from Exercise 1.6.7 (ii).
In the reverse direction, a finite product preserving functor A4:Ct{T>) —>

S e t s determines a set-theoretic model of E with carrier sets

and interpretation of E-function symbol F : cri,. . . , (j„ —y cr^+i,

IF}"^:^^ M{F{vi,...,Vn):(vi:(Ti,...,Vn:(Tn) ^ (vi:CTn + l)) O (p,

where (f is the isomorphism in

= Mai X • • • X Man

making [[F] | a well-typed function. A natural transformation a:M => Af
between functors M,Af:Ci{T>) =t S e t s determines a morphism of models,
with functions

given by

^a e Ma-0t{vi:c7){(J')' O

128 Chapter 2: Simple type theory

The next definition embodies a crucial step in functorial semantics; it gen-
eralises models of a signature in Sets to an arbitrary category with finite
products. The previous theorem suggests to define such models simply as fi-
nite product preserving functors with the classifying category of the signature
as domain.

2.2.2. Definition. Let S be a many-typed signature and B a category with
finite products. A model of E in IB consists of a functor

ff (E) — ^ B

preserving finite products. A morphism between two such E-models
MjJ\f:(X{T,) =4 B in B is then a natural transformation M => Af.
Hence the category of E-models in B is defined to be the hom-category

FPCat(«(E), B) .

More explicitly, a model of a signature E in a category B is given by an
object

I ^ B E B

for every type cr G |E| and a morphism

l F l : [[(T i l x . . . x [[^ n I - ^ [[(T , + i l inB,
for every function symbol F : (J i , . . . , cr„ —>• cr„_̂ i in E. The force of the above
definition lies in the fact that it tells us what a model of a signature is in an
arbitrary category with finite products. It is completely general. For example,
a continuous E-algebra is defined in [101] as a E-algebra whose carriers
are directed complete partial orders (dcpos) (posets with joins of directed
subsets) and whose interpretations of function symbols are continuous func-
tions (preserving these joins). Thus, such a continuous E-algebra is a model
ff (E) -^ Dcpo of E in the category Dcpo of dcpos and continuous functions.
Another example (involving partial functions) may be found in Exercise 2.2.1
below.

2.2.3. Example. Among all the models a signature E can have there is one
very special: it is simply the identity functor Ci(E) —> ff(E). This model of E
in (^(E) is called the generic model of E. It is the categorical version of the
term model constructed in Example 1.6.5 in the style of universal algebra.

In a category of models FPCat(«(E) , B) —like in any category—one may
have initial and terminal objects. These are initial or terminal models of E in
B. They play a distinguished role in the semantics of data types.

The following two results gives a clearer picture of what such categorical
models are.

Section 2.2: Functorial semantics 129

2.2.4. Lemma, (i) There is a forgetful functor

Sign(-)
FPCat ^ Sign

given as follows. For a category B G FPCat the underlying signature
Sign(IB) ofM has objects from B as types and function symbols given by

F:Xi,...,Xn-^Xn-^i tn Sign(B)

V> F is a morphism Xi x - - - x Xn -^ Xn+i in B.

(ii) In the reverse direction, taking classifying categories yields a functor

« (-) : Sign—^ FPCat.

For a morphism of signatures (j):T, -^ E' in Sign one obtains a functor
CC(<I)):CE(Y1) —> C^(E') by replacing every H-type and function symbol by its
image under (j). For a term M we shall often write <j)M for Cl{(t)){M).

Proof, (i) For a morphism K:K ^ B in FPCat—i.e. for a finite prod-
uct preserving functor—one has a signature morphism Sign(A^): Sign(A) -^
Sign(B) which sends X G A to KX G B and a map XiX .. .x Xn ^ -^n+i in
A to the composite KXi x . . . x KXn ^ K{Xi x . . . x Xn) -> KXnJf-i in B.

(ii) Easy. D

(Here, we should allow signatures with classes (as opposed to sets) of types
and function symbols if we wish to define Sign(B) for a non-small category
B—with finite products.)

2.2.5. Theorem. For a signature S and a category B with finite products,
there is a bijective correspondence (up-to-isomorphism) between morphisms of
signatures </> and models M as in

E ^ Sign(B)

a{E)
M

We do not obtain a precise correspondence (but only "up-to-isomorphism")
between the </> and M in the theorem because first translating a model M into
a morphism of signatures (J)M and then back into a model M(pj^ does not pre-
cisely return M, because M preserves finite products only up-to-isomorphism.
Thus, in a suitable 2-categorical sense, the functor Ci(—) is left adjoint to the
forgetful functor Sign(—): FPCat -> Sign, and ff(S) is the free category
with finite products generated by the signature E.

Proof. The proof is essentially a reformulation of the proof of Theorem 2.2.1
with the receiving category Sets replaced by the category B. For a morphism

130 Chapter 2: Simple type theory

of signatures 0: E -> Sign(B), one defines a model M: Cf(E) ^ B by

(M i , . . . , M ^) : r - ^ A ^ {M{T h M i : n) , . . . , A^(r h M ^ : r ^))

where A — i^i: n , . . . , f^: r ^ . This operation M{—) is a mapping which in-
terprets a term T h M : r in context F = vi'.a,.. ..Vn'-CTn as a morphism in
1:

A^(r \- M:T)
cj>{a,) X • . • X 0(c7„) = A^(r) ^ ^ (t ; i : r) = (/>(r)

It is defined by induction on the derivation of F h M : r as:

• ident i ty .
M{vi:o' h vi'.a) = id : ({){a) -> (f>{(T).

• f u n c t i o n s y m b o l . For F : r i , . . . , r ^ —> Tn+i,

A ^ (r h F (M i , . . . , M „) : r „ + i)

= <P(F)o{M{T \-Mv.n),...,M(T\-M,n:rm))-

• weaken ing . Suppose F h M : r . Then

A^(F,t;n:(T h M : r) = X (F h M : r) o 7 r .

• con trac t ion . Suppose F, Vn'- cr, fn+i^ cr h M : r . Then

A^(F,i;„:cr h M[vn/vn+i]'r)

— M{V,Vn'.(T,Vn^i'.o' h M : T) o (id, 7r').

• e x c h a n g e . Suppose F, Vi'. ai, Vi^i: crf+i, F ' h M : r . Then

A^(F, Vi:(Ti+i,Vi+i:ai, T' h M[t; i /^i+i , t;i+i/t;f]: r)
= M{T,Vi: crf,t'2_|_i:crj_|_i,F' h M : r) o id x (TT', TT) X id.

Further details are left to the reader in Exercise 2.2.2 below.
In the reverse direction, given a model M:Ci{T>) -^ M one obtains a mor-

phism of signatures E —)- Sign(B) by o" i-^ M{vi:a) and F ^ M{F) o 9?,
where 9? is a mediating isomorphism, like in the proof of Theorem 2.2.1. •

Notice in the above proof the importance of projections w: I x J -^
I for the interpretation of weakening and of [parametrised) diagonals
S = (id, TT'): / X J ^ (/ X J) X J for contraction.

2.2.6 . Def in i t ion . The adjunction Ci{—) H Sign(—) in the previous theorem
gives rise to a monad T — Sign(C^(—)) on the category S ign of signatures.
The resulting Kleisli category—written as Signtr—will be called the ca te -
gory of s i g n a t u r e s a n d trans la t ions . Thus a translation (/):E -> E ' is

Section 2.2: Functorial semantics 131

understood as a mapping of types to contexts and of function symbols to
terms (instead of: types to types and function symbols to function symbols,
as in the category Sign) . Formally, such a translation 0 is a morphism of
signatures S -^ Sign(ff(E')) .

The category Signtr is in fact more useful than Sign: translations occur
more naturally than morphisms of signatures, as the following examples illus-
t rate .

2.2.7 . E x a m p l e s , (i) The classic example of a translation of signatures in-
volves two (single-typed) signatures for groups, see [212], Definitions 1.1
and 1.2. For reasons of clarity we provide the following two signatures with
equations; but they do not play a role at this stage.

(1) Let El be the signature with one type G and three function symbols

m : G , G — > G , e: 0 — > G, i : G — y G

giving a multiplication, unit and inverse operation. The equations are the
familiar ones for groups:

i;i:G h m(e,i;i) =G ^1 t^i:G h m{\{vi),vi) =Q e

t;i:G h m{vi,e) =QVi i;i:G h m(vi,\{vi)) -Q e

i;i:G,i;2:G,i;3:G h m(i;i, m(i;2, ^3)) =G nn(m(t;i, t;2), 1̂ 3)-

Such equations will be studied systematically in the next chapter.
(2) Less s tandard is the following signature E2 for groups. It has again one

type G but only two function symbols,

d : G , G — > G and a: () —>G

satisfying a single equation

Vi: G, V2: G, 1̂ 3: G h

d{d{6{v3,d{vi,6{vi,vi))),d(v3,di{v2,di(vi,vi)))),vi) =Q V^.

Notice that the second function symbol (or constant) a does not occur in this
equation; its sole role is to ensure tha t groups have at least one element. (It
is not present in [212], so tha t groups may be empty there.)

There is a translation S2 —> Ei which maps the type G to itself, and the
function symbol d to the E i - t e rm

t;i:G,i;2*G \- rc\(\[vi),V2)\G

and a to an arbitrary term in G, e.g. e. This is a translat ion—and not a
morphism of signatures—because the function symbol d of E2 is mapped to
a term of E i—and not to a function symbol of E i . For more details, see
Exercise 2.2.3 below.

132 Chapter 2: Simple type theory

(ii) Boolean logic can be described by the (functionally complete) pair of
connectives

-.: B —>S and A: B, B —>B

of negation and conjunction. Alternatively, negation and implication can be
used:

- . :B—>B and D: B, B—>B

Or also the Sheffer stroke

| :B ,B—^B.

The standard definitions

i;i 3 i;2 = -i[vi A ->V2) a n d i^i|i^2 = " ' ('^1 A 1^2)

yield translations from the last two signatures into the first one.

Exercises

2.2.1. (i) Let Se t s , be the category of pointed sets as described in Exercise 1.2.3.
It can be seen as the category of sets and partial functions. Show that
S e t s , has finite products,

(ii) Let D be a signature. Define a partial S-algebra (or model) to be
a finite product preserving functor (^(E) —> Se t s . . Describe such a
partial algebra in detail.

2.2.2. Consider the interpretation A4 associated with a morphism of signatures
</>: E —)• Sign(IB) in the proof of Theorem 2.2.5.
(i) Let r = (ui: (J i , . . . , Vn- cTn) be a context with a term F h M: r such

that the variable Vk in T does not occur (free) in M. Prove that

M{r \-M:(7) = M{r^ h M ^ (T) O (TTI , . . . , TTk-l, ITk+l , . . . , TTn),

where
-nk
1 = Vi'.ai, . . . ,Vk-i:0'k,Vk:(Tk-\-l," "iVn-l'-O-n

M^ = M[vk/Vk+l,...,Vn-l/Vnl

and TTt is the obvious projection map M{ai) x • • • x M{(Tn) —)• M{art).
(ii) Next, for T = i;i: cr i , . . . , t;„: (Tn, consider a term T \- N:T, and a

context morphism M: A -^ F. Prove that

M{A h N[M/v\: r) = M{r h TV: r) o

{M{A h M i : a i) , . . . , A i (A hMni^n)) .

(iii) Conclude from (i) and (ii) that M. preserves identities and composition.
2.2.3. (i) Check that the translation in Example 2.2.7 (i) of d as m(i(t;i), ^2)

satisfies the equation for d.
(ii) Find cilso a translation of signatures Ei -> E2.

Section 2.3: Exponents, products and coproducts 133

2.2.4.

2.2.5.

(iii) In (ii) of the same example, define a translation from the first signature
with -I and A into the last one with the Sheffer stroke |.

We describe a category of categorical models of s igna tures . Let
C-Model be the category with

objec ts

m o r p h i s m s

(D, A, M) where M'.CE^E) -> A is a finite product pre-
serving functor.
(E,A, At) -> {i:',A',M') consist of a triple {(t>J<,a)
where (/>: H -> EMs a morphism of signatures, K: A ->
A' is a finite product preserving functor and a is a nat-
ural transformation KM. ^ M'Cli^cj)) in

a[ct>)

M a
M'

A
K

^ A'

C-Model
(i) Show that the projection } is a fibration.
(ii) Verify that this fibration has fibred finite products.

C-Model
fin Section 9.1 it will be shown that the fibration } comes from a

. ^^^^
canonical construction as one leg of a fibred span. There is also a projection

C-Model
functor „T>i>. ' which is an 'opfibration', since reindexing works in the
other direction.]
Let M:a{T>) ^ B be a E-model. For terms T \- N, N': a write

M\=N =a N' for M{N) = M{N')

where on the right hand side, N and N' are treated as morphisms T n^
(7 in Ci{Ti). Let </>: S ^ E' be a morphism of signatures. Show that the
'satisfaction lemma'

M\=(t>N =^a <t>N' <^ cf>*{M) \=N =aN'

boils down to a tautology—where <j)*(A4) is the outcome of reindexing along
(f), see (i) in the previous exercise.
[This property is fundamental in the definition of an institution [152].]

2.3 Exponents, products and coproducts

In this section we discuss three simply typed A-calculi, which will be written as
Al, Alx and Al(x,-i-)- The calculus Al has exponent (or arrow) types cr -> r;
Alx additionally has finite product types l,a x r which allow one to form

134 Chapter 2: Simple type theory

finite tuples of terms (including the empty tuple); and in Al(x,+) one has
finite coproduct types 0, cr + r . With these one can form finite cotuples. These
calculi are built on top of a many-typed signature. A brief discussion of the
propositions-as-types analogy is included.

(We shall not discuss the rewriting properties of these type theories. We
refer to [186] for proofs of Church-Rosser and strong normalisation for type
theories with -^ and x—building on ideas of Tait and de Vrijer. A singleton
type is included in [64].)

At this stage we begin to be more sloppy in the use of variables: instead
of the formally numbered variables {î n | ^ G N} we now start using meta-
variables u,v^w,x,y, z. This is more convenient for human beings (as opposed
to computers). We shall require that no two variables occurring in a context
r are equal. In particular, in writing an extended context F, x: a it is assumed
tha t X does not occur in F.

Al-caicuii

Let E be a many-typed signature with T = |E | as its underlying set of types.
Let Ti be the least set containing T, which is formally closed under -^, i.e.T C
Ti and cr, r E Ti => (cr ^ r) G Ti . We now call elements of Ti types, and if
we wish to stress tha t cr £ Ti actually is a member of T, then we call it an
a t o m i c or b a s i c type. In order to spare on parentheses one usually writes

CTi ^ (72 —) - • • • —) • Cr„_ i ^ CTn

for

(Ti ^ (0-2-^ > {(Tn-l -^ O-n)-- •)•

Instead of extending T to Ti we can also say tha t there are the following
two type formation rules.

(fbrcTGT) HcTiType h r : T y p e

^ ^ • T y p e h (T ^ r : T y p e

Notice that in these type formation statements of the form h a:Jype we
have an empty context because types in STT are not allowed to contain any
variables. This will be different in calculi with polymorphic or dependent
types.

The s i m p l y t y p e d A-calculus A1(E) built on top of E has all the rules
of the term calculus of E—described in Section 2.1—plus the following intro-
duction and elimination rules for abstraction and application.

T,v:a\-M:T T\-M:a-^T T\-N:a

T h \v:a.M:a^T F h MN: r

Section 2.3: Exponents, products and coproducts 135

Intuitively one thinks of the abstraction term Xv.a.M as the function a H^
M[a/v], so tha t cr —)- r is the type of functions taking inputs of type a and
returning an output of type r . The term former Xv:a. (—) binds the variable
V. The application term MN (sometimes written as M • A)̂ describes the
application of a function M:a ^ r to a,n argument N:a. Notice that this
application is required to be well-typed in an obvious sense.

This explains the associated two conversions

T,v:a\-M:T T\-N:a T h M i c r - ^ r

r h {Xv: a. M)N = M[N/v]: r T \- Xv:a. Mv = M: a-^ r

where in the latter case it is assumed that v is not free in M. The first of
these rules describes what is called (/?)-conversion, and the second describes
(7/)-conversion. This (/?) is evaluation of a function on an argument, and {rj)
is extensionality of functions. Here we have written these conversions as rules,
with all types explicitly present. Often they are simply written as

{Xv:cT.M)N = M[N/v] and Xv.a.Mv = M

like in:
(At;:N.plus(t;,3))4 = plus(4,3).

Substitution is extended to these new abstraction and application terms by

{Xv:(T.M)[L/w] = Xv:a.{M[L/w])

{MN)[L/w] = {M[L/w]){N[L/w])

under the (usual) proviso that v is not free in L (to avoid tha t a variable which
is free in L becomes bound after substitution; this can always be avoided
by a change of name of the bound variable v in Xv.a.M). We write = to
indicate that this involves a syntactic identification. One further extends the
conversion relation = to become an equivalence relation which is compatible
with abstraction and application in the sense that

T,v:a \- M = M'-.r

r \- Xv.a.M = Xv. a. M'\ a -^ r

T \- M ^ M':a-^T T h N z=, N':a

r b MN ^M'N':T

see [13]. The first of these rules is often called the (^)-rule.

Thus, A1(E) extends the signature E with means for introducing functions
and applying them to arguments. This calculus gives rise to a syntactically
constructed category Cfl(E), called the Al-c lass i fy ing c a t e g o r y of E. Its
objects are contexts

V = [vi\ai,.. ..Vn'.cTn) with C T J E T I .

136 Chapter 2: Simple type theory

Note that the Al-classifying category has arrow types occurring in its objects.
A morphism F -^ A in ffl(E), where A = [VI'.TI, ... ^Vm'-Tm), is an m-tuple
of equivalence classes (with respect to conversion =) of terms

{[Mil...,[Mm]) with r l -Mi in in A1(E).

Thus a second difference between the Al-classifying category (XI(E) and the
classifying category Cl[Ti) described Section 2.1, is that in the former one takes
equivalence classes of terms—instead of terms themselves—as constituents of
context morphisms.

2.3.1. Proposition. The \l-classifying category (X1{T,) of a signature E has
finite products. If T — |E| is the underlying set of types of T^, then (X1(E)
together with the set of types T\ (obtained by closing the set of basic types T
under —^) is a CT-structure (see Definition 1.3.2); it is non-trivial if and only
ifT is non-empty.

Proof. Finite products in Cfl(E) are as in Cf(E): the empty context is ter-
minal and concatenation of contexts yields Cartesian products. The inclusion
Ti <^ Obj(Xl(E) involves identification of a type a with the corresponding
singleton context (i;i: cr). D

The identification used in the proof is very handy. We shall freely make use
of it and consider a type a as an object of a classifying category by identifying
it with the singleton context (vi:a).

The above proposition describes the context structure in Al-classifying cat-
egories in terms of finite products. An appropriate categorical description of
the structure induced by the exponent types or -> r may be found in the next
section. It uses that the pair (C^(E),Ti) is a CT-structure.

Propositions as types

Let T be a non-empty set, elements of which will be seen as propositional
constants. And let Ti be the formal closure of T under —>, as above. The
elements of Ti may be seen as propositions of minimal intuitionistic logic
(MIL, for short), since they are built up from constants using only -> (or D)
for implication. For cr i , . . . , cr„, r G Ti we can write

if T is derivable from assumptions cri,.. .,cr„ in minimal intuitionistic logic.
The (non-structural) rules of MIL are ^-introduction and -^-elimination.

Let A now be a collection of such sequents cri , . . . , cr„ h r, which we regard
as axioms (with aj^r ET). That is, for each sequent 5 E ^ , we have a rule

Section 2.3: Exponents, products and coproducts 137

expressing tha t S is derivable without further ado. We wish to consider which
other sequents are derivable, assuming these axioms in A. For example, if ^
contains the sequent (p \- tp, then we can derive ip —> X ^ ^ —^ X ^^ follows.

V ^ - > X h V ^ ^ X ^ ^ X

^^i^ -^x ^ i^ -^x ^A^x^'^

^ ->x ^ ^^x
Let E ^ be the signature constructed from a set A of axioms in the following

way. Take the set T of atomic propositions as atomic types in E ^ , and choose
for every sequent c r i , . . . , (Xn h r in ^ a new function symbol F : c r i , . . . , cr„ —y
T. Think of F as an atomic proof-object for the axiom.

If we assume in the above example a function symbol F'.(p —)• ip cor-
responding to the axiom (f> \- tp, then there is a A-term which codes the
derivation, namely

v:tp ^ X f" ^^' ^' v{Fw): <̂ —>• X-

More generally, one can prove that

c i 5 • • •) CTn M̂iL T is derivable from A

<^ there is a term M with viiai,... ,Vn'-CTn h M : r in A l (E ^) .

This gives an example of what is known as the paradigm of p r o p o s i t i o n s -
a s - t y p e s or better as p r o p o s i t i o n s - a s - t y p e s and proo f s -a s - t erms . This
perspective was first brought forward clearly in Howard [140], but goes back
to Curry and Feys [65]. The above bi-implication ^ depends on the fact
tha t derivations in MIL correspond directly to Al-terms. In particular, the
introduction and elimination rules for implication in logic have the same form
as the introduction and implication rules for exponents in type theory.

As a result, provability in logic corresponds to inhabitation in type theory. A
term M:a -^ r may be seen as a proof of the proposition cr -> r : M transforms
each proof N:a of cr into a proof MN'.r of r . This is the so-called Brouwer-
Heyting-Kolmogorov interpretation of the ^-connec t ive in constructive logic,
see [140, 335]. This interpretation extends to finite conjunctions (T ,A) and
disjunctions (± , V), which, by including proofs, may be read as finite products
(1, x) and coproducts (0, -f). Later in Section 8.1 we shall see how the quan-
tifiers V, 3 in predicate logic correspond to product Y\ and sum]J of types
over kinds in polymorphic type theory.

The analogy between derivations and terms goes even further: the (/?)- and
(r/)-conversions for Al-terms correspond to certain identifications on deriva-

138 Chapter 2: Simple type theory

tions, namely to:

/

a \- T

h (7 -> r a \- a

a \- T

: \

\- a a \- T

h (7 -> r

^ h (7 - ^ r /

Via (/?)-conversion one can thus remove an introduction step which is imme-
diately followed by an elimination step. And [r}) does the same for elimination
immediately followed by introduction. For more details, see [280, 140].

(We have been overloading the arrow -^ by using it both for exponent
types a ^ T and for implication propositions (f ^ il^. This is convenient in
explaining the idea of propositions-as-types. But from now on we shall be
using D instead of -> for implication in logic.)

From the way the Al-classifying category (XI(E) was constructed, we im-
mediately get another correspondence:

c i 5 • • • 5 cTn M̂iL ^ is derivable from A

^ there is a morphism cri x • • • x cr„ r i n f f l (E ^) .

where we identify a with the singleton context {VI'.CT) in Cil{T>) as discussed
after Proposition 2.3.1. Here we have an elementary example of p r o p o s i t i o n s -
a s - o b j e c t s and proo f s -as -morph i sms . This basic correspondence forms the
heart of categorical logic, as often emphasised by Lawvere and Lambek.

XIX-calculi

Let E be a many-typed signature. The calculus Alx(E) will be introduced as
A1(E) extended with finite product types. This new calculus A lx (E) has all
the rules of A1(E) plus the following type formation rules.

her: Type l - r :Type

h 1: Type \- a X T: Type

We use 1 as a new symbol (not occurring in |E|) for singleton (or unit) type
(empty product) . Additionally, there are in Alx(E) the following associated

Section 2.3: Exponents, products and coproducts 139

introduction and elimination rules for tupleing and projecting.

r h M : (7 r h 7 V : r

^ 0 - 1 r h {M,N):ax r

r h P:a XT r h P:ax r

T \-7rP:a T h TT'P: r

Formally it would be better to give insert appropriate indices, as in
TVCT^TP^ '^a T^^ t)ut tha t would make the notation rather heavy.
Associated with these introduction and elimination rules there are the follow-
ing conversions.

r h M : l r h M:cr T \- N:T

T \- M = {):! r h 7r(M, N)^M:a

r (- M:a r h N:T V [- P:aXT

r h 7r'(M, N) = N:T T h (TTP, TT'P) = P:axT

Substitution is extended to the new terms by

0[L/v] = 0 {M,N)[L/v] = {M[L/v],N[L/v]}

{wP)[L/v] = 7r{P[L/v]) {ir'P)[L/v] = 7r'(P[L/v]).

We continue to write = for the compatible equivalence relation generated by
the above conversions plus the (/?)- and (77)-conversions of Al.

The advantage of having finite product types around is that one no longer
needs to distinguish between contexts and types. Terms with multiple vari-
ables

vi'.ai,.. .,Vn:(Tn ^ M:T

correspond bijectively to terms with a single variable

vi:ai X • • - X an \- N:T

where the product type cri x • • • x cr„ is the singleton type 1 if n = 0.
We thus define the Alx -c lass i fy ing c a t e g o r y fflx(S) of E with

o b j e c t s types a, built up form atomic types and (1, x , -^).

m o r p h i s m s a -^ r are equivalence classes (with respect to conversion)
[M] of terms vi:a \- M:T.

The identity on a is the equivalence class of the term vi'.a \- vi:a and com-
position involves substi tution.

2.3 .2 . P r o p o s i t i o n . The Xl^-classifying category Cilx{^) of a signature E
is Cartesian closed.

140 Chapter 2: Simple type theory

Proof. It is easy to see that the type 1 is terminal and that the product
type (J X r is a Cartesian product of a and r in fflx(S). This holds, almost
by definition of 1, x. It will be shown that the exponent type a -^ r is the
exponent object in Cilxi^)-

Assume an arrow p x a —^ r in (XIx{^), say given by a term

z:p X a \- M:T.

Then one can form the abstraction term

x:p \- Xy: a. M[{x, y)/z]:a -> r

which supports the following definition of categorical abstraction.

A([M]) = [Xy:a.M[{x,y)/z]]: p-^ {a ^ r).

Remember that the outer square braces [—] denote the equivalence class with
respect to conversion and that the inner ones are part of the notation for
substitution. In a similar way, the term

w: (a -^ T) X a h {7rw){7r'w): r

gives rise to the evaluation morphism

ev := [(7rw)(7r'w)] : (cr —>• r) x cr —y r

The categorical (/?)- and (77)-conversions follow from the syntactical ones: first,
for z: p X a,

ev o A([M]) X id = [{7rw)('K'w)[{{\y: a. M[{x, y)/z])[7Tz/x],7r'z)/w]]

= [{Xy:a.M[{7rz,y)/z])(7r'z)]

= [M[{nz,7r^z)/z]]

= [M] and

A(ev o [Â] X id) = [Xy:a.(7rw)(7r'w)[{N,y)/w]]

= [Xy.a.Ny]

= [N]. D

Al(x,-I-)-caicuii

In a next step we form on top of a signature E a calculus Al(x,-i-)(5]) which has
exponent and finite product types as in Alx(E), but additionally Al(x,4-)(5^)
has finite coproduct types (also called disjoint union types). This means that
there are additional type formation rules:

h 0". Type h r: Type

^ 0- "TyP̂ h(7 + r:Type

Section 2.3: Exponents, products and coproducts 141

where 0 is a new symbol for the empty type (or, empty coproduct). There
are the following introduction and elimination rules for these coproduct types
(0,+).

r \- M:(T r h N:T

r I- KM\a^T r h K'N:(T^T

r i - P : c r + r T,x\a^Q:p T,y:T\-R:p

r h unpack P a s [KX \n Q,Ky\n R]:p ^ ' ^ ' ^ ^ {)'P

Thus, instead of projections TT, TT' for products, we now have coprojections «:, K'
for coproducts. The variables x m Q and y in R become bound in the "un-
pack" or "case" term unpack P as [KX in Q , Ac'y In 7]̂. It can be understood as
follows. Look at P:a -\- r; if P is in cr, then do Q with P for a:; else if P is in
r, do R with P for y. This explains the conversions:

T\-M:a T,x:a\-Q:p T,y:T\-R:p

r h unpack KM as [KX in Q^n'y in R\ — Q[M/x\.p

T^N'.T T,X'.(TY-Q:P T,y:T\-R:p

r h unpack K^N as [KX in Q,K'y in /?] = R[N/y]:p

r h P : (j -h r r ,^ : (j + r h R: p

r h unpack P as [KX in i?[(«:x)/^], «:'i/ in R[{K'y)/z]] = P[P/z]:/?

r , ^ :0 h M:p

r , z : 0 h M = {}:p

The latter rule tells that in a context in which the empty type 0 is inhabited,
each term M must be convertible to the empty cotuple {}.

The following commutation result is often useful in calculations.

2.3.3. Lemma. In the above calculus with coproduct types + one has the
following comLmutation conversion.

T\-P:a-\-T T,x:(ThQ:p T,y:ThR:p T,z:phL:p

r h L[(unpack P as [KX in Q.K'y in Pi\)/z\

— unpack P as [KX in L[Q/z\,K'y in L[R/z\]\p

It tells that cotupleing (or unpacking) commutes with substitution.

142 Chapter 2: Simple type theory

Proof . Because

L[(unpack P as [KX in Q,K'y in R])/z]

=: L[(unpack w as [KX in Q.^'y in R\)lz\[P/w]

— unpack P as\KX in L[(unpack KX as [KX in Q,K'y in i?])/2:],

/^'t/ in L[(unpack K^y as [«:a: in Q.K'y in i?])/^:]]

= unpack P as [KX in ^[Q/^:], K'?/ '" ^ [^ / ' ^]] - ^

Such a commutation conversion is typical for "colimit" types, like + , E,
quotients and equality (which are described categorically by left adjoints). We
use it for example in the proof of the next result, establishing distributivity
of X over + in type theory. Essentially, this follows from the presence of the
"parameter" context F in the above +-elimination rule. The second point
gives a type theoretic version of the argument sketched in Exercise 1.5.6 (i)
and (ii).

2 .3 .4 . P r o p o s i t i o n , (i) Type theoretic coproducts + are automatically dis-
tributive: the canonical term

u: {a X T) -\- [a X p) h P{u) =

unpack u as [KX in {nx, Ac(7r'x)), K^y in (Try, K'{7r^y))] : a x [r -\- p)

is invertihle—without assuming exponent types.

(ii) Type theoretic coprojections K,K' are automatically "injective": the
rules

T \- KM ^KM':a-\-T , T \-KN = KN':a-{-r
an d

T \- M = M':a T \- N = N':T

are derivable, where — denotes conversion.

Proof, (i) We have to produce a term "in the reverse direction":

v: a X {T -i- p) \- Q{v): {a x r) -{• {a x p)

with conversions P[Q{v)/u] = v and Q[P{u)/v] — u. First we notice tha t
there is a term

x\a,w\T-{- p h unpack w as [Ky in K{X^ y), K' z in K'{X, Z)] \ [a X T) -\- [a X p).

Hence if we have a variable v.ax (r + /?), then we can substi tute [7r^;/x] and
[-K'V/W] in this term, so tha t we can define

Q{v) — unpack 'K'V as [Ky in K{7rv^y),K^z in K'{7rv,z)].

Using the commutat ion conversions from the previous lemma, we show tha t

Section 2.3: Exponents, products and coproducts 143

these terms P and Q are each other 's inverses:

P[Q{v)/u] = unpack TT'V as [ny in P[K,{7rv,y)/u],

K'z in P\K'i^-Kv, z)jv\\

— unpack -K'V as \Ky in {TTV^ ny)^ K'z in {'KV^K.'Z)]

— {TVV^TT'V)

— V.

Q[P[u)lv] — unpack w as [KÔ in Q^^'KX^ K.[TT'x))/v\,

K'y in Q[{T^y,K,'{T^'y))lv]]

— unpack u as [K.X in K{7rx,7r'x), K'y in «:'(7r?/, Tr'y)]

= unpack u as [KX in KX, n'y in AC'T/]

= u.

(ii) For a variable tt;: ((j + r) x cr we define a term

L(w) = unpack TTW as [KX in (a?, Tr'ti;), K'^/ in {K'W, TT'W)] : cr X a.

Then for x^ z:a we get a conversion

L[{KX^ Z)/W] = unpack KX as [/ex in (x, z), hc'y in (z, z)] = {x, z).

Hence we reason as follows. For terms F h M, M ' : cr,

KM = K M ' => (K M , M) = {nM', M)

:=> {M, M) = L [(K M , M) / H = L[{KM\ M)IW\ = (M ' , M)

^ M r = 7 r (M , M > = 7r (M' ,M) = M ' . D

We also describe classifying categories C^l(x,+)(^) involving type theoretic
exponents, finite products and coproducts. The definition is as for C^lx(S)
above: types—but this t ime also with finite coproducts—are objects and mor-
phisms cr —> r are equivalence classes [M] of terms vi'.cr h M : r—where the
conversion relation of course includes the above conversions for finite coprod-
ucts.

2 .3 .5 . P r o p o s i t i o n . Categories ffl(x,+)(S) are Cartesian closed and have
finite coproducts.

Such a Cartesian closed category with finite coproducts is sometimes called

a bicartesian closed category (BiCCC).

Proof . Cartesian closure is obtained as in the proof of Proposition 2.3.2. We

concentrate on finite coproducts.

The empty type 0 is initial object in C^l(x,+)(^)5 since for every type cr
we have a term z:0 h {}:cr. And if there is another term z:^ h M:cr, then
z:0 h M = {}:(7, so that [M] ^ [{}]: 0 - ^ cr in ffl(x,+)(S).

144 Chapter 2: Simple type theory

The coproduct type a+r is also the coproduct object: there are coprojection
maps a -^ {a + T) <— T given by terms

x:a \-K,x:a-\-T and y.T V-tz'y.a-\-r

And for each pair of morphisms a ^ p, r -^ p, say described by

x:ahQ:p and y.rhR'.p

we have a cotuple a -\- r -^ p given by the unpack term

z:a -\- T h unpack z as [KX in Q, hc'y in R]: p. •

With this proposition in mind, the above Lemma 2.3.3 can be understood
as saying that for f:a -^ p, g:T -^ p and h: p -^ p one has h o [f^g] = [h o
f,ho g]—where the square braces [—, —] are used for (categorical) cotupleing.

Distributive signatures

In this section we have seen various ways of forming new types starting from
a set of atomic types. Signatures as first introduced in Definition 1.6.1 involve
function symbols F : cri , . . . , cr̂ —> (Jn+i where each aj is an atomic type. This
restriction to atomic types cr,- is not really practical. For example, a signature
for natural numbers with zero, addition and predecessor may be given by an
atomic type N and function symbols

0 : 1 — ^ N , plus:Nx N — > N , pred:N—>1 + N

involving the derived (non-atomic) type NxN and l + N. Here, the construction
1 + (—) is used to deal with partial operations: the predecessor pred yields an
outcome in 1 if applied to zero, and in N otherwise. Similarly one can describe
a subtraction function symbol min: N x N —> 1 -f- N via coproducts.

In order to get this kind of expressiveness, one needs to have functions sym-
bols F : (Ti,..., CT„ —y o-n+i, where the (TJ may be formed from atomic types
using finite products and coproducts. This leads to what we call distributive
signatures, see [160]; they are called distributive graphs in [342]. Notice that
in the presence of finite product types (1, x) we may restrict ourselves to
function symbols F: a —> r with precisely one input type. This leads to the
following description, which is much like Definition 1.6.1.

2.3.6. Definition. For a set T (of atomic types) let us write T for the closure
of T under finite products (1, x) and coproducts (0, +) . A category DistrSign
of distributive signatures is defined by the following change-of-base situa-

Section 2.3: Exponents, products and coproducts 145

tion.
D i s t r S i g n >- Fam(Se ts)

J I
Y

S e t s ————^ S e t s
T i - > T X T

There are special kinds of distributive signatures which are useful to de-
scribe inductively and co-inductively defined types. These will be called
H a g i n o s i g n a t u r e s , after [111, 110, 112]. They occur in two forms, namely
the inductive form and the dual co-inductive form. Here we only give the
description of these Hagino signatures. They will be further investigated in
Section 2.6 in STT, and also in Section 8.2 in P T T .

2 .3 .7 . D e f i n i t i o n . Let T be a set (of atomic types) and X a fresh symbol
which is not in T. It serves as a type variable. A H a g i n o s i g n a t u r e is a
distributive signature with one single function symbol, which is either of the
form

constr destr
cr ^ X or X >- o-

where cr is a "Hagino" type in the closure T U {X} of T U {X} under finite
products and coproducts. Sometimes we shall write (T{X) for cr to emphasise
the possible occurrence of X in cr.

In case this cr(X) is of the form o'i{X) -[-••• + cr„(X) the constructor constr
may be understood as an n-tuple of function symbols constrj (X) : CTJ —> X.
Dually, if (T[X) is of the form (T\{X) X • • X cr„(X) the destructor destr cor-
responds to an n-tuple destrfiX —> ai[X).

Examples of Hagino signatures are

l-\- X —> X for natural numbers

1 -h a X X —y X for finite lists of type a

X —> a X X for streams (or infinite lists) of type a.

In the first case the constructor is understood as the cotuple [0, S]: 1 -hX ^ X
of zero and successor. And for the finite lists one has a constructor nil: \ -^ X
for the empty list and a constructor cons: ax X -^ X which turns an element
of type a together with a list into a new list. In the third example one has
two destructors: one for the head and one for the tail of an infinite list.

As another example, one can use these Hagino signatures to describe the
connectives in propositional logic, for example with (cotupled) constructors:

[T , A , ± , V , D]
1 -h (X X X) -h 1 + (X X X) -f (X X X) ^ X

146 Chapter 2: Simple type theory

The idea behind a Hagino signature of the form o- -^ X is that X is the free
type generated by the constructor. Later in Section 2.6 it will be described as
a suitably initial fixed point o'{X) -=)• X of an associated polynomial functor

X ^ a{X)

where we have written the occurrences of X in cr explicitly. And in the dual
case X —^ a one thinks of X as the cofree type generated by the destructor. It
corresponds to a fixed point X -^ cr(X), which is terminal in a suitable sense.

Finally, there is no need to restrict oneself to the finite product and coprod-
uct type constructors in defining a category of signatures. One can also use
exponent types; this leads to so-called higher type signatures, see e.g. [275].

Exercises

2.3.1. Let Zl be a signature. Define finite product preserving functors

am — ^ cii{T.) — ^ cei^(E) — ^ m(x,+)(i:).

2.3.2. (i) Give a proof of the above propositions-as-types bi-implication relating

provability in MIL and inhabitation in Al.
(ii) Formulate and prove similar results for Alx and Al(x,+).

2.3.3. Give the precise correspondence in Alx between terms vi: ai,... ,Vn-o'n \-
M: T in contexts of arbitrary length and terms vi:{ai x - - - x an) \- N:T in
contexts of length one.

2.3.4. Give a concrete description of the category Dis t rSign of distributive sig-
natures.

2.3.5. Consider the following alternative description of a classifying category, say
CEl',^ ,x(E), with prime '. Objects are types a as in (^l(x,+)(E)) but as
morphisms cr —> r we now take equivalence classes [M] of closed terms
h M:(T —)• T. Show that one gets a category CflJj<^)(E) in this way and
that it is isomorphic to the category Cfl(x,+)(^) described above.

2A Semantics of simple type theories

In the previous section we introduced firstly Al-calculi with exponent types,
and secondly the (slightly) more complicated calculi Alx and Al(x,+), which
are obtained by adding finite product and coproduct types. The (categorical)
semantics of such calculi will be described in reverse order. The Alx-calculi
have a straightforward (functorial) interpretation in Cartesian closed cate-
gories, as described e.g. in [186, 63, 61]. The finite product and exponent
types in the calculus can be interpreted simply as finite product and expo-
nent objects in a Cartesian closed category. Similarly, Al(x,-i-)-calculi can be

Section 2.4' Semantics of simple type theories 147

interpreted in bicartesian closed categories (which additionally have finite co-
products) .

The semantics of Al-calculi—with exponent types only—is more subtle,
since there is no identification of contexts and types involved. As a result
there is no straightforward way to describe exponent types cr —)-(—) as right
adjoints to product type functors ax (—). Whereas there are no finite products
of types in Al, one does have finite products of contexts (given by concate-
nat ion) . Especially there are context projections n:{T,v:a) —)• T, inducing
weakening functors TT*, which add an extra dummy variable v: a. It turns out
tha t exponent types cr —)• (—) can be captured categorically as right adjoints
to such a weakening functors TT* in simple fibrations. This approach does not
rely on product types a x r. Actually, these product types a x {—) can be
captured dually as left adjoints to these 7r*'s. This view on exponents and
products in the simple type theory comes from [156].

Unravelling the structure induced by right adjoints to 7r*'s leads to an el-
ementary formulation in Lemma 2.4.7 of what a 'Al-category' is. It will be
useful in the next section on the untyped A-calculus.

But, as promised, we start with the calculi Alx and Al(x,-i-)- Let C C C
denote the category of Cartesian closed categories and functors preserving
this structure. Similarly, let B i C C C -̂> C C C be the subcategory of Carte-
sian closed categories with finite coproducts, and functors preserving all this
structure. Recall from Propositions 2.3.2 and 2.3.5 that the classifying cate-
gories C^lx(S) and ffl(x,+) are objects of C C C and B i C C C respectively.

2 .4 .1 . Def in i t ion . Let E be a signature. A m o d e l for t h e ca lcu lus Al^ (S)
in a Cartesian closed category A is a functor

M
m x (S) ^ A in C C C .

Similarly, a model of Al(x,+)(^) in a bicartesian closed category A is a functor

M
m (x , +) (S) >• A in B i C C C .

We have a closer look at what a model is in the bicartesian closed category
S e t s of sets and ordinary functions. Suppose [—]]:C^l(x,+)(^) -^ S e t s is such
a model. It involves

• a model of the signature E in Sets . Formally it is obtained by pre-
composition with the inclusion functor (X(E) M- Cfl(x,+)(E) described in
Exercise 2.3.1.

• a one-element, terminal set [[1]] = {*} and the empty set [[Oj = 0.
• binary products [[o-x r] = [[o"]] x [[r] and coproducts [[cr-fr]] = [[cr]]-|-[[r]]

148 Chapter 2: Simple type theory

of sets (where the coproduct + of set is given by disjoint union).
• function spaces [cr -^ r] ^ [[r]]!' ' ' .

But Definition 2.4.1 covers models in any bicartesian closed category—and
not just in Sets. The last three points are then modified according to the
particular BiCCC-structure of the category involved.

There are results (similar to Theorem 2.2.5) for Alx and Al(x,-i-) which give
a correspondence between functorial models and morphisms of signatures.
We merely state these results here and leave the proof to the meticulous
reader. Recall that for a category B with finite products there is an associated
signature Sign(B), see Lemma 2.2.4.

2.4.2. Theorem. Let E 6e a many-typed signature.
(i) For a Cartesian closed category B there is a bijective correspondence

(up-to-isomorphism) between morphisms of signatures and models in

<f>
E 5- Sign(B) in Sign

aix{E) ^ B 2n CCC
M

(ii) Similarly, for a Cartesian closed category C with finite coproducts there
is a correspondence

S >- Sign(C) in Sign

m(x,+)(S) >• C in BiCCC ^

We turn to Al-calculi. Their categorical semantics will be described in terms
s(T)

of a simple fibration i associated with a CT-structure (B, T). We recall
from Section 1.3 that the latter consists of a category B (of contexts) with
finite products and a collection (of types) T C Obj B. Such a CT-structure is
non-trivial if there is a type X E T and an arrow \ ^ X from the terminal
object 1 G B to X.

First we describe how simple quantification, as described in Section 1.9,
extends to these CT-structures, yielding quantification over types [i.e. over
objects in T).

E

2.4.3. Definition. Let (B, T) be a CT-structure and ^ a fibration. We say
that p has simple T-products if for each / G B and X £T, every weakening
functor 7T} -^'.Ej -^ E/xx induced by the projection TT/^X-^ X X —>- / has a
right adjoint Y[(i x)—P'^^ ^ Beck-Che valley condition as in Definition 1.9.1.

Section 2.4' Semantics of simple type theories 149

Similarly one defines s i m p l e T - c o p r o d u c t s in terms of adjunctions

So in defining products and coproducts with respect to a CT-structure
(E, T) we restrict the projections T T / X - ^ X X -^ / along which one has
quantification, to those with X £ T, the set of types. Thus we quantify
over types only, and not over all contexts. The simple products and coprod-
ucts as described in Definition 1.9.1 come out as special case, namely where
T — Obj B. The other extreme, where T is a singleton, will also be of im-
portance, namely for the untyped A-calculus and also for the second order
polymorphic A-calculus A2.

We have prepared the grounds for a categorical description of exponent
types —)-, without assuming Cartesian product types x . Notice that we do
assume Cartesian products in our base categories, but these correspond to
context concatenation. For convenience, we restrict ourselves to the split case.

2.4 .4 . De f in i t i on ([156]). (i) A A l - c a t e g o r y is a non-trivial CT-structure
s(T)

(B, T) for which the associated simple fibration 4- has split simple
IB

T-products.
(ii) A m o r p h i s m of A l - c a t e g o r i e s from (B, T) to (B ' ,T ') consists of a

morphism of CT-structures / i : (B , T) -> (B ' ,T ') whose extension to a mor-
s(T) S(T')

phismof fibrations i -^ ,̂ (see Lemma 1.7.6) preserves simple products.

The content of this definition is that the exponent types of a Al-calculus
are simple products (with respect to the set of types). Before going on, let us
check tha t this works for syntactically constructed classifying categories.

2.4 .5 . E x a m p l e . Let S be a signature with non-empty underlying set T —
|D| of atomic types. The latter ensures that the associated CT-structure
(C^l(E),Ti) is non-trivial, see Proposition 2.3.1. Consider the resulting fi-

bration i . For each context F G Cfl(E) and type cr G Ti , the projection

morphism TT: F x cr ^ F in C^l(E) gives rise to the weakening functor between
the fibres:

given by

s (Ti) r ^ s(Ti)rxcr

(F,/>) ^ (Fxc7 ,p)

{Vxpi—ip2) ^ (F X CTXpi - ^ / ? 2) .

150 Chapter 2: Simple type theory

i.e. by

f (l-/>:Type) 1-̂ (h p i T y p e)

\{T,z:pi h M:p2) ^ {T,x:a, z: pi \- M: P2).

This TT* adds an extra hypothesis of type a. We should define a right adjoint

n (r , a)
s (T i) rxa ^ s (Ti) r

in the reverse direction. It naturally suggests itself as

(r X (7, r) -̂̂ (r , (7 -> r) i.e. as (h r : Type) 1-̂ (h cr -^ r : Type).

We then have to establish a bijective correspondence

[M]
7r*{T,p) = (r X <T,p) ^ (r X <r, r)

(r , p) — f T ^ (r , < T ^ r) = n (r , .) (r x <T,r)

between terms M, Â in

T,z:p \- N:a -^ T

It is given by abstraction and application:

M y-^ Xx-.cr.M and N ^ Nx.

The fact tha t these operations are each others inverse corresponds precisely
to the (/?)- and (7;)-conversions described in the previous section. We conclude
tha t (C^l(E),Ti) is a Al-category.

In view of this example, and in analogy with Definition 2.2.2, the following
definition describes functorial semantics for Al.

2.4 .6 . Def in i t ion . Let E be a signature with 5 = |E | as set of atomic types.
A A l - m o d e l is a morphism of Al-categories M\ ((X1(E), Si) —> (IB, T).

Next we give a more amenable description of Al-categories.

2.4.7 . L e m m a . Let (B, T) he a non-trivial CT-structure. The following two
statements are equivalent.

(i) The pair (B, T) forms a Xl-category.
(ii) The collection T C Obj B is closed under exponents. That is, for types

X,Y E T there is an exponent type X => Y E T together with an evaluation
morphism ew: {X =^ Y) x X -^ Y such that for each object / G B and map

Section 2.4-' Semantics of simple type theories 151

f: I X X -^ Y inM there is a unique abstraction map A(/): I —^ X => Y with
ev o A(/) X id = / .

Proof, (ii) => (i). For I £ M and X G T we can define a product functor
!!(/x)*^(^)^x^ ~^ ^(^)^ by y 1-̂ X => y . Then we get correspondences in
the fibres:

^/ xi^) — ̂ ^ Y over I x X

{I xX)xZ ^ y

IX z — ^ X =^y

in B

in IB

^U(TX)i^) over / i{I,X)

This describes (simple product) adjunctions 7r*j -^ -\ Y[(j x)-
(i) => (ii). For types X,Y £ T, we consider Y as an object (1 x X , y) of

the fibre over 1 x X and thus we can take

^^>'='n(i,x)(ner.
Notice that for an object / € IB, reindexing along !/: / —^ 1 in B yields

X^Y = \}{X^Y)

= !}(n(i,x)W)
= n(/,x)((' /><id)*(y)) by Beck-Chevalley

- nii,x)iy)-
The counit (at Y) of the adjunction "TJ x "^ Y[(i x) ^^ ̂ morphism

Uii,x)iy)— - y

in the fibre over I x X. For / = 1, it forms a map in B

(i x ^) x n (i , x) (n — - — - y
Hence we can define an evaluation map

evx.y = {{X ^Y)xX J ^ {I x X) x (X ^ Y) -^-^ y)

The definition of abstraction is a bit tricky. Since (B, T) is by assumption
non-trivial, we may assume an object Z £ T with an arrow ZQII -^ Z.

152 Chapter 2: Simple type theory

For a map / : / x X -> Y in B (with / G B and X, Y G T) one has
f o7r:{I X X) X Z -^ Y in B and thus / o 7r:7r}j^{Z) -> Y in the fibre
over I X X. Taking the transpose across the adjunction T^} x ~^ Ylii x)
yields a morphism (/ o ny-.Z -^ Il(i x)0^) ^̂ ^(^)^- ^^ noticed above,
X =>Y = U{i,x)0') ^^^ ^hus {f o Try: i X Z -> X ^ Y inM. Hence we take

(id, zoo!) ifony
A(/) 1̂^ (/ / X z x^y)

(The auxiliary type Z is first used to introduce a dummy variable which is
later removed by substituting ZQ.)

The validity of the categorical (/?)- and (77)-equations follows from com-
putations in the fibres. We shall do (jS) and write • for composition in the
fibres.

ev o A(/) X id

= 4''""^ "> ((^7r0,7r) o A (/) x i d

= 4 ' ' ^ ^ o (!j X id) X id o (id, A(/) o TT)

= (! /x id)* (4 ' ^^) o (id,A(/)o7r)

= 4^'^) o (id, A(/) o TT)

= 4 ' ^ ^ ^ (i d ' n (/ , x) (/ ^ ^) ^ (^'^z'^^) ^ (id, 2:00!) o TT)

= 4 ' ^ ^ o (TT, ll{i,x)if o TT) o TT X id) o (TT, 7/̂ '̂̂ ^ o TT X id)

o (id, ZQ O !)

= (/ O ' T) • 4^;'^(z) • ^*i,xiVz'^^) ° (id,2o o!)

— (/ o TT) • id o (id, ZQ O !)

— f o TV o (id, 20 o!)

= /• °
2.4.8. Corollary (Proposition 1.9.3 (ii)). A category B with finite products

s(l)

25 Cartesian closed if and only if the simple fibration i on B has simple

products (I.e. forms a W-category).
Proof. Take T = Obj B in Lemma 2.4.7. •

The semantics of Alx-calculi can thus be seen as a special case of Al-calculi

Section 2.4- Semantics of simple type theories 153

(where the collection of types T contains all objects). The other extreme where
T is a singleton describes the semantics of the untyped A-calculus; this will
be the subject of the next section.

We close this section with an example of a Al-category, involving Scott-
closed subsets as types.

2.4 .9 . E x a m p l e . Let D be a directed complete partial order (dcpo). Non-
empty closed subsets X C D (with respect to the Scott topology) are often
called ideals . . They are the non-empty directed lower sets X , satisfying (i)
X / 0, or equivalently, ± G X , (ii) x < y ^ X => x ^ X^ and (iii) directed
a C. X => y^ a £ X. We show tha t ideals can be used (as types) to model
simply typed calculi with exponents (provided one has an interpretation of
the signature). Therefore, we form a base category M with finite sequences
{Xi,..., Xn) of such ideals Xi as objects. These sequences may be understood
as contexts. A morphism (X i , . . . , X „) —> (Yi,.. .,Ym) in M is given by a
sequence (/ i , . • . , /m) of continuous functions fj: D^ ^ D satisfying fj[X] C
Yj. Tha t is, for all xi G Xi, one has fj{x) G Yj. The empty sequence is then
terminal object in B and concatenation of sequences yields Cartesian products
i n B .

Now let us assume tha t D is reflexive, i.e. that it isomorphic to its own space
of continuous functions [D -^ D], via continuous maps F\D -^[D -^ D] and
G:[D ^ D] ^ D satisfying F o G = id and G o F = id. An example of
such a dcpo is D. Scott 's JDQO, see [301, 13]; it forms a model of the untyped
A-calculus, as will be explained in the next section. In a s tandard way one
forms an exponent of ideals X^Y C D by

X => y = {z G DI Vx G X. F{z)[x) G y } .
One easily verifies tha t X => y is an ideal again.

Let T C Obj B be the collection of ideals [i.e. of sequences of length one).
One obtains a CT-structure (B, T) . We claim that it is a Al-category. Using
the above Lemma 2.4.7 this is readily established: one has an evaluation m a p

%xy.F{x){y)
ev = {{X => Y, X) ^ Y)

And for / : (Z, X) -^ Y one takes as abstraction map

A{f) = (Z {X => Y))

Exercises

2.4.1. Verify that the Beck-Che valley condition in Example 2.4.5 corresponds pre-

154 Chapter 2: Simple type theory

cisely to the proper distribution of substitution over abstraction and appli-
cation (as described in the previous section).

2.4.2. Check the (r7)-conversion A(ev o ̂ x id) = g in the proof of Lemma 2.4.7.
2.4.3. Extend Lemma 2.4.7 to morphisms, in the sense that a morphism of

Al-categories corresponds to a morphism of CT-structures which preserves
the relevant exponents.

2.4.4. Show that the inclusion functor Cil{E) M- (^lx(2) extends to a morphism
of Al-categories. Conclude that every Alx(I^)-model is a Al(E)-model.

2.4.5. Consider a model M of a. propositional logic £ in a certain poset (X, <) , for
example in a Heyting algebra. Show that such an M can also be understood
as a functorial model M: LA(£) -> X, from the Lindenbaum algebra LA(£)
of propositions (modulo (f ^ xp '^ ip \- ip and t/̂ h (/?) into X. Check
that interpretation of the logical connectives T,A,D etc. corresponds to
preservation of this structure by M.

2.4.6. Let (B, T) be a Al-category. Define T to be the smallest collection contain-
ing T which satisfies

1 G f and X,Y ef =^ X xY ef.

Hence T is obtained by closing T under finite products. Let T also denote
the full subcategory of B with objects in this collection.
(i) Show that T is Cartesian closed.
(ii) Show that—as a result—Al-classifying categories Ci^l(E) are Cartesian

closed. Describe an exponent {vi: (TI^V2:(T2) => {vi: TI, t?2: T2, t̂ s: TS) ex-
plicitly.

2.4.7. Let (B, T) be a CT-structure. Show that the associated simple fibration
<T)

i has simple T-coproducts] J if and only if the collection of types T is
closed under biuciry products x. Hence binary product types are described
by left adjoints to weakening functors.
[Detciils of the proof may be found in [156].]

2.4.8. Formulate and prove a result like Theorem 2.4.2 for Al-categories.

2.5 Semantics of the untyped lambda calculus as a corollary

As a general point v̂ e observe that untyped can be identified v^ith typed in a
universe with only one type. In the untyped A-calculus (see [13]) one can build
terms from variables v via application MN and abstraction Xv,M^ without
any type restrictions (because there are no types). We can see this untyped
A-calculus as a (typed) Al-calculus with a single type Q satisfying Q == Q —> Q.
Every untyped term M{v) can then be typed as t;i: Q, . . . ,! ;„• ^ h M:Q.

The notions and results developed for the simply typed A-calculus in the
previous section are based on CT-structures. Specialising to such structures
with only one type {i.e. to the single-typed case) yields appropriate notions for

Section 2.5: Semantics of the untyped lambda calculus as a corollary 155

the untyped A-calculus. This constitutes a precise mathematical elaboration of
the point of view—stressed by D. Scot t—that the untyped A-calculus should
be seen as a special case of the (simply) typed one. The notion of 'A-category'
tha t we arrive at through this analysis, is in fact a mild generalisation of an
early notion of Obtulowicz, see [233, 235]. More information on the semantics
of the untyped A-calculus can be found in [301, 303, 304, 221, 181, 13, 186,
63, 156, 158, 274].

2 .5 .1 . Def in i t ion . A A-category is a category B with finite products con-
taining a distinguished object Q G B, such tha t the (single-typed) CT-struc-

ture (B, {^}) is a Al-category, i.e. such tha t simple fibration 4- has simple
IB

Q-products.
The following is then a special case of Lemma 2.4.7.

2.5 .2 . L e m m a . Let M be a category with finite products and let Q £ M be a
non-empty object (I.e. with non-empty hom-set B (1 , Q) / The pair (B, 1}) is
then a X-category if and only if there is a map app: Q x ^ -^ ^ such that for
each f: I X Q ^ Q there is precisely one A(/) : / —)• Q with app o A(/) x id == / .

Proof. Lemma 2.4.7 requires the singleton set {Q} of types to be closed under
exponents. This is the case if and only if Q itself is the exponent Q => Q. The
result follows easily by reading app for ev and A(/) for A(/) in the formulation
of Lemma 2.4.7. •

2 .5 .3 . E x a m p l e s , (i) Consider a signature with one atomic type Q and no
function symbols. Identify the exponent type Q -^ Q with Q. In the resulting
Al-calculus on this signature we can provide every untyped term M(v) with
a typing i;r. Q , . . . , t;„: Q h M:Q. The classifying Al-category can then be
described as follows.

o b j e c t s n G N.

m o r p h i s m s n ^ m are m-tuples ([M i] , . . . , [M^]) of/^ry-equivalence
classes of untyped A-terms Mi with free variables among

Vi,...,Vn.

The object 0 is then terminal and n-f-m is the Cartesian product of the objects
n and m. The object 1 plays the role of fi in the above lemma: there is an
application m a p

/ [^1^2] .

app = (2 ^ 1)

And for each morphism [M]: n -h 1 —>• 1 there is an associated abstraction m a p

[XVn-^l.M]
A([M]) = (n 1)

156 Chapter 2: Simple type theory

satisfying the required properties.
The result is a categorical version of what is called the closed term model

in [13]. It is the (pure) A-classifying category; 'pure', because there are no
function symbols involved.

(ii) Let D be a dcpo which is "reflexive", i.e. which is isomorphic to
the dcpo of its own continuous endofunctions, i.e. D = [D —^ D]^ say via
continuous F:D ^ [D -^ D] and G:[D -^ D] -^ D with F o G = id and
G o F = id, as in Example 2.4.9. The first example of such a D is D. Scott's
Doo, see [301, 13]. It will be described as a Al-category. A base category D
is formed with n G N as objects; the object n is the context consisting of
n variables. Morphism n —^ m are sequences (/ i , . . . , /m) where each fi is a
continuous function D^ -^ D. Composition in D is done in the obvious way
and identities are sequences of projections. The object 0 G ED is terminal and
n -h m is a Cartesian product of n, m. As distinguished object ("fi") we take
1 G O. Notice that 1 is a non-empty object since the set D is non-empty: it
contains, for example, the identity combinator I = G{idD).

One has app: 1 -[- 1 -> 1 as a continuous function D x D ^ D described by
(x, y) Ĥ F{x){y). For / : n -h 1 ^ 1 in D one takes X(f){x) = G{%y. /(f, t/)),
which yields a morphism n —^ 1. Then

(appo A(/) X id)(x,z) = F{G{^y.f(x,y)))iz) = f(x,z).

It is easy to see that A(/) is unique in satisfying this equation.
(iii) The previous example can be generalised in the following sense. Let B

be a Cartesian closed category containing an (extensional) reflexive object
Q. This means that there is an isomorphism fi = (fi => fi), say via maps
F : fi -> (fi => fi) and G: (fi =^ fi) -> fi with F o G = id and G o F = id.
Then we can define application and abstraction operations, namely:

/ ev o F X id x
app = (̂ fi X fi ^ fij

And for / : / X fi -> fi there is:

x(f) = (i n)

One obtains a A-category as described in Lemma 2.5.2.

The notion of a CCC with reflexive object was used by D. Scott as a cat-
egorical model of the untyped A-calculus. The above notion of A-category is
more economical in the sense that it does not require all exponents in the am-
bient category, but only the relevant one, namely fi =^ fi. But a A-category

Section 2.6: Simple parameters 157

can be described as a reflexive object in a richer (presheaf) environment, see
Exercise 2.5.1 below.

Obtulowicz [233, 235] introduced what he called a Church algebraic theory.
It is a A-category (B, Cl) in which the collection of objects of B is of the form
{Q^ I n E N}—as in Examples (i) and (ii) above. In fact, Obtuiowicz defined
a non-extensional version, as in Exercise 2.5.2 below.

Exercises

2.5.1. Let B be a category with finite products and Q G B be a non-empty object.
Show that (B, Q) is a A-category if and only if the associated represent able
presheaf B(—, Q):B°^ —>• Sets is a reflexive object in the (Cartesian closed)
("topos") category Sets of presheaves.
[Familiarity with the Cartesian closed structure of Sets is assumed here;
see Example 5.4.2. Especially with the fact that the Yoneda embedding
X H-)- B(—, X) preserves exponents.]

2.5.2. The formulation below is based on [156] and uses semi-adjunctions
from [119]. These provide general categorical means to describe non-
extensionality.
A non-extens ional A-category is given by a non-trivial CT-structure

(B, Q) such that the associated simple fibration 4- has 'semi-products';

that is, every TT* Q has a right semi-adjoint and for every u: I —> J in M the
pair {u*,{u x id)*) forms a morphism of semi-adjunctions. See [119] for the
details of these 'semi' notions.
(i) Show that a (non-trivial) CT-structure (B, Q) is a non-extensional

A-category if and only if there is an application map app: Q x Q —> Q
such that for each f: I x Q -^ Q there is a (not necessarily luiique)
abstraction map A(/): / —>• Q subject to the equations

app o A(/) X id = / and A(/ o f̂ x id) = A(/) o g.

(ii) Let D be a dcpo such that the continuous endofunctions [D —>• D] form
a re t rac t of D, say via F: D ^ [D -^ D] and G:[D ^ D] ^ D with
F o G = id, but not necessarily G o F = id. An example of such a dcpo
is Pu;, see [13]. Show that the construction in Example 2.5.3 (ii) applied
to such a dcpo yields an example of a non-extensional A-category.

2,6 Simple parameters

In the preceding two sections we have been using simple fibrations for the
semantics of simple type theory. Here we show how these simple fibrations can
also be used to systematically describe da ta types with simple parameters .
We shall first briefly describe finite coproducts with simple parameters , next

158 Chapter 2: Simple type theory

natural numbers with simple parameters, and finally arbitrary inductively
defined data types (as given by Hagino signatures) with simple parameters.
For the latter we shall make essential use of so-called strong functors. This
approach comes from [160], where it is presented in terms of simple slice
categories (instead of simple fibrations).

Recall that for a category IB with finite products there is a simple fibration
s(l)

4- on B, with fibred finite products. The fibre over / G IB is written as M//I
and is called the simple slice over / . Its objects are X G IB, and its morphisms
X ^ y are maps / x X -> Y in B.

Distributive coproducts

A coproduct object X + Y comes, by definition, equipped with (natural)
bijective correspondences

X ^ Z Y ^ Z

X + Y ^ Z

Say we have coproducts with simple parameters if for each parameter
object / G B there are bijective correspondences

IxX ^Z IxY ^Z

Ix{X + Y) ^Z

natural in X^Y, Z. Then we have the following result.

2.6.1. Proposition. Le^ B be a category with binary products x and coprod-
ucts + . The following statements are then equivalent,

(i) B has coproducts with simple parameters (as described above).
s(]B)

(ii) The simple fibration i onM has fibred coproducts.

(iii) B has distributive coproducts: the canonical maps

(I xX) + {I X Y) ^ / X (X + y)

are isomorphisms.

Proof, (i) ^ (ii). Almost immediate: the correspondence (*) above precisely
says that each simple slice M//I {i.e. fibre over I) has coproducts. Preservation
by reindexing functors is obvious. And (ii) <^ (iii) is Exercise 1.8.3 (i). •

This correspondence between data types (coproducts in this case) with
simple parameters and a fibred version of such data types in a simple fibration
will be elaborated further.

Section 2.6: Simple parameters 159

Natural numbers

Recall tha t in a category with finite products a natura l n u m b e r s o b j e c t
(NNO) consists of a zero and successor diagram

0 S
1 ^ N ^ N

which is initial in the sense tha t for an arbitrary diagram of the form 1 -^

X A x there is a unique h: N —^ X making the following diagram commute.

0
^ Â ^ N

I I

\ h \h
Y Y

1 ^ X ^ X
X g

In functional notation, this is written as:

hO = x and h{Sn)=g{hn).

Recall tha t in S e t s this mediating m a p h: N —> X is obtained by iteration
as:

h(n)=gi^(x) where | ^(n+i)(^) = K / " ^ W)

We say that 1 —y N —> N is an N N O w i t h s i m p l e p a r a m e t e r s if for
each parameter object / and pair of maps / : / x 1 —> X and g: I x X -^ X,
there is a unique h: I x N —> X making the following diagram commute.

id X 0 id X S
/ X 1 ^ I X N ^ I X N

I I
I (7r , / i) I (7r , / i)
Y Y

/ X 1 ^ I X X ^ I xX
(TT^X) {7r,g)

where we have written / : / x 1 —> X instead of f: I -^ X for purely formal
reasons. In functional notation we now have equations:

h(i^O) = fi and /i (i, S n) = ^ (i , / i (i , n)) .

They emphasise tha t such an NNO involves an extra parameter i. By taking
the terminal object 1 as parameter object one sees that an NNO with simple
parameters is an ordinary NNO. The reverse direction can be obtained in
Cartesian closed categories. Below we give alternative descriptions of such

160 Chapter 2: Simple type theory

NNOs with simple parameters: they are fibred NNOs in simple fibrations.
Therefore we need the following/z6rew;25e notion. It is in fact a special case of
Definition 1.8.1.

2.6.2. Definition. A fibration with a fibred terminal object has a fibred
natural numbers object if each fibre has an NNO and reindexing functors
preserve NNOs (i.e. if 0,S form an NNO, then so do w*(0), w*(S)).

2.6.3. Proposition. For a category B with finite products, the following
statements are equivalent.

(i) IB has an NNO with simple parameters.
(ii) IB has an NNO 0,S and for each I e M, the functor /*:IB -> M//I

applied to 0, S yields an NNO /*(0), /*(S) in the simple slice M//I over I.
s(B)

(iii) The simple fibration I onM has a fibred NNO.

Proof, (i) ^ (ii). By definition of NNO with simple parameters.
(ii) ^ (iii). Each fibre M//I has an NNO /* (0) , r (S) . These are preserved

under reindexing, since for w: / —> J in B one has u* o J* = /*.
(iii) => (ii). Assume the simple fibration on B has a fibred NNO. Then B has

an NNO 0, S, since B is isomorphic to the simple slice B/1 over 1. Moreover,
the pair /*(0),/*(S) is an NNO in B / / , since reindexing functors preserves
NNOs. •

Hagino signatures and strong functors

Recall from Definition 2.3.7 that a Hagino signatureinvolves a set S of atomic
types, a type variable X and either a constructor function symbol constr: a —^
X (in the inductive case) or a destructor function symbol destriX —>• a (in
the co-inductive case), where a- is a type in the closure 5 U {X} of the set
5U {X} under finite products (1, x) and finite coproducts (0, +) . A model of
the set (or subsignature) 5 in a category B consists of a functor A: S -^ B,
i.e. of a collection (^1^)5^5 of objects Ag G B. Such a model assigns values
in B to the atomic types s £ S. The category of models of 5 in B is the
functor category B* ,̂ in which a morphism / : {As)ses —> {Bs)ses consists of
a collection f — [fs'-Ag ^ Bs)ses of morphisms in B.

Models of a Hagino signature can be described conveniently in terms of
associated polynomial functors. This will be done first.

2.6.4. Definition. Each model ^ : 5 -> B of a set of atomic types 5 in a
distributive category B together with a type a £ S U {X} determines a poly-

Section 2.6: Simple parameters 161

nomial functor T(yl)a: B -> B which follows the structure of a:

(the constant functor Ag if a = s E S

the identity functor ii a = X

the constant functor 0 if cr = 0

the constant functor 1 if cr = 1
T{A), 1 '̂ {

Y ^ T{A),, (y) + T(A),, (y) if (7 = (71 + (72

, y ^ T{A),, (y) X T(A)a, (y) ii(T = a,xa2.

For an arbitrary encdofunctor T: B —> B an algebra (or T-algebra) consists
of a "carrier" object y G B together with a morphism (p:T{Y) -^ Y. Dually,
a co-algebra is a pair {Z, ip) consisting of a carrier object Z an(d a map
ip: Z -^ T{Z) pointing in the reverse direction. In both the algebraic and in the
co-algebraic case one can understand the functor T as describing a signature of
operations. For instance, iiT{X) - l + X x X + X , then a T-algebra T(y) -> Y
consists of a carrier Y on which we have three operations 1 — > y , y x y - > y
and Y -^ Y. Every group G carries such a T-algebra structure T(G) -^ G
consisting of the cotuple of unit, multiplication and inverse operations. Co-
algebras Z -^ T(Z) generally describe "dynamical systems" (in an abstract
sense), where Z is the state space, and the map Z -^ T{Z) is the dynamics, or
transition function, acting on the state space (see e.g. [167]). Typical examples
arise from automata: if E is a finite alphabet, then the functor T{X) == (1 -h
X)^ is polynomial. A co-algebra Z -^ T{Z) may be described as a transition
function Z x T, -^ 1 -\- Z which yields for every state z E Z and input symbol
a E ^ either an outcome in 1, if the computation is unsuccessful, or a new
state in Z. It is a certain automaton.

One forms a category Alg(T) with T-algebras as objects and as morphisms

^
{T{Y) — - y) V̂

(T(Z) — - z)
maps h:Y —> Z in the underlying category B between the carriers for which
the following diagram commutes.

T(Y)

f

T(h)
T{Z)

v-

Dually, there is a category CoAlg(T) of co-algebras and similar, struc-
ture preserving morphisms between carriers. In these categories of alge-

162 Chapter 2: Simple type theory

bras and coalgebras one can study initial and terminal objects. An ini-
tial algebraindexSInitial!- algebra for a functor T : B —> B is a terminal co-
algebraindexSTerminall-coalgebra for T^^ilPP -> IB^P. Notice tha t an initial
algebra of the functor X i-^ 1 + X is a natural numbers object. In terms of
these (co-)algebras one can describe many more da ta types than just natural
numbers.

But first we mention the following basic result.

2.6 .5 . L e m m a (Lambek). An initial T-algebra (f:T(Y) -^ Y is an isomor-
phism.

Thus initial algebras are fixed points T(Y) •=>• F of functors. By duality,
a similar result holds for terminal co-algebras. In Exercise 2.6.4 below, we
sketch the standard construction of such fixed points, generalising Tarski 's
fixed point construction in posets.

Proof . Considering the T-algebra T{(p):T'^{Y) -^ T{Y). One obtains by ini-
tiality an algebra map / : (f —^ T{(f), i.e. a morphism f:Y -^ T(Y) in B with
f o (f — T((f) o T{f). But then, </? o / is an algebra m a p (p —^ (p and must be
the identity. Thus also f o (p = T{<f) o T{f) = T{(p o f) = T(id) = id. D

2.6 .6 . Def in i t ion . Consider a type (T{X) built with finite product and co-
products from 5 U {X} and a model S:A ^ B of the atomic types in a
distributive category B. A (initial) m o d e l n B of an inductive Hagino signa-
ture

, ^^, constr
<T{X) ^ X

is an (initial) T(yl)a-algebra, written for convenience with the same name, as:

T̂-,/ A \ / ^^\ constr
T{A)a{X) ^X

A (terminal) m o d e l of a co-inductive Hagino signature dest r iX -^ (^{X)
is a (terminal) co-algebra destrrX -^ T{A)a{X) of the associated functor.

Hagino signatures cr -> X or X —> cr are often used in programming lan-
guages to define a new type X recursively. The inductive case, say of the
form (cTi -f- • • • H- cTn) -^ X occurs in the functional programming language
ML [224, 251] with syntax

datatype X = Ci of cri | • • • | (7n of (7„

where C i , . . . , Cn are constructors. Categorically, one combines these d into
a single constructor constr = [C i , . . . , C„]: (CTI -f f- cr„) —> X via a cotuple.
Describing constr as initial algebra of the functor associated with the type
((Ji H h (7„)(X) provides appropriate elimination rules for such da ta types,

Section 2.6: Simple parameters 163

which are used to define operations on them. Initiality tells us that it is the
freely generated structure, and hence how it behaves with respect to arbitrary
such structures. Co-algebras can be used to describe infinite data structures
(and more generally, dynamical systems [167]), for example in object-oriented
languages, see [283, 162, 164]. Terminal co-algebras are minimal realisations,
in which all behaviourally indistinguishable (bisimilar) states are identified,
see also [298].

In the programming language CHARITY, see [52], one can define both these
initial and terminal types. Thus one can define for example a type of trees of
finite depth with nodes having infinitely many branches.

These recursively defined types with initial or terminal characterisations
occur already in [6], but were first investigated systematically from a type
theoretic perspective by Hagino [111, 110, 112].

The above is standard theory. Here we show how we can use simple fibra-
tions in order to get appropriate versions with parameters of such data types.
The approach comes from [160], but there, the language of fibred categories
is not used. What we need first is the notion of a strong functor.

2.6.7. Definition. Let B be a category with finite products. A functor
T:B ^ B is called strong is it comes equipped with a s t r eng th natural
transformation st with components stjx-^ x TX -^ T[I x X) making the
following two diagrams commute.

IxTX - i T{I X X)

Ix(J X TX) —^ ^^^ > I xT{J X X) ^ T(I X (J X X))

(/ X J) X TX ^ T{(I xJ)xX)

2.6.8. Examples, (i) Every functor T: Sets -^ Sets is strong with strength
I xTX -^T{Ix X) given by

(f,a) ^T{%x eX.{i,x)){a).

For example, for a set A, let list(74) (or A*) be the set of finite sequences
of elements of A. The assignment A -̂̂ list(A) forms a functor on Sets with
strength / x list(^) -> list(/ x A) given by

(i , (a i , . . . , an)) ^ ((2 ,a i) , . . . , (i ,an)) .

164 Chapter 2: Simple type theory

(ii) On a distributive category B, identity functors and constant functors
are strong. Moreover, if T, S'lB -> B are strong, then so are

Y ^ T{Y) X S{Y) and Y ^ T(Y) + 5 (7) .

Hence every polynomial functor T{A)a''M -> B in Definition 2.6.4 is strong.

The following basic result, due to Plotkin, gives an alternative description
of strong functors in terms of simple fibrations.

2.6.9. Proposition. Let M be a category with finite products. There is a hi-
jective correspondence

strong functors B >• B

s(B) ^ s(B)
split functors \^ y

B

Given this correspondence, we shall write T//I: M//I -^ M//I for the endo-
functor on the simple slice over / , associated with a strong functor T: B —> B.

Proof. Let (T, st) be a strong functor on B. We define a split functor
T:s(B) ->s(B) by

(/, X) ^ (/, T{X)) and {u, f) ^ (u, T{f) o st).

Conversely, let R: s(B) —> s(B) be a split endofunctor on i . It leads by
restriction to functors RjiM/fl —> M//I on the fibres. Hence we get a functor
R on B, via the functor Ri over the terminal object 1:

_ = Ri =
R={M ^ B//1 ^ B//1 ^ B)

It satisfies I* o R = Rj o P and hence in particular for X G B, R{X) =
Ri{X). A strength map st: / x R{X) -> R{I x X) is obtained as follows. The
identity map IxX-^IxX in W forms a morphism / -^ / x X in B//I. Thus
by applying the functor Rj one obtains a morphism Ri(X) -^ Rj{I x X) in
M//L It corresponds to a map / x ^{X) -^ 'R(I x X) in B.

We leave it to the reader to verify that T — T and R—R. •

The following definition contains a compact reformulation of a notion used
by Cockett and Spencer [52, 53] in their description of initial models of Hagino
signatures with parameters.

2.6.10. Definition. An algebra i^.TX ^ X for a strong functor T: B -^ B is
called initial with simple parameters if for each object / G B, the functor

Section 2.6: Simple parameters 165

/*: B -^ M//I maps <f to an initial algebra /* {(f) for the functor T//I: M//I -^
M//I on the simple slice category over / .

Notice tha t this really is a fibrewise definition: it essentially says tha t in
s(B)

each fibre M//1 of the simple fibration i the associated functor T//I: M//I -^

M//1 has an initial algebra (f^ = ^*{^)i ^^^ ^hat these initial algebras are
preserved under reindexing. Since the category IB can be identified with the
fibre M//1 over 1, it suffices to have an algebra there, which is preserved by
each reindexing functor / * : B ^ M//1 associated with the m a p / ^ 1 (as in
Proposition 2.6.3).

If we spell out initiality with simple parameters of (f: T{X) -> X as de-
scribed above, then we come to the formulation used by Cockett and Spencer.
It says that for each parameter object / G B and for each "algebra with pa-
rameter" ip: I X T{Y) -^ y in B, there is a unique m a p h: I x X —-> Y making
the following diagram commute.

(7r,st) id X Th
I X T{X) ^ I xT{I X X) ^ / X T{Y)

id X (p\ -0

^ h ^
I xX ^Y

The reader may wish to check tha t an algebra of the functor X >-^ I -\- X
which is initial with simple parameters , is an NNO with simple parameters,
as explicitly described in the beginning of this section.

We have only sketched the basics of the theory of (co-)inductively defined
types, with emphasis on simple parameters . If one replaces the simple fibration
by the codomain fibration, then one gets a theory with d e p e n d e n t p a r a m -
eters . For example, one can say tha t an NNO with dependent parameters
0, S in a category B is an NNO 0,5 in B such that for each parameter object
/ E B, the functor / * : B ^ B / / (to the ordinary slice category) maps 0, S to
an NNO /*(0) , /*(S) in B / / . This can alternatively be described as a fibred
NNO for the codomain fibration on B. In this dependent setting there is the
following analogue of Proposition 2.6.9. It stems from unpublished work of
Pare, see also [172, Proposition 3].

2 .6 .11 . P r o p o s i t i o n . Let M be a category with finite limits. There is a bijec-

166 Chapter 2: Simple type theory

live correspondence (up-to-isomorphism) between

strong, pullback preserving functors IB -

IB-
fibred, fibred pullback preserving functors X y

Proof. Assuming a strong, pullback preserving functor T: B —)• IB, we define

a functor T: W^ —> IB"*" by sending a family I y^ I to the composite (|

in the following diagram.

It is not hard to see that because T preserves pullbacks, this T is a fibred
functor, which preserves fibred pullbacks.

Conversely, given a fibred functor R: W^ -> B ^ preserving fibred pullbacks,
we get a pullback preserving functor

R={]1 B/1
Ri

on IB. Because i? is a fibred functor, the Cartesian morphism in W^ on the
left below, is sent to the Cartesian morphism on the right.

/ IxX -

/ —

^X\

i
- 1 /

R
/ / X R(X)

J 'i i
\ - 1 /

As a result, the functor R:W^ -> B~̂ restricts to a split functor /?':s(B) —>
s(B), since the full subcategory s(B) <^ B~̂ consists of Cartesian projections.
By Proposition 2.6.9, the restriction of R' to the fibre over 1 is then strong.
But this is R, as described above. •

A diff'erent extension of the basic theory, to be elaborated in Section 9.2,
goes as follows. Given a polynomial functor T: B ^ B on the base category of a

Section 2.6: Simple parameters 167

E

fibration i , then, under suitable assumptions, one can lift T: B -> B to a fibred
functor P r e d (T) : E ^ E on the total category of the fibration. It turns out
tha t algebras of this lifted functor Pred(T) capture the induction principles
which are needed to reason about the (initial) da ta type associated with T.
And dually, co-algebras of Pred(T) may be used to reason about (terminal)

E

co-algebras of T. This approach exploits a fibration ^ as providing a logic of
predicates in E to reason about types in the base category B. This view on
fibrations will be developed in the next three chapters.

Exercises

2.6.1. Consider a distributive category and define ri= 1 -\- - - • -\- 1 (n times).
(i) Prove that ri + m = n -\- m and nx rn = n x m.
(ii) Show that 2̂ carries the structure of a Boolean algebra.

[Hint. Use 2 x 2 ^ 2 + 2 to define conjunction A: 2 x 2 ^ 2 via the
cotuple of cotuples [[«,«], [«,«']]: 1 + 2̂ ^ !•]

(iii) Define a choice operation if:2^xX x Y ^ X -^Y.
[For more such programming in distributive categories, see [341, 52, 53].]

2.6.2. Show that in a poset category with finite products (T, A) and finite coprod-
ucts (±, V), distributivity of A over V implies distributivity of V over A and
vice-versa. In that case one has a distributive lattice. Note that this corre-
spondence between distributivities does not hold for arbitrary categories.

2.6.3. Show that the assignment A i-)- T[A)CT in Definition 2.6.4 extends to a
functor B^ ->B®.

2.6.4. Show that the initial algebra of an endofunctor T: B —> B can be constructed
from the colimit X of the u;-chain,

f T(!) T^(!)
0 — ^ T(0) ^ T'(0) ^ T^(0) ^ ^ X

in case this colimit exists in B and is preserved by T—where 0 G B is initial
object. This is as in [309].
Prove that, dually a terminal co-algebra can be constructed as limit Y of
the u;-chain,

! T(!) T^{\)
1 ^— T(l) ^ T ' (l) < T\l) ^ ^ Y

provided T preserves such u;-limits,
2.6.5. Prove that, on a distributive category B, the assignments Y \-^ T{Y)xS(Y)

and Y \-^ T[Y) -\- S{Y) are strong functors B ^ B, assuming that both S
and T are strong functors (as claimed in Example 2.6.8 (ii)).

2.6.6. Following [50] we say that a category B with finite products has list objects

168 Chapter 2: Simple type theory

if for each ^ G IB there is an object list(A) equipped with a pair of maps

nil: 1 —> \\st{A) and cons:^ x list(^) —> \\st{A)

such that for each X £ M which comes together with maps x: 1 —y X
and g: A X X —> X, there is a unique morphism h:\\st{A) —-)• X with
h o nW = X and h o cons = g oid x h.
(i) Formulate appropriate fibrewise list objects and list objects with simple

parameters such that a result like Proposition 2.6.3 can be obtained,
(ii) Show that a list object on A is an initial algebra of the functor X \-^

l-\-(A xX).
(iii) Check that the formulation with simple parameters from (i) coincides

with the one in Definition 2.6.10.
2.6.7. Show that in a Cartesian closed category an initial algebra is always initial

with simple parameters
2.6.8. Define what a terminal co-algebra with simple parameters is. Show that

each terminal co-algebra is automatically terminal with simple parameters.
2.6.9. Consider a comonad G: C —> C and a functor T: C -^ C with a natural

transformation a: GT =^ TG.
(i) Say what it means that (T, a) forms a map of comonads G ^ G,

i.e. that a commutes appropriately with the comonads counit e and
comultiplication S.

(ii) Assume that C has Cartesian products x. Prove that a natural trans-
formation st: (x o T X id) ^ (To x) makes the functor T strong if
and only if for each object / G C, the induced natural transformation
st^:T(—) X I =^ T{(—) X I) forms a map of comonads.
[Recall from Exercise 1.3.4 that the functor (—) x / : C -^ C carries a
comonad structure.]

2.6.10. Let IB be a category with finite products. A s t rong monad on IB is given by
a 4-tuple (T, r/, / j , st), where (T, r/, fj) is a monad on IB and (T, st) is a strong
functor. Additionally, the following two diagrams are required to commute.

st ^(st)
/ X X ^^^-^ IxTX IxT'X-^ T{I X TX) —^T'ilx X)

-^T{{I xX)

id X T]
^ / X

^ \ ^ i ^)

T{I

TX

st

KX)

I X'

id X ^

/ x

r^x

f

TX
st

(i) Show that the (finite) lists and powerset operations X ^ list(X) and
X »-> P{X) are strong monads on Sets.

(ii) Show in line with Proposition 2.6.9 that there is a bijective correspon-
dence between strong monads on IB and split monads on the simple

8(1)
fibration i (see Exercise 1.7.9).

Chapter 3

Equational Logic

At this point we start the categorical investigation of logic. This chapter will
be about a logic of equations between terms in simple type theory (STT).
First order logic with more general predicates on terms (than equations) may
be found in the next chapter. And the subsequent chapter 5 deals with higher
order logic, in which there is a special type Prop of propositions. This leads to
higher order quantification. All these logics are many-typed logics with types
(and terms) as in STT. Or, as we like to put it, these are "simple" logics
(fibred) over STT. Later we shall also see logic over polymorphic type theory
(PTT) and over dependent type theory (DTT) . These have greater expressive
power at the level of types.

But for the moment we restrict ourselves to equational logic over simple
types. There, one has equations between terms as propositions. Propositions
form a new syntactic universe (besides types). They are the entities tha t one
reasons about , and occur in the relation h of logical entailment. We start this
series of chapters on logic (3, 4, 5) with a few remarks on logics in general and
with an explanation of the (logical) terminology and notation that we shall be
using in the rest of this book. Starting from these generalities we can already
construct a fibration from a logic as a term model (or classifying fibration),
capturing the essential context structure of the logic. The subsequent sections
in this chapter contain an exposition of the tradit ional approach to the se-
mantics of non-conditional equational logic in terms of categories with finite
products, and also an exposition of the fibred approach. The latter makes use
of Lawvere's description of equality via left adjoints to contraction functors.
This fibred approach presents equality as an "internal" notion, in the logic

169

170 Chapter 3: Equational Logic

of a fibration. It is very general and close to syntax. And it fits nicely into a
uniform categorical description of logics. This fibred line will be pursued in
subsequent chapters.

E

The way in which a fibred category ^ provides us with means to reason
about what happens in the base category B, is described in Section 3.5. In
particular, in Definition 3.5.3, validity of equations in a fibration (admitting
equality) is introduced. This shows how E gives us a logic over B. We will
show how choosing diff'erent fibred categories on the same base category gives
different logics (with diff'erent notions of equality) to reason about this base
category, see Examples 3.5.4 and 3.5.5. In the subsequent and final section 3.6
the functorial semantics from the previous chapter is extended from ordinary
categories to fibred categories. It enables us to capture models of logics as
certain structure preserving morphisms of fibrations.

3.1 Logics

A logic is a formal system for reasoning. There are various such systems, with
variation determined by, for example:

• what to reason about; this determines the form of the atomic propositions;
• which means to use; this determines the logical connectives used to build

compound propositions;
• which rules to follow; for example whether to follow the constructive or

classical rules for negation.

In this chapter we study many-typed equational logic. It has equations
between terms from STT as atomic propositions, and so it may be called
simple equational logic (in contrast to polymorphic or dependent equational
logic, for example). Our (categorical) account of equational logic does not
involve any connectives. These can be added later and studied separately, see
the next chapter. In order to describe a (not necessarily equational) logic over
STT, we start with a (many-typed) signature, containing the atomic types and
function symbols, that will generate an underlying simply typed calculus (as
in the previous chapter). In predicate logic the signature may contain atomic
predicate symbols, but in equational logic one restricts oneself to equations
as (atomic) propositions. In general, a signature together with a collection
of propositions (serving as axioms) will be called a specification. And a
specification in which the collection of axioms is closed under derivability will
be called a theory.

Section 3.1: Logics 171

Usually, a s tatement in a logic is written as

where 9?i,...,<y?n and ^jj are propositions. Such a sequent expresses tha t ip
follows (as conclusion) from the assumptions 9?i , . . .,<^„. These propositions
(fi,... ,(fny'^ may contain (free) variables of certain types. The context in
which these variables are declared is left implicit in the above formulation.
Contexts are very important in a categorical description of logic—since they
are indices—and therefore we prefer to use statements of the form

T \<fi,...(pn \- ̂ P

in which the context T containing all the free variables of ^ i , . . . , 9?^ and ip,
is written explicitly. The sign ' | ' is used as a separator and has no logical
meaning. Its role is to separate the t y p e c o n t e x t F from the p r o p o s i t i o n
c o n t e x t (fi,.. .^ipn, much like ' | ' in the s tandard notation {i £ I \ <f{i)} for
comprehension separates the set-theoretical from the logical. In [186] the type
context r is written as a subscript of the turnstile \f. It leads to sequents of
the form <^i,.. .<^n f̂ ^ ' ^^^ ^^^^ notation is not very convenient when we
deal with rules (like for V or 3) tha t change the type context F. So we put the
type context F at the beginning of the sequent.

As an example, in equational logic one can have a sequent

vi: N,V2: N | î i = N 3,1/2 + vi =^ b \- V2 = N 2.

with type context I'll N, 1/2: N, proposition context vi =|\| 3,V2 -{• vi = N ^ and
conclusion V2 =|\| 2. Such a sequent involves ingredients (such as N,- | - ,3 ,5 ,2
in this case) which come from an underlying signature as in STT, describing
the basic types and function symbols tha t we use. This signature determines
which terms (like V2 + ^'i above) can be formed, and hence also which equa-
tions (between terms) can be used. Additionally, we may wish to have certain
equations as axioms in equational logic. For example, the monoid equations in
reasoning about monoids. An equational specification consists of a signature
E together with a set A (for axioms) of equations between E-terms. A precise
definition will be given in the next section. Later on, in predicate logic, we will
use slightly different specifications, consisting of a triple (E , n , ^) , where E is
a signature, 11 is an additional set of typed predicate symbols P : c r j , . . . , cr„,
and ^ is a set of axioms.

Context rules

In Figure 3.1 we list the context rules which will be used in all of the logics
tha t we consider. We write F for a type context of the form a^i: c r i , . . . , x„ : (7„

172 Chapter 3: Equational Logic

axiom

r | 0 hV
(if (r I e h V) e ^

cut

r i e i - y . r |e ' ,¥ j i -v
r | e , 0 ' hv

contraction for propositions

r | e , y , y hv>

r | 0 , y . h v

weakening for types
r | 0 h v̂

T,x:a\Q \- ip

exchange for types

T,x:ai,y:ai^i,T' \Q \- ip

Fig. 3.1. Context rules in logic

ident i ty
r h xP: Prop

weakening for proposi t ions
r I 0 h V̂ T h(p: Prop

r | e , ^ h v ^

exchange for proposi t ions

r|e,y.,x,e^i-V'
r | e ,x , ^ , e 'HV

contract ion for types

r , x: (J, ?/: (7 I 6 h V̂

T,x:(T\e[x/y] \-xP[x/y]

subs t i tu t ion

A , r , A ' | e[M/x] hi;[M/x]

in which (term) variables Xi are declared of type cr,, and 0 for a proposition
context consisting of a sequence (fi,.,., (frn of propositions. In combined con-
texts r I 0 we ensure that all the free variables occurring in (the propositions
in) the proposition context 0 are declared in F. Further, sometimes we apply
substitution Q[M/v] to proposition contexts. It means substitution <p[M/v]
applied to all the propositions (f in Q.

In the "axiom" rule in Figure 3.1 it is assumed that there is a given set of
axioms A. If there is no such set specified, the rule does not apply.

Notice that the "identity" rule starts from the assumption T \- ip: Prop
that ^ is a well-formed proposition in type context F. How such statements
are obtained depends on the specific logic that we are using. For example, in
equational logic one only has equational propositions F h V̂ : Prop with tp of
the form M —a M', where M, M' are terms of type cr in context F.

As in STT, in concatenated contexts F, A we always assume that the vari-

Section 3.1: Logics 173

ables in F and A are distinct. Especially, in writing V^X:(T it is implicitly
assumed tha t the variable x does not occur in F.

We sometimes write

• F | 0 h ^

to express tha t the sequent F | 0 h <̂ is derivable. This means tha t there
is a derivation tree regulated by the above rules (and possibly some extra
rules specific to the logic) with F | 0 h <̂ as conclusion. Notice that in the
formalism that we use all assumptions are explicitly present at every stage of
the derivation in the type and proposition contexts.

The following rule is in general not valid.

s t r e n g t h e n i n g

V,x\a\ 0 h V'

F | 0 h V̂
[x not free in 0 , V̂)

The problem lies in the fact tha t (the interpretation of) the type a may
be empty. The (then absurd) assumption x:a tha t a is inhabited may lead
to conclusions, which can not be obtained without the assumption x.a. See
Exercise 3.1.3 for more details.

Fibrations of contexts in logic

The above rules suffice to describe the basic categorical structure in a logic
over a simple type theory. Let (S , D) be a specification for some system of
logic, where E is a many-typed signature and • is something extra, deter-
mined by the specific logic; it may consist of collections of additional atomic
symbols and /or axioms. For example, for equational logic, • will be a set
of equations which serve as axioms. And in predicate logic it will consist of
predicate symbols plus axioms. Given E and • we can start forming sequents.
The categorical way to understand these sequents is as follows.

index object in
the base category

inequality < in the
fibre over the index

A type context F = {xi: c r i , . . . , a:„: cr„) is thus an index for a logic describing
what happens in this context. This is a basic theme.

We can formalise this view. The specific logic that we have gives rise to a

174 Chapter 3: Equational Logic

fibration of contexts:
£(S,D)

I

with the classifying category C^(E) of the signature E as basis. This fibration
has the following properties.

(a) The fibre over a type context T G Ci{T,) contains the logic in context F:
its objects are sequents of the form F | 0 ; a morphism (F | 0) ^ (F | 0 ')
exists if each proposition ip in 0 ' is derivable from 0 in type context F, i.e. if
• F I 0 h V̂ for each i; in 0 ' .
(b) The fibration is a fibred preorder, i.e. all fibre categories are preorders.
This is typical for iogical'fibrations (in contrast to 'type theoretic' fibrations),
because in logic one does not distinguish between difi'erent proofs of the same
proposition: there are no explicit proof-objects or proof-terms, which can serve
as (proper) morphisms.
(c) The base category ff(E) has finite products; as we have seen in the pre-
vious chapter, these are given by concatenation of type contexts.
(d) The fibration has fibred finite products; this structure is obtained from
concatenation of proposition contexts.

We proceed to describe the total category £(E, •) in detail.

objects pairs F | 0 consisting of a type context F and a propo-
sitions context 0 , such that all free (term) variables in
propositions in 0 are declared in F.

morphisms (F | 0) -> (F' | 0 ') are context morphisms M:F -^ F' in
Ci{Ti) such that for each proposition V̂ in 0 ' one can derive

F I 0 h i;[M/v]

where [M/v\ is simultaneous substitution for the variables
Vi declared in F'.

Identities in £(E, •) are identities in (X(E), by the identity rule. Also com-
position is inherited from C^(E): for morphisms in £(E, •) ,

(r 10) - ^ (r 10') - ^ (r" 10")

let L = iV o M be the composite in the base category Cf(E)—which means
Li = Ni[M/v\. This map L is also a morphism (F | 0) -> (F" | 0") in
the total category £(E, •) . This follows from a combination of the cut and

Section 3.1: Logics 175

substitution rule: for each proposition ip in 0 ' ' one can derive

r ' I 0 ' h xl;[N/w\

(with w declared in T") and thus by substituting M one can also derive

V\Q'[Mlv\ b^[L/w].

But for each (p in 0 '
r 10 h ip[M/v\

is derivable, which yields, by repeated application of the cut and contraction
(for propositions) rules, that

r I 0 h i;[L/xS\.

is derivable. This makes L a morphism in £(11, D).

The projection functor i given as (F | 0) i-> F is a split fibration.
C6(S)

The fibre over F G C (̂D) indeed contains the logic in F, as stated in (a)+(b)
above. As to (d), the terminal object in the fibre over type context F is F | 0
(F with empty proposition context) and the Cartesian product of F | 0 and
F I 0 ' is F I 0 , 0 ' (F with concatenated proposition contexts).

3.1.1. Example . Consider type contexts

(F = xi:(7i,.. . ,x„:(7„) and A = (yi: n , . . . , y^: r^)

together with a context morphism M: F -^ A, so that F h MJ: TJ. The (cat-
egorical) substitution functor (M)* associated with M is a functor from the
fibre over A to the fibre over F. It maps a proposition context 0 in type
context A to a proposition context in context F by performing substitution
[M/y\ in syntax:

(A I e) ^ (r I e[M/y\).
There are two special cases of this general description of substitution which
should be singled out, namely weakening and contraction (see also Exam-
ple 1.1.1).

(i) Let us write

for the context morphism (a^i,..., x„) consisting of the variables in F. Then
we get an associated substitution functor n* which performs weakening. It
acts as follows.

{T\e)^{T,x:a\e).

176 Chapter 3: Equational Logic

Tha t is, it adds a dummy variable declaration (or assumption) x:a.\n syntax
this is not an explicit operation, since there is no notation for weakening.
Only when one moves to a categorical level, it becomes an explicit operation.
It makes things more cumbersome, but it better brings forward the structural
aspects. For example, in the next chapter on predicate logic we shall see how
one can capture existential 3 and universal V quantification as left and right
adjoints to these weakening functors TT* .

(Pavlovic [256] proposes explicit notat ion in syntax for weakening: given a
proposition F h <̂ : Prop, he writes T^x:a h v^(^): Prop for ip with this dummy
variable x added by weakening.)

(ii) Now write

{T,X\(T) ^ [T,x\a,y:a)

for the diagonal context morphism (x i , . . . , a?„, ar, ic). The associated substitu-
tion functor 6* performs contraction:

{V,x:(T,y:cr\Q)^{T,x'.a\Q[xly\).

It replaces two variables x,y of the same type by a single variable occurring
in both places via substitution [x/y] of x for y. This is an operation which
can be described explicitly in syntax. Later in this chapter we shall capture
equality via left adjoints to such contraction functors S*.

Exercises

3.1.1. Prove that a morphism M: (F | 0) -> (F' | 0 ') in^£(E, D) is Cartesian if
and only if for each (̂ in 0 one can derive F | S'[M/v\ h ip.

£(S,a)
3.1.2. Verify in detail that the fibration 4- has fibred finite products. Show

that the total category £(E, •) also has finite products: 0 | 0 is terminal
object and the Cartesian product of F | 0 and F ' | 0 ' is F, F ' | 0 , 0 ' .

3.1.3. Check that the following is an example showing that the strengthening rule
is not valid. Consider in Sets two functions f,g:X n^ Y. Since Sets is a
distributive category, we have X x 0 = 0, so that / o 7 r = 5fO7r:Xx0-> Y.
This means that we have validity of

x:X,z:0\(i \- f{x) =Y g{x),

with z: 0 not occurring on the right of |. But evidently, me may not conclude

x:X\(i \-f{x)=Yg{x)

since / and g are arbitrary functions.

Section 3.2: Specifications and theories in equational logic 177

3.2 Specifications and theories in equational logic

The present section deals with the syntactic aspects of equational logic over
simple type theory (STT). We investigate the rules which are specific for rea-
soning with equations between terms (in STT). The main result in this section
is the reformulation (in Lemma 3.2.3) of the standard rules of equational logic
in a single 'mate' rule (after Lawvere). It prepares the ground for a categorical
description of equality in terms of left adjoints to contraction functors S* in
Section 3.4.

First we have to make precise what kind of atomic propositions may be
used in equational logic. These will be equations of the form M —a M\ for
terms M, M' of the same type cr in STT. Formally:

Equational proposition formation

T V- M:a F hM'i^r

V V- M ^a M':Prop

The type subscript a in =a is used to emphasise that we are dealing with
equality of terms of the same type a. But more importantly, to distinguish
propositional equality M —a M' from conversion M — M', as we have seen
in the previous chapter, which comes with the type formers ^ , x, 1,-f, 0 in
STT. These should not be confused: conversion = belongs to type theory,
whereas propositional equality —o is part of logic. Sometimes we call con-
version external equality and propositional equality internal equality. The
latter because —a can only be established within formal logic. This is in line
with categorical terminology.

Internal equality contains external equality via the following rule.

From external to internal equality

YVM:(T FI-M':<T YVM^M'.cr

T h M =^ M'

It says that convertible terms are (propositionally) equal in logic. As a con-
sequence, in logic, terms are considered up-to-conversion. One may also pos-
tulate a rule in the reverse direction (so that internal and external equality
become the same, in what is sometimes called "extensional" logic), but we
shall not do so in general.

In equational logic we shall only use atomic propositions M —a M' and no
compound propositions with connectives, like A, V, D. The reason is that we
wish to study equality in isolation. The sequents in our logic thus have the
following form.

178 Chapter 3: Equational Logic

3.2.1. Definition. Let S be a signature.
(i) A E-equation is a sequent of the form

r I M l = ^ , M (, . . . , Mn - a . M'^ h M „ + i =a^^, M'^^^

where for each i, both Mi and M/ are E-terms of type ai in context F, so that
Mi —a^ M[is a well-formed proposition.

Such an equation will be called non-conditional or algebraic if n = 0,
that is, if its proposition context is empty. We then write the sequent as

r I 0 h M =,, M' or simply as T h M =^ M'.

(ii) An equational specification is a pair (E,7/) where E is a signature
and % (for Horn) is a collection of E-equations. An algebraic specification
is a pair (E,>1) where ^ is a collection of algebraic equations.

Notice, by the way, that the notation Y \- M —a M' in this definition was
already used in the earlier rule that described internal equality resulting from
external equality.

3.2.2. Examples, (i) In Example 2.2.7 (i) one finds two algebraic specifica-
tions for groups: Ei with five axioms and E2 with one axiom.

(ii) The classical example in algebra of a conditional specification is of a
torsion free group, i.e. of a group G without elements with finite period,
except its unit. This specification has infinitely many conditional axioms, one
for each n G N:

n times

where • is the multiplication of the group G, and e: G its unit.
(iii) Assume a signature in which for a type cr one also has a type Per

intended as type of finite subsets oicr. For a cardinality operation card: Per -^
N one may expect a conditional equation

x\ cr, y\ Pa \ elem (x, y) = B ̂ ^ ^^^^ (^^^ (^j V)) —N ̂ ^^^ iu) + 1

where ff: B is the boolean constant 'false' and elem and add are the obvious
set theoretic operations.

Next we describe the typical rules of equational logic—besides the standard
context rules from the previous section. They will also be used in any of the
later logics with equality. We start with substitution; one puts

(N =r N')[M/x] = {N[M/x] =r N'[M/x])

where = means syntactic identification. Categorically, this distribution of sub-
stitution over equations will be captured—as always—by a Beck-Chevalley

Section 3.2: Specifications and theories in equational logic 179

condition, see Definition 3.4.1. The corresponding substitution rule is

substitution

A, r , A' I N[M/x] =f N'[M/J] h L[M/x] ^p L'[M/x]

which we explicitly mention as a special case of the substitution rule in the

previous section. The vector notation iV —f N' is a shorthand for a sequence
of assumptions Â i = TIN[, .. .,Nk = r/jiV^.

The next four rules are the basic rules of equational logic.

reflexivity symmetry

T \- M:a T | 6 h M =^ M'

T\e \- M =^ M r | e h M ' = ^ M

transitivity

r 1 0 h M =^ M' T\e \-M' =a M"

r I 0 h M =^ M''

replacement

T\e \- M =a M' T,x:a\- N:T

r I 0 h N[M/x] =r N[M'/x]

The next lemma gives a more concise formulation of these rules, and paves
the way for Lawvere's categorical account of equality—which is in Section 3.4.
It describes equality via left adjoints to contraction functors. Remember that
the latter replace two variables x,y:a of the same type by a single one, using
substitution [x/y], see Example 3.1.1 (ii).

3.2.3. Lemma. Consider for terms T, x: cr^y.cr h TV, N': r the following rule.

Lawvere equality

V,x:a\Q \-N[xly\=r N'[xly\
- (=-mate)

T,x:a,y:a\e,x=a y \- N =r N'

Under the assumption of the substitution rule, the above four basic rules of
equational logic are equivalent to this equality rule of Lawvere.

The double line indicates that the rule may be applied in both directions.
Note that it is implicit in the notation that the variable y does not occur in

180 Chapter 3: Equational Logic

the proposition context 0 .

Proof. Assume Lawvere's rule. Reflexivity follows by applying it upwards:

x\a,y\a\x =cj y ^ X'=^G y

x\a\% V- {x[x/y] -a y{xly\) = [x -a x)

We can immediately use reflexivity to obtain symmetry in:

X\(T\^V {x-ax)^ {y\xly\ -^ x{xly\)

x\a,y:a\x -a y \- y^a X

And transitivity is got by taking:

x\(T,y\a\x=a y ^ {x -a y) = {^^[y/z] =a z[y/z])

x: a,y:a,z:a\x=a y, y=a z \- x-a z

which is an instantiation of Lawvere's rule with Y — {x'.u) and Q — [x —a y\
Finally, in order to derive replacement, assume

r I 0 h M =^ M' and T, x\ (T\- N:T.

Let A '̂ = N[y/x]. Then,

T,x:a\-N:T
• (refl)

V,x:a\Q^N[x/y]=rN'[x/y] ^
(=-mate)

T,x:a,y:a\Q,x=^y)rN=rN'
(subst)

T\Q,M =a M' \- N[M/x] =r N'[M'/y]

T\Q\- M =a M' T\Q,M =a M' V- N[M/x] =r N[M'/x]
(cut)

r I 0 h N[Mlx] =r N[M'lx]
In the reverse direction, assume the four basic rules (plus substitution), and

consider two terms F, a:: cr, t/: cr h N^N'\T. Lawvere's rule downwards is then
obtained as follows. First one deduces

V,x:a,y\a\Q,x =o y ^ X "=0 y T, x: cr, y\ a,z:a \- N[z/x]: r
(repl)

F, x:a,y:(T\Q,x=:ay\- N[zlx][x/z] =r N[zlx][y/z]

= {N =r N[y/x]).

Similarly one gets

r , x : (r , y : (T \ e , x = „ y) - N' =r N'[x/y].

Section 3.2: Specifications and theories in equational logic 181

But then, using the assumption N[xly\ =r N'[x/y\, we are done by symmetry
and transitivity.

And Lawvere's rule in upward direction is deduced as follows.

r , x: cr h x: cr T ̂ x'.cr^y.a \Q^x —o y \~ N =r N'
(subst)

T,x:a\e \- x=:a X T,x:a\e,x=a X \- N[x/y] =r N'[x/y]
(cut)

T,x:a\e h N[x/y] =r N'[x/y] D

The above formulation of Lawvere's rule can be strengthened a bit, so that
the variable y is allowed to occur in the proposition context 0 . This will be
relevant later in connection with the Frobenius property.

3 .2 .4 . L e m m a . The above equality rule of Lawvere is equivalent to the fol-
lowing rule.

Lawvere equa l i ty w i t h Froben ius

r , a;: <7 I Q[x/y] h N[xly] = , N'[xly] ^
— (=-mate)

T,x:a,y:a\(d,x=a y^ N ^j N'

Proof. This extended equality rule in upward direction follows simply by
substi tuting [x/y] and using reflexivity (which follows from the earlier Lawvere
rule). Downwards, it suffices to prove for terms T,x:a,y:a h L,L'\ p tha t the
following sequent is derivable.

r , x\ (7, y: cr I L[x/y] -p L'{xly\,x -^ y V L-p L'.

Since then one can apply the cut rule to all equations L =p L' \n Q. One
derives this sequent via an immediate application of Lawvere's rule:

V,x:a\ L[x/y] -p L'{xly\ h L{xly\ -p L\xly\

r , x\ (J,y\(T\ L\xjy\ -p l!{xly\, x-ayVL-pL' D

3.2 .5 . Def in i t ion , (i) An equational specification (S,?{) will be called a
t h e o r y if its set of equations H is closed under derivability. This means that if
there is a derivation of an equation £' = (F, 6 \- M =a M') from assumptions
El,..., En ^ H, then E must be in 7/. The rules which can be used in such
a derivation are the context rules of the previous section plus the above four
basic rules of equational logic (or, equivalently plus Lawvere's equality rule).

Similarly, an algebraic specification (D , ^) is called a theory if the set A of
algebraic (non-conditional) equations is closed under derivability—where the
same rules as above may be used, but with empty proposition context 0 .

182 Chapter 3: Equational Logic

(ii) Every equational specification (D,?/) gives rise to a theory by closing
% under derivability: one takes % to be the least collection satisfying

• ncU] _ _
• if equation E is derivable from Ei^.. .^En EfL, then E EH.

We write 77i(E,?{) = {^,Ti) for the t h e o r y a s s o c i a t e d w i t h (E,7{). Some-
times we write E ETh{Il,7i) instead oi E E%.

Similarly there is a theory 77 i (E ,^) associated with an algebraic specifica-
tion (E , ^) .

3.2 .6 . Def in i t ion , (i) The category E q S p e c has

o b j e c t s equational specifications (E , ? /) .

m o r p h i s m s (E,?^) -^ (E ' , ? / ') are morphisms (j)\Ti -^ Yi' of signatures
such tha t

Een ^ (j>EeTh{T.',n'),
where ^E is obtained from E by applying (j) to all types
and terms in E.

Such a morphism 4^ in E q S p e c will be called a m o r p h i s m of e q u a t i o n a l
spec i f icat ions .

(ii) In the same vain there is a subcategory A l g S p e c -̂> EqSpec , ob-
jects of which are algebraic specifications; its morphisms are morphisms of
signatures which m a p non-conditional equations to derivable non-conditional
equations (using only the rules with empty proposition context).

Exercises

3.2.1. Show that the following rule is derivable (or: admissible) in equational logic.

rI e hM =er M' r,x:a\e \-N =r N'

r I 0 h N[M/x] =r N'[M'/x]

3.2.2. Consider the first equational signature for groups in Examples 2.2.7 (i).
Give a formal derivation of the following basic result about groups.

x: G, y: G I- i(m(i:, y)) =Q m(i(t/), \{x)).

3.2.3. Check that the projections

EqSpec
i

Sign
and

AlgSpec
i

Sign

are spht fibrations.
[Recall the discussion after Lemma 1.6.6 about the organisational power of
fibrations.]

Section 3.3: Algebraic specifications 183

3.3 Algebraic specifications

In Section 2.2 we have described the semantics of a many-typed signature D in
terms of finite product preserving functors M:Ci{T^) -> IB, where Ci{T,) is the
classifying category of D. In this section we investigate how to model algebraic
equations in a similar fashion, using ordinary categories. In the subsequent
three sections of this chapter we use fibred categories to model arbitrary,
conditional equations in a systematic manner.

Suppose we have a model M'.CiCE) ^ B of E in a category B and two terms
r h A ,̂ A^': cr in the term calculus of E. An algebraic E-equation

T \- N =a N'

is said to be val id (or to ho ld) in M if the two resulting maps

M{N)

M{T) HT ^ - ^ (^)
M(N')

are equal in B. Thus, an equation holds under an interpretation, if the two
terms are interpreted as equal maps.

For a set A of algebraic equations, we write A^ |= ^ if all equations in A
are valid in M.

3 .3 .1 . E x a m p l e . Consider the first specification of groups as in Exam-
ple 2.2.7 with one type G and three function symbols m: G, G —> G, e: () —>
G, i: G —> G and the familiar equations:

i;i:G (- m (e , t ; i) - G 1̂1 t^i:G h m{\{vi),vi) -Q e

t ' i :G h m(t;i,e) =G t̂ i t;i:G h m(i;i, i(t;i)) =:G e

i;i:G,i;2:G,i;3:G h m(i;i, m(i;2, V3)) = G ^(nn(vi , ^2), ^^s).

A model M of this specification in a category B with finite products, then
consists of an object G = A^(G) G B together with maps,

m = M(m) e = MM i = M{'\)
GxG ^G 1 ^G G ^G

such tha t the above equations hold. This means explicitly tha t , for example,

m o (e o!, id) = m o (id, e o!) = idcr.

In a similar way one can describe the other three equations above as equations

184 Chapter 3: Equational Logic

in B. One gets precisely the diagrams of an in t erna l g r o u p in B:

id X e e X id
G x 1 ^ GxG ^ 1 X G

G

(id, i) (2,id)
G ^Gx G ^ G

G

GxGxG

m X id

GxG

id X m
^GxG

m

^ G

We briefly mention validity of equations with conditions. This can be ex-
pressed in case the receiving category B additionally has equalisers. We write
Eq(w, v) for the (monic) equaliser map oi u^v in

Eq{u,v)

r> ^i

Whenever convenient, we also use Eq(u,v) for the corresponding subobject.
Recall tha t for a category B with finite limits, the posets Sub(/) of subobjects
of an object / E B have finite products {i.e. intersections). These will be
denoted by A and T .

Let E" be a conditional E-equation,

r I M l =,, Mi ...,Mn=a^M;,hN=r N'

We say tha t E h o l d s in a model M:Ci{Y^) -> B, or tha t M va l idates E, in
case the intersection of the equalisers of the assumptions is contained in the
equaliser of the conclusion:

Eq{M{Mi),M{M[)) A " • AEq{M{Mn)M{M;,)) < Eq{M{N),M{N'))

where < is the order of the poset S u b (A ^ (r)) .
Since M preserves finite products, the left hand side is isomorphic to a

single equaliser, namely to the equaliser of the two context morphisms

M{Mu...,Mn)

M{T)z::z I
X(M(,. . . ,M;;)

M{ai X '" X an)

Section 3.3: Algebraic specifications 185

Notice that this definition restricts to the earlier one for non-conditional
equations—since for n = 0 the empty meet is T (and T < Eq(i/, v) '^ u = v).

We call a rule

sound if validity of the sequent S\ implies validity of the sequent 52. At this
stage we only know what it means for an equational sequent V \ M =$ M' h
Â —r N' to be valid, but in the next chapter we shall see validity for more
general sequents.

3.3.2. Lemma (Soundness). Let (S , ^) he an algebraic specification and let
M:Cl(Ti) -^ M be a model of A. Then every (algebraic) equation derivable
from A holds in M. Thus M is a model of the theory of (E , ^) .

Proof. One shows that all derivation rules are sound. Reflexivity, symmetry
and transitivity are obvious. For replacement assume validity of F \- M —a
M'] then for each term F,x:cr h N:T we get validity of F h N[M/x\ —
N[M' lx]\Tixom.

M[N[M/x\) = M{N)o {id,M{M)) by Exercise 2.2.2

= M{N)o{id,M[M'))

= M{N[M'/x]).

In a similar way one obtains soundness of the substitution rule (using Exer-
cise 2.2.2 again). •

We next describe classifying categories for algebraic specifications. They be-
have like classifying categories for signatures—and are constructed as suitable
quotients of these.

3.3.3. Definition. Let {Tt^A) be an algebraic specification. We say that
S-terms F \- N, N':a are equivalent modulo A if the equation T \- N =a
N^ is derivable using the equations from A as axioms. We define a classifying
category Ct{T^,A) with

objects contexts F.

morphisms F ^ A are sequences (|Mi | , . . . , |Mn|) of equivalence
classes (modulo A) of terms M: F ^ A in the classifying
category a{E) of S.

(Notice the following subtlety of notation: we use \M\ for the equivalence
class of M modulo propositional (or internal) equality, where we used [M] for
the equivalence class modulo conversion (or external equality) in the previous
chapter.)

186 Chapter 3: Equational Logic

Thus the classifying category ff (S , A) of an algebraic specification (S , A) is
obtained by making certain identifications (induced by the axioms A) in the
classifying category C^(II) of the signature E. As a result, there is a canonical
quotient functor a{E) -^ ff(E, A).

With this definition of classifying category of an algebraic specification
{T>,A), we can understand a model of (S , ^) in a category B functorially,
namely as a finite product preserving functor Ci{T>,A) -^ M. This is the con-
tent of the following result.

3 .3 .4 . T h e o r e m . A classifying category Ct{T,,A) has finite products. More-
over, there is a bijective correspondence between

M
a{T.,A) ^ B z n F P C a t

« (D) ^ B in F P C a t with N h^ A.

N
Proof . The finite product structure in Cl[T^,A) is given by concatenation of
contexts as in Cl[Yi). For a functor M'.CI[YJ, ^) ^ B in F P C a t one obtains a
functor M as composite C^(E) -^ ff (E, ^) -> B satisfying M^ A because for
every equation F \- N —a N' m A, the terms N and N' are equivalent modulo
A^ and thus give rise to the same morphism in ff(E,^). This is because the
functor Cl{Ti) -^ Cl{T^^A) maps context morphisms M to their equivalence

classes \M\.
In the reverse direction, for a model M: C^(E) -> B of E with M \=^ A one has

by soundness tha t if N^N' are equivalent modulo A, then J\f[N) — M{N'\
Thus M restricts to a well-defined functor ff(E, ^) -> B. D

By this result, we can take a model of an algebraic specification (E , ^) in
a category B (with finite products) to be a finite product preserving functor
« (E , ^) - > B .

3 .3 .5 . Corol lary (Completeness). Let (E,yl) be an algebraic specification.
An (algebraic) equation is derivable from A if and only if it holds in all models
0/(1] , yl).

Proof . The (only-if) follows from the soundness Lemma 3.3.2. For (if), there
is the 'generic' model id:(X{T,,A) -^ Ci{T,,A) of (E , ^) in its own classifying
category. If an equation holds in all models, then it certainly holds in this
particular model. Then, by the previous result, it holds in C^(E) -^ C^(E,^) .
But this latter model validates precisely the equations which are derivable
from A. •

In Lemma 2.2.4 we saw how every category with finite products induces a
many-typed signature. Below we show tha t it actually induces an algebraic

Section 3.3: Algebraic specifications 187

specification: the equations tha t one gets are precisely those tha t hold in the
category.

3.3 .6 . Def in i t ion . Let B be a category with finite products and let Sign(B)
be its associated signature (as in Lemma 2.2.4). Then one can form terms
V \- M'.X and equations V \- M = x M' using this signature. Recall from
Theorem 2.2.5 that there is a model 5: ff(Sign(IB)) -> 1 of the signature of B
in itself.

We write >t(B) for the set of non-conditional Sign(B)-equations which hold
in e (as described in the beginning of this section). The pair (Sign(B),^(B))
is the algebraic specification associated with B. By the previous theorem we
get a model C^(Sign(B),^(B)) -> B, which we also denote by e.

3.3 .7 . E x a m p l e . The underlying signature Sign(B) of a category B with fi-
nite products has function symbols

pair proj proj'
XuX2 ^XixX2 X1XX2 ^Xi X1XX2 ^X2

which arise from the following maps in B, see Definition 2.2.5 (i).

^(pair) ^(proj) e{\>xo\')
XuX2 ^ Xi X X2 Xx X X2 ^ Xi Xi X X2 ^ X2

= id = ^ = TT'

These function symbols come equipped with equations in ^ (B) ,

x\Xi,y\X2 \- proj (pair (x, y)) =Xi ^

x:Xi,y:X2 H proj'(pair (x, y)) =^2 2/

z:XixX2 V- pair (proj (z), proj'(2:)) =XixX2 ^

Similarly, there is an 'empty tuple ' function symbol in Sign(B)

Q ^ I vvith equation F h M =1 ().

Combining these we obtain an isomorphism of context objects in the classify-
ing category «(Sign(B) , .4(B)) , namely

(xi:Xi,...,Xn.Xn) = [z:Xi x -"XXn).

The latter isomorphism will be used in the proof of the next result. It states
tha t every category with finite products can be understood as a classifying
category, namely of its own algebraic specification. Hence one can identify
(following Lawvere) and algebraic theory with a category with finite products.

3.3 .8 . T h e o r e m . A category B with finite products is equivalent to the clas-
sifying ca^e^fory (^(Sign(B),^(B)) of its own theory of algebraic equations.

188 Chapter 3: Equational Logic

Proof . One can define a functor ^ :B —>• C^(Sign(B),v4(B)) by mapping an
object to the associated singleton context: X y-^ [x\X). Then

{eoe){X) = e{x:X)

= X.

{9oe){xi:Xu...,Xn:Xn) = 0{X, x • • - x X^)

= {z:Xi X •" X Xn)

^ (xi:Xu...,Xn:Xn). •

This is a useful result; it shows tha t instead of the diagrammatic categor-
ical language one can use a type theoretic "internal" language to establish
certain results in a category B with finite products. Explicitly, if we wish to
prove tha t two arrows in B tha t we can describe as terms are equal, then it
suffices to prove the equality between these terms in the equational logic with
specification (Sign(B),>l(B)) associated with B. The weakness of this result
however, lies in the fact tha t the terms tha t occur in our equational logic are
of very simple form. For example, if we have a group object in B—as described
in Example 3.3.1—then we can use the language of types and terms and the
associated equational logic to prove things about such an object (living in
an arbitrary universe B). This is what is usually done in mathematics (form
a logician's point of view): one uses a suitable internal language to reason
directly in a particular s tructure—but usually with a language which is more
expressive than the one we consider so far.

Also, one can understand every finite product preserving functor F : B ^ C
as a functorial model of the specification (Sign(B),^(B)) of B in the category
C. Thus F : B -> C is a model of (the theory of) B in C.

Similar correspondences between certain kinds of categories and certain
kinds of theories have been established. Most famous is the correspondence
between categories with finite limits and "essentially algebraic" theories
(see [83]). In these essentially algebraic theories one has (hierarchies of) par-
tial operations, with the domain of an operation described by the extension of
a finite conjunction of equations involving operations which are lower in the
hierarchy.

Exercises

3.3.1. Check in detail that the equations in Example 3.3.1 lead to the diagrams
describing an internal group.

3.3.2. The following is bcised on Exercise 1.2.3.
(i) Show that the category S e t s , of pointed sets (or of sets and pcirticd

functions) has finite limits.

Section 3.3: Algebraic specifications 189

(ii) Let E be a many-sor ted s ignature and M'.Ci{T?) -> S e t s * be a finite
p roduc t preserving functor [i.e. a par t ia l E-algebra) . F ind out what it
means for a conditional E-equat ion to hold in M.; pay special a t ten t ion
to undefinedness.

3.3.3. Consider a category B with finite p roduc t s . Show tha t the following
Sign(IB)-equations hold.

(i) For an object X G .

x:X \- i d x (^) = x x.

(ii) For composable maps m]n>

x:Xh{gof){x)=zg(y)[f{x)ly\.

3.3.4. Let (E , A) be an equational s ignature. For a category B with finite products ,

let M o d ((E , A)^ B) be the category of models of (E , ^) in B consisting of fi-

ni te p roduc t preserving functors Cl(Yi^A) —¥ B and na tu ra l t ransformations

between them.

(i) Show t h a t each functor K:M —> A in F P C a t induces a functor

M o d ((E , ^) , B) ^ M o d ((E , > 4) , A)

by composit ion with K.

(ii) Show also t h a t each morphism </>: (E ' , , 4 ') —)• (E , ^) of algebraic speci-

fications induces a functor

M o d ((E , ^) , B) ^ M o d ((E ' , ^ ') . I S) .

[Thus morphisms of receiving categories and of algebraic specifications act
in opposite directions on models. This gives rise to a "fibred span", see
Definition 9.1.5.]

3.3.5. Let (E , ^) and (E ' , ^ ') be algebraic specifications and consider a functor
a{i:,A) -^ a{Y.',A') in F P C a t . Explain how (the categorical notion of)
faithfulness of this functor corresponds to (the logical notion of) conser-
vativity: if an equat ion holds after t ranslat ion, then it must already hold
before the t ranslat ion.

3.3.6. For an algebraic specification (E,^4) , let (^ l x (E , ^) be the (Cartesian
closed) category formed as follows. Its types are obtained by closing the
atomic types in E under 1, x , ->. And its morphisms | M | : (T —)• r are equiv-
alence classes | M | of t e rms x:(j V- M: r , where two te rms are equivalent if
one can prove from the axioms in A t h a t they are (propositionally) equal.
(In this case the conversions associated wi th 1, x , —)• are included in the in-
ternal equahty, via the rule (from external to internal equality), described
in the beginning of the previous section.)

(i) Check t h a t C ^ l x (E , ^) is a C C C , and t h a t for an arbi t rary C C C C

190 Chapter 3: Equational Logic

there is a bijective correspondence

m^iE.A) ^ C i n C C C

(E, A) >• (Sign(Q, AiQ) in AlgSpec

(ii) Let B be a category with finite products, and C be a Cartesian closed
category. Establish a correspondence

C^lx(Sign(B), AiM)) ^ C in CCC

B ^ C in FPCat

[A standard gluing argument shows that the resulting functor B -^
C^lx(Sign(B),^(B)) is full and faithful, see e.g. [183, Annexe C\ or [61,
4.10]. This means that adding exponents to an algebraic theory does not in-
troduce new terms between old types, or new equations between old terms.]

3.4 Fibred equality

We start with a categorical description of equality in terms of adjunctions; to
be more precise, in terms of left adjoints to c o n t r a c t i o n functors S*. It was
first put forward by Lawvere in [193]. This approach captures the mate rule
for equality in Lemma 3.2.3 categorically. The present section contains the
technical prerequisites, and the next section shows how this fibred equality is
used for the semantics of conditional equations. The goal is the fundamental
Definition 3.5.3 of validity of an equation in a fibration.

In a (base) category with Cartesian products x we shall write for objects
/ , J

S = S{I,J) = {id, n') ^^ ^^ ^
I X J ^ {I X J) X J

for the 'parametrised' diagonal which duplicates J , with parameter / . It is
used to interpret contraction for types, see for example in the proof of Theo-
rem 2.2.5 (iii). Notice tha t such a diagonal is a split mono: it is a section of
the two projections (/ x j) x j = 4 / x j .

E

3 . 4 . 1 . Def in i t ion . Let j^P be a fibration on a base category B with Carte-

sian products.
(i) This p is said to have (s imple) e q u a l i t y if both

• for every pair / , J G B, each contraction functor(J(/, J)* has a left adjoint

Eq/ ,J = Us(i,J)
E/xj ' ^ E (/ x J) x J -

Section 3.4-' Fibred equality 191

• the Beck-Chevalley condition holds: for each m a p u: K ^ I in M (between
the parameter objects) the canonical natural transformation

Eqx, j (w X id)* => ({u x id) x id)*Eq/ , j

is an isomorphism.

(ii) If p is a fibration with fibred finite products x , then we say tha t p has
equa l i ty w i t h t h e P r o b e n i u s p r o p e r t y (or briefly, equa l i ty sat i s fy ing
Frobenius) if it has equality as described above in such a way tha t for all
objects X E E(/x j)xJ ^nd Y E E / x j , the canonical map

Eqjj{S*(X) X Y) ^ X X Eqj,j(Y)

is an isomorphism.

The canonical Beck-Chevalley m a p is obtained in the s tandard way by trans-
posing the composite

{u X id*(7/)
{u X id)* ^ {u X id)*J / , jEq / , j = S*j^ j{{u x id) x id)*Eq/ , j

Wi th this notion of equality we will be able to define validity of an equation
between morphisms (terms) in a base category, see Definition 3.5.3 in the
next section. In this section we concentrate on the technicalities of such fibred
equality.

Note that the above definition speaks of simple equality. This is to distin-
guish it from other forms of equality, to be described later in Section 9.3. The
name 'simple' refers to an involvement of simple fibrations, see Exercise 3.4.1
below. In this and the next few chapters we shall only use simple equality and
therefore we can safely omit the word 'simple' for the time being.

Above, we only consider left adjoints to the contraction functors S*. In
presence of fibred exponents, these left adjoints induce right adjoints to S*,
see Exercise 3.4.2.

E

3 .4 .2 . N o t a t i o n . Let ^P be a fibration with equality as described before.

Assume p has a terminal object functor 1:B -^ E, see Lemma 1.8.8. For

parallel maps K, i;: / =t J in B we write

Eq(u,v) 1^' ((i d , «) , t ;) ' (E q / , j (l)) € E/

192 Chapter 3: Equational Logic

in a situation:

Eq(i/,i;) ^ E q / , j (l)

((id,ti),t;) , , ,, , 8 ^ ^
I ^ {I X J)x J ^ I X J

where 1 = 1(7 x J) is the terminal object in the fibre over I x J. This yields an
equality predicate Eq(w, v) in the fibre over the domain I of the maps u^v. One
thinks of the predicate Eq{u, v) at i G / as expressing the t ru th of ^(i) =j v{i)
in what may be called the "internal logic of the fibration", i, e. in the logic
which is based on what holds in this fibration, see the next chapter. We thus
say that u,v: I :=t J are in terna l ly equal if there is a "p roo f 1 -> Eq(w, v)
over / . This need not be the same as e x t e r n a l equa l i ty oiu^v: I =t J , which
simply means equality u — voiu^vd^s morphisms of the base category. Below,
in Lemma 3.4.5 we shall formally prove that internal equality is reflexive, so
tha t external equality implies internal equality. The converse need not be
the case—see the next section for examples. In case internal equality in a
fibration does imply external equality we will say tha t the fibration has v ery
s t r o n g equality. The logic then often called e x t e n s i o n a l . This terminology
using strength is borrowed from type theory where "strong" and "very strong"
forms of equality exist, see Section 11.4 later on.

Substitution in such equality predicates Eq(t/, v) is done by composition:

^ (((id ,^ /) , t ;)o t^)*Eq(l)

= [{w X id) X id) o ((id, uo w),v o w;))*Eq(l)

= ((id, u o w), V o w)* {{w X id) x id)*Eq(l)

= ((id, uo w),v o w)*Eq{w x id)*(l)) by Beck-Chevalley

^ {{id,uow),vowyEq{l)

= Eq{u o w,v o w).

As a special case of Frobenius one obtains for the projection morphism
w: (I X J) X J ^ I X J tha t

E q / , j (X X y) ^ Eq/,j((J*7r*(X) x Y) ^ 7r*(X) x E q / , j (y) .

And so in particular for y = 1 we get

Eqi,j{X)^7r*(X)xEqi,j(l).

This latter isomorphism is often useful. Informally it says that

E q (^) (. j , j ') = X(ij) A (j = j /) .

Section 3.4'- Fibred equality 193

We continue with a basic observation.

3.4.3. Lemma. A fibration with coproducts U^ (satisfying Frobenius) has
equality Eq (satisfying Frobenius).

E

Proof. Suppose jrP has coproducts. Since every reindexing functor u* has a
left adjoint JJ^, we especially have left adjoints (]J^ H J*) to contraction func-
tors S*. Beck-Chevalley holds, since for u: K -> / the following is a pullback
diagram in B.

K X J -
w X id

S{K, J)=S

{K xJ)x J

•^ I X J
Y
\8^6{I,J)

{u X id) X id
•^^ {I xJ)x J

In case p has fibred finite products and the coproducts of p satisfy the Frobe-
nius property, then Frobenius obviously holds for equality as well. •

3.4.4. Examiples. (i) By the previous result (plus Proposition 1.9.8 and

Lemma 1.9.7), each codomain fibration I has equality satisfying Frobe-
nius. For parallel arrows i/, f: / =1 J in B one has, following 3.4.2, an equality
predicate,

Eq{u, v) = ((id, u), vriUsi^)) = ((id,«), «)*(<J)

in a pullback situation:

Eq{u,v)

K — ^ I X J
Y

{{id,u),v)

\S = 5{I,J)

{IxJ)xJ

It is easily established that Eq{u, v) is then the equaliser of u and v: this is in
fact the standard way to get equalisers via pullbacks and products. Thus the
notation Eq(K, v) for the equaliser of u^v (as used for example in the previous
section) coincides with the notation introduced in 3.4.2 above.

Sub(l)

(ii) The situation for a subobject fibration I is similar: since monos
are closed under composition and the diagonal S = (id, TT') is monic, each
pullback functor S* has a left adjoint by composition. Hence equality comes
for free in subobject fibrations. It is easily verified that Frobenius holds.

194 Chapter 3: Equational Logic

(iii) Suppose C is a category with initial object 0. The family fibration
Fam(C)

i then has equality: for a family X = {^{i,j))(i,j)eixJ of C-objects over
I X J one defines a family over (/ x J) x J by

We get a bijective correspondence

(Eq(X)(,jj/)) ^ jyjiJJ'))

i^iij)) ^ (^(ijJ)) = ^ * (^ (» J J O)

In case the category C additionally has finite products in such a way that
functors Z x (—):C -> C preserve the initial object (which simply means
0 —> Z x 0 is an isomorphism), then the family fibration has finite products
as well (by Example 1.8.3 (i)) and equality satisfies the Frobenius property:
for a family Y = (^(ijj ')) over (/ x J) x J,

0 otherwise
Eq(J*(y)xX)(,-,-,.) = j

(Y X EafXl) = i ^^'^'''^ "" ^^'^'^ '^^ " ^'
V "^"^ ̂ HiJJ') I V(ijjO X 0 ^ 0 otherwise.

The Frobenius property is thus a distributivity condition (like in Exer-
cise 1.9.6).

Notice that for functions u^v.I^ J the family Eq(w, v) over / (see 3.4.2)
is given by

(i) = v[i)
E^("'^)' = \Oelse:

(where 1, 0 are terminal and initial object in C).
(iv) Let (D,?/) be an equational specification, consisting of a signature D

and a set % of possibly conditional equations between E-terms. In the first
section of this chapter we outlined a general construction which produces a
term model fibration that captures the logic involved. We claim that this fibra-

/:(E,^)
tion 4- thus associated with this equational specification (X),?^) admits

equality satisfying Frobenius. For contexts r , r ' E C^(S) we must exhibit a
left adjoint to J*, where 5 is the parametrised diagonal r , r ' -^ r , r ' , r ' in
the base category ff(S). For convenience we suppose F' to be [x: a) of length
one. We then define an equality functor, using propositional equality =^ from

Section 3.4' Fibred equality 195

equational logic:

Eq(r, x:a\e) =^ (F, x: a,y:a\e,x = , y).

The required adjunction boils down to a bijective correspondence

T,x:a,y:a \Q,x =a y ^ Q'

T,x:(T\e h0 ' [x /y] = J*(0')

which is (essentially) Lawvere's equality rule as described in Lemma 3.2.3.
The Frobenius property holds because

Eq{{T,x:a\e[x/y])x{T,x:a\&))

- Eq{T,x:a\e[x/yl&)

= {T,x:a,y:(T\e[x/y],&,x =a y)
= {T,x:a,y:a \ e , 0 ' , x = ^ y)

= (r, x: cr, y: (T I 0) X (F, x: cr, y: cr | 0 ' , x -^ y)

= (F, x: cr, I/: cr I 0) X Eq(F, x: a \ Q')

where the isomorphism = follows from Lawvere's extended equality rule in
Lemma 3.2.4. The Frobenius property is thus a result of the parametrised
formulation of this rule involving a proposition context 0 .

One easily verifies that for parallel context morphisms M,N:T =t A in
Ci{Ti) equality is given by the proposition context

Eq{M,N) = (F I M =^ N).

Hence these morphisms M, TV in the base category are internally equal in the
fibration if one can prove (using the axioms from 7i) that

F | 0 h M , - = , , Ni.

for each i. Hence by using a different set of axioms ?/' one gets a different

fibration i on the same base category, in which other internal equalities

hold. This gives us a different logic to reason about morphisms in the base
category C^(E), i-e. about E-terms.

This concludes the series of examples.

The following lemma gives some standard combinators for equality.

E

3.4.5. Lemma. Let -^P be a fibration with fibred finite products and equal-

ity satisfying Frobenius. Then, for parallel morphisms u,v^w:I ^ J and

196 Chapter 3: Equational Logic

t: I X J -^ K inM there are the following vertical combinators in E.

1 ^ Eq(w, u)

Eq{u,v)

Eq(u,v) X Eq{v,w)

Eq{u,v)

sym

trans

-^ Eq{v,u)

-^ Eq{u, w)

repi

subst

Eq{t o (id, w),/ o (id, v))

u*{X) X Eq{u,v)

These are preserved under reindexing and make some ^obvious' diagrams com-
mute, e.g.,

1 xEq(^,i;) w*(X) X 1

refl X id I ^ ^ \ ^ id x refl

Eq{u,u) X Eq{u,v) >- Eq[u,v) '"*(X) x Eq{u,u)
trans subst

u*{X)

Proof. By reindexing the unit r/: 1 -> (J*Eq(l) above I x J along (id, u):I ^
I X J ^ one obtains the reflexivity combinator refl as composite

(id,i/)*(r/)
1 ^ (id,i/)*(l) ^ —^ (id,i/)*(J*Eq(l) ^ ((id,iu),ti)*Eq(l) = Eq{u,u).

Let 7 be the parametrised twist map (Trxid, TT' O TT): {IXJ)XJ ^ {IxJ)xJ
which exchanges the first and second J . Then

Eq{u,v) = ((id,t/),t;)*Eq(l)

- ((id,t/),t;)*7*Eq(l)

- ((id,i;),w)*Eq(l)

= Eq{v,u)

This yields the symmetry combinator sym. The transitivity combinator trans
arises as follows. Consider above {I x J) x J the first projection

Eq(l) X 1 ^ Eq(l) ^ S*{7r x id)*Eq(l).

By transposing across (Eq H 5*) and using that I = {TT x id)*(l) on the left

Section 3.4'- Fibred equality 197

hand side, one obtains

E q (E q (l) x (7 r x i d r (l))

= 7r*Eq(l) X Eq((7r X id)*(l)) by Frobenius

^ 7r*Eq(l) X ((TT X id) x id)*Eq(l) by Beck-Chevalley.

Thus we have a map

7r*Eq(l) X ((TT X id) X id)*Eq(l) ^ (TT X id)*Eq(l)

above ((/ x J) x J) x J. By reindexing along the 4-tuple (((id, u),v), w): I -^
{{I X J) X J) X J one gets the required transitivity combinator.

For the replacement combinator repi, assume a map t: I x J —>• /i in B, and
consider above I x J the composite

refl
1 >• Eq{t, t) — Eq{t o n o S,t o n x id o 5)

^ 5*{Eq{to7r,to7r x id))

It yields a morphism above (7 x J) x J by transposition:

Eq(l) >• Eq{t o TT,/ o TT x id)

Hence by reindexing along {{id,u),v): I -^ (I x J) x J one obtains the re-
quired map

Eq{u, v) >- Eq{t o (id, u),t o (id, v))

Finally for the substitution combinator subst notice that 7r'*(X) =
(5*7r'*(X), so we have over I x J a, projection map

7r'*(X) X 1 >-J*7r'*(X)

By transposing and using Frobenius we get

7r*7r'*(X) X Eq(l) >- 7T'*{X)

The subst combinator arises by reindexing along {{id,u),v). •

The next result gives an application of these combinators; the proof requires
some elementary, but non-trivial, categorical manipulations. The result states
that two tuples are equal in the internal logic of a fibration if and only if their
components are equal. It also occurs in Lawvere's paper [193] (as the second
corollary on page 10), but some stronger form of Beck-Chevalley is used there.
See Exercise 3.4.7 below.

For convenience, we present the result for fibred preorders.

198 Chapter 3: Equational Logic

3.4 .6 . P r o p o s i t i o n . Consider a fibred preorder with fibred finite products and
equality satisfying Frobenius. Then there is a vertical isomorphism

Eq{{ui,U2),{vi,V2)) = Eq(i / i , t ' i) A Eq(w2,'^^2).

Proof. Assume the morphisms wi, t^i, W25 ^2 in the base category are given as
follows.

Ui U2

Vi V2

The (<)-par t of the result is easy, since by applying the above replacement
combinator one obtains

Eq{{ui,U2),{vi,V2)) < Eq{n o 7T' o {id,{ui,U2)), TT o 7T' o {id,{vi,V2)))

= Eq{ui,vi)

and similarly for Eq(w2, ^2)-

The (>)-par t requires more work. Our first aim is to prove

Eq(wi o TT, i;i o TT) < Eq{ui x id, vi x id). (*)

Consider therefore the diagram

(/ X K) X J ^ (/ X K) X (J X A')

((/ X K) X J) X J ^ ((/ X K) X {J X K)) X (J X K)

which commutes for the "obvious" maps

a = (TT, (TT', TT' O TT))

/J = (^(^7T O TT, (TT' O TT, TT' O TT O T T)) , (T T ' , TT' O TT O T T)) .

The terminal object 1 above {I x K) x J comes together with a morphism

a-(7?)
l S a * (l) < a*5*Eq{l)^S*0*Eq{l)

which yields by transposition

Eq(l) < /?*Eq(l) above ((/ x K) xJ)xJ.

Reindexing along ((id, wi o TT), vi o TT): / x K —)• ((/ x K) x J) x J yields the
required m a p (*).

Section 3,4- Fibred equality 199

Using the inequality (*) we get:

Eq{ui,vi) ^ (id,i;2)*7r*Eq(iii,i;i)

= (id, V2)*Eq{ui o TT, tJi o TT)

< (id, i;2)*Eq('Wi x id, t;! x id)

= Eq{{ui,V2),{vi,V2)).

Further, from replacement we obtain

Eq(ii2,^2) < Eq(t/i X id o (id,i/2), wi X id o (id,i;2))

= Eq{{ui,U2),{ui,V2)).

But then

Eq(?ii,i;i) A Eq(ii2,^2) - Eq(w2, ^2) A Eq(wi,-t;!)

< Eq((wi, 1/2), (^^1, ^^2)) A Eq{{ui,V2), (i^i, ^̂ 2))

< Eq((t/ i , i /2),(vi, t^2)),

the latter by transitivity. •

For future use, we mention at the end of this section what it means for a
morphism of fibrations to preserve equality Eq.

E E '

3.4 .7 . De f in i t i on . Let ^P —^ v be a morphism of fibrations. We say
® . ®

tha t (/ i , L) pre serves equa l i ty (or, is a m o r p h i s m of fibrations w i t h
equal i ty) if A^:B ^ B' preserves finite products and for each pair of objects
/ , J E B, the canonical natural transformation

^^[KI,KJ) 7I* L=^-f;L Eq(/, J)

is an isomorphism—where ji. KIxKJ ^ K{IxJ) and 72: {KIxKJ)xKJ ^
K{{I X J) X J) are the canonical isomorphisms.

Exercises

3.4.1. Let B be a category with finite products.
(i) Extend the assignment (/, J) 1-̂ S{I, J) = (id, TT'): I X J -^ {I X J) X J

to a functor S: s(B) -^ B"^ .
(ii) Show that S sends Cartesian morphisms (for the simple fibration on B)

to puUback squares in B {i.e. Cartesian morphisms for the codomain
functor on B).

E
3.4.2. Assume -^P is a fibred CCC with equality.

B
(i) Show that the Frobenius property for equality holds automatically.

200 Chapter 3: Equational Logic

(ii) By definition, each contraction functor S{I, J)* has a left adjoint]J^.
Show that it also has a right adjoint J^^, given by

(E/X7 3X)^ (Eq/ ,41) => 7r*(X) e % x j) x 7) .

[Notice that equality = is left adjoint U^ at 1 and inequality 7̂ is right
adjoint f̂ ^ at 0.]

3.4.3. Verify that the Beck-Che valley condition for the fibration i in Ex-

ample 3.4.4 regulates the proper distribution of substitution over equations.
Describe the isomorphism = which was used in proving the Frobenius prop-
erty.

3.4.4. Describe how the canonical natural transformations in Definitions 3.4.1
and 3.4.7 are obtained.

3.4.5. Consider the projections TT' 0 TT, TT': (/ X J) X J zit J in the base category of
a fibration with equality. Show that

Eq(7r 'o7r ,7r ')^Eq(l) .

E E '

3.4.6. Let IP'^' ¥ b e a morphism between fibrations p and D with fibred

terminal object and equality.

(i) Assume (K, L) preserves the terminal object and equality. Verify that
for parallel arrows u,v in B the canonical vertical map

Eq\Ku, Kv) ^ L{Eci{u, v)) (*)

is an isomorphism

(ii) Assume that p and p also have fibred finite products and that (A", L)
preserves all of these. Assume additionally that Frobenius holds both
for p and for p'. Show that if the maps (*) in (i) are isomorphisms (for
all parallel ti,t^), then {K,L) preserves equality.

[Hint. Use the previous exercise.]

3.4.7. The point of this exercise is to check the details of Lawvere's proof
E

(from [193]) of Proposition 3.4.6 for a fibration j^P with coproducts]J^,
satisfying Frobenius. By Lemma 3.4.3 this fibration then has equality sat-
isfying Frobenius. Check that

(i) L J . . i d (' ^ ' (^ 0 X '^'*(^2)) ^ T ' U „ (X I) X 7:"(X2).

(i") U.Sii,jxK)i^) - Us{i,j)i^) X Us(i,K)W' using that there is a puUback

Section 3.5: Fihrations for equational logic 201

square

/ X (J X K) ^ (/ X J) X (/ X K)
Y I Y

\s

((/ X (J X K)) X (J X A') ^ ((/ X J) X J) X ((/ X K) x /C)

in which the horizontal arrows are the obvious maps,
(iv) And finally, that Eq((wi, W2), (^i, ^2)) — Eq(wi, ui) A Eq(?i2, ̂ 2).

3.5 Fihrations for equational logic

In this section we give meaning to equations in fibrations with equality, as
described in the previous section. This fibred approach has as main advantages
that it is very general and flexible and tha t it scales up smoothly to other
logics. We start with the definition of validity of a (conditional) equation in
a fibration. Then we show how difl'erent fibrations on the same base category
can capture diflferent notions of equality for arrows in this base category. This
is what we mean by the flexibility of the fibred approach: using diflferent logics
to reason about one (base) category can be done by put t ing diflferent fibrations
on this same base category.

3 .5 .1 . De f in i t i on . An Eq-f ibrat ion is a fibration which
(i) is a fibred preorder (i.e. all its fibre categories are preorders);

(ii) has fibred finite products (T, A) and finite products (1, x) in its base
category;

(iii) has equality Eq satisfying Frobenius.

We impose the restriction to fibred preorders in (i) because we limit our
attention in this chapter to models of logics, interpreting provability and not
proofs (like in type theories).

3 .5 .2 . E x a m p l e s , (i) An important example of an Eq-fibration is the syn-

tactically constructed fibration i associated with an equational specifi-
-̂ C6(E) ^ ^

cation (E,?{), see Example 3.4.4 (iv). It will be called the c lass i fy ing Eq-
fibration o f (E , ? /) .

Sub(l)
(ii) For each category B with finite limits, the fibration i ofsubobjects

of B is an Eq-fibration, see Example 3.4.4 (ii).
(iii) Let X be a poset (or a preorder) with finite meets and a bot tom

Fam(X)
element. The family fibration i is then an Eq-fibration, see Exam-

Sets
pie 3.4.4 (iii).

202 Chapter 3: Equational Logic

In the beginning of Section 3.3 we briefly described what it means for a
conditional equation to hold in a category with finite limits. Below we show
that validity of equations can be described more generally in Eq-fibrations,
with the special case of subobject fibrations capturing this earlier mentioned
situation.

3.5.3. Definition (Validity in Eq-fibrations). Consider a situation

E

r
ff (E) — ^ M

where p is an Eq-fibration and A^ is a model of the signature D in the base
category B. We say that a E-equation

holds in M or is validated by M with respect to p if

Eq{M{Mi),M{M[)) A"'AEq{M{Mn)M{M^)) <Eq{M{N),M{N'))

in the preorder fibre category above the interpretation A^(r) of the type
context r in IB. Often we simply say that such an equation holds in A4 without
reference to the fibration p if the latter is understood from the context.

E

Thus it becomes clear that a fibred category i on IB provides us with a
logic to reason about what happens in IB. This shows how fibred (preorder)
categories play a role in logic. We will expand on this point shortly, but first,
we notice that for a model A^:C^(E) ^ B in a category B with finite limits
one has a situation

Sub(B)

M
«(E)

in which an equation holds in M. as defined above with respect to the sub-
object fibration if and only if it holds in M as described in the beginning of
Section 3.3 (after Example 3.3.1). Thus we can conclude that the previous
fibred definition does not lead to ambiguity and that its notion of validation
of equations extends the earlier one for ordinary categories.

In Example 3.4.4 (iv) we saw how difi'erent equational specifications (E,?{)

and (E,?/') give rise to different fibrations i and i to reason

about the same base category. Next we give two mathematical examples of

Section 3.5: Fihrations for equational logic 203

this phenomenon: we show how different notions of equality—for continuous
functions between dcpos, and for relations (as morphisms) between sets—can
be captured by different fibrations on the base category Dcpo of dcpos and
continuous functions, and on the base category REL of sets and relations.
These different notions of equality really require different fibrations because
equality is determined by its defining adjunction (Eq H (J*), and is thus directly
linked to the fibrations reindexing operation (—)*.

Recall from 3.4.2 that two parallel arrows u^v in the base category of an
Eq-fibration are internally equal if an inequality T < Eq(w, v) holds over their
domain. External equality simply means u = v.

3.5.4. Extended example. The category of directed complete partial or-
ders (dcpos) and (Scott-) continuous {i.e. directed suprema V preserving)
functions will be written as Dcpo. The singleton dcpo forms a terminal ob-
ject, and the Cartesian product of the underlying sets of two dcpos, with
componentwise order, yields the product in Dcpo. A subset A C X of a, dcpo
X is called admissible if it is closed under directed suprema: for each directed
a C X with a C A one has V' a £ A. A category ASub(Dcpo) is formed with
such admissible subsets as objects. We consider these as certain predicates
on dcpos. A morphism {AC X) -^ {B C Y) in ASub(Dcpo) is a continuous
function f:X -> Y with the property that x E: A implies f{x) G B, for all
X £ X. This means that there is a commuting diagram (in Sets or in Dcpo)

A ^ B

X ^Y

ASub(Dcpo)
There is an obvious forgetful functor 4- , namely {A C X) ^-^ X

Dcpo
sending a predicate to its carrier (type). It is a split fibration, with reindexing
B CY along f:X -^Y given by

r{B) = {xeX\f(x)eB}.
In particular we have for a diagonal S = S{X,Y) = (id,7r'):X x Y -^ {X x
Y) xY and for an admissible subset B C {X xY) xY that

6^B) = {{x,y) \ {x,y,y) e B} C X xY.

A left adjoint Eq to this S* is then defined by

Eq{A) = {(x, y, y')\y = y' and (x, y)£A\C{XxY)x Y.

Notice that this is an admissible subset again. Hence the usual definitions for
sets work in this case as well. For parallel arrows f.g.X =^ Y in Dcpo the

204 Chapter 3: Equational Logic

corresponding equality on X is

Eq{f,g) = {x€X\fix)==g{x)].

Since the terminal object over X G Dcpo is (X C X) we get

/ , g are internally equal <^ X C Eq(/, g)

^ yxeX.f{x)=g{x)

^ f = g:X-^Y

O f^g are externally equal.

We now put a different logic on Dcpo by taking different subsets as predi-
cates. Call a subset A C X down closed ii y < x and x E A implies y E A.
These down closed subsets are organised in a category DSub(Dcpo) as be-
fore: a morphism {A C X) -^ {B C Y) is a continuous function f:X -^ Y

DSub(Dcpo)
with f(x) E B for all x E A. Again we get a split fibration I by

Dcpo

{A C X) ^ XJ with reindexing as above. The earlier definition of equality
does not yield a down closed subset, so we now define for A C X x y ,

Eq{A) = {{x, y, y)\3z eY.y < z and y < z and {x, z) G A).

We then get bijective correspondences

Eq(^) C B over {X xY)xY

AC(J*(B) o v e r X x Y

as follows.

• Assuming Eq(yl) C B we have for {x, y) E A that {x, y, y) G Eq(74) C B, so
that [x,y) eS*(B).

• And assuming A C S*{B), we get for (x,y,y') G Eq(74), say with y,y' < z
where [x^ z) G A, that (x, z, z) G B. Since B is down closed and (x, y, y') <
(ar, z, z) we have [x, y, y') G B.

For f,g:Xz=tY in Dcpo we now get

Eq(/, g) = {xeX\3zeY. f{x) < z and g{x) < z}

so that

f,g are internally equal <=> X C Eq(/,^)

^ "ix eX.Bz e Y. f{x) < z and g{x) < z.

DSub(Dcpo)

This fibration 4- thus captures a different loeic to reason about
Dcpo: in the logic incorporated by this fibration two morphisms f.g-.Xzz^Y
are equal if and only f{x),g{x) have an upper bound in Y, for each x £ X.

Section 3.5: Fibrations for equational logic 205

We describe a similar phenomenon for relations.

3.5.5. Ex tended example . We write REL for the category of sets and re-
lations. Objects are sets / , and morphisms / -> J are relations R C I x J.
Often one uses the notation R: / —f-)- J to indicate that i? is a relation from
I to J. The identity I —H^ I is then the diagonal relation (or equality) on / ,
and the composite of R: I —f-)- J and S: J —M- K is the relational composite:

SoR=:{{i,k) \3jeJ.R{iJ) andS ' (i ,Ar)}C/x K.

A relation R: / —H- J can be understood as a mult ifunction I -^ J. That
is, as a function / -^ PJ, given by i i-> Ri = {j £ J \ i?(i, j)} , which may
have many outputs. Under this view one considers the category REL as the
Kleisli category of the powerset monad P on Sets.

The terminal object in REL is the empty set 0, and the Cartesian product
of sets / , J is the disjoint union / + J , with graphs of the coprojections K: I -^
I -\- J and K'\ J -^ I -\- J as projections:

TT = {(z,i) I 2: = Ki) and TT' = {[^^j] \ ^ — ^'2^-

The tuple of two maps R : K —ĥ / and S : K —1-> J is the relation,

(i^, S) — {(i, z) I (z = Ki and R{i,j)) or {z — Ki and S{i,j)}.

Thus REL has finite products. Actually, it also has finite coproducts, given
by these same formulas 0 and I -\- J (on objects).

There may be difi'erent notions of equality for multifunctions R,S: I ^ PJ.
For example, there is the extensional view that such multifunctions are equal
if and only if they yield the same output sets for each input. But one may
also consider two multifunctions i?, S as equal if for each input i the output
sets Ri and Si have elements in common {i.e. are not disjoint).

The point of this example is to show that these different notions of equality
live in different fibrations on top of the category REL of sets and relations.
These give us different ways to reason about relations. The two fibrations
incorporating the two abovementioned notions of equality, will be written as
PredREL EPredREL

^ and i , where the latter fibration gives the extensional
REL REL ' ^

view that relations R,S: I ^ J are equal (in the logic of the fibration) if and
only if the subsets R, S C I x J are equal.

We start with the 'non-extensional' example. The total category P r e d R E L
is a category of relations with predicates. It has

objects pairs (/, X) where / is a set and X C PI is a set of subsets
of/.

morph i sms (X C PI) -^ {Y C PJ) are relations R C I x J from
I to J satisfying: for each non-empty a E X, there is a
non-empty b C[j-^^ Ri with b EY.

206 Chapter 3: Equational Logic

Identities and composites in PredREL are as in the category REL of rela-
PredREL

tions. This gives us a forgetful functor i by (/, X) »-> / . In the fibre
over / G REL we define a preordering:

{ for each non-empty a G X,

there is a non-empty 6 C a with h ^Y.

In this preorder the predicate PI C PI is top element T.
PredREL

The functor ^ is a fibration, since for a relation R : / —ĥ J and a
REL '

predicate Y C PJ on J, we can substitute along R by

ii*(y) = {a C / I 36 C y Ri. 6 ̂ 0 and 6 E Y).

In particular, for the diagonal S : J —!-)• J -h J we get

S*(Y) = {a C J I 36 C K{a) U «:'(a). 6 7̂ 0 and 6 G Y}.

where K{a) — {tzj | j E a}. For a predicate X C PJ on J, we define an
equality predicate Eq(X) C P[J -f- J) as

Eq(X) = {c C J -h J I K-^c) U K'-1(C) E X and

Vj e J.Kj e c <^ K'J E C}.

Then we get a bijective correspondence,

Eq(X) - ^ Y over J -f- J

X—>(J*(y) over J

which is given as follows.

• Assume Eq(X) —> Y, and let a E X be non-empty. Then K{a) U «;'(a) E
Eq(X), so there is a non-empty 6 C /c(a) U /c'(a) with 6 E Y. But then
ae5^{Y),

• In the reverse direction, assume X —)• <J*(y), and let c E Eq(X) be non-
empty. Then K~^[C) U K'~^(C) E X is non-empty, so there is a non-empty
a C K~^(c) U K'~^(C) with a E ^*(y). The latter yields a non-empty 6 C
K{a) U K'{a) with 6 E Y. But then 6 C c, since for z £ b, either z = KJ or
z — K'J with j E a C /c~^(c) U /c'~^(c); in both cases we get z E c since
Vj e J-Kj ec ^ /c'j E c.

Notice that—for reasons of simplicity—we define equality without parameters.

Section 3.5: Fibrations for equational logic 207

Now we are in a position to compute the equality predicate Eq{R, S) for
two parallel maps R^ S: I ^ J in the base category REL as

Eq(R,S)

=. {R,S)*Eq{T)

= {R, sy{bcj + j \ Vj eJ.Kjeb ^ K'J e 6}
= {a C / I 36 C U g a (^ ' S)i.b ^ 0 and Vj eJ.KJeb ^ K'J € b].

where T = (PI C PI) is the top element over / . Our claim is then the follow-
PredREL

ing. Two maps R,S.I^ J are equal in the logic of the fibration i ,
that is, there is a map T < Eq{R,S) over / , if and only if for each i £ I
there is a j G J for which R{i,j) and 5(f, j) both hold. The latter can also be
expressed as: Ri 0 Si 7̂ 0, for each i G / . This is the second view of equality
of multifunctions mentioned above (which is thus captured by the fibration).

To support the claim, assume T < Eq(i?, S) over / . Then for each i E / ,
we have {i} G 1 = PY, so there is a non-empty a C {i} with a G Eq{R,S).
Thus a must be {i}, which yields that there is a non-empty 6 C {R,S)i with
b G Eq(l). Let z £ b; li z = KJ, then also K'J G b and vice-versa, so we may
assume a pair {KJ,K,'J} C {R,S)i. This yields both R{ijj) and S{i,j).

In the reverse direction, if for each i G / there is a j G J with R{i,j) and
5(z, j) , then for each non-empty a G PI, say with i G a, we can find a j G J
with R{i,j) and S{i,j). Then {i} C Eq(R,S), since 6 = {KJ,K'J} G {R, S)i is
non-empty and is in Eq(T). This means T < Eq(R,S).

EPredREL
We turn to the second fibration J- , which gives us a logic incor-

porating the 'extensional' equality. We shall be a bit more sketchy and leave
details to the reader. The total category E P r e d R E L has

objects pairs (/, X) where / is a set and X C PI.
morphisms {X C PI) -^ {Y C PJ) are relations R C I x J such that

for each a G X we have jj^g^ Ri £Y.

Identities and composites are inherited from REL, so that we get a forgetful
EPredREL

functor ^ . I n the fibre over / we define X —> Y if and only if
X CY. Reindexing of Y C PJ along R:I -^J is given by R*{Y) = {a C
I I Uzga ^i}- In particular S*(Y) = {a \ /c(a) UK'(a) G Y}. Equality Eq(X) is
defined as before. We then get for R,S: I ^ J that

Eq{R,S) = {aCI\^jeJ.{3iea.R{iJ)) ^ {3i e a.S{iJ))}.

The maps R, S are equal in the logic of this second fibration on REL if
and only if T = PI C Eq(i?, S) if and only if for each i G / one has Vj G
J.R{i^j) O ^(i, j) , if and only if R and S are 'extensionally equal'. This

208 Chapter 3: Equational Logic

concludes the example.

In Example 3.3.1 we saw what it means to have validity of the defining
equations of a group in a category. At this stage we recognise this as external
equality. We can also describe internal equality of these equations in a fibra-
tion. This will give us the notion of an "internal group in a fibration". It is a
fibration with in its base category an object carrying the operations of a group
(multiplication, unit, inverse) which internally satisfy the group equations.

We conclude with the following two lemmas which together yield familiar
soundness and completeness results for equational logic in Eq-fibrations.

3.5.6. Lemma (Soundness). Let (E,?/) be an equational specification. In
case a model M:C£{Ti) -^ IB validates all equations in % (with respect to
some Eq-fibration with base M), then it validates all equations in the theory of

Proof. By Lemma 3.4.5, which gives the appropriate combinators for the
soundness of the rules specific to equational logic. As the reader may verify,
all the context rules from Section 3.1 are sound, so we are done. D

We should be more explicit about what is going on in this proof with respect
to substitution: syntactic substitution [L/z] in a proposition M —a M' is
interpreted by categorical substitution (or reindexing) in a fibration. This is
because

Eq(i/ o w^v o vj) — tt;*Eq(w, v)

as already mentioned in 3.4.2. Notice that composition u o w^v o w ov^ the
left hand side is substitution in terms, whereas w;* on the right hand side is
substitution in propositions. Syntactically this equation is

{M\Llz\ =, M'[L/z]) = (M =<, M')[L/z].

The weakening and contraction rules are handled as special cases of substitu-
tion, see Example 3.1.1.

3.5.7. Lemma (Completeness). For an equational specification (E,?{), con-
sider the situation:

«(E) ^ ff(E)

This generic model of S validates precisely the equations in the theory of

As a result, an equation is derivable from an equational specification (E, ?/)
if and only if it holds in all (fibred) models of (E,?{).

Section 3.6: Fibred functorial semantics 209

Exercises

DSub(Dcpo) PredREL
3.5.1. Check that internal equality in the fibrations i and i

^ *̂ Dcpo REL
is not transitive. Conclude that the Frobenius property does not hold.
[Hint. Inspect the construction of the transitivity combinator in the proof
of Lemma 3.4.5.]

DSub(Dcpo)
3.5.2. Prove that in the fibration i internal and external equality co-

Dcpo
incide onY£ Dcpo if and only if the order on Y is discrete.

3.5.3. Let Sp be the category of topological spaces and continuous functions.
ClSub(Sp)

(i) Define a poset fibration 4- of closed subsets [A C X) over
Sp

topological spaces X.
(ii) Show that a contraction functor S* associated with a diagonal S\X x

Y —^ X xY xY m Sp has a left adjoint Eq, given on a closed subset
ACXxYhy Eq(A) = {{x, y,y')eXxY xY\[x,y)eA3ndy = y '}.

(iii) Prove that equality on y G Sp is very strong [i.e. that internal equahty
and external equality on Y coincide) in this fibration of closed subsets
if and only if y is a Hausdorff space.

3,6 Fibred functorial semantics

In this section v^e start by describing appropriate morphisms between Eq-fib-
rations preserving the relevant structure. These allov^^ us to describe func-
torial models of an equational specification in a fibration as morphisms of
Eq-fibrations with the classifying fibration of the specification as domain. We
also associate an equational specification with an Eq-fibration so tha t an ad-
joint correspondence between morphisms of Eq-fibrations and morphisms of
equational specifications can be established (see Proposition 3.6.5).

In the last part of this section we show how every Eq-fibration gives rise
to a (quotient) Eq-fibration in which internal and external equality are forced
to be equal. This quotient enjoys a universal property, which is described in
terms of morphisms of Eq-fibrations.

3 . 6 . 1 . Def in i t ion . A morphism (or map) of Eq-fibrations p ^ g is a mor-
phism of fibrations p ^ q which preserves the structure of Eq-fibrations: it
preserves finite products in the base category, finite products in the fibre cat-
egories and equality Eq.

In this way we obtain a subcategory E q F i b ^> F i b of Eq-fibrations. We
may see E q F i b as a 2-category, by letting the inclusion be full and faithful

210 Chapter 3: Equational Logic

on 2-cells. Thus, 2-cells between maps of Eq-fibrations are the same as 2-cells
between these maps as maps of fibrations.

If we have a morphism of Eq-fibrations in a situation

H

K

then it is obvious that A^:B -^ A preserves external equality: u = v in M
implies Ku = Kv in A. But K also preserves internal equality, since

w, V are internally equal => T < Eq(i/, v)

=> T ^ H{T) < H{Eq{u,v)) ^Eq{KuJ<v)

(see Exercise 3.4.6)

=> Ku, Kv are internally equal.

As an example, every finite limit preserving functor B —>• A between cate-
Sub(B) Sub(A)

gories B, A with finite limits induces a map of Eq-fibrations i —> i
B A

between the corresponding subobject fibrations. This map between fibrations
is described in Lemma 1.7.5.

E

3.6.2. Definition. Let (E,?/) be an equational specification and -jrP an
Eq-fibration. A model of (E,?/) in p is a morphism of Eq-fibrations:

a(S)

E \

ip]
1 J

This fibred functorial definition of model will be justified by the following
result.

E

3.6.3. Theorem. Let (E,?/) be an equational specification and let -^P be
an Eq-fibration. Every model M in B

E

C^(E) —
validates the equations in % (with respect to p) if and only if it extends to a

Section 3.6: Fibred functorial semantics 211

(up-tO'isomorphism unique) morphism of Eq-fibrations:

M'
C[T.,n) — ^ E

P

a{T.)
M

A model of equations can thus be identified functorially as a morphism of
Eq-fibrations. This extends functorial semantics from ordinary categories (see
Sections 2.2 and 3.3) to fibred categories.

Proof. Suppose M validates the equations in % with respect to p. We can
then define a functor M': £(E, ?/) ^ E by

(r | M i = : , , M (, . . . , M , = , ^ M ; ;) ^

Eq(A^(Mi),X(M{)) A . . . A Eq(;W(Mn),X(M;;)).

By soundness (Lemma 3.5.6) M' extends to a functor. The resulting pair
[M^M^) preserves equality by Exercise 3.4.6.

Conversely, given the above extension M'^ for terms F \- N^ N':a we have

M\T I N =^ N') = M'{Eq{N, N')) ^ Eq{M(N),M{N')).

This shows that M' is determined up-to-isomorphism by M. Further, because
M' is a functor preserving fibred finite products, we obtain

T \ N =a N' ^ M =r M' is derivable (from U)

^ Eq(7Vi,Ar{)A...AEq(7V^,7V;;)

< E q (M , M ') in£(E, 'H)

<M'{Eq{M,M')) i n E

^ Eq{M{N,),M{N[)) A • • • AEq{M(Nm),M(N:,,))

<Eq{M{M),M{M'))

z:> T\N =^ N' b M =r M' holds in p.

Hence A4 validates the theory of the equational specification (E,?{), and thus
certainly its subset 71 of axioms. D

In Section 3.3 we have defined for an (ordinary) category with finite prod-
ucts an associated theory of non-conditional equations. Similarly, for an
Eq-fibration we will define a theory of conditional equations. Then, a model

212 Chapter 3: Equational Logic

as above in Definition 3.6.2, can alternatively be described as a morphism of
equational specifications using this induced theory.

E

3.6.4. Definition. Let]rP be an Eq-fibration. The underlying signature
Sign(B) of B comes naturally equipped with a set of equations %{p), namely:

r I M l = , , Ml', ...,Mn=ar.M'^bN=r N'

is in 7i{p), if and only if

Eq(eMueM[) A " • AEq{eMn,eM^) < Eq(eN,sN')

holds in the fibre over sT—where e is the model ff(Sign(IB)) -^ B of the
signature of B in B itself. Thus H{p) contains all Sign(B)-equations which
hold in

E

P

ff(Sign(B))

E
3.6.5. Proposition. Let (S,?/) be an equational signature and ^P an

B

Eq-fibration. There is a bijective correspondence (up-to-isomorphism)

£(E,^)\ {M,M) / f \
; ^ {P in EqFib

(E,?/) ^ (Sign(B),?{(/?)) m EqSpec

which makes the classifying fibration i the free Eq-fibratton generated

Proof. Remember from Theorem 2.2.5 the bijective correspondence

M
a(S) > E in FPCat

<̂
Sign(B) in Sign

It is then easy to see that A4 validates the equations in 7i with respect to
p if and only if (p extends to a morphism of equational signatures (H,?/) —^
(Sign(B),?/(p)). This because M and <f) are related via e: for a term N one
hasM{N)=e{(i>N). D

Section 3.6: Fibred functorial semantics 213

The above result gives rise to a model

c{sign{m),nip)) \ / E

C£(Sign(l)) J ^ V ®

of the theory of an Eq-fibration p in p itself. One can ask whether it is in
general an equivalence, i.e. whether our equational logic is rich enough to re-
construct an Eq-fibration from its signature—as in the case of non-conditional
equations for categories with finite products, see Theorem 3.3.8. The answer
here is no, because an Eq-fibration may have many more 'predicates' (objects
in the total category), than just equations Eq{u, v)—which are the only propo-
sitions that we have in equational logic. In the next chapter on (first order)
predicate logic we describe how these extra predicates can be incorporated in
logic.

3.6 .6 . R e m a r k . The notion of morphism between Eq-fibrations introduced
in Definition 3.6.1 is in a sense the obvious one. But there is a reasonable alter-
native. One may wish to consider the functors between the base categories up-
to internal equality: call two morphisms of Eq-fibrations (/ i , H), {K\ H')\p =t

E D)

q between Eq-fibrations ^ and j - ^ equivalent if

• i7 = ^ ' : E ^ D and on objects K - K'\ Obj B -^ Obj A;
• Ku and K'u are internally equal in g, for each morphism u in B.

Equivalence classes of such morphisms then yield an alternative notion of map
between Eq-fibrations. Its usefulness may be illustrated via the following two
very simple algebraic specifications.

• E l has one type ^ , one function symbol a: () —> Q and no equations; so
the set Hi of equations in this specification is empty.

• E2 also has one type Q, but two function symbols 6: () —> Q, c: () —> Q
with a singleton set of equations H2 containing 0 | 0 h 6 —^ c.

One would expect these specifications to be (logically) equivalent (in an infor-
mal sense). Certainly, the signature E2 has two function symbols, but they are
required to be (internally) equal in the logic of (^2,7/2)- The classifying cat-
egories ff(Ei) and Cl{Y^2) of the signatures—without the equations—are not
equivalent, simply because E2 has more function symbols. Hence the classify-

inff Eq-fibrations i and i are not equivalent with the notion of

morphism in Definition 3.6.1. But we do have an equivalence of Eq-fibrations
if we use the adapted notion of morphism that we just described, since it takes
internal equality into account.

214 Chapter 3: Equational Logic

We have seen that putting an Eq-fibration on a base category B allows
US to consider certain parallel morphisms in B as (internally) equal. This gives
the possibility to identify these morphisms in B in a quotient category. Doing
so actually leads to a quotient fibration p -^ p/Eq in which internal and
external equality are forced to coincide. We shall use the following notation
for p -^ p/Eq.

3.6.7. Definition. For an Eq-fibration ^P we define two categories B/Eq
and E/Eq as follows.

B/Eq objects

morphisms

E/Eq objects

morphisms

/ G B .

[u]: I —^ J are equivalence classes [u] of morphisms
I/: / —> J in B, where w, i/': / =4 J in B are equivalent
if they are internally equal, i.e. if T < Eq(w, if') holds
in the fibre E/.

X eE.

[f]'-X -> Y are equivalence classes of maps / : X ->
Y in E, with f,f:X =4 Y equivalent li pf,pf are
equivalent in B.

These categories B/Eq and E/Eq are quotients of B and E via obvious functors
7/i :B-^B/Eq and ?7E:E-»E/Eq.

Finally, the functor p/Eq: E/Eq -^ B/Eq is defined by X ^ pX and
{[f]:X-^Y)^{\pf]:pX-^pY).

E/Eq

3.6.8. Proposition, (i) The functor J'P/Eq introduced above is an Eq-fib-
B/Eq

ration in which internal and external equality coincide.
(ii) The pair of functors rj = (771,//E) forms a morphism of Eq-fibrations

rj'.p ^^ p/Eq, which is universal in the following sense: every map of Eq-fib-
rations p -^ q to an Eq-fibration q in which internal and external equality

Section 3.6: Fibred functorial semantics 215

coincide factors via a unique map of Eq-fibrations p / E q —^ q as:

1

Before we give the proof, we recall tha t Eq-fibrations—like all preorder
fibrations—are faithful, as functors, see Exercise 1.3.11. And in these preorders
we have vertical isomorphisms u*{X) = ^*(-^) for internally equal parallel
maps ii, V, since by the substitution combinator from Lemma 3.4.5 we get:

u*{X) ^ u*(X) AT ^u^'iX) AEq{u,v) < v*(X).

The inequality t<*(X) > v* {X) is obtained by symmetry.

Proof, (i) We first show tha t p/Eq is a fibration. For an object Y E
Obj (E/Eq) — Obj (E) and a morphism [u]: I -> pY in B/Eq, we choose a
representative u: I -^ pY in B, and a Cartesian lifting u{Y):u*{Y) ^ Y of
u in E. It gives a morphism [w(y)]: u*{Y) -> Y in E /Eq over [u]: I -^ pY in
B /Eq . We claim tha t it is a p/Eq-Cartesian lifting: for a m a p [f]'. X -^ Y in
E/Eq with [/] = [u] o [v] in B/Eq , so tha t T < Eq(p / , w o v), we obtain a
mediating m a p X -^ u*{y) in E as composite:

X < {Pfy{y) = (^ o vy{Y) ^ v*u*{Y) ^ 7i*(y)

It yields the required mediating map in E / E q .
We notice tha t the fibre category of p / E q over / G B/Eq is the same as the

fibre category of p over / G B. Hence p / E q has fibred finite products (T, A)
and equality Eq as in p . By construction:

[u], [v]: I ^ J in B/Eq are internally equal in p / E q

<=> T < Eq{u,v)

^ [u], [v] are externally equal.

(ii) Assume | ^ is an Eq-fibration in which internal and external equality

coincide, and (/ \ : B -> A,/f: E —)• D) is a morphism of Eq-fibrations p —> ^.

216 Chapter 3: Equational Logic

We define two functors A", H in

by

/ ^ KI
H =

X ^ HI
[X^Y) ^ (HX-^HY) (I^j) ^ (iJl^ J)

These functors K,H are well-defined, since

u^u' in M => T < Eq{u, u') in E

=> T < Eq{Ku, Ku') in D

=> /i'w = / i t / ' .

The last implication holds because internal and external equality coincide in
q. Similarly:

/ - / ' in E => T < Eq{pf,pf) in E

^ T< Eq{Kpf, Kpf) = Eq{qHf, qHf) in D

=> qHf = qHf

^ Hf = Hf (see Exercise 1.3.11).

Since p/Eq inherits its Eq-fibration structure from p, this pair {K, H) forms
a morphism of Eq-fibrations. •

Exercises

3.6.1. Show that for an Eq-fibration p, the result K*{p) of change-of-base along
a finite product preserving functor K is again an Eq-fibration and that the
morphism A *(p) —^ p involved forms a morphism of Eq-fibrations.

E

3.6.2. Let iP be an Eq-fibration, and let Eq(E) M- E be the full subcategory

of those X G E for which there is a vertical isomorphism X = Eq(w, v), for
Eq(E) ^

certain maps u^vipX nt • in B. Prove that i is also an Eq-fibration,
B

and that the inclusion
Eq(E) C ^ E

\ /

Section 3.6: Fibred functorial semantics 217

is a morphism of Eq-fibrations.
[Remember Proposition 3.4.6 and Exercise 3.4.5.]

3.6.3. Consider the category B/Eq in Definition 3.6.7 and show in detail that
(i) its composition can be defined from composition in B via representa-

tives;
(ii) it has finite products.

218 Chapter 3: Equational Logic

This Page Intentionally Left Blank

Chapter 4

First order predicate logic

Equational logic, as studied in the previous chapter, is not very expressive.
It allows us to formulate statements like x:N | x -\- 2 =^ 5 \- x =^ 3, but
not much more. In the present chapter we will study (first order) predicate
logic (over simple type theory), in which we can formulate more interesting
statements like x,y:Q\ x <q y \- 3z:Q. x < Q Z A Z < Q y. This requires more
general atomic propositions x <q y than just equations x =Q y. And further,
it requires additional logical operations like A, 3.

In this chapter we consider first order predicate logic where one can quan-
tify over types cr, in propositions of the form \/x:a.ip and 3x: a. (p. In the next
chapter we study higher order predicate logic in which one can additionally
quantify over propositions and predicates, like in Va: Prop, (p and 3a: Prop. (p.
What we consider here is simple predicate logic (SPL),indexSSimple!- predi-
cate logic or predicate logic over simple type theory, in contrast to dependent
predicate logic (over dependent type theory) or polymorphic predicate logic
(over polymorphic type theory), see Sections 8.6 and 11.1. This means that the
types in our simple predicate logic are types from simple type theory, which
do not contain (term or type) variables: they are built up from constants, us-
ing type constructors like +, x, ^ as studied in Chapter 2. In standard texts
on mathematical logic it is common to consider only single-typed (or single-
sorted, in more traditional terminology) predicate logic with only one type,
but in computer science, many-typed logic is more natural.

The categorical models that we shall use to describe predicate logics are
certain kinds of preordered fibrations. The preorderedness makes these fibra-
tions so-called proof-irrelevance models in which provability, and not proof,

219

220 Chapter 4- First order predicate logic

is captured: (p \- ip in predicate logic means that there is a proof of tp which
assumes (p. This makes the turnstile h a preorder relation. In contrast, formal
(type theoretic) systems with explicitly proof-terms x:<f \- P:tp—providing
an actual proof of 'ip, assuming a proof x:(f oi (p—lead to non-preordered
models with proof-terms as arrows (p —^ ip.

The operations in predicate logic are described categorically via adjunctions
in these fibrations for predicate logics. Existential 3 and universal V quantifi-
cation form left and right adjoints to weakening functors, equality =(j forms
left adjoints to contraction functors, subset types {x:cr|<^} form a right ad-
joint to a truth predicate functor, and quotient types a/R form a left adjoint
to an equality relation functor. Equivalently, one can describe subset types by
a right adjoint to this equality relation functor. The adjunctions for 3,V, =c7
are between fibre categories, whereas the adjunctions for {x:cr|<^} and a/R
are between the total and base category of a fibration. The introductory Sec-
tion 0.2 gives a brief presentation of these adjunctions for the familiar logic
of predicates on sets.

Lawvere may be seen as the first to use fibred (or indexed) categories in
logic, for example in [193]. Some of the details involved are elaborated in [305].
Fibred categories for predicate logic are used subsequently for example in [62,
209, 210, 336]. Since the 1970s much of categorical logic has been done in
direct contact with topos theory. As a result, logic is often described in terms
of subobject fibrations, see for example [211] and [85]. Here we use general
fibred categories for predicate logic, and subobject fibrations occur as special
instances. The advantages of this more general approach are that it provides

• more flexibility: a base category B may carry different logics, and not just
its subobject logic, see Examples 3.5.4 and 3.5.5 where we have two different
logics on the category B = Rel of relations given by two different fibrations.

• natural, unified presentations of examples as they come from realisability,
frames (complete Heyting algebras), Kripke models, or cylindric algebras,
see Section 4.2.

• a framework in which all the logical operations can be studied separately. In
subobject fibrations much structure comes for granted, like equality, unique
existence 3! or subset types, see Section 4.9.

• a presentation which scales up from logic to type theory in a direct manner.

This chapter starts with appropriate signatures for predicate logic, contain-
ing not only typed function symbols F : cri , . . . , cr„ —y o-n-^i but also typed
predicate symbols P : cri , . . . , cr„. With these one can form besides equations
M —a M' also other atomic propositions P (M i , . . . , M^), for example for
reasoning with inequalities M <a M'. Next, in Section 4.2 we describe fibra-
tions for first order logic—and for the subsystems of what is called regular

Section ^ . i ; Signatures, connectives and quantifiers 221

and coherent logic. The main novelty is that the quantifiers 3 and V are left
and right adjoints to weakening functors. A series of examples of such fibra-
tions is included. Especially we shall elaborate classifying fibrations (or term
models) built up from syntax. Predicate logic is rich enough to reconstruct
the fibration we use from the classifying fibration of its own signature. The
logic thus associated with a fibration will be called its internal language, or
internal logic. This language facilitates dealing with fibrations of predicate
logic, because it allows one to replace categorical calculation by logical reason-
ing. The internal language will be described and used in Section 4.3. Then,
in Sections 4.4 and 4.5 we concentrate on subobject fibrations. Among the
fibred categories used to model predicate logics, subobject fibrations are very
special (for example because of their role in topos theory) and will therefore
they be investigated separately. The subsequent three sections will be about
subset types and quotient types. With these fundamental mathematical con-
structions we can form new types of the form {a:: cr | <y?}, where cr is a type and
(f> a proposition, and of the form a/R, where i^ is a binary relation on a. Both
subset types and quotient types can be described categorically by adjoints.
We conclude this chapter with a characterisation of subobject fibrations. They
are fibrations for predicate logic in which one has: very strong equality, full
subset types, and unique choice 3!.

4.1 Signatures^ connectives and quantifiers

Up-to-now we have studied (typed) terms and equations between them in
equational logic. These equations are the only kind of propositions that we
have seen so far. Our next step is also to allow predicates as atomic proposi-
tions and form derived propositions using logical connectives, like implication
D or existential quantification 3. In this section we describe the syntactic
aspects of these extensions. It will involve signatures which not only have
function symbols but also predicate symbols, and specifications, which are
signatures together with a collection of axioms. After these preliminaries on
how to form the atomic propositions, we describe the (standard) rules of first
order predicate logic. In the end we reformulate the rules for typed equal-
ity =^, universal Vx:cr. (—) and existential 3x:a. (—) quantification as 'mate'
rules. These essentially exhibit these logical operations as adjoints.

In equational logic one only has equations

M =a M'

for terms M and M' of the same type cr, as (atomic) propositions. In this

222 Chapter 4' First order predicate logic

chapter we will also allow atomic propositions

P (M i , . . . , M n)

where P : (TI, . . . , (T„ is a predicate symbol and Mi'.ai,..., Mn'.o-n are ap-
propriately typed terms. To allow such predicate symbols, we have to extend
our notion of signature.

We say that a signature with predicates is a pair (5],n) where E is a
many-typed signature and 11 is a function IDI"̂ -> Sets, which yields for each
sequence cr i , . . . , cr̂ of types a set n((7i , . . . , cr„) of predicate symbols of this
type. We shall write

P :^ i , . . . , c r„ for P G n((7i , . . . , ^„).

A morphism (f): (E, 11) —> (E', 11') of such signatures with predicates consists of
three mappings, sending types to types, function symbols to function symbols,
and predicate symbols to predicate symbols, in such a way that arities are
preserved. Following Convention 1.6.2, we shall use the symbol (j) for all three
mappings. This yields the following requirements.

F : c r i , . . . , (T n >(Tn-\-l => (/)(P): 0((7i), . . . , (/)((T„) y(j){an^i)

As a result, we get a category, which is written as SignPred. Using change-
of-base, it can be obtained simply as follows (see also Definition 1.6.1).

4.1.1. Definition. The category SignPred of signatures with predicates
arises in the following change-of-base situation.

SignPred >• Fam(Sets)

J I

Sets ^ Sets

(In the first section of the next chapter on higher order logic we use many-
typed signatures containing a distinguished type Prop of propositions. In such
signatures there is no need for predicate symbols P : CTI, . . . , cr„, since they can
be described as function symbols P : cri , . . . , cr„ —y Prop.)

One can view a signature with predicates as a first order specification—
without axioms yet; these will be added in Definition 4.1.3 below.

4.1.2. Example. In a signature containing a type N of natural numbers to-
gether with a type NList of finite lists of these, one may have function and
predicate symbols

insert: N —> NList, IsEmpty: NList, Occurs?: N, NList

Section ^ . i ; Signatures, connectives and quantifiers 223

where the lat ter predicate tells of a natural number n and a list i whether or
not n occurs in i. One expects as an axiom

n: N I 0 h Occurs? (n, insert (n)).

Let (D , n) be a signature with predicates. The associated a t o m i c p r o p o -
s i t ions have the form

M=aM' and P (M i , . . . , M „)

where M, M' are of the same type cr, and P : <7i , . . . , cr̂ is a predicate symbol
with appropriately typed terms M^: ai. A bit formally, using a new syntactic
category (or universe) Prop, we can write these as formation rules:

a t o m i c e q u a t i o n p r o p o s i t i o n

r \- M:a r \- M':a

T \- {M ^a M'):Prop

a t o m i c p r e d i c a t e p r o p o s i t i o n

r h M i l d i ••• r h Mn:(Tn
(for P : c r i , . . . , c r „)

r h P (M i , . . . , M „) : P r o p

Substitution over these atomic propositions takes the form

(M =a M')[N/x] = {M[N/x]) =a {M'[N/x])

P{Mi,...,Mn)[N/x] = P(Mi[N/xl...,Mn[N/x]).

The following c o n n e c t i v e s or logical o p e r a t i o n s may be used in first
order logic to construct new propositions.

± falsum, absurdity, the universally false proposition;

T t ru th , the universally true proposition;

-^(p negation: not (p;

(f Alp conjunction: ip and xp;

(py ip disjunction: (p or ip;

(p D 'ip implication: if (p then ip;

\fx:a.(p universal quantification over type a: for all x in cr, p;

3x:o-.p existential quantification over type a: for some x in a, (p.

In the last two cases the term variable x becomes bound in the quantified
propositions \/x\cr.p and 3x\a.^. Formally, one can write all of these as for-
mation rules. For example,

F h ^ : Prop F h ^ : Prop F, a:: cr h (p: Prop

F h (̂ A -0: Prop F h 3a:: a. p: Prop

224 Chapter 4- First order predicate logic

but that is a bit cumbersome, really. Then, given propositions

ri-<^i:Prop, • • rhv?n:Prop, T h V': Prop

we can form a sequent,

which is read as: assuming term variable declarations x:a in F, then the
proposition ip follows as conclusion from propositions v î, • •., v̂ n- The latter
sequence ^ i , . . . , <̂ „ will be called the proposition context; we often abbreviate
it as 6 , S, like in the previous section. Recall that F is called the type context.

For completeness, we list the natural deduction rules of predicate logic in
Figure 4.1 (apart from the context rules, as already described in section 3.1).
These rules have all of the assumptions explicit at every stage, in type and
proposition contexts F and 0 .

Recall that a sequent F | 0 \- ip is derivable if there is a derivation tree
regulated by these rules, with F | 0 h (p 3,s conclusion. The sequents at the
top of this tree may be axioms. We sometimes write

• F | 0 hv^

to express that the sequent F | 0 h ^ is derivable. For example, one has

for propositions F h (p,ip,x- Prop in type context F, as shown by the following
derivation.

T\(p h (f T \i; h 7p

T\<p,iP \-ip F | ^ , ^ hiP

F | (v p A V ^) D X ^ - (v ^ A ^) D X T \ <f,ip h (f Aip

F I V?, (yp A 10) D X, V̂ h (y? A V̂) D X F | y?, (9? A V̂) D x^ V̂ I" ^ A V̂

T \(f,{(pAip) D X,i^ ^X

F | v ^ , (^ A ^) D x ^i^DX

The reader may notice that negation (-1) does not occur among these rules.

The reason is that negation is defined as

-^(p = (f D J-.

Classical logic is then obtained by adding the rule

reductio ad absurdum

T\e hip

Section 4-^- Signatures, connectives and quantifiers 225

r | e hT

T\e \->p r | e i - ^
r | 0 \-<pAip

r | e hfAxfj

r | e hV

r | e 1-V
r | e i-v?v^

r\e,^\-rp
T\e \-^Dip

T,x:a\e h V

ri

r

r | e , ± h V

r | e i-ypAV'

r | e hv:.

r | e h^
r | e 1-< v̂v

| e , ^ h x r | e , v i -
r, |0,v?vv Hx

\e i-fDxp r | e h

r | 0 hV

T \- M:a T\e \-^x:a.

X

f

• i>

r | 0 hVx:cr.v̂ r | 0 h v̂ [M/x]
(x not free in 0)

TV-M:a T | 0 h V^[M/x] T | 0 h 3x: o-. x/̂ T, â : cr | S, V̂ h X

r | 0 l-3x:cr.V^ r I 0 , 2 h x

(x not free in S, x)

r h M = M ' : 0- r I 0 h M =:a M ' V\QV-M'^aM"

T\Q ^ M =a M' T \ e h M =a M"

r | 0 i - M = ^ M ' r | 0 [- M = a M ' r | 0 h V [̂M/X]

(this rule will be called r e p l a c e m e n t)

Fig. 4.1. Rules for (many-typed) first order predicate logic

226 Chapter 4- First order predicate logic

This rule says that if it is absurd to assume that (f is false, then (f must be
true. It is an indirect, non-constructive principle of reasoning. One can show
that it is equivalent to the excluded middle ^ V->v? axiom, also called tertium
non datur, see Exercise 4.1.3. This rule will not be assumed, unless stated
explicitly.

As another abbreviation, we shall use

def

for logical equivalence.
The following rule in this list,

Tie \- M =^ M'

deserves some special attention. It tells us first of all that convertible terms
(M = M': cr) in the underlying type theory give rise to derivable equality
propositions (M =a M') in the logic. Thus propositional equality includes
conversion, or in different terminology, internal equality includes external
equality. The converse may also be required as a rule, but that is not done
here. Because conversion in type theory is reflexive, this rule tells us in par-
ticular that logical equality =<j is reflexive. (Symmetry and transitivity of ^a
are given by explicit rules.) And in case one considers an elementary term cal-
culus without basic conversions [e.g. because there are no type constructors
like -^, X or -|-), then one may still consider M = M:cr as part of a trivial
conversion relation, guaranteeing the presence of a reflexivity rule.

Since term variables x.a may occur in propositions <̂ , the question arises
how propositions ^[M/x] and ip[M'/x] for convertible terms M = M'\ cr are
related. It turns out that they are equivalent—i.e. that <y?[M/ar]li:^[M'/ar]
is derivable: the conversion M — M':a leads to a proposition M —a M'
by the above rule, which can be used to derive (f[M/x] from (p[M'/x] by
the replacement rule, and thus to derive (p[M/x] D (p[M'/x]. The reverse
implication is obtained similarly.

Substitution over these propositions is done in the familiar way, i.e.,

J[Llz] = T

{v>M')[L/z] = (^[L/z])A(rP[L/z])

l[L/z] = 1

(^Vi;)[L/z] = {^[L/z])V{i;[L/z])

(^ D rl;)[L/z] = i^[L/z]) D ii>[L/z])

{yx:a.tp)[L/z] = VXKT. (V'[L/z])

{3x:a.ip)[L/z] = 3x:a.{ij[L/z])

Section 4-1' Signatures, connectives and quantifiers 227

where in the latter two cases it is assumed tha t the variable x is different
from z and does not occur free in L. By renaming of bound variables, this can
always be assured.

In what we call (full) first order logic all of the above connectives and
quantifiers can be used. We mention two interesting subsystems explicitly:

regular logic only has = , A, T , 3

coherent logic only has = : , A , T , V , ± , 3 .

The expressions 'regular' and 'coherent' will also be used for propositions
in these logics (which may contain only the above symbols as connectives).
We note tha t classical coherent logic—with a negation operation (f i-^ ->(f>
behaving as in the reductio ad ahsurdum rule—is the same as classical (full)
first order logic, since in classical coherent logic D and V are definable. So a
restriction to coherent logic is only meaningful in a constructive setting.

4 .1 .3 . Def in i t ion , (i) A first order spec i f i cat ion is a triple (E , n , ^)
where (S , n) is a signature with predicates and ^ is a collection of ax ioms;
the latter are sequents in the language of (S , 11).

(ii) A regular (or coherent) specification has regular (or coherent) propo-
sitions as axioms.

4.1 .4 . Def in i t ion , (i) A first order specification (E , n , ^) is a first order
t h e o r y if the collection A of axioms is closed under derivability. Every such
specification evidently determines a theory lli{T>, 11, A) which can be obtained
by closing A under derivability.

(ii) A morphisHi of first order spec i f i cat ions (S , n , ^) -^ {Y,',11',A')
is a morphism </>: (E, 11) -^ (E ' , 11') of signatures with predicates such tha t for
each sequent

r | e \-x
in A, one has tha t the sequent obtained by (/)-translation

0(r) I < (̂e) h 0(x)

is in 7 7 i (E ' , n ' , ^ ') . This yields a category FoSpec .
Similar definitions can be given for regular and coherent signatures.

4.1 .5 . R e m a r k . Earlier we have been careful in distinguishing equality in
internal (propositional, in the logic of a fibration) and external (in the base
category) form. Axioms, as described in the previous definition, can only cap-
ture internal equations. If we wish to have external equations in our logic,
then we have to add these explicitly as an additional set of (algebraic) equa-
tions, like in Definition 3.2.5 (i). In general, we shall not do so, except when
reconstructing a fibration from its internal logic, see Section 4.3 (notably in

228 Chapter 4- First order predicate logic

Definition 4.3.5). A morphism preserving the structure of such extended spec-
ifications is a morphism as in (ii) above, which is additionally a morphism of
algebraic specifications, as in Definition 3.2.6.

In the remainder of this section, we shall reformulate the rules for = , 3
and V in Figure 4.1 in order to make them more amenable to a categorical
description in the next section. First we take a closer look at the last four rules
on equality in Figure 4.1. We show that replacement rule from equational logic,
denoted as (EL-R) for convenience, and the replacement rule from predicate
logic, written as (PL-R), are of equal strength. This shows that there is no
omission in the list of rules in Figure 4.1.

4.1.6. Lemma. The replacement rule from equational logic (see Section 3.2),

F i e h M = ^ M' V.x'.ah N:T
— ; (EL-R)

F I e h N[Mlx] =r N[M'/x]

is a consequence of the replacement rule from predicate logic

T\Q b M =a M' F | e h ip[M/x]
: (PL-R)

F I e h ip[M'lx]
as given in Figure 4'F In the reverse direction, the rule (PL-R) restricted to
equations follows from the rule EL-R. Here we assume reflexivity, symmetry
and transitivity of equality in the background.
Proof. Assume the rule (PL-R) and let (p be the equation N[M/x] —j N.
Notice that the variable x occurs free in (p, only in N on the right hand side.
By reflexivity one has

F I e h p[Mlx]

and thus by (EL-R)
F I 0 h p>[M'lx]

i.e.
F | e \- N[M/x]=r N[M'/x].

In the reverse direction, assume (EL-R). Let (p be an equation Â =r N'.
Then, the assumption

F I e f- N[M/x] =r N'[M/x]

together with the two conclusions of (EL-R), applied to N and to TV',

F I 0 h N[M/x] ^r N[M'/x] and F | 0 h N'[M/x] =r N'[M'/x]

yield by symmetry and transitivity the required result:

F I 0 h N[M'/x] =r N'[M'/x]. D

Section 4-1- Signatures, connectives and quantifiers 229

We continue with an adaptat ion of Lemma 3.2.3 to first order logic. It en-
ables us to use Lawvere's description of equality as left adjoints to contraction
functors also in predicate logic; it will be used in the next section.

4.1 .7 . L e m m a . The last four rules in Figure 4-1 about equality are of the
same strength as the (double) rule

Lawvere equa l i ty

T,x:a\e ^ ^[x/y]
— (Eq-mate)

V,x\(T,y\a\Q,x -a y ^ '^

involving a proposition ^p in type context T,x:a,y:a.

The extended "Frobenius" version of this result (involving a proposition
context of the form Q[x/y] instead of 6 above the lines), as in Lemma 3.2.4
is left to the reader in Exercise 4.1.6.

Proof. Let us split this rule of Lawvere's in (Eq-TD), for top-down, and (Eq-
BU), for bot tom-up. Assuming this rule, we obtain reflexivity, symmetry and
transitivity as in the proof of Lemma 3.2.3. The replacement rule is obtained
as follows. For a proposition ip with free variables declared in T,x:a, put
(p' = (p[y/x]. Then

T,x:a\e,ip \- p'[x/y]
(E q - i D j

T,x\a,y:a\e,(p,x =a y ^ p' , ^ ^
(subst)

F I e h p[M/x] F I e , <p[M/x],M =a M' h p[M'lx]
(cut)

F I 0 I- M =^ M ' F I 0 , M =^ M ' h p[M'lx]
(cut)

F I 0 h ip[M'/x]

In the reverse direction, assuming these last four equality rules from Fig-
ure 4 .1 , one obtains (Eq-BU) simply by substituting x for y and using re-
flexivity (as in the proof of Lemma 3.2.3). We shall derive (Eq-TD) from
replacement.

T,x:a\Q h p[x/y\

F, ar: (7, y: (7 I 0 , X =cT y \- x :=a y r , x\(T,y\a\Q,x=a y ^ ^[^ly]

F, x\a,y:a\Q,x=^ y ^ ^[y/y] U

The next result paves the way for a categorical characterisation of existential
and universal quantification in terms of left and right adjoints to weakening
functors adding a dummy assumption to the type context, see Example 3.1.1.

230 Chapter 4- First order predicate logic

4.1.8. Lemma. The rules for existential 3 and universal V quantification in
Figure 4-^ (^^^ equivalently be described as the following two (double) rules.

V\Q,3x:a.i)h if T | 6 , ^ h V^: cr. V̂
: (3-mate) : (V-mate)

These rules express that 3 is left adjoint and V is right adjoint to weakening
(r h X- Prop) y^ (r, x\a\- X' Prop).

Proof. We shall do the case of 3, since V is much simpler. The rules in the
proposition follow from the rules for 3 in Figure 4.1, since

V^x'.a \- x\(T V.x'.cr \ip \- V^[x/x] F | 6 , 3x: cip h (f

T,x:a \ tp h 3x: a.tp T,x:a \ 0 , 3x: a.ip b- (p

T,x:a \Q,xp \- (f

and

F I 3x: a.ip \- 3x: a.tp TjX:a\Q,ij;\-(p

T\e,3x:a.^p[-<p

Conversely, assuming the above (3-mate) rule, we can derive the two rules
for 3 in Figure 4.1.

F I 0 , 3x: (T.tp \- 3x: a. ip
(3-mate)

F h M: (7 T,x:a\e,ip h3x:a.7p
(subst)

F I 0 h iP[M/x] F I 0 , JP[M/X] \-3x:a.xP

F | 0 \-3x:a.jp

and

T,x:a\ E,i} h x

F I 0 h 3x: a.ip T | H, 3a:: cr. -0 h x
(3-mate)

F | 0 , H , ^ h x •

We close this section by examining a subtle point in many-typed predicate
logic which is related to "empty types". We recall from Section 3.1 that the
rule

strengthening

T,x:a\(fu..,,ipn H V̂
(it X not tree m (fi,... ,(fn,V)

Section 4-^' Signatures, connectives and quantifiers 231

will not be assumed. It may fail in models where the interpretation of a is
empty, see Exercise 3.1.3. This rule can be used without harm in single-typed
logic because there, one has the common requirement that the interpretation
of the single type is non-empty. This point often leads to confusion. For ex-
ample in [102, 11.8], one finds the following reasoning against the rule Modus
Ponens (or, D-elimination): for a variable x\a both

[^x —a x) D {3x\ a. X —(J x) and x —a x

hold if the interpretation of cr is empty; but then

3x: (T.x —a X

does not hold. If we recast this line of thought in our notation with explicit
type contexts of term variables, it becomes clear that there is an illegal use of
the above strengthening rule involved, and that there is nothing wrong with
implication.

x:cF \- x:(T x\ a \ X —(J X \- X =a X

x\(T \ X —(J X h 3x\ (T.x —a X x: (T \- x: CF
- (refl)

x: (J I 0 h (x = ^ a:) D {3x: a.x —^ x) x: a \ il^ \- x —,

x: a \ ^ h 3x: a, x —^ x
^ ,^ , -, (strengthening!)
0 I 0 \- 3x:a.x =a X

This point is also stressed in [186, top of p. 131].

232 Chapter 4- First order predicate logic

Exercises

4.1.1. Consider the rules for the connectives A of conjunction and V of disjunction.
Show that A and V distribute over each other, i.e, that the following two
equivalences are derivable.

r I 0 h v? A (0 V x)DC(v? A 0) V ((^ A x)

r I 0 h (̂ V (0 A x)3C(v:> V ^) A (v? V x) .

See also Exercise 2.6.2.
4.1.2. In the same vain, assume x does not occur free in cp; derive

(i) r I 0 h 3x: a. (ip A ip)jc{^ A {3x: a. ip));
(ii) r I 0 h V:r: 0-. (V̂ D ^)J0{(3x: a. ^) D c^).
[Related to (ii) is Exercise 1.9.7.]

4.1.3. Show that the reductio ad absurdum rule is equivalent to the excluded
middle (or tertium non datur) rule:

r h (/?: Prop

r 10 h V? V -IV?

4.1.4. Assume a proposition x:a \- ip: Prop. Is it possible to derive

0 | 0 h (ixia.ip) D {3x:a.ip) ?

4.1.5. Prove Lemma 4.1.8 for V.
4.1.6. Give a strengthened, "Frobenius" version of the rule in Lemma 4.1.7 in

which the variable y is also allowed to occur in the proposition context 0
(as in Lemma 3.2.4).

4.1.7. A ring is called local if it has a unique maximal ideal. Show that a ring R
is local if and only if it satisfies the (coherent!) proposition

x: H I 0 h {{3y: /?. :r • y = 1) V (3y: R. {1 - x) - y = 1)).

[This is the standard example of a notion definable in coherent logic]

4.2 Fibrations for first order predicate logic

In the previous section the syntax of first order predicate logic was given—
and of the subsystems of regular logic (with = , A , T , 3) and coherent logic
(with ==, A, T , 3 , V, ±) . In this section we shall define appropriate fibrations
to captures such logics categorically. Further, we shall describe several stan-
dard examples of such fibred categories. These include the topological model
by Tarski, the realisability model by Kleene, and so-called Kripke models.

UFam(PN)
Among these, the 'realisability'fibration i incorporating Kleene's re-

alisability interpretation of constructive logic will play an important role in

Section 4-2: Fibrations for first order predicate logic 233

the sequel (in the construction of the effective topos). Also subobject fibra-
tions form important examples, but since they are rather special, they will be
investigated separately in the later Sections 4.4, 4.5 and 4.9.

The categorical structure used for the connectives and quantifiers can be
read off almost immediately from their rules—by keeping in mind the syn-

tactic fibrations ^ from Section 3.1 (built on top of a signature with

predicates (S ,n) with set of axioms A): the connectives T, A, ±, V, D corre-
spond to fibred finite products (T,A), coproducts (J-,V) and exponents D.
Equality = is described by fibred equality as in Section 3.4 (that is, by left
adjoints to contraction functors S*, using Lemma 4.1.7), and the quantifiers
3,V are described by simple coproducts and products (i.e. by left and right
adjoints to weakening functors TT* as in Lemma 4.1.8) from Section 1.9. We
thus come to the following definitions.

4.2.1. Definition, (i) A regular fibration is an Eq-fibration with simple
E

coproducts satisfying Frobenius. That is, iP is a regular fibration if
JB

• p is a fibred preorder with finite products in its base category B;
• p has fibred finite products (for T, A);
• p has fibred equality (Eq / j H rf(/, J)*) satisfying Frobenius (for =);
• p has simple coproducts (]J(/ j \ H TT} J) satisfying Frobenius (for 3).

(ii) A coherent fibration is a regular fibration which has fibred finite
coproducts (-L, V) which are fibrewise distributive, i.e. X A {Y \/ Z) = {X A
Y) V {X A Z) in each fibre. Thus each fibre is a (preorder) distributive lattice.

(iii) A first order fibration is a coherent fibration which is a fibred CCC
and has simple products W^^j jy

We recall from Definition 3.5.1 that Eq-fibrations are preordered. Hence
also regular, coherent and first order fibrations have preordered fibre cate-
gories. For a non-preordered version of a regular fibration, see [256]. There
are obvious "split" versions of the above notions of regular / coherent / first
order fibration, in which all of the relevant structure is split.

The rest of this section will be devoted to examples of the above kind of
fibred categories. Details of interpreting predicate logics in such fibrations may
be found in the next section, but it may be useful to have in mind when reading
the examples below that objects / of the base category are to be thought of
as type contexts (or as types), and objects X of the total category above
/ as predicates in context / . Validity of this predicate X corresponds to the
presence of an inequality T(/) < X (over /) , where T(/) is the terminal object
in the fibre over / . This view will be formalised in the 'internal language' of

234 Chapter 4- First order predicate logic

such a fibration towards the end of the next section.

4 .2 .2 . S y n t a c t i c e x a m p l e s . Let us fix a signature with predicates (E , n) ,
as introduced in (or before) Definition 4.1.1.

(i) Consider (X),n) with regular logic and assume a collection A of (reg-
£(E,n,>t)

ular) axioms. One can construct a (preorder) classifying fibration 4-

as in Section 3.1. The objects of the total category £ (E , n , ^) are type-
plus-proposition contexts (F | ^ i , . . . , (/?„). In the sequel we usually assume
finite conjunctions T ,A in our logic and so we may conveniently assume
this sequence of ^ ' s in (F | <^ i , . . . , ^n) to be of length one. A morphism
(F h (p\ Prop) -^ (A h ^ : Prop) is then a context morphism M : F -> A for
which one can derive F | </? h xp(M), using the sequents in A as axioms.

It is easy to see tha t the rules for T, A induce fibred finite products for

4- . As before, in Example 3.4.4 (iv), this fibration has equality satisfy-

ing Frobenius by the rules for = (as formulated suitably in Lemma 4.1.7). Sim-
ilarly, for simple coproducts we have to show tha t for contexts F, F ' G ff(S),
the reindexing functor TT* induced by the projection TT: (F , F ') -^ F has a left
adjoint. For convenience we assume T' tohe x:a of length one. This weakening
functor TT* then sends

F h ^ : Prop to F, x: cr h (p: Prop

by adding an extra hypothesis. Its left adjoint sends

F, x: cr h V': Prop to F h 3x: cr. ̂ : Prop.

The adjunction 3x:a. (—) H TT* requires a bijective correspondence

F I 3x: a.tp \- (p
(3-mate)

T^x:a \ tp h (fi

which follows from the reformulation of the 3-rules in Lemma 4.1.8. By Ex-
ercise 4.1.2 (i) these coproducts satisfy Frobenius. In the general case where
F ' = (xi : CTi,..., Xn'.o-n) need not be of length one, a left adjoint to TT* associ-
ated with the projection TT: (F , F ') -> F sends a proposition F, F ' h ip: Prop to
F h 3x i : tTi. • • -Bx^: cr„. ip: Prop. We conclude tha t the rules of regular logic

c{E,n,A)
make i into a regular fibration.

C£(E) ^
(ii) If one further adds finite disjunctions (-L,V) to the logic, then the fi-

c{E,n,A)
bration i has fibred finite coproducts. These are distributive over con-

a(E) ^
junctions by Exercise 4.1.1. Thus coherent logic leads to coherent classifying
fibrations.

Section 4-2' Fibrations for first order predicate logic 235

(iii) It will probably not come as a surprise anymore tha t full first order
logic (obtained by adding D and V) makes the syntactic fibration a first or-
der fibration. Implication yields fibred exponents and universal quantification
induces right adjoints to the weakening functors TT* mentioned in (i), which
send

T,x:a \- tp'.Prop to T \-\/x:a.ip:Prop.

The adjunction TT* H Va^icr. (—) involves the bijective correspondence

r I 9? h Vo?: a. ip
(V-mate)

T^x'.cr \ (f \- ip

which follows from the reformulation of the V-rules in Lemma 4.1.8.

4 .2 .3 . Set t h e o r e t i c e x a m p l e . Let (S , n) be a signature with predicates.
A (set theore t i c) m o d e l of (D,n)—or , a (D, n)-algebra—consis ts of

(a) a collection {Aa)aem ^^ 'carrier' sets, indexed by the underlying set
|E | of types of the signature;

(b) for each function symbol F : c r i , . . . , cr̂ —> ^n-f i in ^ a function

IF} ,
A(j^ X • • • X AQ^ >• A(j^^^

(c) for each predicate symbol P : c r i , . . . , cr„ in 11 a subset

J P J C — ^ A , , X •••X A^„.

Note that (a)-|-(b) constitute a E-algebra as described in Section 1.6.
For such an algebra {[Aa), I —I, [[— II) we construct a first order fibration.

Let A be the base category with

o b j e c t s sequences (CTI, . . . , or„) of types <TJ E | E | .

m o r p h i s m s (cri,. . ., cr„) -^ (r i , . . . , r ^) are m-tuples (/ i , . . . , /m) of
functions fi: A^^ x • • • x A^^ -> Ar,.

We leave it to the reader to verify that A is a category with finite products.
An indexed category A^^ —> Cat is obtained by

(cTi, . . . , cr„) h-> the power poset (^(^4^^ x • • • x Aa^)^ C)

/ = (/ i) • • • 5 /m) •-> the functor /* sending

Y^{x\{h{x),...Jm{x))eY}.

Applying the Grothendieck construction to this indexed category yields a
split fibration over A. The total category of this fibration has as objects
pairs consisting of a sequence (cr^, . . . , cr„) of types together with a predicate
X C Aaj^ X • • • X Aa^ on the associated product of carriers. And morphisms

236 Chapter 4' First order predicate logic

((o - i , . . . , c r „) ,X) -^ ((r i , . . . , r ^) , y) consist of an m-tuple of (/ i , . . . , / ^) of
functions ff.Aa^ x • • • x Aa^ —)• ^ r , satisfying {fi{x),..., fm{x)) G Y for all

We claim that this is a first order fibration. The fibre categories P (^ a i x
• • • X Aa^) are Boolean algebras. Hence we have T , A, ± , V and D (and also
reductio ad ahsurdum as in classical logic). Quantification along the projection
7r:((Ti,.. . ,a-n,cr„+i) -> (c r i , . . . , (Jn) is given by

X I—)- {£ E A^i X • • • X yl^^ I for some y G Acr^+j, (x, y) G X }

X M^ { f G v4^i X • • • X yia J for all y G A^^+i, (? , y) G X } .

And equality along (J: (c r i , . . . , o-^, o-„+i) -> ((TI, . . . , (7n, cr„+i, cr„+i) is

X i-> {(£, 2/, z) I (f, 2/) G X and y = z } .

4 .2 .4 . Kr ipke m o d e l e x a m p l e . For a signature with predicates (S , n)
there is a category A lg (E , 11) of (E, n)-algebras (as in the previous example).
Morphisms H:{[A,),l-% [[- 1) -^ ((^ a) , I " ! , I " !) in A l g (E , n) are col-
lections of functions H — [Ha'-Aa -^ 5^)<7e|s| between the carrier sets which
commute with the interpretations of function symbols F\ c r i , . . . ,(Tn —> cTn+i
and predicate symbols P:

A<7j X • • • X A.Q
Ha^ X '" X Ha

H<Jn + l

Ba, X . . . X Ba^

IP¥

Aai X . . . X Acr^
Ha,X"'X Ha„

iPf

Ba, X . . . X Ba^

A Kr ipke m o d e l for (E, 11) consists of an index poset I = (I , <) together
with a functor

I — - A i g (s , n)

It involves for each element i G I a (E, ll)-algebra

/c(i) = ((x;(f).),ii-i(i),i-i(i))

Section 4•2' Fibrations for first order predicate logic 237

and for each pair i, j G I with i < j ^ morphism JC{ij) of (E, n)-algebras. The
latter consists of a collection oiK[ij) = {lC{ij)a''IC{i)a -^ I^U)^) of functions
commuting with the interpretations of function and predicate symbols, like
the iJa's above. One thinks of the elements of! as stages in (branching) time
and of the algebra IC{i) as the state of knowledge at stage i G I.

In order to construct a first order fibration from such a /C we need some
notation: for a sequence (cri , . . . , cr„) of types (from E), there is a functor
/C(cri,.. .,cr„):E -^ Sets given by

f i ^ IC{i)ar X ••• X IC{i)ar.

\ i < j ^ K.{ij)a, X • • • X IC{ij)a^-

Application of the morphism part of this functor will be abbreviated as follows.
For i, j G I with i < j and :? G /C(cri,..., cr„)(i) we write

(Sy for (A:(ij)aJ;ri),...,A:(ij%Jarn)) G A:((TI, . . . , cr„)(i).

A collection of subsets [Xi C /C(o-i,..., an){i))-^j is called monotone if

i < j and x G Xi implies [xY G Xj.

Notice that for a predicate symbol P : cri , . . . , cr„ in 11, the interpretations of
P in the /C(i)'s,

IPW) ^ ^ (0 ^ 1 X ••• X IC{i)ar, = / C (c r i , . . . , c r „) (i)

form such a monotone collection, because the /C(ij)'s, for i < j , are morphisms
of (E,n)-algebras.

In [182] Kripke showed how to interpret intuitionistic (or constructive) pred-
icate logic in such an I-indexed collection /C:I —)• Alg(E,ll) of models of
classical first order logic. A proposition T h (p: Prop—say with type context
r = xi: CTi,..., ;r„: cr^—is interpreted as a monotone collection of subsets

[[r h VP: PropKO C /C(o-i,..., an){i) for i G L

The main clauses of Kripke's interpretation are:

[[r h ^ V V ^ : P r o p]] (i) = [[r h (^ : P r o p]] (2) U [[r h V^:PropI](i)

IT \-^At'Propl{i) = [[r hv:?:Prop]](i)n[[r h V^:Prop]l(i)

IT \- <pDjp: Prop]l(i) =^ {x \ for all j > i, (Sy G [[T h ^: Prop]](j)

implies {xY G [[r h V̂ : Prop]](j)}

[[r h 3^:cr.-0: Prop]](i) = {x | for some t/G/C(0a5

(£,y)G[[r ,y: t r h^:Prop]l(i)}

IT h yy.a.i;: Prop]](z) = {x \ for all j > i and y G IC{j)a,

{{xy,y)elT,y:ahiP:Propl{j)}.

238 Chapter 4- First order predicate logic

Notice that knowledge whether a proposition involving D or V holds at stage
i, involves knowledge about future stages j > i. Indeed, these connectives have
far-reaching consequences.

We shall construct a first order fibration (from /C) in which these clauses
hold. As base category IB we take

objects sequences of types (cri , . . . , cr„).

morphisms (cri , . . . , an) -> (TI , . . . , r^) are natural transformations a
between the corresponding functors, as in:

Sets

/C(r i , . . . , r ^)

It is easy to verify that B is a category with finite products. For each sequence
((Ji , . . . , cr„) G B there is a poset fibre category with

objects monotone collections (Xf C IC{ai,..., cr„)(2)) .̂ j .

morphisms {Xi)i^i —)• {Yi)i^i exist if and only if Xf C Yj for each i G I.

Every morphism a: (cri, . . . , cr„) -> (r i , . . . , r^) in B determines a reindexing
functor Of* between the fibres, by pointwise inverse image:

{Xi C/C(ri, . . . ,r^)(i)).^jh-> ({y G/C(cri,...,(7n)(0 | ai{y) e Xi}).^^.

By naturality of a, this new collection is monotone again. Our claim is that
the result is a first order fibration.

Each fibre category—say over (cri, . . . , cr„)—is a Hey ting algebra with struc-
ture

±{i) = 0
T(i) = IC{<Ti,...,(T„)(i)

(XVY){i) = X{i)UY(i)

(X AY)(i) = X(i)nY{i)

(XDY)(i) = {x £lC(au...,<rn)ii)\ioT all j>i,

(xy € Xj implies {xY £Yj}.
We check that X D Y is an exponent, i.e. that there is a bijective corre-

spondence
(ZAX){i) C y(i) for all i € I

Z(i) C {X DY)(i) for all «G II

For the implication downwards, assume x £ Z(i) and for some j > i, (xy G
X{j). Then by monotony of Z, (Sy G Z{j) and thus {Sy € Z{j)r\X{j) C

Section 4-^' Fihrations for first order predicate logic 239

Y{j). Hence x e {X D Y){i). Upwards, assume x G Z{i)nX{i). Then x G Z{i)
and thus x E {X D Y){i). Since i > i and {xY — x £ X[i) one obtains
X G y{i) as required.

Quantification along a projection TT: (cri, . . . , cr„, (7„_|-i) —> ((TI, . . . , (T„) takes
the following form.

lj(y)(i) - {fG/c(t7i,...,(7n)(oi

for some t/ G 1C{i)a^^^, (^, y) G Y{i)]

Y[[Y)[i) = {xe^au.•.,<Tn){i)\

for all j > i and y G /C0%,^, , ((^^ , 2/) G y (i) } .

Equality is left as an exercise below.

4.2.5. Order theoretic examples. Let ^ be a frame, i.e. a poset with
finite meets and infinite joins such that these joins distribute over meets:
(Vi ^i) A 6 = Vf(^« A 6). A frame is sometimes called a complete Heyt-
ing algebra or a locale. The prime examples of such a structure are posets
{0{X), C) of open subsets of a topological space X. For such a frame A, the

Fam(A)
family fibration i is a coherent fibration: the finite meets and joins in

Sets
A induce fibred finite products and coproducts; arbitrary joins \/ in A induce
simple coproducts, which satisfy Frobenius by the above distribution, see Ex-
ercise 1.9.4. Finally, the bottom element leads to equality satisfying Frobenius,
see Example 3.4.4 (iii).

Finite meets and infinite joins form the essential structure of frames: mor-
phisms of frames preserve these by definition. But in a frame one can define
infinite meets by

A a, = \/{b I b is lower bound of («»)} = \/{b \ Vi. b < a,}

and implication by

a D 6 = \J{c I a Ac < 6}.

Fam(A)
Thus i is actually a first order fibration.

Sets -̂

The special case where A is the frame 0{X) of opens of a topological space
X captures Tarski's [328] interpretation of (constructive) first order logic in
the opens of a topological space X, formulated in the 1930s. We mention the
main points. For opens {U{i,j)){ij)£ixJ ^^^ has

coproduct: M C (̂ij) j and product: I In t (M [^(fj))

V^-^ / iei V ^^-^ / ia

240 Chapter 4- First order predicate logic

where Int(—) is the interior operation. (If J = 0 we take this intersection to
heX.)

For /-indexed collections (Ui)i^j and {Vi)i^i one has as implication over / ,
the /-indexed implication in the Heyting algebra 0{X):

(Ui)ia D iVi)ia = (lnt((X - Ui) U Vi)).^j.

For more information, see [335, Chapter 9] or [281].

4.2.6. Realisability example. Under constructive reading, a proof of a
proposition consists of a method of establishing it. In 1945 Kleene [178]
gave the so-called realisability interpretation of constructive logic (see
also [333, 23, 335]), in which such a proof is understood as a code of a partial
recursive function. Kleene introduced a relation nr(f, to be read as 'n G N
realises proposition <p\ That is, n is a code for a partial recursive function
m ^ n m which is a method for establishing (p. Kleene stipulated,

nr(ipAip) O- n is (recursive) pair (ni,n2) with nir(p and n2rip

/ V /\ • / • \ • / \ -.1 (n2rip if n i = 0
nr[ip\/%)) ^ n is (recursive) pair (n 1,712> with < , .̂

^^ ^ ̂ ^ / r- \ 7 / ĵ n2rip if ni = 1
nv{(p D il)) ^ for each m with m r ^ one has [n • m)rij;.

See e.g. [335, 23] for more information on realisability. In order to deal with
first order logic, we shall describe a set-indexed version of this interpretation.
We write PN for the powerset of N. For an arbitrary set / , consider the set
of functions (PN)^ from / to PN. Elements of (PN)^ are also called non-
standard predicates on / . Such a predicate X G (PN)^ is called valid
if

Thus X is valid if there is a single natural number which is member of all
Xi's.

In line with Kleene's stipulations, put for X,Y E (PN)^,

(X AY){i) = {(n,m) I n G X (i) and m G y (i) }

(XyY){i) = {{0,n)\neX(i)}[j{{l,m)\meY(i)}

{XDY){i) = {n I for each m G X (i) , n - m G y (0 } .

The latter gives rise to a preorder on (PN)^ by

X<Y ^ m X (z) D y (i) j # 0 .

Section 4-2: Fibrations for first order predicate logic 241

Notice that this ordering is not pointwise but uniform: a single code must
be member of every X{i) D Y{i). For more information on this ordering, see
Exercise 4.2.5.

There is a bottom element ± = J î G / . 0 and a top element T = J î G / . N
in {PNy. In this way (PN, <) becomes a Heyting pre-algebra (or a preorder
bicartesian closed category).

The quantifiers are described as follows. For a predicate X G (PN)^^*^ one
takes

Uii,j)ixm = u xiij), n(/,j) WW = n (̂*'-?')
where we understand the latter intersection to be N in case J is empty.

The assignment / y-^ (PN)^ extends to a functor (or split indexed category)
Sets^P -^ Cat with reindexing by pre-composition. The fibration resulting
from this indexed category (via the Grothendieck construction) will be writ-

UFam(PN)
ten as 4- in which the letter 'U' in 'UFam' emphasises the uniform

Sets
character of vertical maps. This will be called the realisability fibration. In
Example 5.3.4 in the next chapter it will be shown how, more generally, one
can construct a similar fibration from a 'partial combinatory algebra' (like the
Kleene structure (N, •) used here).

UFam(PN)
We claim that i is a first order fibration. In fact all the relevant

Sets

structure, except equality, has already been described above. Equality is given
as follows. For X G (PN)^^"^ put. E,(x),.„,/,=(f-̂)';i=
4.2.7. Recursive enumerability example. Recall that a relation X C N"
is recursively enumerable ('r.e.') if and only if there is a partial recursive func-
tion / : N ^ —̂ N such that x £ X ^ f{x) I (i.e. f(x) is defined precisely on
X E: X); also that such r.e. relations on N" are closed under intersection Pi and
union U. Hence r.e. relations on N" ordered by inclusion form a distributive
lattice (with bottom 0 and top N"). Further, for an r.e. relation Y C N""*"̂
the set

{;? G N" I for some y G N, (£, y) G Y}

is r.e. again. All this suggests there is a coherent fibration (with T ,A,± ,V
and 3, =) involved.

We first form a base category P R of partial recursive functions: objects are
n G N and morphisms m ^ n are n-tuples {fi, • •., fn) of partial recursive
functions /,:N"^ —̂ M. Composition is done in the obvious way. One has that
0 G P R is terminal and that n -\- m is the product of n and m.

242 Chapter 4- First order predicate logic

The next step is to define an indexed category P R ° P -> Cat. We assign
to n the poset of r.e. relations on M", ordered by inclusion. Reindexing along
(/i 5 • • • 5 /n)- ?^ -^ ^ in P R is done by substitution:

X C N" Ĥ {y G N ^ I (/ i (^ , . . . , fniy)) eX}C N - .

Obviously, the relation on the right hand side is r.e. again. The resulting
RE

fibration will be written as -f- . The above ingredients yield fibred finite
products and coproducts and simple coproducts. Equality is given as follows.
For X C N"+^ put,

Eq(X) = {{x,y,z) G N " + - + ^ | (?, y) G X and y = z}.
RE

Since the base category P R of this fibration ^ is an 'algebraic theory' (this
means that the objects are of the form 1" for n G N) one obtains a structure
in which one can interpret single-typed coherent logic: the object n in the base
category stands for the type context in which n term variables (of this single
type) are declared.

We close this section by sketching how so-called cylindric algebras give
rise to (single-typed, classical) first order fibrations. These cylindric algebras
have been introduced by Tarski (see [121]) as algebraisations of predicate
logic. They essentially consist of a Boolean algebra with distinguished opera-
tions (the Cn and dn,m below) for existential quantification and equality. This
Boolean algebra is to be thought of as the collection of all propositions (with
free term variables). What is lacking in this approach is the presence of sepa-
rate structures for each type context (which is such a prominent aspect of the
indexed/fibred approach). We will briefly discuss a way to construct a first
order fibration from a cylindric algebra.

4.2.8. Cylindric algebra example . A cylindric algebra ("of dimension
u;") consists of a Boolean algebra A = {A, ± , T, A, V) together with cylindri-
fication operations Cn^A-^A and diagonal elements dn,m ^ A, for n, m G N,
satisfying the following seven postulates.

(i) Cn± = L;
(ii) X < CnX\

(iii) Cn{x ACnV) = CnX A CnV,

(IVj CnCfnX = Cfn^^n^]

(v) rf„,n == T;
(vi) dn,k = Cm(dn,m^dm,k), for Ti ^i m,k\

(vii) Cn{dn,m A x) A Cn(dn,m A -^x) = _L, for Tl ^ 171.

The intuition that one should keep in mind is that c„x is the proposition
3vn.x{vn) and that dn,m is the proposition Vn = Vm, assuming we have a
countable collection (vn) of term variables (corresponding to dimension u).

Section 4-2: Fibrations for first order predicate logic , 243

An arbitrary set U gives rise to a cylindric algebra P(U^) consisting of
subsets a of functions <^:N -> U, with obvious Boolean algebra structure, and
with cylindrification and diagonalisation operations:

^n(a) = [JxeuM^/^] k ^ « } . dn,m = W £ U^ \ ^(u) = (p{m)}

where (f[x/n] is the function which is x on n, and (p{m) on m ^ n. See [121]
for more information.

In order to turn a cylindric algebra A as above into a fibration, we first
need a base category B. We take

o b j e c t s natural numbers n G N. For such an object n E B we write
[n] for the finite set { 0 , 1 , . . . , n — 1} of numbers below n
(so tha t [0] = 0).

m o r p h i s m s n ^ m are functions [m] -^ [n]. Identities and composites
are as for functions, except tha t the order is reversed.

This category B has finite products: 0 G B is terminal object, and n + m G B
is the Cartesian product of n , m G B: the projections TT: n-h m -^ n and
TT': 77 -f- m —> m are given on i G [n] — { 0 , . . . , n — 1} and j G [m] = { 0 , . . . , m —
1} by 7r(i) = i and 7r'(j) = n -h j ; and the pairing of /:/?—> n and g:k—^m
as a function {f,g)' [n -\- m] —)- [k] is {f,g){i)'is given by: f(i) if i < n, and
g{i — n) otherwise. Notice that a diagonal J: n -h m ^ (n + m) -h m in B, as a
function S: [n + 2m] -^ [n -f m] is defined as: S{i) is i if i < n + m, and i — m
otherwise.

The next step is put an appropriate indexed category A:W^ -> Cat on B
with Boolean algebras as fibres. To this end we identify sub-Boolean algebras
A{n) ^^ A^ meant as fibres, as follows.

A{n) = {x E: A\ Vm > n. CmX = x}.

(We thus only consider the "finitary" part of the cylindric algebra A.) It
follows from the above postulates that the Boolean algebra structure from A
restricts to A{n). The main difficulty is to construct for a morphism f.n^m
in B a substitution functor / * : A[m) -^ A{n). One can do this by first defining
p-. A-^ Aon A^ and by subsequently checking tha t / * restricts appropriately.
In the theory of cylindric algebras there are substi tution operators s\: A —>• ^4,
for Ar, ^ G N, defined as

k ̂ _ } ^ i f A r = ^
Ck{dk,i A x) otherwise

Sf X

It may be understood as "substitution of variable vi for Vk^\ These functions
s^ will be used to describe categorical substi tution / * , but they cannot be
used directly, because we need simultaneous substi tution, in which unintended

244 Chapter 4- First order predicate logic

overwrites should be avoided. The standard trick to avoid such clashes is to
use a "parking area": let k = max{n,m}; the area above k can safely be used
for parking, so that for i < m

4(,)X = x[f{i)/i] = x[k+i/i][f{i)/k + i] = s;+;4+i^-

In this way we can define for x E A

J \^)-^f(0) ^f{m-l)^k" -Sfc+m-l^-

(Any k > max{n,m} yields the same outcome.) The verifications that /*
restricts to A{m) -> A{n) and preserves the Boolean algebra structure, and
additionally, that the assignment f ^ f* preserves identities and composition,
are quite involved. We are especially interested in the cases where / is a
projection Trin + m ^ n o r a diagonal 8:n-\- m -^ n -\- 2m. In that case one
can calculate that

7r'(x) = x and 5*(x) = s^^"^ • • • slX'rT--,'x.

Left adjoints JJ/^ ^x and Eq(„^^) to these TT* and 8* are obtained as:

LI(n ,m)(^) ~ <̂n • • - C n + m - l ^

E q (n , m) (^) — ^ A c/n^„+^ A • • • A C ? n + m - l , n + 2 m - l .

(A right adjoint to TT* is then induced because we are in a Boolean situation.)

We check the adjunction correspondence LJ(„^)(a:) < y ^ 2̂ < 7r*(y), for

y E A{n) and z E A{n + 2m): if LJ(„ ,„)(ic) < y, then x < Cn " -Cn+m-ix =

U{n,m){^) <y = ^*iy)' For the converse, if ^ < ir* {y) = y, then LI(n,m)(^) =

Cn ' • 'Cn+m-i^ < Cn " ' Cn+m-iy = 2/, siuce y E A{n), SO Cn+iy = y.

Exercises

4.2.1. Check that the coproducts in Example 4.2.2 satisfy Beck-Che valley.
4.2.2. In the same Example 4.2.2 check that the weakening functor TT* associated

with a (general) projection n: (F, T') -> F, with F' not necessarily of length
one, has both a left and a right adjoint.

4.2.3. Consider the fibration constructed in Example 4.2.4 from a Kripke model
/C:I-> A lg (E ,n) .
(i) Prove that] J (y) and f | (^) ^re monotone collections (for Y mono-

tone),
(ii) Establish the bijective correspondence

TT*{X){i) C Y{i) for all i £l

X{i) C U{Y){i) for all i E I

which produces the adjunction required for simple products.

Section 4-3: Fibrations for first order predicate logic 245

(iii) Define equality.
(iv) Check that each (E, n)-algebra forms a Kripke model 1 —)• Alg(E,II)

and that the fibration associated with this Kripke model (as in Exam-
ple 4.2.4) is the same as the fibration associated with the algebra (as
in Example 4.2.3).

4.2.4. Consider a fibration with simple coproducts satisfying Frobenius. Prove
that for objects X over IxJ and Y over / x K there is a vertical isomorphism

Uu,J.K) ((id X T-)(X) X (id X ;r')-(V-)) - U , ; , . , (^) x U, . ,A- , (n

over / . Explain the logical meaning of this isomorphism.
4.2.5. This exercise shows that the order in the fibres (PN)^ of the realisability

UFam(PN)
fibration i is not the pointwise order. We consider 1 = 2 = {0,1}.

Fix an arbitrary subset yl C N, and consider the following two predicates
X,Y:2z^ PN.

^ . . / N\A if n = 0 ^ . . / {0} if n = 0

(i) Check that X(0) < 7(0) and X(l) < y (l) , so that X is pointwise less
than y .

(ii) Prove that ifX<Y, say via e G {X{0) D Y{0)) H (X(l) D Y{1)), then
e yields a decision code for A. But 4̂ C N is arbitrary, so we may take
A to be the halting set.

4.2.6. Check that for a proposition ^ in predicate logic, the result (^[ve/vk] of
substituting a term variable vi for a diff'erent variable Vk is logically equiv-
alent to the proposition 3vk. {vk = ViA<^). This a logical justification of the
definition of the substitution operation 5^ in Example 4.2.8.

4.2.7. In which of the examples in this section does one have classical logic? That
is, -i-iX < A", where negation "•(—) is (—) D ± , so that each fibre is a
Boolean algebra.

E

4.2.8. A coherent (or first order) fibration -jrP will be called Boolean if for each
A G E above / G B there is a complement X' above / with verticcil
isomorphisms X A X' = ± and A V A ' = T. In that case, each fibre is a
Boolean pre-algebra, see e.g. Example 4.2.3.
(i) Show that such a complement X' is unique up-to-isomorphism.
Suppose now p is Boolean and choose for each A G E such a complement
and write it as -iX.

(ii) Show that -> forms a functor Ej^ -^ E/ , which commutes with substi-
tution.

(iii) Prove that a Boolean coherent fibration is already a (Boolean) first
order fibration.

246 Chapter 4- First order predicate logic

4.3 Functorial interpretation and internal language

In the previous section we introduced appropriate fibrations for predicate logic
and listed a series of examples. Here we turn to the (functorial) interpretation
of predicate logics (as described in Section 4.1) in such fibrations. It leads to
the concept of the internal language, which gives us a convenient means to
reason directly in such fibrations, as will be shown in several examples.

We start with validity in a fibration, as first described in Definition 3.5.3
for equations. Here it will be extended to arbitrary predicates. Let therefore
(E,n) be a signature with predicates. Consider a situation

E

P

ff(E) —

where p is a preorder fibration with finite products both fibrewise and in its
base category, and where A^ is a (functorial) model of S in B. A model of

E

(S ,n) in jrP consists of such a model A^ of E in the base category B of p
together with for each predicate symbol P : cri , . . . , (T„ in H , a predicate object

J\f(P)eE above M{xi:ai,... ,Xn:(Tn) = M{(TI) x • - - x M{an) £M.

Such a model of (E, H) in p can be identified with a morphism in the category
Fib of fibrations,

£(E,n) ^ E

P

ff(E)
M

£(s,n)
where 4- is the syntactically constructed classifying fibration from Sec-
tion 3.1, which has only predicates from H as (basic) propositions. This is
because the only rules that can be used in this restricted logic are the context
rules from Section 3.1 (which are unaffected by the presence of the atomic
predicates in H). And these context rules are sound, as we already saw in
Lemma 3.5.6. Like in Example 4.2.2 we shall use finite conjunctions (T,A)
and logical contexts of length one in this classifying fibration.

Assume now that p is a regular fibration. Then one can extend the above
interpretation Af to propositions with =, T, A, 3. In a straightforward way one

Section 4-3: Functorial interpretation and internal language 247

puts

A^(r f - M = ^ M':Prop) = Eq{M{M),M{M'))

(where Eq is as in 3.4.2)

7V(r h T : Prop) = T

Af{T \- ipA^j: Prop) = J\f{T h <f: Prop) A ^f{T h jp: Prop)

M{T h3x:a.^:Prop) = U(>i(r),>t(a)) (-^(r , ^: ^ ^ V̂ : Prop))

where]J/j jx is the coproduct functor E/xj —> E/, left adjoint to the weak-
ening functor TT} J .

We say that a sequent F | ^ h ^ holds or is valid in the above model
(A^,^ ') if

A^(r h (f: Prop) < Af{T h Jp: Prop)

in the fibre above M(T). And that a predicate T \- (p: Prop holds or is valid
in case the sequent F | T h ^ holds (i.e. in case T < Af{T h (f: Prop) over
MiT)).

As we have seen in Lemma 4.1.8, the rules for 3 can be cast in 'mate' form:

T \e,3x:a.(p[- xp

T,x:a \Q,(p \- tp

We shall write x for the finite conjunction of the propositions in 0 . Soundness
of this (double) rule then follows from the adjointness (U H TT*) with indices
wM(F) and M{a), together with the Frobenius condition:

F I x , 3x: a.ip \- ip is valid

<^ M{T h X A {3x: a. (f): Prop) < Af(T h V̂ : Prop)

<> J\f{T h x: Prop) A JJ A/'(r, x:a h ip: Prop) < A'(F h iP: Prop)

O U (7r*7V(F h x: Prop) A 7V(F, ̂ : <7 h v?: Prop)) < J\f{T h V̂ : Prop)

<^ A/'(F, x: cr h x: Prop) A ^ (F , x:a \- (p: Prop) < 7r*A/'(F h V̂ : Prop)

<J=> J V (F , J :̂ 0- h X A V:): Prop) < A/'(F, x:a \-jp: Prop)

<:> F, x: (T I X A V? h V̂ is valid.

E

The fact that the rules for 3 hold in such a model ^P can alternatively be
expressed by: the morphism {M^J\f) of fibrations (in the previous diagram)
preserves simple coproducts]J, where the coproducts in the classifying fibra-
tion arise as in Example 4.2.2.

Thus, given a set A of regular axioms for (E, 11), we can say that the above
model satisfies A if all sequents in A are validated. In that case one obtains

248 Chapter 4- First order predicate logic

a morphism of fibrations

£(E,n,^) ^E

«(E)
M

where the classifying fibration on the left captures the logic with axioms from
A, The total category >C(E,n,^) contains the propositions V \- (p: Prop that
can be formed from equations M —a M' and from atomic predicates from 11.
The fibred preorder structure (F h 9?: Prop) < (F h V̂ : Prop) in i : (E , n , ^)
over r E C^(E) is given by derivability of the sequence Y \ Lp V i^) from the
axioms in A.

In case this fibration p is coherent (i.e. additionally has distributive fibred
coproducts), then one can interpret finite disjunctions as

M{Y h 1 : Prop) =: 1

A ' (r V pyi)'. Prop) = A/'(r h p-. Prop) V A/'(r h V̂ : Prop).

And if p is a first order fibration, then one can interpret the remaining
logical operations of implication and universal quantification as

7V(r h V? D V̂ : Prop) = A^lF h p-. Prop) D A/'(r h V': Prop)

M{Y V^x:<T.t^?xo^) = n (> t (r) ,> t (a)) (-^ (r ,^ :^HV^:Prop)) .

Validity of the rules involved is left as an exercise below.
We see that the main aspect of Lawvere's functorial semantics can be used

also for the interpretation of predicate logic: namely that interpretation is
preservation of the relevant structure.

We proceed along (by now) fairly predictable lines: firstly we say formally
what a morphism of regular / coherent / first order fibrations is; this enables us
to say what a (functorial) model of a predicate logic is. Secondly, we describe
the signature with predicates (plus the axioms) associated with a regular
/ coherent / first order fibration; then a bijective correspondence between
models and morphisms of specifications can be given.

4.3.1. Definition. A morphism of regular fibrations is a morphism of
Eq-fibrations which preserves simple coproducts \J. A morphism of coher-
ent fibrations additionally preserves fibred finite coproducts (i-,V) and a
morphism of first order fibrations is a morphism of coherent fibrations
which also preserves fibred exponents D and simple products [][.

The appropriate 2-cells are as for (Eq-)fibrations, see Definition 3.6.1 (ii).

Section 4-3: Functorial interpretation and internal language 249

4.3.2. Definition. A model of a regular / coherent / first order spec-
E

ification (E, 11, ^) consists of a regular / coherent / first order fibration \P
together with a morphism

a(E) J \ 1

of regular / coherent / first order fibrations.

Recall from Remark 4.1.5 that a specification in predicate logic may be ex-
tended with external equations, so that it becomes a four-tuple (S, 11, Ai^Ae),
where Ai is the set of internal axioms (as used so far), and Ae are the addi-
tional external equations. In this extended case one should describe a functo-
rial model as a structure preserving morphism

£(i;,n,^,)
(i)

involving a quotient base category C^(E) -^ Cl(ll,Ae) incorporating the addi-
tional identifications.

The following two lemmas form the basis for soundness and completeness
results.

4.3.3. Lemma (Soundness). Let (11,11,^) he a regular/ coherent /first or-
der signature. Every [Ti^lV)-sequent which is derivable from A in regular /
coherent /first order logic, holds in a model o / (E , n , ^) . •

4.3.4. Lemma (Completeness). Let (E , n , ^) he a regular / coherent /first
order signature. A [Ti^H)-sequent is derivable from A in regular / coherent /
first order logic if and only if it holds in the generic model;

£(s,n,>i)\ — /z:(s,n,>i)\
i ^ >̂ °

E

4.3.5. Definition, (i) Let ^P be a (regular) fibration. The many-typed
signature Sign(IB)—containing objects / E B as types and morphisms u: Ii x
-' X In -^ J in M dis function symbols—can be extended to a signature with
predicates (Sign(IB), n(/))) where

X : / i , . . . , / n is in n(p) if and only if X eEj^x xin-

There is an obvious functorial model of the signature with predicates of the

250 Chapter 4- First order predicate logic

fibration p in p itself:

/:(Sign(i,n(p))

C^(Sign(B))

- ^ E

(ii) The collection A{p) of axioms of p contains the (Sign(B),II(p))-
sequents of the form

i: I I X(i) h Y(i) where X,Y eE satisfy X <Y inEj.

The model in (i) can be extended to a morphism of fibrations

£(Sign(B,n(p)M(p))

CX(Sign(B)M(B))

- ^ E

by interpreting the specification of p in p itself—where ^(B) is the collection
of (external) equations which hold in the base category B, as described in
Definition 3.3.6. A fibration thus gives rise to an extended specification as in
Remark 4.1.5.

4.3.6. Theorem. Let (T^,Il,Ai,Ae) be a regular signature and -^P a regular
fibration. There is a bijective correspondence between

regular models I 4- iP

maps of regular specifications (E, II, AijAe) —>- (Sign(B), n(p) ,^(p) ,^(B))

The 'counit^ regular model in (ii) in the previous definition is an equivalence.
Similar results hold for coherent and first order fibrations.

Proof. The correspondence follows from a by now standard argument. In

Section 4-3: Functorial interpretation and internal language 251

order to obtain the equivalence, we have to define functors 9 and 0' in:

E ^ £(Sign(B,n(/>),^(p))

B ^ «(Sign(l))
0

The functor 9' maps a predicate X G E/ to the predicate i: / h X(i): Prop in
the internal language of p. It is a functor since a map X < y in E/ yields an
axiom i\ I \ X{i) h Y[i) in A{p).

The functor 9 maps / G B to the context ar: / . It is easy to see that e o 9 — \A.
Using the operations from Example 3.3.7 one obtains that there are maps
[9 o e) 4=̂ id, the composites of which are equal to identities in the classifying
category C^(E,v4). Here we crucially need the equations from B as external
equations in the logic. •

Internal language

The starting point in the remainder of this section is our last Theorem 4.3.6.
It tells us that a regular / coherent / first order fibration can be reconstructed
from its specification, i.e. from its signature with predicates plus its axioms.
Therefore we can conveniently use the logical language associated with this
specification in order to reason in such fibred categories. Below, we present
several examples of this approach, but many more examples occur in the
course of this book, where the internal language of a (preorder) fibration will
be used frequently.

E

For a fibration j^P we shall call the predicate logic built on top of its
signature with predicates (Sign(B), n(p)) the internal language of p. And
the internal logic of p is the logic which starts from the specification
(Sign(B),n(p),^(p)) of p. This logic incorporates everything that holds in
p (via its axioms).

In this internal language, an object / G B is a type and an object X G E
above / G B is a proposition in context i : / , i.e. a predicate on / . Therefore
we often write such an X as

i: I \- X: Prop or as i: I h X{i): Prop or as i: I h X,: Prop.

In the latter two cases we have made the dependence on / explicit in X{i)
and Xj. This is convenient notation. Also for example, when X G E/xj is a

252 Chapter 4- First order predicate logic

predicate on a product type, we can write this as

i:IJ:J f- X(j j) :Prop

And if we have X,Y E E/, then,

ill \ Xi h Yi is derivable in the internal logic of p

if and only if X <Y over / .

The result of reindexing a predicate Y = {j: J \- YJ: Prop) E Ej in p over J
along a morphism (or term) u: I ^ J in the basis will be written as

w*(y) = (i:/hy„(..):Prop).

As a special case we could write weakening of X E E/ by adding a dummy
assumption j:J as i:I,j:J h X;r(f j)-P''0P- This is would be different from
ordinary predicate logic, where weakening is not an explicit operation—but
see the explicit notation of [256], as mentioned in Example 3.1.1 (ii).

We will use = / , T, A, i., V, D, 3, V with obvious meaning in the underlying
fibration. The internal language (or logic) has the advantage that it is easy
to manipulate, in contrast to categorical calculations, which are often more
complicated. This will be illustrated in the next series of examples.

E

4.3.7. Examples (Quantification), (i) Let -jrP be a regular fibration. By
definition, each weakening functor TT* induced by a Cartesian projection TT
then has a left adjoint. We shall show in the internal language of p that in
fact each functor u* has a left adjoint]J^. Later in Section 9.1 we shall see
that this makes p an 'opfibration'.

Assume an arbitrary map u: I —^ J inM] the functor]J^ is defined as

X = (i : / h Xi: Prop) H—> {j: J h 3i : / . {u{i) =j j A Xi): Prop).

The adjunction (]J^ H u*) follows from the following derivation.

j:J\3i:L{u{i)=jAXi) \-Yj

i:IJ:J\u(i)=j,XiTY~

Notice that the Beck-Che valley condition need not hold: it is an external
condition involving pullbacks in the base category. These are not required to
exist and—in case they happen to be there—they need not be expressible in
the internal language. See Exercise 4.9.2 for some more relevant details.

E
(ii) Assume now that j-P is a first order fibration. One can now show that

. . ® . . •.

each reindexing functor has a right adjoint as well. For u: I ^ J in M define

Section 4-3: Functorial interpretation and internal language 253

n.(^) by
X = {i: I h Xi-. Prop) ^-> {j: J \ Vi: / . (u{i) =j j D Xi): Prop).

Then

j:J\Yj hyi:L{u{i)=jDXi)

i: I, j : J \Yj h u(i) - j D Xi

i:IJ:J I yj,u{i) = j h Xi

i: I I Yu{i) \- Xi
Notice that the formulas for]J^ and f|̂ are the familiar set-theoretic ones,

as used for example in Lemma 1.9.5.

Next we show how one can conveniently describe in the internal language
a category of relations associated with a regular fibration.

4.3.8. Example (Relations).. Recall from Example 3.5.5 that the category
Rel of sets and relations has sets as objects and relations i^ C / x J as
morphisms / -> J. One usually writes R:I —+-> J for R C I x J in this
setting. Identity morphisms and composition in Rel can be expressed using
the connectives =, A,3 of regular logic, see the beginning of Example 3.5.5.
This leads us to the following construction.

E
For a regular fibration -^P let ReKp) be the category with

objects / G B.

morphisms / —1-> J are equivalence classes of objects R £]K above
I X J.

The equivalence relation is the one induced by the preorder of entailment in
the fibres {i.e. equivalence in the internal logic). Often we shall write R: / —ĥ
J in the internal language as a predicate

i:IJ:J \- R{i J): Prop.

The identity / —ĥ / is then given by (internal) equality on /:

i: / , i': I h i ~j i'\ Prop.

And composition oi R: I —h> J and S : J —M- K by the 'composite' relation:

i: / , k: K h 3j: J. R{iJ) A S(j, k): Prop.

One easily checks that Rel(p) is a category; for associativity of composition
of

/ —K J -+^ K -4-^ L

254 Chapter 4- First order predicate logic

one can reason informally:

{{T o S) o R){iJ) ^ 3j:J.R{iJ) A 3k: K.[S{j,k) AT{k,i)]

^ 3k:K.[3j:J.R{iJ) A S{j,k)] A T{kJ)

<^ {To{SoR)){iJ),

One can similarly describe the subcategory FRel(p) M- Rel(p) of functional
relations. This category FRel(p) has objects / of the base category as objects.
A morphism / —)• J in FRel(p) is a morphism R: / -H-> J in Rel(p) which
is internally single-valued and total, as expressed by the following two
sequents.

i: I,j: J,j': J | R(i,j),R(i,j') h j =j f, f: 7 | 0 h 3 ; : J. R(iJ).

It is easy to check that identities and composition from Rel(p) can be used in
FRel(p), so that we get an inclusion functor FRel(7>) *^ Rel(p).

The expressiveness of first order predicate logic allows us to formulate var-
ious mathematical notions in a very general situation where one has a fibred

category i which allows us to reason about IB in the logic of this fibration.
As an easy example we mention the following.

E

4.3.9. Definition. Consider a regular fibration jrP . A morphism u: I —> J
in the base category B is called internally injective if the following sequent
in the internal language of p holds in p.

i: / , i': 7 | u(i) ~j u{i') h i =j i'.

Similarly, u is internally surjective if

i : J | 0 b3i:Lj^ju{i)

holds.

Notice that 'internal injectivity' and 'internal surjectivity' are relative no-
tions in the sense that they are not intrinsic to the base category, but depend
on the fibration that one puts on top of the base category (to get a certain
logic).

It is not hard to see that if internal and external equality coincide in a
fibration, then 'internally injective' means 'monic in the base category'. This is
more subtle with internal surjectivity, due to the occurrence of the existential

Fam(A)

quantifier 3. Consider for example a family fibration i for a frame A.
For a set / and an /-indexed collection X — {Xi)i^i of objects Xi G A over / ,
the proposition 3i: I. X holds in this fibration if and only if the join Vie/ "̂ * ^̂

Section 4-3: Functorial interpretation and internal language 255

the top element T in A. But this need not mean "external existence", i.e. tha t
there is an actual element X,Q in this collection X for which Xj^ = T . We
can conclude tha t internal existence {3i: I. Xj holds) need not imply external
existence [Xj^ holds for some specific io:l —> I).

Conversely, external existence trivially implies internal existence. We return
to this delicate mat ter of existence at the end of Section 4.5 in connection with
the Axiom of Choice, especially in Exercises 4.5.4 and 4.5.5.

Exercises

4.3.1. (i) Prove the soundness of the 'traditional' rules for 3 as in Figure 4.1 in
a regular fibration.

(ii) Verify that the rules for implication D and universal quantification V
are sound with respect to the interpretation described above.

4.3.2. Give a purely categorical proof of the inequality

lJ,.,x)Odx«r(x)<u„.,)^
for u: K ^ J and X over I x J. That is, of the entailment

i:I\ 3k:K.X(i,u(k) \-3j: J. X{i,j).

4.3.3. Show that the reductio ad ahsurdum rule of classical logic (see Section 4.1)
is sound in a Boolean coherent fibration, as defined in Exercise 4.2.8.

4.3.4. Investigate internal injectivity / surjectivity in the fibrations
DSub(Dcpo)

(i) i of down closed subsets on dcpos, in Example 3.5.4;
PredRel

(ii) 4- in Example 3.5.5.
4.3.5. Consider an Eq-fibration on a distributive base category. Prove that

the coproduct coprojections n^n' are internally injective, see Proposi-
tion 2.3.4 (ii).

E

4.3.6. In an Eq-fibration j^P there are left adjoints]_I^/j) = Eq/ to contraction
functors S{I)*, where S{I) = (id , id): / -^ / x / is the (unparametrised)
diagonal on / . Prove that the implication

u is mono in B =^ u is internally injective

holds if and only if these]_I^fj\'s satisfy the Beck-Che valley condition with
respect to puUback squares of the form

/ > ^ J

y j Y
S{J) 5(1)

I X I > >• J X J

256 Chapter 4- First order predicate logic

4.3.7. Give a purely categorical argument to show that a reindexing functor of a
regular fibration has a left adjoint, as in Example 4.3.7 (i).

E

4.3.8. For a regular fibration ^ , describe a sequence of functors

B ^ FRel(p) ^ Rel(p)

mapping a morphism / —)• J in IB to its graph relation / —H- J .

4A Subobject fibreitions I: regular categories

This section is entirely devoted to examples of regular fibrations v^hich arise
Sub(B)

from subobject fibrations 4- . We shall find conditions on a category B
ensuring tha t subobjects in B form such a regular fibration. A category will
then be called a regular. In the next section v ê concentrate on the case v^here
the subobject fibration is a coherent or first order fibration. All the material
in this (and the next) section is s tandard (early sources are [17] and [284]),
but usually it is not presented in terms of fibrations. For a slightly different
approach to regular categories, in v^hich not all finite limits are assumed to
exist, see [36, II, Chapter 2].

Subobject fibrations have received much attention because they incorporate
the logic of toposes, see Section 5.4 later on. These fibrations are in fact rather
special. For example, they always support very strong equality and full subsets
(or comprehension). Later, in Section 4.9 we will give a precise characterisation
of subobject fibrations in terms of logical structure. Par t of this structure
is given by the following result, which can be interpreted as saying tha t in
subobject fibrations one always has unique choice (3!), see Proposition 4.9.2.

Sub(B)
4 . 4 . 1 . O b s e r v a t i o n . Each subobject fibration i admits quantification

B

along monos: if m: X >^ / is a mono, then composition with m forms a left
adjoint] J ^ to reindexing m* along m. Moreover, these][J's satisfy a Beck-
Chevalley condition: for every pullback square

n
1 -=* ^ J

1 J 1
Y Y

A ^ > i

m
the canonical natural transformation]J^ v* => u* U^ is an isomorphism.
Further, these coproducts satisfy the Frobenius property: there is a (canon-

Section 4-4- Subobject fibrations I: regular categories 257

ical) isomorphism lJm("^*(^) ^ ^) ^ '^ ^ LJm(^)- Both Beck-Chevalley and
Frobenius follow from the Fullback Lemma (see Exercise 1.1.5).

Later in Section 10.5, we develop tools to give an alternative formulation of
this result; then we shall say that the 'comprehension category Sub (IB) <^ B~̂
has (very strong) coproducts'.

The following definitions are standard.

4.4.2. Definition, (i) A category has images if every morphism has an im-
age factorisation; that is, every morphism u: I -^ J factors as

Im(K)

where m(w) is the least mono through which u factors: for an arbitrary fac-
torisation I -^ K y^ J of u, there is a necessarily unique map Im(ii) —> K
making the diagram below commute.

(ii) A category with images has stable images if its images are stable
under pullback: if the diagram on the left below is a pullback, then so is the
one on the right,

Im(t;) >• Im(w)
Y V

w
-^ J

The map Im(t;) —• lm{u) is uniquely determined by the universal property
of the image factorisation oi v, since v factors through w*{in{u)).

(iii) A regular category is a category which has finite limits and stable
images.

258 Chapter 4' First order predicate logic

4.4.3. Example . In the category of sets the image of a function u: I -^ J
exists and is given by the subset

{j eJ \3ieLu{i) =j} ^ ^ J

It may be clear that this is the least mono (injection) through which u: I -^ J
factors.

Note that there is an existential quantifier involved. It is made explicit in
the next result. It shows that regular categories can be characterised in various
ways. Of most interest to us is the equivalence of (i) and (v) below.

4.4.4. Theorem. Let M he a category with finite limits. The following points
are equivalent.

(i) The category B is regular.
(ii) The inclusion functor Sub(IB) <^ B"^ (obtained by choosing represen-

tatives) has a fibred left adjoint.
Sub(]B)

(iii) The subobject fibration I has coproducts]J^ H u* satisfying Frobe-
nius.

Sub(l)

(iv) The fibration i has simple coproducts U(j j) "I ^ / j satisfying
Frobenius.

Sub(]B)

(v) The subobject fibration i is regular.
Sub(l)

We recall that for B = Sets, the subobject fibration i is the fibration
IE

P r ed
4- of predicates over sets as described in Section 0.2 in the Introduction.

Sets ^
Sub(B)

Proof. The equivalence (iv) <^ (v) is obvious, because the fibration i
IB

already has fibred finite products and equality satisfying Frobenius. Further,
(iii) => (iv) is immediate. We shall do (i) <:> (iii) and (iv) => (iii) and leave
the equivalence of (ii) to the other points as an exercise.

(i) => (iii). For a morphism tt: / -> J in B and a mono m\X >-^ I one defines
a coproduct by

]J^(m) = (lm(w o m) > ^ j)

Notice that Uy(?^) is simply w o m if w is a mono (as in Observation 4.4.1).
There is then a bijective correspondence

m < u*{n)

Section 4-4' Suhohject fihrations I: regular categories 259

establishing an adjunction (]J[^ H u*)^ as follows.

• if m < u*{n), then u o m factors through n and thus IJ^(?^), being the
least mono for which this holds, satisfies IJ^(m) < n.

• if U u (^) ^ ^' then, using that w o r n factors—by definition of image—
through]J^(m), one obtains m < ^«*(Uu(^)); hence m < w*(IIu(^)) ^
ii*(n).

The stability of the image factorisation ensures that the Beck-Chevalley condi-
tion holds. For Frobenius, consider for u: I -^ J, m £ Sub(/) and n G Sub(J)
the following pullback squares.

^ y / —

X^

u*{n)

^ I

Y

-^ J

Then
by definition of A

by Beck-Chevalley = UnUu'(«*W)'M
= U.U„.(n)(«*("))*M

(iii) ^ (i). Given a morphism u: I —^ J^ define the image of u as:

m{u) = [lm{u) > ^ J)

Using the unit rj in the diagram:

V
-^ K

Y
Im(w)

id/
«*(U„(id/)) mH = lI„(id/)

J

one obtains that u factors through m(u). If also u = n o f with n monic,
then id/ < u*{n) and thus, by transposition, m(u) — Uu(id/) < "• Stability
follows from the Beck-Chevalley condition:

w*(m(u)) = «;*(UJT)) - U. . („) (T) = m{w*{u)).

(iv) => (iii). Coproducts along an arbitrary map u\ I -^ J are obtained by
writing t/ = TT o (li, id): 7 -̂» J xl -^ J ^s composite of a mono and a Cartesian

260 Chapter 4- First order predicate logic

projection. Since we have coproducts along projections (by assumptions) and
along monos (by Observation 4.4.1) we are done by composition of adjoints.
Beck-Chevalley follows from a similar argument. D

Image factorisation in regular categories gives rise to a class of maps which
are called 'covers'. The best way to think about these is as surjections, see
explicitly in Lemma 4.4.7 below.

4 .4 .5 . Def in i t ion . In a regular category, a morphism u: I -> J is called a
cover if its monic part m{u): lm{u) -̂» J is an isomorphism. One often writes
u: I -> J to indicate tha t w is a cover.

In Example 4.4.3, the covers in S e t s are precisely the surjective functions.
The next lemma lists a series of results about these covers; it includes four
alternative characterisations: in (i), (iii), (vii) and (viii).

4 .4 .6 . L e m m a . In a regular category the following holds.
(i) A morphism u is a cover if and only ifu is e x t r e m a l ; / o r each factori-

sation u = m o u' one has: m is a mono implies that m is an isomorphism.
(ii) A monic cover is an isomorphism.

(iii) A morphism u is a cover if and only if the map U^^(T) -> T is an
isomorphism, where]J^ is the induced left adjoint to u*, see (iii) in Theo-
rem 4'4-4'

(iv) Every isomorphism is a cover. Covers are closed under composition: if
u,v are (composable) covers, then v o u is a cover. Also, if v o u and u are
covers, then v is a cover.

(v) Covers are stable under pullhack.
(vi) Every map factorises as a cover followed by a mono.

(vii) A morphism u is a cover if and only if u is o r t h o g o n a l to all monos.
The latter means that in a commuting square

u
>•

/
/

/
A
> >"

there is a unique diagonal as indicated, making everything in sight commute.
(viii) A morphism u is cover if and only if u is regular epimorphism.

From (vii) one can conclude tha t the factorisation in (vi) is essentially
unique (in an obvious sense). This yields that the collections (Monos) and
(Covers) form a f ac tor i sa t ion s y s t e m (see [18]) in a regular category.

Most of the results in this lemma are easy to prove, except the implication
(=>) in (viii) which tells tha t covers are regular epis [i.e. epis which occur as

Section 4-4' Subohject fibrations I: regular categories 261

coequalisers). This is a folklore result. The proof that we present is essentially
as in [169, Theorem 1.52].

Proof, (i) The implication (<=) is obvious by definition of 'cover'. In the
reverse direction, assume a cover u: I -> J is written as w = m o w', where m
is a mono. Then the image m(i/) of u must satisfy m{u) < m. But since m{u)
is an isomorphism by assumption, we get that m is an isomorphism as well,

(ii) Write u = u o id and apply (=>) in (i).
(iii) Notice that for a morphism u one has

UJT) = U„(id) = m(«oid)=:m(«).

Hence w is a cover if and only if m(i/): Im(w) -^ id is an isomorphism (in the
slice category), i.e. if and only if U^(T) —)• T is an isomorphism.

(iv) If u is an isomorphism, then one can take as monic part m(i/) = u.
And [{ u,v are covers, then so is i;:

U.ou(T) = U. (Uu(T)) = U . (T) S T

SO we are done by (iii). Similarly, if v o u and u are covers, then

TSU.oJT)-U.(Uu(T))sU.(T).

(v) Consider a pullback square

v^u) J

Then

U..(u)(T) = U. . („)K-(T))
- «*(IJ„(T)) by Beck-Chevalley

S T.

Hence v* (u) is a cover again by (iii).
m(u)

lm(u) ^ J. We (vi) Every morphism u: I ^ J can be written as /
show that u' is a cover using (i). Assume u' = n o u", where n is a mono.
Then u — (m(w) o n) o u" and thus m[u) < m{u) o n, since m(w) is the least
mono through which u factorises. But then n must be an isomorphism.

262 Chapter 4- First order predicate logic

(vii) First, assume that u is cover in a commuting square

Then u factors through the mono g*{m). Hence by (i), g*{m) is an isomor-
phism. This yields the required diagonal J —-̂ Z.

Conversely, if w: / ^ J is orthogonal to all monos, and u can be written as
u — n o f with n a mono. Then we get a commuting square

This yields a fill-in s\ J —^ Y with s o u — f and n o 5 = id. So n is a split
mono and thus an isomorphism.
(viii) It is easy to see that regular epis are covers: suppose u\ I -^ J is

coequaliser of / , ^: K nt / and can be factorised diS u — m o u' where m is a
mono. Then u' o f z=z u' o g so there is a unique n with n o u — u'. Hence
monou — mou' = u, which yields m o n = id by the fact that u is epi.
Thus m is an isomorphism and w is a cover by (i).

For the converse we first prove that a cover u: I-> J is an epi: suppose
f,g:J =^ K are given with f o u = g o u. Then u factorises through the
(monic) equaliser of / and g. Hence this equaliser must be an isomorphism
by (i) . T h u s / = ^.

We come to the proof that such a cover t/: / -i> J is a regular epi. We form the
kernel pair TTI, 7r2: /? =^ / , by taking the pullback of w against itself, and intend
to show that u is the coequaliser of this pair 7ri,7r2. Assume therefore that
v: I —^ K also satisfies v o TTI r= i? O 7r2. We factorise the tuple (w, t;): / —>• J x K
as

(/ ^ / X A') = (/
w m

t>W> ^ J X K)

and intend to show that TT o m: VF —> J is an isomorphism; then we are done
since it yields that a = TT' o m o [n o m)~^: J -^ K is the (unique) required
mediating map with a o u = v (since {w o m)~^ o u = w).

Firstly, TT o m is a cover since both w and {TT o m) o w = u are covers, using
(iv). In order to see that TT o m is monic, assume j^g.Z -z^W are given with

Section 4-4' Subobject fihrations I: regular categories 263

TTomof — TTomog. Form the pullback square

Z' >Z

if. 9')
J

if, 9)

I xl >W X W
W X W

Both id X It; and w xid can be obtained from w by pullback along a Cartesian
projection. Hence they are covers by (v) and thus w x w = {idx w) o (w x id)
as well. But then also /i is a cover and in particular an epimorphism. One has

u o f r= TT o {u^v) o f

— TT O m O W O f

= T T o m o / o / i

= 7romogoh by assumption about / , g

= uo g'.

Hence there is a unique k\ Z' -^ R with TTI o k = f and 7T2 o k — g'. Then

{TT' o m o f) o h = n' o m o 7T o w X w o {f ^ g')

= IT' o {u^v) o f

— V O TTi O k

— V o 1:2 o k by assumption about v

— TT' o {u, v) o g'

— {TT' o m o g) o h.

But then TT' o m o f — TT' o m o g^ since h is an epi. Hence in o f = m o g and
thus f = g, since m is a mono. By (ii) we conclude tha t TT o m is isomorphism
and so we are done. D

The attention in this section has been focussed on monos and covers in
regular categories. It is therefore appropriate to close with the following result,
which tells that monos and covers are the internal injections and surjections in
subobject fibrations (see Definition 4.3.9). Some more information on monos
and covers is given in the exercises.

Sub(l)
4.4 .7 . L e m m a . With respect to a subobject fibration I of a regular cat-

M

egory M, a morphism in B is internally injective if and only if it is monic in
M, and it is internally surjective if and only if it is a cover in M.

Proof. Consider a morphism u: I -^ J in M. The first part of the s tatement
that u is internally injective if and only if it is a mono in B follows from

264 Chapter 4- First order predicate logic

the fact that internal and external equality coincide in subobject fibrations.
Explicitly, the proposition stat ing tha t u is internally injective amounts to

Eq{u o TT, i/ o TT') < Eq(7r, TT') over I x I,

Since equality in subobject fibrations is given by equalisers (see Examples 3.4.4
(i) and (ii)), this reduces to the s tatement that the equaliser ofuoir and u o n'
factors through the diagonal S = (id, i d) : / ^-^ I x I. One easily verifies tha t
the latter holds if and only if i/ is a mono in B.

In the same vain, the s tatement 'u is internally surjective' unravels to

. Eq(7r, uo TT') ^ .
id J < Image oi [• > >• J x I >• J) .

But since the equaliser Eq(7r, u o TT') of TT and u o n' is (w, id): I ^^ J x I, this
amounts to

id J < Image of w,

which says tha t w is a cover. •

Exercises

4.4.1. Show that images in the category of sets (as described in Example 4.4.3)
are stable.

4.4.2. A split epi is morphism u which has a section {i.e. for which there is an s
with w o 5 = id).
(i) Check that a split epi is an epi.
(ii) Show that in a regular category, a split epi is a cover.

4.4.3. Show that for a subobject fibration, the internal description of]J in Ex-
ample 4.3.7 (i) coincides with the description in the proof of Theorem 4.4.4
in terms of images.

4.4.4. In a regular category, consider maps

e u m
K >I ^ J > ^ L

and show that there are the following equalities of subobjects.
(i) lm(w) -̂> J is Im(u o e) ^^ J;

m
(ii) Im(ti) >-^ J ^^ L \s Im(m o u) >—^ L.

e m

4.4.5. Let I -i> I ^^ J be the factorisation of w:/ —)• J in a regular category.
Form the kernel pairs

TTo Ao

/ >• J and L

7̂ 1 Ai

K I ^ > J and L / — ^ - > r

Section 4-5: Suhobject fibrations II: coherent categories and logoses 265

and show that the tuples (TTCTTI) and (Ao,Ai) are the same, as subobjects
of / X / .

4.4.6. Let / be an object in a regular category. Show that /-i> 1 {i.e. the unique
map / —> 1 is a cover) if and only i f / x / = t / ^ l i s a coequaliser diagram.

4.4.7. Let IB be a regular category with an object / G B. Show that the following
statements are equivalent.
(i) 7 ^ 1 ;
(ii) The functor /* :B -> B / / reflects isomorphisms;
(iii) The functor / * :B —> B / / is conservative {i.e. reflects isomorphisms

and is faithful).
4.4.8. Let B be a category with finite limits and coequalisers. Show that B is

regular if and only if regular epimorphisms in B are stable under puUback.
(Sometimes one finds (for example in [18]) this latter formulation as defi-
nition of regular category—in presence of coequalisers.)
[Hint. For a map I ^ J consider its kernel pair R ^ I and their coequaliser
I -^ J'. One gets a mono J' ^^ J which is the image of u.]

4.4.9. Establish that the category Sp of topological spaces and continuous func-
tions IS not regular.
[Hint. Use the previous exercise, or see [36, 11, Counterexample 2.4.5].]

E

4.4.10. In Example 4.3.8 we have associated with a regular fibration ^^ two
categories Rel(p) and FRel(p) of types and (functional) relations in p. Here
we define a slightly different category FRelP(p) of predicates and functional
relations. It has

objects objects X G E.
morphisms X —H- y , say with X over / and Y over J, are (equiv-

alence classes of) relations R ^^i^j which satisfy

i:I,3:J\R{i,j) h X . AY,,

z : / , j : J , / : J | H (z , j) , i ? (z , /) h j = y / ,

i:I\X^ h3j:J.R{i,j).

Verify that FRelP(p) is a regular category. This is like the construction of
a regular category from a regular theory, like for example in [211, Chap-
ter 8, 2].

4.5 Subobject fibrations II: coherent categories and logoses

We continue our investigation of subobject fibrations. In particular we investi-
Sub(]B)

gate when a subobject fibration i is a coherent fibration {i.e. has fibred
distributive coproducts -L,V) and when it is a first order fibration {i.e. addi-
tionally has implication D and universal quantification V). In the first case we

266 Chapter 4' First order predicate logic

call M a coherent category, and in the second case a logos. In [85] a coherent
category is called a pre-logos, and in [211] it is called a logical category.

4.5.1. Definition. A coherent category is a regular category with

• binary joins V in each subobject poset Sub(/), which are preserved by pull-
back functors w*:Sub(J) -^ Sub(/);

• a strict initial object 0.

Recall that strictness means that each arrow X —> 0 is an isomorphism.

The way in which these joins V are usually obtained is as follows.

4.5.2. Lemma. In a regular category with universal coproducts -h; the sub-
object fibre Sub(/) over I has joins V of subobjects X ^^ I and Y >-^ I, by
taking the image of the cotuple, as in

x + y >xyY

These V 's are stable under pullback. •

4.5.3. Theorem. A regular category M is coherent if and only if its subobject
Sub(l)

fibration i is coherent.

Proof. Assume B is a coherent category. We have to show that the subobject
Sub(l)

fibration 4- has a fibred initial object and that its joins V are distributive.
B

We begin with the latter: one has

n A (mi V 7772) —]J„ n*{mi V 7712) by definition of A

= l J n ^ * K) V n * (m 2)

— Un ^*(^ i) V]J^ n*{m2) since]J„ is left adjoint

= (n A mi) V (n A m2).

Further, for / G B, let ± / be the unique vertical map 0 ^^ /; it is a mono,
since for maps f,g: K ^ 0, both / and g are isomorphism with f~^ = g~^ by
initiality. Thus f — g. For each mono m:X ^^ I one obviously has JLJ < m
in the poset Sub(/) of subobjects on / . And for u: I —^ J , in the pullback

Section 4-5: Subobject fibrations II: coherent categories and logoses 267

diagram,

«*(-Lj)

the m a p u' is an isomorphism by strictness. By initiality one gets tha t the
composite 0 •=)' 0' —> / is ± / , so tha t i /*(±j) ^ ± / over / . Thus the subobject
fibration on IB has a fibred initial object.

In the other direction, we follow the argument in [85, 1.61] to show that if
Sub(l)

i is a coherent fibration, then B has a strict initial object (and is thus a

coherent category). Let 0 be the domain of the bot tom element J_i: 0 >-̂ 1 in

Sub(l) . For an object / G B, consider the pullback diagram.

u
0'

H
T
T
1

!/

- ^ 0
\

>

/
l i

'
-» 1

> J

Assume there is an arrow / : / —)• 0; we show that / is necessarily an isomor-
phism. The above pullback yields a m a p / ' : / - > 0' with Lj o f — id/ = T / .
But then ± / = T / in Sub(/) . Applying this same argument to / o TT: / x / ^
/ —> 0 yields ± / x / = (J/ = T / x / , where Sj is the diagonal (id, id): I ^^ I x I.
Hence Sj is an isomorphism and so TT = T T ' I / X / —)• / . The unique arrow
! / : /—> 1 is then monic and so an object of Sub(l) . Hence ± i < !/ which
yields an inverse for / : / —> 0.

In particular, h in the above diagram is an isomorphism. We obtain a m a p
0 —> 0' —> / . It is the only m a p 0 - ^ 7 , since given two such maps, their
equaliser has codomain 0 and is thus an isomorphism. •

Next we look at first order subobject fibrations.

4 .5 .4 . Def in i t ion . A logos is a coherent category for which each pullback
functor w*:Sub(J) -^ Sub(/) has a right adjoint f|^.

4.5 .5 . T h e o r e m . A category B with finite limits is a logos if and only if its
Sub(l)

subobject fibration i is a first order fibration.

Proof . Assume B is a logos. We first notice tha t the subobject fibration
Sub(ffi)

I has products: there are adjunctions [u* H Yl^) and Beck-Chevalley

268 Chapter 4' First order predicate logic

holds for these products, because it already holds for coproducts]J^ (see
Lemma 1.9.7). In particular, this fibration has simple products. It also has
fibred exponents: for mi,m2 G Sub(/) put,

mi Dm2 =^ n m i ^ i (^ 2) .

Then, for a subobject mi:X>^I with domain X,

Sub(/)(n, mi 31712) = Sub(X)(m*(n), m*(m2))

= Sub(/)(U^^m*H, m2)

^ S u b (/) (m i A n, 1712).

The latter by definition of A. Exponents are preserved under reindexing by
Beck-Che valley for Y[-

The reverse implication follows from the construction of JJ^ in a first order
fibration, as described in Example 4.3.7 (ii). •

We conclude this section with examples of logoses, involving in particular
the categories of sets and of PERs. Logic in Ct;-Sets will be described later in
Section 5.3 (especially in Proposition 5.3.9) in terms of its re^fw/arsubobjects.
There one also finds a description of regular subobjects in the category PER,
giving rise to classical logic.

4.5.6. Example, (i) The category Sets of sets and functions is a logos. We
have already seen that it is a regular category. Its posets of subobjects Sub(/),

Sub(Sets) Pred
occurring as fibre categories of the fibration i = i can be iden-

^ ^ Sets Sets '
tified with the powersets (P / , C). These posets are Boolean algebras, so we
certainly have distributive joins (namely 0 and U) making Sets into a coherent
category. Further, there are products f7:Sub(/ x J) —> Sub(/) by

(xcixj)^ {{i I Vi e J. {ij) ex}c /).
In the next chapter we shall see that, more generally, every topos is a logos.

(ii) The category PER of partial equivalence relations is also a logos (as
shown in [143]). Recall from Section 1.2 that PER has finite limits. It is not
hard to see that a morphism / : i? -^ 5 is a mono in PER if and only if the
function / : N / i ? - > N/S between the underlying quotient sets is injective.

For a morphism f: R ^ S we define the image as the PER,

Im(/) = {(n,n') € \R\ x \R\ \ / (H «) = f{[n']n)},

together with the monomorphism,

m(/)
Im(/)> ^S, Wim(/) I—^ f([n\R).

Section 4-5: Subohject fihrations II: coherent categories and logoses 269

This is indeed a mono, because the underlying function is injective by con-
struction:

m (/) (W i n , (;)) : = m (/) ([n V (/)) ^ / (W H) = / (K] H)

^ Wlm(/) = K] lm(/) .

There is then a morphism f \ R -^ In i (/) by [n\R \-^ Mim(/)- It obviously
satisfies m (/) o f — f. It is not hard to see tha t this image I m (/) -̂̂ 5 is
appropriately minimal, and stable under puUback. Thus we get that P E R is a
regular category. A characterisation of covers in P E R is given in Exercise 4.5.2
below.

One can conclude that P E R is a coherent category from the fact tha t it
has universal finite coproducts (0 , +) , using Lemma 4.5.2. The initial object
0 is the empty P E R 0 C N x N, which has quotient set N / 0 = 0. And the
coproduct of PERs R, S is

R+S= {((0, n) , (0, m)) | nRm} U {((1, n) , (1 , m)) | nSm}.

Finally, P E R is a logos, because it is locally Cartesian closed, see Exer-
cise 1.2.7. The product functors J | ^ : P E R / i ? —>• P E R / 5 between slices re-
strict to product functors n y : S u b (i ?) -> Sub(5) , because right adjoints pre-
serve monos.

(iii) In Example 4.2.5 we have seen how a frame (or complete Heyting al-
Fam(yl)

gebra) A gives rise to a first order fibration I . It turns out tha t first

order logic is also present at a diflferent level: the total category Fam(yl) of
this fibration is itself a logos. We sketch the main points.

A terminal object in Fam(74) is the family (T)*gi consisting of the top
element T G ^ over a singleton (terminal) set 1 = {*}. The pullback of
morphisms u: (xi)i^j —> {zk)keK and v: {yj)j^j —> {zk)k^K consist of the
family (xj A yj){i,j)eixKJ over the pullback / x ^ J in S e t s of w: / -^ K
and v: J ^ K, with obvious pullback projections. A morphism u: {xi)i^j -^
(yj)jeJ is monic in Fam(74) if and only if the underlying function u: I —^ J
is injective. A subobject of a family {xi)i^j may thus be identified with a
"subfamily" {x'i)i^v ioi V C I with x̂ - < Xi, for all ieV.

For an arbitrary such m a p u in Fam(yl), we can first factorise w: / -> J in
S e t s as u'\I->J' — {j ^ J \ 3i G Lu{i) — j] followed by m(u): J' >-^ J.
This factorisation can be lifted to Fam(74) as:

m{u)
> ^ {yj)jeJ

jeJ'

270 Chapter 4- First order predicate logic

It is easy to verify that this factorisation in Fam(A) is appropriately minimal
and stable under pullback. This shows that Fam(A) is a regular category. It
is coherent since the empty family is a strict initial object, and since for an
arbitrary family {xi)i£j E Fam(^), the join of two "subfamilies" {yi)i£UCi
and (zi)i^vci is a family over U UV C I given by:

(vi iueu\v
{{yi)V{zi))(i)=\ Zi iiieV\U

[Vi V Zi if 2 E f/ n K

These joins are distributive and stable. Finally, we have to produce a right
adjoint W^ to pullback u^ along a morphism u\[xi)i^i —)- {yj)j£j- Notice
that

' " ^ ((^ j) j G V C j) = {'Wu{i))ieu*{V)CI'

The required right adjoint is then given by:

Ylu{iyi)ieuci) = I A *̂

where Vt,([/) = {j e J \ Vi E / . u{i) = j =f^ i e U}.

The second example above, showing that subobjects in PER form a first
order fibration, leads to the following associated result, showing that also
regular subobjects in PER from a first order fibration—but with classical
logic. It is based on a (folklore) correspondence between regular subobjects in
PER and subsets of quotients.

4.5.7. Proposition, (i) For a PER R there is a bijective (order preserving)
correspondence between

(a) subsets A C N/R of the quotient of R;
(b) subsets B C \R\ of the domain of R which are saturated; if n £ B

and uRn' then n' E B;
(c) regular subobjects R' ^^ R of R.

RegSub(PER)
(ii) The fibration 4- is a first order fibration with classical logic.

Proof, (i) The equivalence (a) <^ (b) is easy, so we concentrate on (b) ^ (c).
For two parallel morphisms f,g:R =^ S in PER, one can describe their
equaliser by restricting attention to the saturated subset B C \R\ given by
B = {n E \R\ \ f{[n]R) = p(Mii)}- And conversely, given a saturated subset
BC |/^|, define a PER 5 by

S = {{{i,n), {j,n^)) I i , i E {0,1} and nRn' and n E B}

U{(0, n), (0, n')) I uRn' and n ^ B} U {(1, n), (1, n')) | uRn' and n ^ B}

Section 4-5: Suhobject fibrations II: coherent categories and logoses 271

Then there are morphisms f^giRzit S defined by

fiinU) - [(0, n)]s and g{[n]R) = [(1, n)]s.

It is not hard to see that the set B C | i^| can be recovered from the equaliser
subobject R' >-^ R resulting from these f,g.

(ii) Using (a) in (i), the set-theoretic operations of (classical) first order
logic can be used for this fibration of regular subobjects. •

Exercises

4.5.1. Prove in a regular category with universal coproducts: if X ^^ / and Y >-^ I
are disjoint {i.e. X AY = ±), then XvY = X-\-Y.

4.5.2. (From [143]) Show that a map f:R-^Sm P E R is a cover if and only if

3eef^yne\S\.f{[e-n]R) = [n]s.

[Notice that such an e need not give us a morphism 5 —)• /?, since we do
not know that nSm => e • nRe • m.]

4.5.3. The following combined formulation of D and V comes from [211]. Show that
in a category with finite limits, one has implication in subobject posets and
right adjoints]~J to pullback functor w* if and only if: for each u: I ^ J
and for each pair of subobjects m: X >-^ I and n:Y ^-^ I there is a largest
subobject k: Z y^ J with u*{k) A m < n.

4.5.4. One can say that the Axiom of Choice (AC) holds in a regular category
if and only if every cover c: I —> J splits {i.e. has a section s: J —^ I with
c o s = id).
(i) Check that this formulation in Sets is equivalent to (one of) the usual

formulations of (AC),
(ii) Verify that (AC) holds in a regular category if and only if the covers

are precisely the split epis (see Exercise 4.4.2).
(iii) Prove that if (AC) holds, then internal and external existence coincide

in the subobject fibration. This means that for a subobject X -̂> I x J,
the proposition

i:I \-3j:J.X{i,j):Prop

holds if and only if there is a map s: I —^ J such that

i:I hX(i ,5(i)) :Prop

holds.
4.5.5. In a first order fibration with exponents in its base category, we say that

the internal Axiom of Choice (lAC) holds if the following proposition
holds.

/ : J I " / is internally surjective" h " / has a section"

(i) Describe explicitly the predicates " / is internally surjective" and " /
has a section".

272 Chapter 4' First order predicate logic

(ii) Consider a logos IB with exponents. Show that (lAC) holds (in the
associated subobject fibration) if and only if for each object K the
exponent functor (—) ^rlB ^ B preserves covers.
[A proof making use of Kripke-Joyal semantics can be found in [188,
Chapter VI].]

4,6 Subset types

Most of the structure of fibrations that v ê considered so far was structure
in fibres (like A,V) or between fibres (like U ' D) - ^^ ^^^ ^^^^ three sections
we shall s tudy subset types and quotient types. These are new in the sense
tha t they involve structure between a total category and a base category of a
fibration, given by adjoints.

In this section we will give the syntax and categorical semantics of subset
types (or also called subsets). This involves the operation which maps a propo-
sition [xia \- (p: Prop) to a type {x:a\ip}: Type. The intended meaning of the
latter is the subtype of a consisting of those terms M:cr for which (f[M/x]
holds. The categorical description tha t we give below, will turn out to be a
special case of a general form of comprehension (see Section 10.4).

Subset types involve a new type formation rule, namely:

Each proposition (x: a \- <p: Prop) gives rise to a type {x: cr | ^ } .

Formally we write this as a rule,

f o r m a t i o n

x:a \- (p: Prop

h {x:cr | ^}:Type

It comes with introduction and elimination rules for terms of this newly formed
type:

i n t r o d u c t i o n

x:a\-ip:Prop T h M:a T \ 91-(p[M/x]

r \-\{M):{x:a\ip}

e l i m i n a t i o n

T \- N:{x:a\(p} T,x:a \ e,(p \- ^p
with

r h o{N): a r , y: {x: a\^}\ e[o{y)/x] h i^[o{y)/x]

The associated conversions are

o(i(M)) = M and \{o{N)) = N.

Section 4•6' Subset types 273

The letters 'i ' and 'o ' stand for ' in ' and 'out ' . It is more appropriate to write
i(^(M) and o^(N) with the proposition (p explicit as a subscript, but we often
find this notat ion too cumbersome. In mathemat ical practice these i's and o's
are usually omit ted altogether.

We say we have full s u b s e t t y p e s if we also have the converse of the last
rule:

full s u b s e t t y p e s

r , y: {x: (T\(p}\ e[o{y)/x] h i;[o{y)/x]

T,X:(T\ e,(p \- ^

This is a useful additional rule. Consider for example two propositions
x\a h </?,^:Prop. With this rule we can conclude tha t {x:o-|<^} is included
in {x: cr I V̂ } if and only if </? implies if). In one way this obvious; we give a
derivation of the other way, to indicate where fullness is used:

y\{x\a\^] \-\^[o^{y)):{x:a\i)]

y:{x:a\ip] | 0 h ^[o^(y) /x] . ^̂ ^
• (lull subset types)

X\(T \ (p \- IJJ

As this example suggests, fullness of subset types corresponds to fullness of
an associated functor. This will be made explicit in Definition 4.6.1 below.

Notice tha t in the above type formation rule, we have a subset type {a:: cr | v?}
in which x is the only variable which may occur in (p. We could have stated a
more general formation rule with type context F,

r , x : cr h (p\ Prop

r h {x: cr| 9?}: Type

But tha t leads to type dependency: one gets a type {a:: cr | (^} which may contain
variables y. r of types r declared in F. In the present chapter we only consider
"simple" predicate logic (SPL) over simple type theory, in which we wish to
exclude this type dependency. We postpone such subset types with contexts
to what will be called "dependent" predicate logic (DPL) in Section 11.1. But
we would like to stress here that the extended formation rule is quite natural ,
for example in forming the subset type

n: N, m: N h m < n: Prop

n: N h {m: N | m < n } : Type

of natural numbers less than n. This is clearly a type in which a term variable
n occurs. One could say this more strongly: the restricted formation rule
without type context is the more unnatural version.

274 Chapter 4- First order predicate logic

E

Categorically, a logic is described by a preorder fibration -j^P where we
standardly assume that the base category B has finite products and that the
fibration p has fibred finite products. Objects / G B are seen as types and
objects X G E as propositions. One thus expects that subset types involve a
functor {—}:E ^ B which maps a proposition Y = {j: J \Yj) G E to a type
{j- J lYj} G B. One further expects there to be a monic 'projection' morphism

{j:J\Yj}> ^J

making {j: J \Yj} a subtype of J . Our use of the word 'projection' here comes
from the more general treatment of comprehension in Section 10.4. Sometimes
we call the object (or type) {Y} = {j: J \ Yj} the extent of Y.

The natural requirement is that an element k: J is in {j: J \Yj} if and only
if Yk holds. In arrow-theoretic language:

a morphism u: I —^ J factors through Try: {y} >-^ J

if and only if (*)

the proposition {i: I h Yu(i): Prop) holds (i.e. T < u*(Y)).

All this structure comes about by the requirement that the functor { —}:E —>
B is right adjoint to the terminal object functor T: B -^ E. This is (a preorder
version of) what is called a D-category in [74, 75]. It is a simplification of
a structure used by Lawvere to capture comprehension, see Exercise 4.6.7.
Later in Section 10.4 these notions will be studied more systematically under
the name 'comprehension category with unit'.

E

4.6.1. Definition. A preorder fibration ^P with terminal object functor
IB

T:B ^ E is said to have subsets (or subset types) if this functor T has a
right adjoint.

We usually write {—}:E —)• B for such a right adjoint. For X G E, the
counit SX' T{X} —> X induces a morphism p(ex)'' {X} —> P^ in B. We write
TTx = p{sx) for this map and call it a (subset) projection.

The assignment X ^-^ TTX extends to a (faithful) functor E —^ B"^. We say
that the fibration p has full subset types if this functor 7r(_):E —> B"^ is
full (and faithful).

Notice that having subset types is a property of a fibration, because it is
expressed by an adjunction. Later, in Theorem 4.8.3 we shall see an equivalent
description of subset types in terms of a right adjoint to an equality functor.

The next lemma gives several useful results involving subset types. In par-
ticular, in (ii) it is shown that the earlier expected property (*) of subset types
is captured by the above definition.

Section 4-6: Subset types 275

E

4.6.2. Lemma. Let ^P be a preorder fibration with subset types as described
above.

(i) Each projection morphism TT^: {X] -^ pX in B is monic.

(ii) For each map u: I —)• J in M and object y G E over J, there is a
bijective correspondence

T < u*(Y) over I

U — > TTy m

This says that u: I ^ J factors through Try if and only i /T < t/*(y) as in (*)
above.

(iii) The assignment X i-> TTX extends to a functor P-.E -^ IB"̂ which
maps Cartesian morphisms to pullback squares. This functor restricts fo E -^
Sub(B) by (i).

(iv) The functor V in (iii) preserves all fibred limits.

Proof, (i) Suppose that parallel maps v^w.K z:̂ {X} are given with nx o
V — TTx o w. The transposes v^,w^:T z=^ X then satisfy

p[v^) — p{ex o T{v)) — TTx o v = TTx ^ w = p{w^).

But then v^ — w^, because we have a fibred preorder (see Exercise 1.3.11).
Hence v — w.

(ii) For a vertical map / : T -> u'^iY) over / , one obtains a map
u{Y) o / : T —)• y in E over u and, by transposition, a map:

f ^{u[Y) of] o 7)1:1-^{Y} i n l .

This / is a map i/ —>• Try in the slice category B/J , since

TTy o f - P[SY O T{U{Y) O / } O Trjj)

= p(w(y) o /) o pisj^j) o Trjj)

= u.

Conversely, given v: I -> {¥} satisfying ny o v — u, then by transposition
one obtains a map T -^ y over u, by an argument as in (i). Thus one gets a
vertical morphism v:T -^ ^*(^) over / . These operations f ^ f and v ^ v
are each others inverses.

276 Chapter 4' First order predicate logic

(iii) For a morphism / : X -^ Y in E, there is a commuting diagram in B,

{X} ^ - ^ ^ {Y}
Y Y

TTx

pX
pf

TTy

pY

smce
T^Y o {/} = p{eY o T{/}) = p{f o ex) =pf oTTx.

In case / is Cartesian in E, this diagram is a pullback in IB: if maps u: I -^ pX
and v: I -^ {Y} are given with pf o u = Try o v, then i; is a morphism
{pf o u) ^ TTy in M/pY. Hence one obtains by (ii) a morphism in

EJ{T, {pfouriY)) S E,(T, u*ipfyiY))

=. E/(T, U*{X)J because / is Cartesian

^ M/pX{u, TTx).

This resulting map in M/pX{u, TTX) is the required mediating map.
(iv) We write V for the functor X i->- TTX , and shall show that V preserves

fibred finite products (which is of most interest at this stage).
Since T is a full and faithful functor, the unit rjj: I -^ {T/} is an isomor-

phism. Thus 7r(T/) — id/ in B / / , which shows that V preserves fibred terminal
objects.

For X, Y over J, we have for an arbitrary map w: / -> J in B,

M/j{u,V{XxY)) ^ EI{T, u*{X xY))

= E / (T , U*{X) XU*{Y))

= E / (T , U*{X)) X E / (T , i/*(y))

^ M/pX{u, VX) X MlpX(u, VY). D

It is now easy to see that having (full) subset types in a fibration (as in
Definition 4.6.1) gives us validity of the rules of (full) subset types as described
in the beginning of this section: for a term u: I -^ J and a proposition Y =
{j:J \- yj:Prop) above J, a morphism T < u*{Y) over / induces by (ii) a
map

/ ^ {Y} with TTy o i(w) = u.

Section 4-6: Subset types 277

This gives validity of the introduction rule. As to elimination, for a term
v: I ^ {Y} we put o(i;) — Try o v: I -^ J. Further, assume we have an
entailment,

i:I,j:J\X(i,j)AY{j) \-Z{i,j),

that is, an inequality above I x J,

X NY' <Z where Y' = TT'*(Y).

Then we have to show

i:I,k:{j:J\Yj]\X(i,o{k)) h Z(i,o(k)),

which translates into

(idx ITY)*(X) < (id XTTY)*(Z).

This is equivalent to

^Y'{X) < T^*Y'(Z) above {Y'},

Since both diagrams below are pullbacks.

I X {7} ^ {Y] {7r-(y)} = {Y'] {Y]

i d X TTy
Y J Y

TTy TTy/
YJ

Try

/ x J ^J IxJ ^J
TT ' T T '

The latter in equality 7ry/(X) < 7ry,(Z) follows from X A Y' < Z by applying
TTy, to X < Z and using T < 7ry/(y'), which is the vertical part of the counit
eyr.T =:T{Y'}-^Y\

If we additionally assume that the fibration has full subset types, then the
corresponding full subset rule is valid. Therefore we have to establish the
converse

7T^>(X) <7r^>(Z) ^ X/\Y'<Z

of what we just proved. This is done as follows.

7ry/(X) <7rl.,{Z)

^ there is a (unique) map 7ry,(X) —->> Z over Try/

278 Chapter 4- First order predicate logic

=> there is a (unique) map —^ in

{X} ^ < {^hi^)} -{Z}
Y L_ Y Y

y Y I
IxJ ^ < {¥'} > ^ IxJ

TTy/ TTy/

=> Tr̂ xAY') — TTx A TTy/ < TT̂ with =. from (iv) in Lemma 4.6.2

=> X l\Y' <Z because the projection functor E -^ IB"*" is full.

Notice that the square on the left is a pullback because the projection functor
maps Cartesian morphism to pullback squares (as in (iii) in the lemma).

Sub(B)

4.6.3. Examples , (i) Every subobject fibration 4- has full subset types.
The associated functor {—}:Sub(B) -^ B takes a representation (m\X -̂> J)
of a subobject to its domain X G B. There is an obvious correspondence

in Su

-^ X = {m}

establishing that { —} is right adjoint to the terminal object functor / H^
id/. The resulting projection functor Sub(B) —>• B~*" sends a subobject to a
representative. It is then a full and faithful (fibred) functor. Hence subobject
fibrations always have full subset types.

Fam(X)

(ii) For each poset X with top element T, the family fibration ^
comes equipped with a subset functor given by

{x^)j^j •-> {i G J I x^ = T} .

It singles out the indices of elements that 'are true'. In general, this does not
lead to a full functor Fam(X) -^ Sets~^.

(iii) Consider a predicate logic with (full) subset types, built on top
£(S,n,-4)

of a specification (I) , n , ^) . The associated classifying fibration i
then has (full) subset types in a categorical sense. One defines a functor
{-}:i:(E,n,v4) -^ « (E) by {x\(j V ^P: Prop) ^ ({x:(j| ^}:Type). The re-
quired adjunction T H {—} boils down to a correspondence between terms M

and Â in:

Section 4-^-' Subset types 279

M
{y: r h T : Prop) >• {x: a \- (f: Prop)

;^ {x: a\ (f}
N

I.e. between M and N in:

y.T \- M{y):(T with y:T \T h (p[M/x]

y:r \- N: {x: a\ (p)

This correspondence is given by

MH->i(M) and N^o{N).

(To make this work, we must have equivalence classes (under conversion)
of terms as morphisms in the base category Ci{T,). Also we are assuming
finite products of types here, so that we may restrict ourselves to singleton
type contexts—which may be identified with types—as object of this base
category.)

One gets a functor C(T,,A) -^ Ci{T>)^ which maps a proposition {x:a h
ip: Prop) to the term o{z): {z: {x: a \ <^}) —)• [x: cr). It is full if and only if it is
fibrewise full. The latter means that for a term z\ {x: a\(f} \- M\ {y: r \ V̂ } with
o^ (M) = o^p{z)^ we have an entailment x:a \ (f \- tp (which is a morphism
over {X:(T). Since M = i^(0(^(z)), this follows from an argument as in the
beginning of this section, using the full subset rule.

(iv) Next we describe an example of subset types involving 'metric predi-
cates' . It is an adaptat ion of a construction in [177] (which is based on [194]).
For a metric space X we conveniently write X for the underlying set and
X{—,—) for the metric involved. Tha t is, for the function X{—,—): X x X ->
[0, oo] satisfying for x^y.z G X ̂

X{x,y) = 0 <:> x = y,

X(x, y) = X[y, x), X (x , y) + X{y, z) < X{x, z).

For convenience we have included oo in the range [0, oo] of the distance func-
tion; one can also take [0,1] C M as range.

A function f: X -^Y between the underlying sets of two such metric spaces
in called n o n - e x p a n s i v e if Y{f{x),f{x')) < X{x,x') for all x,x^ G X. We
write M S for the resulting category of metric spaces and non-expansive func-
tions.

A m e t r i c p r e d i c a t e on a metric space X is a non-expansive m a p (p: X ^
[0,oc] where [0,oo] has the obvious metric. One can show that these metric
predicates on X form a metric space with distance between (p,tp: X =t [0, oo]

280 Chapter 4' First order predicate logic

given by
sup \<p{x) — i^lx)].
xex

They can be ordered by

(f Q i^ <^ ^x E X. ip{x) < (p{x).

Note the inversion. This yields a poset MF{X). One thinks of such a metric
predicate (p as absolutely true in x if (p{x) = 0 and as almost true in x if (p{x)
is very small. Thus (p Q ip if and only if ip is everywhere more true than (p.

The assignment X ^ MF(X) extends to a split indexed category MS^^^ —>
MP

Cat by composition; hence to a split fibration, which will be written as Jj .
It has a terminal object functor T: MS -^ M P which sends a metric space X
to the top metric predicate

Tx = ^xeX.O

in the poset MP(X) of metric predicates on X. We also have a subset functor
{ - } : M P - > M S by

(x - ^ [0, GO] j ^ {x e X \ (p(x) = 0}, with metric as in X.

It singles out the points where the predicate is absolutely true. The adjunction
(T H {—}) is then easily established.

One does not get full subset types.

4.6.4. Remark . Subset types are often used in implicit, hidden form. For
example, one often conveniently writes

{i > 0) A ip{i - 1)

where i ranges over natural numbers N, and ^ is a predicate on N. Formally,
i:N h 'ip{i): Prop. The proposition tp{i — 1) only makes sense if i > 0 holds,
so we cannot interpret (i > 0) A xp{i — 1) as a predicate on natural numbers.
In fact, 'ip'{i) = ip{i — 1) is a predicate on the extent {ic:N|ar > 0} of the
predicate (f{i) — (i > 0). Then we can correctly write the above conjunction
as:

= {i > 0) A 3j: {x:n\x>0}. (o(j) = N ̂ A ̂ (o(i) - 1))

so that it becomes a predicate on the natural numbers. Of course, this is
rather cumbersome, especially because it is clear that we should take \{i) as
instantiation of j .

Notice, by the way, that by using Frobenius we obtain: (p A JJ^ (V '̂) =
LITT (^i^(^) A V̂ ') — U^ (^')- I^ P62] a new connective (p andalso ip' (with its
own rules) is introduced for 9? A]J^ (t/^').

Section 4-6: Subset types 281

We conclude this section with an example of how subset types can be used
to get a factorisation of maps in base categories of regular fibrations. This
gives a more abstract description of the factorisation that we have seen for
regular subobject fibrations in Section 4.4.

E

4 . 6 . 5 . E x a m p l e . Let jrP be a regular fibration with subset types. An arbi-
B

t rary m a p u: I ^ J in the base category B can then be written as composite

where]J^ is the left adjoint to the reindexing functor u* associated with u,
as in Example 4.3.7 (i). And the morphism u' is then obtained from the unit
of the adjunction (]J^ H w*) at the terminal object T G E/ over / ,

T<«*IJ„(T),

which yields a m a p u':u -^ TTJT ^J. in the slice IB/J, by Lemma 4.6.2 (ii).

Further, this factorisation has the following universal property: for each

object X G EJ and morphism v: I ^ {X} in B with u = TTX o v, there is a

unique m a p / : ! !«(" '") ""^ ^ ^^ ^J ^^^^

This m a p / is obtained as follows. By the correspondence in Lemma 4.6.2 (ii),
the m a p v, considered as a morphism i/ -^ TT^ in B / J , gives rise to a vertical
m a p T -^ w*(-^) pver / , and thus by transposition to the required / : IJ^^(T) —^
X over J. Because this / is vertical one gets TTX O {/} = TTTT /yx. Hence

{/} o u' = V holds because TTX' {X} ^ J is a monomorphism.
This is precisely the universal property of the image factorisation in Defi-

nition 4.4.2 (i), when considered in the associated subobject fibration.

Exercises

4.6.1. Describe the resulting projection functor Fam(X) -^ Sets"^ in Exam-
ple 4.6.3 (ii) and show that in general it need not be full. Do the same
in Example 4.6.3 (iv).

4.6.2. (i) Check that the category M S in Example 4.6.3 (iv) has finite limits.

282 Chapter 4' First order predicate logic

MP
(ii) Show that the fibration 4- has simple products and coproducts.

Fam(X)
4.6.3. Consider the regular family fibration i associated with a (non-

. Sets ^ ^
trivial) frame X. Prove that the factorisation of a function u: I -^ J as
in Example 4.6.5 is the usual factorisation of w as a surjection followed by
an injection.

4.6.4. Show that a projection {X} ^^ / i s an isomorphism if and only if T < X.
4.6.5. Prove that the 'monic part ' {]J[^(T} >—> J of K: / -> J in Example 4.6.5 is

an isomorphism if and only if u is internally surjective.
4.6.6. Show that a fibration with equality and subset types has equalisers "in the

internal logic": for parallel maps u,v: I ^ J in the base category we have
a diagram

TT ^ ^

{Eq(ii, v)} > >• I ^ J with T < Eq(w o ;r, i; o TT).
V

And for each w:K —)• / with T < Eq(u o w,v o w) there is a unique
w: K —)• {Eq(w, v)} with n ow = w.
Conclude that if internal and external equality coincide, then the base cat-
egory has (ordinary) equalisers.

E
4.6.7. Let -^P be a regular fibration with subset types.

(i) Extend the operation u \-^ LI^,(T) to a functor 5:B"*" -^ E.
(ii) Show that the projection functor X i-> TTX is right adjoint to this

functor S.
[Lawvere [193] originally described comprehension (or subset types) by re-
quiring such a right adjoint to S; the approach above with a right adjoint
to a terminal object functor is somewhat simpler.]

E

4.6.8. Let ^P be a fibration with subset types and let V:1E —^ B~* be the induced
IB

projection functor.
(i) Show that V preserves any kind of fibred limit as defined in Exer-

cise 1.8.8.
(ii) Suppose that p has products Y[,> prove that V preserves these.

4.7 Quotient types

In the previous section we have presented subset types via a right adjoint
to a t ru th predicate functor. In an almost dual fashion we shall now present
quotient types via a left adjoint to an equality relation functor. It shows again
the role played by adjunctions in capturing the essentials of the structures
used in logic and mathematics . We split the material on quotients in two
parts : in this section we describe the syntax and use of quotient types in

Section 4-7: Quotient types 283

(simple) predicate logic. And in the next section we present the categorical
description of quotients, involving an appropriate adjunction. In higher order
logic quotient types become more powerful and behave better; this will be
shown later in Section 5.1. For more information on quotient types, see [132,
135, 133, 21].

We start with the syntax of quotient types (also called quotients, for short) .
We assume we are in a predicate logic over simple type theory, with at least
propositional (or internal) equality M —a M ' : Prop, for terms M,M' of the
same type a (as in Section 3.2). The following rule tells us how to obtain a
quotient type.

f o r m a t i o n

x: (T^y.a h i?(x, y)\ Prop

h a/R\ Type

Thus, given a type a with a (binary) relation R on cr, we can form the quotient
type a/R. Notice tha t we do not require that R is an equivalence relation.
Set theoretically, one can think of a/R as the quotient by the equivalence
relation generated by R. This can be made more precise in higher order logic,
see Lemma 5.1.8 (but see also Exercise 4.7.3 below). Associated with the
formation rule, we have introduction and elimination rules for quotient types.

i n t r o d u c t i o n

V\-M:a VY-M:a V \-M'.CT
with

r h [M]R: a/R r I R{M, M') h [M]R =,,R {M'\R

This yields the equivalence class \M\R associated with an inhabitant M of cr.
Often we write [M] for \M\R if the relation R is understood. The associated
equality rule tells tha t if terms are related by R, then their classes are equal.
We thus get the "canonical" m a p [—]/?: cr —> a-jR.

e l i m i n a t i o n

Y,X\(JV N\T r , x\ (T,y\(j\ R{x, y) h N{x) =r N[y)

r , a: a/R \~ pick x from a in N[x): r

The intuition is as follows: by assumption, the term N{x) is constant on equiv-
alence classes of R. Hence we may define a new term pick x from a in N{x),
which, given a class a: a/R, picks an element x from the class a, and uses it
in N{x). The outcome does not depend on which x we pick. Notice tha t the
variable x thus becomes bound in the elimination term pick x from a in N(x).
By a-conversion, this term is then the same as pick y from a in N{y).

284 Chapter 4- First order predicate logic

The associated conversions are

(/?) pick X from [M]R in N = N[M/x]

[T]) pick X from Q in N[[x]R/a] = N[Q/a].

In the (7/)-conversion it is assumed—as usual—that the variable x does not
occur free in N. In the calculations below, (r/) turns out to be very useful,
especially in 'expansion' form: from right to left. An alternative formulation
of (//) involving a commutation rule is presented in Exercise 4.7.1.

For completeness we should also mention the behaviour of the new terms
under substitution:

[M]n[P/z] = [M[P/Z]]R

(pick X from Q in N)[P/z] = pick x from Q[P/z] in N[P/z].

The latter if x does not occur free in P. And also the compatibility rules:

M = M' => [M]R = [M']R

N = N' and Q = Q' => pick x from Q \n N =z pick x from Q' in N'.

where in the latter case it is implicitly understood that both N and A''' are
constant on equivalence classes We recall that in these rules the equality
symbol = without subscript refers to conversion, whereas =r with subscript
refers to propositional equality (of type r) .

In the special case where the relation R that we started from is an equiva-
lence relation (provable in the logic), then we can require an additional rule,
which is a converse of the equation in the introduction rule. This extra rule can
be described categorically by the requirement that a certain functor associ-
ated with quotients is full (as will be explained in the next section). Therefore,
it makes sense to speak of full quotients, in case this additional rule is added
(in analogy with full subset types in the previous section). In category theory
one usually calls these quotients effective.

effective or full quot ients

r \- M:a r |-M':cr
(i? is an equivalence relation)

r | [M] f l = , / f l [M '] f l h f i (M , M ')

Thus, effectiveness says that inhabitants of a which have the same /i-classes
must be related by R.

In the above description of quotients we have restricted the relation R =
R{x,y) on a in such a way that it contains only the variables x,y:a. If we
drop this restriction, we get a formation rule

r,x:cr,t/:(T h R{x,y):Prop

r h a/R: Type

Section 4-7: Quotient types 285

involving a context F of term variables. This leads to type dependency: the
newly formed quotient type a/R may contain term variables z in R declared
in r . A typical example is the group Zn of integers modulo n, obtained as
quotient type Z/nZ, for n:N.

This is very much like what we have seen for subset types in the previous
section. The natural setting in which to use subset and quotient types is what
we shall later call "dependent predicate logic" in Section 11.1. But for the
moment we restrict ourselves to quotient types without type context T in the
formation rule, so that we remain within simple predicate logic.

Propositional equality =a is essential in formulating the above rules for quo-
tient types. But the presence of these quotients also has an effect on equality,
as the following result (from [133, 3.2.7]) shows.

4.7.1. Lemma. In the presence of quotient types, propositional equality on
function types is extensional: one can derive

f:a -^T,g:a -^T\ VX: cr. fx -^ gx ^ f -a^r 9-

(The categorical counterpart of this result states that quotients satisfy a
"Frobenius property" (as in Exercise 4.7.6) if and only if the equality functor
Eq preserves exponents, see Section 9.2.)

Proof. Consider the following relation ^ on the arrow type cr —> r,

f:a -^ T^g:a -^ T \- f ^ g — ^x: a. fx —r gx : Prop.

def

Form the associated quotient type a ^ r — (cr —> r) / ~ , with canonical map
[—]: (cr —> r) ^ (cr => r) . There is a term P in the reverse direction, obtained
via

x:cr, f:a -^ T h fx: r x: a, f: a -^ r, g: a ^ r \ f ^ g \- fx =T gx

x: a, a: [a => r) h pick / from a in fx: r

a: (cr => r) h P[a) — \x: a. pick / from a in fx: a —^ r

Obviously, for / : cr -> r,

P([f]) = Xx:<T.fx = f,

by first using (/?) for quotients, and then (rf) for ->. Thus if / ~ ^, then
[/] =:(j^r [g], and so / =a-^T 9' This completes the proof. Notice by the way,
that one also has that [-P(a)] = a, so that we have an isomorphism of types
{a ^T)^{(T^T). D

4.7.2. Notation. Assume we have a relation i? on a type cr, and a relation
5 on a type r. Then we conveniently write

pick X, y from a, h in N{x, y)

286 Chapter 4' First order predicate logic

for
pick X from a in (pick y from h in N[x^ y))

whenever the latter expression makes sense. This is the case when we can
derive the following equations.

r , x: (7, y, y': r \ S[y, y') h N{x, y) =, N{x, y')

r , X, x'\ (T,y'.T\ R{x, x') h N{x, y) =p N{x', y).

Via the first of these equations we can form the term pick y from b in N{x, y).
By substituting x' for x we also get pick y from 6 in N(x'^ y). We now obtain
the required multiple pick term via the following derivation.

r , x, x': (7, t/: r I R[x, x') h N{x, y) ^ , N[x', y)

V,x,x':(T,h:TlS\R{x,x') h
pick y from 6 in N[x, y) =p pick y from 6 in N{x', y)

r, a: (T/R^ b: r/S h pick x from a in (pick y from 6 in N{x, y)): p

The first step follows from Exercise 4.7.5.

The remainder of this section is devoted to an elementary example of the
use of quotients in (simple) predicate logic. It involves the construction of the
integers from the natural numbers, as a free Abelian group.

4.7.3. Example . Recall that the set of integers Z can be constructed from
the natural numbers N by considering a pair of natural numbers {n^m) as
representation for the integer m — n. Then one identifies two pairs (ni, mi) and
(n2,m2) of naturals if mi—ni = m2 —n2. Or equivalently, if niH-m2 = n2+mi.
Thus one introduces Z as a quotient of N x N. One can then define addition
+ :Z X Z —>• Z, zero 0 G Z and minus — :Z —> Z via representatives. For
example, one takes for a G Z,

—a = [m,n] if a = [n,m].

This construction of Z form N can be described in a slightly more abstract
way as the formation of the free Abelian group on a commutative monoid via
a quotient. Indeed, (Z, 0, +, — (•)) is the free Abelian group on (N, 0, +) .

In our predicate logic over simple type theory we now assume that we have
a commutative monoid (N, 0, +) , consisting of a type N: Type with constants
0, -h in

h 0: N and x:N,y:N \- x-\-y:N

satisfying the commutative monoid equations

0 + jr =N â , x-^y=^y-\-x, x + {y + z) =^ {x-}-y) + z,

Section J^.l: Quotient types 287

for x,y,z:N. We think of these as (internal) equalities which come with the
da ta type (N, + , 0). One may read N as natural numbers, but all we need are
these commutat ive monoid equations.

We then consider the relation ~ on N x N,

t / : N x N , i ; : N x N \- u ^ v := {TTU + TT'V = | \ | TT'U + nv): Prop

which corresponds to the identification of pairs (n i , m i) , (n2,m2) via rii +
1712 = 7̂ 2 H- mi above. We write

Z = (N X N) / - and [x,y] for [{x,y)] in N x^ ^ Z.

Of course we think of Z as the type of integers.
The next step is to provide Z with an Abelian group structure 0, + and

inverse —. This is done, as in the set-theoretic construction, via representa-
tives. And the syntax we have allows us to reason conveniently with these
representatives inside pick . . . terms.

The neutral element is easily obtained as

0 t^ [0,0]:Z.

The inverse operation — (•) is

—a — pick w from a in [K'W^ -KW] : Z,

which is very much like the set-theoretic minus — (•) mentioned above. Notice
that this term is well-defined because from u ^ v one derives {n'u,7vu) ~
{TT'V, TTV).

Finally, addition -h on Z is then

a-\-b = pick w, V from a, 6 in [TTU -f- wv, TT'U -\- -n'v]

= pick u from a in (pick v from b in [TTU -\- TTV, TT'U -{- TT'V]).

This operation is well-defined, since we can derive

wi, ^2- N X N,t;: N X N I wi ^ 1/2 ^

(TTI/I -h TTt;, n'ui -\- TT'V) ^ (7ri/2 + TTV, 7T'U2 + TT'V)

w: N X N,i ' i , i ;2: N x N | i;i ~ 1̂2 h

{TTU -h TTVi, TT'U 4- 7r'i;i) ^ {TTU -f TTVO^ n'u -{• 'K'V2)-

288 Chapter 4- First order predicate logic

Then 0 is neutral element, since we can compute:

a -h 0 = pick u from a in (pick v from [0, 0] in [TTI/ + i^v, -K'U + TT'I;])

— pick u from a in [TTW -I- 0, TT'W + 0]

= pick u from a in [TTW, TT'W]

= pick u from a in [w]

= a.

We leave it to the reader to verify that (Z, + , 0, —) is an Abelian group. There-
fore one needs the conversions in Exercises 4.7.1 and 4.7.4 below. We do show
tha t Z has the appropriate universal property making it the free Abelian group
on N. First, we have an extension map c: N -^ Z by c[x) — [0,2^]. This is a
monoid homomorphism, since by definition c(0) = [0, 0] = 0, and

c(x) -h c[y) — pick w, v from [0, x\, [0, y] in [KU + nv, n'u + n'v]

= c{x-\-y).

Further, if we are given an arbitrary Abelian group (G, • , 1, (•)~^) together
with a monoid homomorphism M:H -
phism M:Z ^ G with M o c = M in,

G, then there is a unique homomor-

Therefore, write

N{u) ^ M{'K'U) • M(7rw)-^ : G, for w : N x N

To see tha t the term

M[a) — pick u from a in N{u): G, for a : Z

is well-defined we need to derive

w , i ; : N x N | w ^ t ; h N{u) -Q N{V)

But this follows because G is an Abelian group: if u ^ v, then by definition
TTu + Tv'v =|sj TT'U + TTv. Heuce M{7ru) • M(7r'v) =G M(7ru -\- TT'V) —Q M['K'U -|-
TTv) =G M{7r^u) • M{7rv), and so N{u) —Q M{'K'U) • M(7rw)"^ =G M{'K'V) •

Section J^.l: Quotient types 289

M{7rv)~^ -G N{v). Then indeed,

(M o c){x) — pick u from [0,x] in N{u)

= N({0,x))
= M(x)»M{0)-^

=G M (x) » l - i

=G M{x).

We leave it to the reader to verify that M is a homomorphism. And if another
term (-homomorphism) P:Z -^ G satisfies P{c{x)) —G M{X), then N{u) =
M{7^'u)^M{7^u)-'^ =G P{c{7^'u))^P{c{7Tu))-^ =G P ([0 , 7r 'w])*P(-[0, TTU]) = G
P([0, TT'U] + [TTU, 0]) =G ^([TTt/, TT'W]) = G ^ (M) - Hence

M{a) = pick 1/ from a in A''(?i) = pick u from a in P (M) = -P(a).

This concludes the example.

The first two of the exercises below give conversions which are quite useful
in computations with quotient types.

Exercises

4.7.1. Prove that in the presence of (/3)-conversion for quotients, the (r7)-con-
version is equivalent to the combination of

P[(pick X from Q in N)/z] = pick x from Q in P[N/z]

pick X from Q in [X]R = Q.

The first of these is a 'commutation' conversion, and is comparable to the
conversion in Lemma 2.3.3 for coproduct types +.

4.7.2. Prove that the term
x:a \- [x]=^:a/=o-

is invertible.
4.7.3. (i) Let R, S be two relations on the same type a. Show how an entailment

a:, x': a \ R{x, x') h S(x, x') gives rise to a term a: a/R h M(a): a/S.
(ii) For a relations R on a, define the reflexive and symmetric closure of R

as two relations on cr given (respectively) by

R^{x, x') =^ R{x, x') V (x =a x'), R^{x, x') =^ R{x, x') V R{x\ x).

Show that taking S = R^ and S = R^ in (i) leads in both cases to
invertible terms.

4.7.4. Prove the following derived conversions.
(i) In case a term T \- N:T that we apply elimination to, does not contain

a variable x of type cr, then we get in context T,a: cr/R a conversion,

pick X from a \n N = N.

290 Chapter 4- First order predicate logic

(ii) And in case we have two variables F, x,y: a h N{x, y): r and equalities

r , x: (T, y, y': a \ R{y, y') h N{x, y) = r N{x, y')

r , X, x': (T, y: <T I R{x, x) h N{x, y) =r N{x\ y)

then in context F, a: alR we have a conversion,

pick a7,y from a,a in A'^(i:,y) = pick a: from a in A/^(a:,i:).

4.7.5. Derive the following replacement rule for internal equality = T .

T,x:(T\e\- N =rN'
{x not in 0)

F, a: (TIR \ 0 h (pick x from a in N) =T (pick a; from a in A/̂ ')
where both Â and N' are assumed to be constant on equivalence classes.
It is used to justify the multiple pick's in Notation 4.7.2.

4.7.6. Let types a, p and a relation x^y-.o- h R{x^ y): Prop be given. Form a new
relation p*{R) on p x (T by

u: p X a^v: p X a h p*{R)(u, v) = {TTU =p nv) A R{n'u, n'v): Prop.

Prove that the canonical map

(p X <T)/P'{R) ^ p X (a/R)

given by

a: {p X a)/p*{R) h P{a) = pick u from a in (TTW, [;r'^i]i^): p x {(T/R)

is invertible.
[This is shows that a "Frobenius distributivity" for quotient types is inher-
ent in the syntax that we use (with explicitly contexts F in the elimination
rule). It is like for other 'colimits' such as -|- and 3.]

4.7.7. Consider a predicate logic with a commutative monoid N of natural numbers
as in Example 4.7.3, and with Z as the Abelian group of integers constructed
from N, as in the example.
(i) Give a formal description of the construction of the rationals Q as

quotient of Z X N, where the pair (n,m) represents the rational :^^^'
(ii) Assume now that one also has exponent types -> and subset types. Try

to formalise the construction of the Cauchy reals (see for Example [335,
Chapter V]).

4,8 Quotient types, categorically

In this section v ê describe quotient types (in simple predicate logic) in cate-
gorical terms. These quotients, like subsets, involve an adjunction between a
base category and a total category of a fibration. But w^here subsets involve a

Section 4-^: Quotient types, categorically 291

right adjoint to a truth predicate functor, quotients involve a left adjoint to
an equality (relation) functor. Interestingly, it turns out that subsets can also
be described in terms of a right adjoint to this equality functor.

E

We recall from Definition 3.5.1 that an Eq-fibration j^P is a fibred pre-
order which has fibred finite products and finite products in its base category,
and also has equality satisfying the Frobenius property. Below we describe
quotients only for such preordered fibrations, but the main definition 4.8.1
applies to non-preordered fibrations as well. We shall write Eq/ for the left
adjoint of the diagonal S{I) — (id, id): / -^ / x / in B.

E Rel(E)
For such a fibration j^P we form the fibration 4- of binary predicates

IB B

(or relations) in p by the following change-of-base situation.

Rel(E) ^ E

J

ly^ I X I

A fibre Rel(E)/ is then the same as the fibre E/x/ of relations on / G B. Note
however, that in the notation Rel(E) the dependence on the fibration p is left
implicit.

There is then an "equality relation" functor

Eq
B ^Rel(E) by / I ^ Eq(/) = Eq/(T),

where T = T(/) is the terminal object in the fibre E/. A morphism u: I -^ J
in B is mapped to the composite

Eq(/) = Eq,(T(/)) (u X ur(Eqj(T(J))) Eqj(T(J)) = Eq(J)

where the first part of this map is obtained by transposing the following
composite across the adjunction Eq/ -\ S{I)*.

T(/) ^ i/*(T(J)) " ^ - ^ u^5{jyEqj{T{J)) ^ S{iy{u x i/)*Eqj(T(J))

It may be clear that the functor Eq is a section of the fibration of relations.
For a morphism u: I ^ J we write

Kev{u) =^ {u X t/)*(Eq(J)) G Rel(E)/x/

for the kernel relation u{i) = u{i^) on / x / . This operation u H^ Ker(ii) can

292 Chapter 4' First order predicate logic

be extended to a functor W^ -^ Rel(E) commuting with the domain functor
(or fibration) dom:E~^ -^ B, see Exercise 4.8.8.

We can now state our main notion (in this section).
E

4.8.1. Definition. Let iP be a fibration as above. We say that p has quo-
IB

tients or quotient types if the equality functor Eq: B -^ Rel(E) has a left
adjoint.

This left adjoint maps a binary relation R G Rel(E)/ = E/x/ to the quotient
object I/R G B. The unit TJR is a map R -^ Eq{I/R) in Rel(E). Its underlying
map in B will be written as CR: I -^ I/R. It is the "canonical quotient map"
associated with the quotient.

The next result is the analogue for quotients of Lemma 4.6.2 for subset
types.

E

4.8.2. Lemma. Consider a fibration jrP with quotients, as above.
(i) The canonical maps CR: I ^ I/R are epis in the base category.

(ii) For each morphism u: I -^ J in M and for each relation i? G E/x/ on
I, there is a bijective correspondence

R < Ker(w) m Rel(E)/

CR —-̂ u m
where / \ B is the 'opslice' category of maps with domain I and commuting
triangles.

(iii) The assignment R\-^ CR extends to a '^canonical quotient map" functor
C in

C
Rel(E) ^ B-'

X >^dom
B

which maps 'opcartesian' morphisms in Rel(E) to pushout squares in B.

(An 'opcartesian' map is for an 'opfibration' what a Cartesian map is for a
fibration, as we shall see in Section 9.1. In this situation a morphism f: R -^ S
in Rel(E) over w: / -> J is opcartesian if and only if 5 < Yluxui^)-)
Proof, (i) Consider a situation

Section 4-^' Quotient types, categorically 293

where u o CR = v o CR = w. The transposes u^ — Eq(t/) o rfR and v^ —
Eq(t;) o r]R are maps R =t Eq(J) which are both above u o CR — v o CR.

Rel(E) ^ E
But then u^ = v^, because i , like ^ , is a preordered fibration (see

Exercise 1.3.11). Hence u — v.
(ii) Assume we have an inequality R < Ker(i/) = [u x u)*{Eq{J)) over

/ . There is then a unique m a p f:R -^ Eq(J) in Rel(E) over u: I -^ J . By
transposing it we get a morphism / ^ : I/R - ^ J in B, satisfying f^ o CR — u.
Conversely, assume we have a morphism v: I/R -> J in B with v o CR = u.
The transpose v"^: R -^ Eq (J) is then above t/, by an argument as in (i). This
yields the required inequality R < Ker(i/) = (w x u)*{Eq{J)) over / .

(iii) For a morphism / : / ? - > 5 in Rel(E) over u: I ^ J we have to find a
m a p I/R —^ J/S in a commuting square,

I/R ^ J/S

CR 'cs

-^ J

This requires a m a p CR —> (cs o u) in the opslice / \ B . By combining the
inequality R < {u x w)*(5) with S < {cs x C5)*(Eq(J /5) we obtain the
following inequality.

R < (uxuYiS)
< {uxuYics x c 5) * (E q (J / 5)

^ {{csou)x{csou)y{Eq{J/S)

= Ker(c5 o u).

Then we get the required m a p by (ii).

If our m a p f : R ^ S i s opcartesian over u—i.e. if 5 < U u x u (^) — ^ ^ ^ ^
the above square becomes a pushout in B: assume maps v: I/R -^ K and
w: J ^ K in B with v o CR = w o u. Then '̂ is a morphism CR -^ (w o u) in

This yields R < Ker(it; o w), by (ii). Now

S < Uuxui^) because / is opcartesian

< U^><y(w X u)*{w X wy{Eq{K)) because R < Ker(it; o u)

< (wxwr(Eq{K)) b y l J . x . ^ (^ x ^) *

= Ker(ti;).

Hence we get the required mediating map cs —^ w in J \ B by (ii). •

Notice tha t the canonical maps {X} >-^ I for subset types are monos,
whereas the canonical maps / -^ I/R for quotient types are epis. But there

294 Chapter 4' First order predicate logic

is a deeper duality between subset types and quotient types, as we will show
next. Recall that we have introduced subset types via a right adjoint to truth,
and quotient types via a left adjoint to equality. It turns out that subset types
can equivalently be described by a right adjoint to equality.

E

4.8.3. Theorem. Let jrP be an Eq-fibration. The induced equality functor
Eq:B -4- Rel(E) then has a right adjoint if and only if p admits subset types.

This result, and its proof below, also hold for non-preordered fibrations.

Proof. Assume the fibration p has subset types, via a right adjoint { —}: E -^
B to the truth predicate functor T. For a relation R ElEjxi on I we have the
following (natural) isomorphisms.

Rel(E)(Eq(J), fi) = U E jx j (Eq(J) , (i/x w)*(i^)), see Lemma 1.4.10
u:J^I

= I I E J (T (J) , S*{uxuy{R))
U.J-^I

- U E J (T (J) , u^S^iR))

^ E (T (J) , J*(i?))

- B (J , {6^[R)]).

Hence R ^ {8*{R)] is right adjoint to Eq:B ^ Rel(E).
Conversely, assume that the equality functor Eq has a right adjoint

/\:Rel(E) -^ B. For an object X G E over / G B, put {X] = /i(7r*(X)),
where TT is the first projection I x I -^ I. Then X i-> {X} is right adjoint to
truth T:

E (T (J) , X) ^ I I E J (T (J) , w*(X)), by Lemmal.4.10

^ I I E J (T (J) , u*S'7r*{X))
u.J-^I

^] J E J (T (J) , (J-(«x«r;r*(X))

^] J Ejxj(Eq(J), («x«)-7r*(X))
K.J—f/

S Rel(E)(Eq(J), 7r*(X))

^ l (j , A'U*(X)))
= B (J , {X}). a

Section 4-^- Quotient types, categorically 295

We consider the following two additional requirements for quotients in a
fibration.

E

4 .8 .4 . De f in i t i on . Let ^P be a fibration with quotients as above.
m>

(i) We say tha t the quotients satisfy the Froben ius p r o p e r t y in case the
following holds. If for a relation R on I and an object J G B we form the
relation

r{R) =^ (TT X 7r)*(Eq(J)) x (TT' X TT')* {R) on J X /

then the canonical map

(J X I)/r{R) ^ J X {I/R)

is an isomorphism.
(ii) And if p is a preorder fibration, then we say tha t quotients are efi'ective

or full if for each equivalence relation R on I (in the logic of the fibration p),
the unit m a p rjR: R ^ Eq{I/R) is Cartesian over CR: I ^^ I/R in the fibration
Rel(E)

i of relations.

The canonical m a p in (i) is obtained by transposing the following composite

r{R) zr: (TT X 7r)*(Eq(J)) X (TT' X 7r'y(R)

id X (TT' X 7r'y{T])

(TT X 7r)*(Eq(J)) x (TT' X 7v'y{Eq{I/R)) ^ E q (J x {I/R))

accross the quotient-adjunction. The latter isomorphism comes from the fact
that Eq is a right adjoint and must thus preserve products. In the total cat-
egory Rel(E) these products are given by the formula on the left of = , as we
shall see in more detail in Section 9.2.

We briefly discuss the interpretation of the quotient type syntax from the
E

previous section in a fibration -j^P with quotients satisfying the Frobenius
property. The latter is used—as always—to get an appropriate elimination
rule with contexts.

A relation i^ on a type / G B is an object /? G E / x / — Rel (E) / . We can form
the associated quotient type I/R G IB with its canonical m a p CR = [—]R: I -^

I/R satisfying R < {CR X CR)*{Eq(I/R)). This gives us for each i: I a class
[i]R:I/R, together with an entailment i,i':I \ R[i,i') h [i]R —I/R [i']R' This
yields validity of the formation and introduction rules.

For the elimination rule, assume we have a term,

u
j : J, i: I h i/(j, i): K as a m a p in B J x I >• K,

296 Chapter 4- First order predicate logic

which is constant on elements related by R:

j : J, i, i': I \ R{i, i') h u{j, i) -K u{j, i').

The latter yields an entailment

i , / : J , i , i ' : / I J* (/?) ((i , f) , (/ ,0) h u[j,i) ^K u{j\i'),

since J*{R)((j, i), (/ , i')) = U ^J f) ^ R{h i')- We thus get a map J*{R) ->
Eq(A') in Rel(E) over u. Transposition across the quotient adjunction yields
a map (J x I)/J*{R) -> K, and so by Frobenius we get our required map

J X (I/R) ^ ^ (J X I)/r{R) ^ Â

which may be read as

j : J, a: I/R h pick i from a in u(j, i): K.

We leave validity of the quotient conversions as exercise to the reader.
What are traditionally called 'effective' quotients in category theory may

also be called 'full' quotients, because of the following result, and because of
the analogy with 'full' subset types.

E

4.8.5. Propos i t ion . Let j ^ he a (preorder) fibration with quotients. We
write ERel(E) M- Rel(E) for the full subcategory of equivalence relations (in
the logic ofp). The quotients in p are then effective (or full) if and only if the
'^canonical quotient map'' functor C: ERel(E) -> B"*" is full (and faithful).

Proof. Assume quotients in p are effective, and consider a commuting square
in B of the form:

CiR) = CR\ \cs=CiS)

where R, S are equivalence relations. We must show R < {u x w)*(5) to get
fullness of C. This is done as follows.

R ^ [CR X CRyEq{I/R) by effectiveness

< {CR X cnYiv xvYEqiJ/S)

^ {uxuYics xc5)*Eq(J/5)

= [u X u)*{S) by effectiveness again.

Conversely, we need to show that a unit map rjs: S -^ Eq(J /5) is Cartesian
in Rel(E), for S E E jx j an equivalence relation. That is, we need to show

Section 4-^- Quotient types, categorically 297

tha t Ker(c5) = [cs x cs)*Eq{J/S) < S. Since Ker(c5) is (also) an equivalence
relation, it suffices by fullness of the functor C to produce a m a p CKer(cs) ~^ <^s
in J\IB. But this follows from Ker(c5) < Ker(c5), using Lemma 4.8.2 (ii). •

We continue this section with several examples of fibrations with quotients,
s tart ing with subobject fibrations.

4.8 .6 . P r o p o s i t i o n . Consider a category IB with finite limits.
Sub(l)

(i) / / B has coequalisers, then the subobject fibration i onM has quo-
IB

tients. These are effective if and only if each equivalence relation R >-^ I x I
in B is effective, i.e. is a kernel pair R'=X I of some map I -^ J in B.

(ii) In case B is a regular category the converse of (i) also holds: B has
Sub(l)

coequalisers if and only if i has quotients.

(iii) And in the situation of (ii), the coequalisers in B are preserved by
functors J x (—):B -> B i / and only if the Frobenius property holds for the

Sub(]B)
quotients in I

A regular category with coequalisers, as in (ii), is often called an e x a c t
category, see e.g. [36, II, 2.6].

Proof, (i) Assume B has coequalisers. For a relation (ro, r i) : /? ^^ / x I on
/ , we find a quotient object I/R by forming the coequaliser

R ^ ^ ^ / — ^ I/R

This assignment R M- I/R yields a left adjoint to the equality functor since
there is a bijective correspondence between morphisms u and v in:

(^o,ri)j

R ^ J

I*
U X U ^

I X I >- J X J

I/R ^ J
' v

In case R is an equivalence relation, then its quotient is effective—according

298 Chapter 4' First order predicate logic

to Definition 4.8.4 (ii)—if and only if there is a pullback diagram

R —
YJ

(^o,n)
Y

Ix I -
CR X CR

I/R
Y

s
I

{I/R) X (I/R)

This diagram expresses that R is the kernel of its own coequaliser CR. But
that is equivalent so saying that R is the coequaliser of some map / —> J in
B.

(ii) If B is a regular category then quotients for the subobject fibration on
B induce coequalisers in B. Given a parallel pair of maps u,v: K z=t I inM, we
first factorise

[K ^ I X I) = [K

and then take the quotient of the relation R

CR

->R> ^ I X I)

>-^ I X L

^ I/R

The unit map TJR: R —^ Eq(I/R) consists of a square

R
Y

(^o,n>

Ix I

-^ I/R
Y

&
CR X CR

{I/R) X (I/R)

This gives us CR o ro = CR o ri, and thus CR o u — CR o v. If also w: I -^ J
satisfies w o u = w o v, then, because e is an epi, we get w o ro = w o ri. The
latter tells us that we have a map R —^ Eq(J) in the category of relations over
w: I —^ J. By transposition we then get the required mediating map I/R -> J.
This shows that CR is the coequaliser of u,v inM.

(iii) The main point is that for a relation (ro, ri): R ^^ I x I on I and an
object J G B the relation J*{R) on J x / in Definition 4.8.4 (i) is the subobject

(J X ro, J X ri)
J xR > >- (J X /) X (J X /)

Thus, assuming that B has coequalisers that are preserved by functors J x
(—), we obtain: if CR: I —> I/R is the quotient of R—i.e. the coequaliser of
To, r i : i? =4 /—then J x CR is the coequaliser oi J x ro, J x ri: J x R zzt J x I.
Thus we get (J x I)/r{R) -^ J x (I/R).

Section 4-^: Quotient types, categorically 299

Conversely, if the quotients in the subobject fibration satisfy Frobenius, then
coequalisers in M are preserved by functors J x (—). This is because the above
factorisation of the tuple {u, v) in (ii) yields a factorisation of {J x u, J x v),

Jxe (J x r o , J x r i)
J X K >J X R > ^ [J X I) X {J X I)

In this diagram J x e is still a cover because covers are stable under pullback,
and the relation J x R is J* (R). This shows that as coequaliser of J x u and
J X V one can take the quotient J x CR\ J x I -^ J x {I/R) of J*(R). Thus
J X (—) preserves coequalisers. •

In the next series of examples it will be shown that family fibrations (for
a poset) always have quotients, that the classifying fibration of a predicate
logic with quotient types has quotients in the categorical sense, and that a
fibration of "admissible" subsets of complete lattices also has quotients. The
latter order theoretic construction follows [174, Chapter I].

4.8.7. Examples, (i) Recall from Example 3.4.4 (iii) that if X is a poset
Fam(X)

with bottom A. and top T elements, then the family fibration i has
. . . Sets

equality. For a family x — {'^{ij)){i,j)eixJ over / x J, it is given by

M-hjj') = { l̂ '̂̂"̂ I otherwise.

Then for a function u: I ^ J , the kernel relation Ker(w) on / is given by

T ifu{i) ^u{i') / T \fu{i) - u{
Ker(t.)(,,.) = I ^ otherwise.

For a relation r = (^(j ,/))f^i/^/ on / in the family fibration on X, consider the
set theoretic relation R = {(i, i') \ r(^i^i/^ ^ L} C I x I. Let R C I x I he the

least equivalence relation containing R. Then we get a quotient I/r — I/R
in Sets, which serves as quotient in the fibred sense. It comes with canonical
map Cr — [—]'-1 —^ I/R. The adjunction boils down to r < Ker(i/) <^ Cy
factors through w, as in Lemma 4.8.2 (ii).

(ii) We can form a classifying fibration of a (simple) predicate logic with

quotient types using the fibration I associated with the logic on the

signature with predicates (S],n) (plus axioms A) as described in Section 3.1.
We can then form the category Rel(>C(E, H,^)) of relations in this logic via
the change of base situation preceding Definition 4.8.1. This category has
relations {x^x'-.a h R{x,x'):Prop) as objects. And a morphism [x^x'\a h

300 Chapter 4' First order predicate logic

R{x,x^):Prop) -^ {y,y''.T h S{y,y'): Prop) in R e l (£ (E , n , ^)) is a morphism
M : cr ^ r in the base category (X(E) for which one can derive

x,x':a\ R{x,x') h S{M{x),M{x')),

The equality relation functor Eq:C^(E) —> R e l (£ (E , n , > l)) is then given by
the assignment r \-^ [y^y'\T \- y —r y'\ Prop).

Quotient types as described in the previous section determine a left adjoint
to this functor Eq. It maps a relation [x.x'-.a h R{x^ x ') : Type) to the quotient
object a/R in the base category (X(E). The adjunction involves a bijective
correspondence between (equivalence classes of) terms M and N in:

M
{x,x':a h R{x,x')\?xop) ^ (y,y''T \- y =r 2/': Prop)

a/R ^T
N

T h a t is, between terms M and N in:

x:a \- M:T with / x, x'\ a \ R(x, x') h M[x) -j M{x')

V.(TIR h N:T

This correspondence is precisely given by

M{x) H-> pick X from a in M{x) and ^ («) -̂> ^ [W i ? / a] .

The (/?)- and (77)-conversions precisely state that these operations are each
others inverses. And Exercise 4.7.6 tells that the Frobenius property auto-
matically holds. Thus the quotient types in the logic induce quotients for the
fibration associated with the logic.

(iii) Let C L be the category of complete lattices (posets with joins of all
subsets) and with functions preserving all these joins between them. It is
well-known that requiring the existence of joins of all subsets is equivalent to
requiring the existence of meets of all supsets. A morphism f:X -^Y in C L
always has a right adjoint f^:Y -^ X (between poset categories), given as
f*{y) = V { ^ ^ ^ I / (^) < 2/}- I^ is easy to see that (g o f)^ = f* o g^ and
tha t (/*)* = / . (Using these right adjoints one can show that C L is a self-dual
category.) The category C L has finite products in the obvious manner: one
uses finite products of the underlying sets, with componentwise ordering.

Let us a call a subset A C X oi a, complete lattice X a d m i s s i b l e if A is
closed under (all) joins in X. Such subsets can be organised in a fibration
ASub(CL)

i in which the total category ASub(CL) has such admissible subsets

{A C X) as objects. A morphism {A C X) -^ {B C Y) in ASub(CL) is then a

morphism f:X-^Yin C L between the underlying carrier sets which satisfies:

Section 4-^' Quotient types, categorically 301

X £ A^ f{x) £ B^ior a\\ X £ X. This fibration has a terminal object functor
T: CL —> ASub(CL) sending a complete lattice X to the admissible subset
{X C X). It has (full) subsets, via a functor {-}: ASub(CL) -> CL which
maps an admissible subset {A C X) to A, considered as a complete lattice in
itself. Our aim is to show that this fibration also has quotients.

ARel(CL)
We therefore first consider the fibration i of admissible relations,

CL '

obtained by change-of-base along X y-^ X x X (as described in the beginning
of this section). There is an equality functor Eq: CL -^ ARel(CL), mapping
a complete lattice Y to the admissible subset {{{y,y) \ y E Y} C Y x Y).
So far, these constructions are all straightforward. The quotient adjoint (to
equality) is less standard. It maps an admissible subset {R C X x X) to the
complete lattice

X/R ={xeX \ V(2/, y')eR.y<x iff y' <x].

It is easy to see that X/R^ with order as on X, is closed under all meets.
Therefore it is a complete lattice. The inclusion function i: X/R -^ X has a
left adjoint CR:X -^ X/R, given by

CR{X) = /\{zeX/R\x<z}.

Since CR is a left adjoint, it preserve joins and is a morphism X —> X/R in
CL (with {CR)^ = i). Obviously, R[x,x') => CR[X) — CR[X'), SO that CR is a
map of relations R -^ Eq(X/i?). The quotient adjunction requires a bijective
correspondence between morphisms / and g in:

{RCX xX) ^ Eq(y) in ARel(CL)

X/R ^ y in CL
9

For f:[R<ZXxX)^ Eq(y) one takes J = f o i: X/R -^ Y. And conversely,
given g:X/R ^ y , one takes 'g = g o CR: {R C X x X) -^ Eq(y). Then it
is easy to see that 'g — gocRoi — g, because CR o i — id. But showing
that f — f o i o CR — f IS harder. First we notice that fi,[y) is in X/R,
for y EY. Indeed, for a pair {x,x') E: R we have f{x) — f[x'), and thus
^ < f*{y) ^ / (^) < y "^ / (^ ') < y O ^' < f*{y)' But this means that
^(c/i(/•(!/))) = f*{y)' Then we are done, since

/ = (/*)* = (i O CRO / *) * = (/*)* O {CR)^ o U - f o i o CR.

This completes the example.

In Example 4.6.5 we have seen how subset types give rise to a certain
factorisation of maps in the base category. One also gets a factorisation from

302 Chapter 4- First order predicate logic

quotients, as we will show next. In higher order logic this factorisation has a
slightly different universal property, see Example 5.1.9 (i) and Exercise 5.1.6.

E

4 .8 .8 . E x a m p l e . Assume ^P is a fibration with quotients. For a morphism
JB

u: I -^ J in the base category B we can form the kernel relation Kev{u) =
{u X w)*(Eq(J)) on / , and its quotient / /Ker(w) G B. It gives a factorisation,

(/ ^ J) = [I >^ / /Ker(t i) ^ j)

where the m a p w':cKer(u) —^ ^ in the opslice category / \ B comes by
Lemma 4.8.2 (ii) from the inequality Ker(w) < Ker(w).

This factorisation is universal in the following sense. Given an arbitrary
relation i^ G E / x / on 7 and a morphism v: I/R -^ J in B with v o CR = u,
there is a unique map of relations / : R —> Ker(i/) over / such tha t

This mediating map arises as follows. The morphism v: CR -^ u in the opslice
/ \ B gives rise to an inequality f:R< Ker(w) over / . By applying the quotient
functor we get a morphism / / / : I/R -> / /Ker(w) in B which commutes with
the quotient maps. Finally, u' o / / / = v holds because CR is an epi.

Exercises

4.8.1. Assume a fibration with quotients. Prove that for a relation R on I, the
canonical map OR: I -^ I/R is an isomorphism if and only if R < Eq(/)
over / . (A special case is / ^ / / E q (/) , see Exercise 4.7.2.)

4.8.2. Prove that the 'epic part ' CKer(u)'7 —» //Ker(?i) of it: / ^ J in Exam-
ple 4.8.8 is an isomorphism if and only if u is internally injective.

4.8.3. Check that quotients in a predicate logic are effective if and only if the
quotients in the associated fibration—as in Example 4.8.7 (ii)—are effective
in the categorical sense. Describe fullness of the canonical map functor in
Definition 4.8.5 type theoretically.

[Hint. Remember Exercise 3.1.1.]

4.8.4. Show that a relation R >-^ 7 x / is the kernel pair /? =4 7 of its own
coequaliser if and only if it is the kernel of some map 7 -> J .

Section 4-9' Quotient types, categorically 303

E

4.8.5. Let j^P be a regular fibration with quotients. For parallel maps w, v: K =t
/ in B, form the relation JR =] J / V (T) G I E / X / and its quotient

u

K """^^ / - ^ IIR

Show that this forms a coequaliser diagram in the internal logic: one has
T ^ Eq(cH 0 U^CR o t;), and \i w\ I -^ J satisfies T < Eq(ti; o u^w o v)^
then there is a unique map w: I/R —^ J with w o CR = w.
Notice that Proposition 4.8.6 (ii) is a special case of this construction—
which is dual to the one for subsets in Exercise 4.6.6. And also that co-
equalisers in Sets are obtained in this way.

4.8.6. Let RRel(E) ^^ Rel(E) be the full subcategory of reflexive relations in an
E

Eq-fibration j^P , where /? G E/x/ is reflexive if and only if T < S{I)*{R),

if and only if Eq(/) < R.
(i) Show that the composite RRel(E) M- Rel(E) -> B is a fibration.
(ii) Prove that / ^ Eq(J) yields a functor B -> RRel(E) which is left

adjoint to the fibration RRel(E) -> B.
[Thus, equality on / is the least reflexive relation on /.]
(iii) Check that 5 i-̂ 5 V Eq(/) for 5 G Ejx J yields a fibred left adjoint to

the inclusion RRel(E) ^ Rel(E).
4.8.7. Notice that the restriction to preorder fibrations in Definition 4.8.1 is un-

necessary, and that the definition of quotients applies to arbitrary fibrations
with equcJity. In particular it applies to codomain fibrations. Prove that a
category B with finite limits has coequalisers if and only if its codomain

fibration i has quotients.

[Note that the category Rel(B"^) in this situation is the category B ^ of
parallel arrows in B.]

E
4.8.8. Let ^P be a fibration with equality. Describe the kernel operation Ker(—)

1 .
as a functor in a commuting diagram,

^̂ "̂ Rel(E)

And prove that p has quotients if and only if this functor Ker has a left
adjoint, with vertical imit and counit. This could be used as a definition
of quotients, dual to Lawvere's definition of subset types as described in
Exercise 4.6.7.

304 Chapter 4- First order predicate logic

4,9 A logical characterisation of subobject fibrations

In this chapter on (first order, simple) predicate logic we have seen various fi-
brations capturing various systems of predicate logic. Among these fibrations,
subobject fibrations have received special attention in Sections 4.4 and 4.5.
They will play an important role in later chapters, notably in topos theory. In
this final section we ask ourselves: when is a fibration (equivalent to) a sub-
object fibration? Such a fibration should certainly have the logical operations
that come for free in subobject fibrations, namely full subtypes and so-called
very strong equality. Recall that this means that internal and external equality
coincide, see Notation 3.4.2. There is a third logical operation that is available
in subobject fibrations, namely unique choice 3!. And the combination of these
three: full subset types, very strong equality and unique choice, characterise
subobject fibrations, as will be shown in the present section.

We start with unique choice.

E

4.9.1. Definition. Let ^P be an Eq-fibration with subset types.
IB

(i) A relation R ElEjxj is called single-valued if it satisfies

i:I,j,j':J\R{i,j)AR(i,j') \-j=jj'.

Or, more categorically, if above I x {J x J) there is an inequality

(id X 7r)*(i^) A (id X 7r')*(i^) < 7r'*(Eq(J)).

(ii) The fibration p has unique choice 3! if for each single-valued relation
R G E/xJ, the coproduct [J/^ j) (^) ^ ^i exists, and the canonical map —•
in the following diagram

{R} {IJ(/,j)(^)}
V

^Ua..)(^)
I X J ^ /

is an isomorphism.

The canonical map n o TTR -^ TTIT /̂ X in the slice category IB// comes

by Lemma 4.6.2 (ii) from applying the reindexing functor 7r|̂ to the unit map
77: ii -> TT* U(i,j)iR)- This yields T < (TT o TTRY U(i,j)iR)'

The idea behind this definition is that if for i G / there is a unique j £ J
with R{iJ)j then the canonical (projection) map

{(ij) I R(i,j)} {i I 3j.R(i,j))

Section 4-d' ^ logical characterisation of subobject fibrations 305

is an isomorphism.

4 .9 .2 . P r o p o s i t i o n . Subobject fibrations have unique choice.

Proof . Let B be a category with finite limits, and let {ro,ri): R >—^ I x I he
a relation on / which is single-valued. The latter means (id x 7T)*{R) A (id x
7r^y{R) factors through 7r'*{S{J)) = id x J, in a situation,

/
^ I xJ

t = {roo So,{ri o so,ri o si))

I x{J xJ)

where S is obtained in the puUback diagram.

id X ^

We will show tha t the m a p ro: i^ -> / is a mono in B. Assume therefore parallel
maps u,v: K =4 R with ro o u = ro o v. There is then a unique m a p w: K —^ S
with SQ o w — u and si o w = v. But then ri o u = ri o v, SiS witnessed by
the following computat ion.

ri o u = r i o So o It;

= 7T o 7T' o t o w

= TTOTT^oidxSofoW

= TT' o TT' o id X S o f o w

= 'K' o TT' ot o w

— ri o Si o w

= ri o V.

Now we have an equation (ro, r i) o u — (ro, r i) o v, so tha t we may conclude
u = V.

We can thus take the coproduct in the usual way by composition:

IJ (/ j) (^) — ^ ^ (̂ Oj ^i) =^ ro: R y-^ / , so tha t the unique m a p —> in Defini-

tion 4.9.1 (ii) is the identity. •

In the formulation of unique choice we have made use of subset types. In a
similar manner we can express very strong equality in a fibration via subset

306 Chapter 4- First order predicate logic

types. Recall that equality is very strong if external equality u = v: I —^ J
and internal equality T < Eq{u,v) coincide—for two parallel maps in the
base category.

E

4.9.3. Proposition. Let -jrP be an Eq-fibration with subset types. This fibra-
tion has very strong equality if and only if for each object / G B the canonical
morphism K in the triangle

{Eq(/)}

IxJ

is an isomorphism.
(This morphism K is obtained by Lemma 4-6.2 (ii) from the unit map T <

<J(/rEq(/)=<J(/)*Eq/(T).;

This result may be read as: equality is very strong if and only if diagonals
occur as (subset) projections.

Proof. Assume that the above map «;:/—> {Eq(/)} is an isomorphism in B.
Then for parallel morphisms u,v: K :=t I there are equivalences:

u, V are internally equal

<^ T < Eq(u,v) = (w,i;)*Eq(/)

0> {u, v) factors through 7rEq(/) by Lemma 4.6.2 (ii)

^ (u^v) factors through S{I) by the isomorphism K

<^ u = V

<=> u,v are externally equal.

Conversely, assume that internal and external equality coincide. As candi-
date for the required inverse for K we have n o 7rEq(/): {Eq(/)} —>• / , since

(TT O 7rEq(/)) o K = TT o S{I) = id.

Further, we have above {Eq(/)},

T < 7r;^q(/)Eq(/) by Lemma 4.6.2 (ii)

~ 7rĵ Q//\Eq(7r, TT') see Exercise 3.4.5

=. Eq(7r o 7rEq(/), TT' O 7rEq(/)) see Notation 3.4.2.

This tells us that the maps TT O 7rEq(/) and TT' O 7rEq(/) are internally equal.

Section 4-9: A logical characterisation of suhobject fibrations 307

Hence they are also externally equal, by assumption. But then,

^Eq{I) O K O (TT O 7rEq(/)) = S{I) O TT O 7rEq(/)

= (TT O 7rEq(/) , TT O 7rEq(/))

= (TT O 7rEq(/) , TT' O 7rEq(/))

= 7rEq(/) ,

SO that we can conclude K o (TT o 7rEq(/)) = id, since the subset projection
^Eq(/) is a mono. Hence K is an isomorphism. •

Given this characterisation, it is immediate tha t subobject fibrations have
very strong equality, because their equality predicate Eq(/) is simply the di-
agonal on / .

We now come to the main result in this section.
E

4.9 .4 . T h e o r e m . Let ^P be an Eq-fibration. This fibration is (equivalent

to) the subobject fibration on its base category B if and only if

• equality in p is very strong;
• p has full subset types;
• p has unique choice.

Proof . It may be clear tha t a subobject fibration satisfies the above three
properties: it has very strong equality as we just noted, it has full subset types
by Example 4.6.3 (i), and unique choice by Proposition 4.9.3.

E

Conversely, let -j^P be an Eq-fibration satisfying the above three properties.
We first note tha t by Exercise 4.6.6—using tha t equality is very strong—the
base category B has finite limits, so that it makes sense to talk about the
subobject fibration on B. Full subset types give us a full and faithful fibred
functor

7r(_)

E ^ Sut

P
M

We show that it is a fibred equivalence. We can define in the reverse direction
a functor S: Sub(B) -> E by

(j - ^ ^ /) ^Uii,j){Gm)eEj,

where Gm is the 'graph relation' of m:

Gm = Eq{7r, m o TT') = (TT, m o 7r')*Eq(/) € E/x j .

308 Chapter 4- First order predicate logic

This relation is single-valued because m is a mono and equality is very strong:

Gm(«, j) A Gmih /) => i = m{j) A i = m{f)

Hence the coproduct S{m) = Uu j){Gm) G E/ exists by unique choice. Its

subset projection is the original mono m, since there are isomorphisms in '.

7rs{m) — TT o TTG^ by definition of unique choice

=. TT o (TT, m o 7r')*(7rEq(/)) because 7r(_) is a fibred functor

= TT o (TT, m o 7r')*((J(/)) since equality is very strong

= TT o (m, id) because of the pullback square,

(m, id)

m
J ^ I
Y I Y

5{I)
(TT, m o TT')

Ix J ^ Ix I

= m.

We thus get 7r(_) o 5 = id. But then also S o 7r(_) = id, since 7r(_) is a full
and faithful functor. •

In similar fashion we can characterise regular subobject fibrations.
E

4 .9 .5 . T h e o r e m . An Eq-fibration ^P is (equivalent to) the regular subobject

fibration on its base category B if and only if

• equality in p is very strong;
• p has full subset types;
• every predicate is an equation: for every X E Ej there are maps u,v: I =^ J

in M with X = Eq(w, v).

Proof . We concentrate on the (if)-part of the statement. As in Exercise 4.6.6,
the base category B has finite limits. And from the way equalisers are con-
structed in B, we conclude that each projection TTX- {X} -̂» / (for X E E/)
is a regular mono, using that X is an equation. We construct a functor
7^:RegSub(B) —> E as follows. Let m: K >-^ I he equaliser of u,v:I zzt J-
Put then Tl{m) = Eq{u,v) E E / . Then 7rn{m) = rn. But also 7^(7^x) = X,
because X is an equation. •

Exercises

E

4.9.1. Let iP be an Eq-fibration with subset types. Say that one has unique
m>

choice on J E B if for every single-valued relation R E E/ x j from / to

Section 4-9: A logical characterisation of suhobject fibrations 309

J, one has unique choice as in Definition 4.9.1 (ii). And say that equality
on J is very strong if one has a canonical isomorphism S{J) ^ ^Eq(j)
like in Proposition 4.9.3. Prove that unique choice on J implies very strong
equality on J .

4.9.2. Let ^P be an Eq-fibration with very strong equality and full subset
IB

types.
(i) Express the induced pullbacks in B in the internal language of the

fibration, see Exercise 4.6.6.
(ii) Assume now that p is also regular, i.e. additionally has simple co-

products Y[(j J)- Prove that the induced coproduct functors]J^ from
Example 4.3.7 (i) satisfy the Beck-Che valley condition.
[Hint. The usual set theoretic argument may be carried out internally.]

(iii) Prove also that if p is a first order fibration then the induced products
Yl also satisfy the Beck-Che valley condition.

310 Chapter 4-' First order predicate logic

This Page Intentionally Left Blank

Chapter 5

Higher order predicate logic

Moving from equational logic to first order predicate logic leads to a clear
increase of expressive power. But certain concepts cannot be expressed in
first order predicate logic because they require "higher order" quantification
over subsets (or predicates). A typical example in algebra is the concept of
a Noetherian ring: it is a ring R in which every ideal I C R has a finite
basis [i.e. is finitely generated). This cannot be expressed in first order pred-
icate logic, because it requires higher order quantification. By the latter we
mean quantification over propositions (inhabitants of Prop) and over predi-
cates (inhabitants of cr -^ Prop, where (T is a type). In contrast, in first order
predicate logic one only quantifies over inhabitants of types. So the easiest
way to introduce higher order quantification is to make Prop a type, i.e. to
introduce a 'higher order' axiom h Prop: Type. This approach will be followed.
Propositions xi'.ai^... ^Xn'.o'n l~ V̂* Prop are then terms of type Prop: Type.
Quantification 3,V over types can take the particular form \fa:Prop.(p and
3a: Prop, (p of quantification over propositions, since Prop is a type. This forms
the essential aspect of higher order logic.

The resulting formal system will be referred to as higher order simple pred-
icate logic, or higher order logic for short. The qualification 'simple' refers to
the fact tha t the underlying type theory is simple (like in the previous chap-
ter), and not polymorphic or dependent. Tool support for higher order logic
is provided by the HOL system [104] (and also by a special configuration of
the ISABELLE system [250]). The PVS system [242, 241] is a tool for depen-
dent higher order predicate logic, see Section 11.1. These tools are used for
machine-assisted verifications in higher order logic.

311

312 Chapter 5: Higher order predicate logic

This chapter contains the syntax of higher order logic in its first section.
The second section is on generic objects. These are the categorical counter-
parts of the earlier mentioned distinguished type Prop, which relates predicates
x:a \- (f: Prop on a type a and "classifying" terms a —> Prop. For split fibra-
tions this correspondence can be described in a straightforward manner, but
for arbitrary fibrations there are some complications to be investigated. This
will involve a version of the Yoneda Lemma which is suitable for fibred cat-
egories. The third section gives the appropriate fibred structures to capture
higher order logic. Examples include realisability triposes, which generalise
the realisability fibration from the previous chapter, and the regular subob-
ject fibration over u;-sets (but not over PERs). In the same section we first
encounter the notion of a topos: it is a category for which its subobject fibra-
tion is such a 'higher order fibration'. This is a distinctly logical definition.
The remainder of this chapter will be devoted to the (standard) theory of
these toposes. In Section 5.4 we present the ordinary 'elementary' definition
of a topos, and show that it is equivalent to the 'logical' one. Further, we
describe nuclei (or Lawvere-Tierney topologies) in toposes. Such a nucleus j
gives rise to an associated higher order fibration of j-closed subobjects. Also,
for a nucleus one can define separated objects and sheaves in a topos. Espe-
cially the double negation nucleus -«-» is of logical importance. Its categories
of separated objects and of sheaves come with classical logic (via their regular
and ordinary subobjects).

The expositions on toposes form a preparation for the special example of
the 'effective topos' EfF in the next chapter.

5.1 Higher order signatures

We start our description of higher order predicate logic (over simple type
theory) by identifying an appropriate notion of signature for such logic—like
we did for equational logic and for first order predicate logic. For higher order
predicate logic, signatures are actually simpler than for first order predicate
logic: higher order signatures will contain a distinguished type Prop, making
it no longer necessary to describe function symbols and predicate symbols
separately: predicate symbols can be identified with function symbols with
codomain Prop.

In a logical setting, we shall always write Prop for this distinguished type
and we view inhabitants of Prop as propositions. A variable of type Prop is
therefore a proposition variable, for which we shall use letters a, ŷ , 7 , . . . from
the beginning of the Greek alphabet. These proposition variables may occur
in propositions—because, in general, variables inhabiting types may occur in

Section 5.1: Higher order signatures 313

propositions.
A higher order signature E consists first of all of an underlying set T = |E |

of atomic types containing a special type Prop. Thus, | I] | can be understood
as a pointed set. Further, E contains function symbols F : (J i , . . . , cr̂ —)• Cn+i
as in ordinary signatures. A morphism (̂ : E -^ E ' of higher order signa-
tures consists of a function (;ẑ : |E | —)• |E ' | between the underlying sets of
atomic types with (/)(Prop) = Prop (making (j) a morphism in the category
Sets» of pointed sets), and of a collection of functions (also written as (j))
mapping function symbols F : c r i , . . . , (7„ —)• cFn-\.i in E to function sym-
bols (j){F):(j){ai),...,({){an),—> (f){an-\.i) in E ' . There are no explicit predi-
cate symbols in a higher order signature, like in a signature with predicates
(see Definition 4.1.1). Instead, function symbols F : c r i , . . . , cr„ —y Prop are
understood as predicate symbols.

We recapitulate in concise fibred terminology.

5 .1 .1 . Def in i t ion . The category H o S i g n of h i g h e r order s ignatures is
defined in the following change-of-base situation,

H o S i g n >• Fam(Sets)

Sets» >- S e t s
T^T" X T

where Sets» is the category of pointed sets (see Exercise 1.2.3 for the defini-
tion). Implicitly, in the base functor Sets^ -^ S e t s there is a coercion turning
a pointed set into an ordinary set.

A higher order signature forms the basis for a logic, much like in the pre-
vious two chapters. What is new is that terms T \- (p\ Prop will be taken
as propositions. They can be built up inductively from atomic propositions
M —(J M' and P[M\^..., M„) , where P is a function (or predicate) symbol
cr i , . . . , c r„ — \ Prop. Thus, in higher order logic, propositions are not some
external entities but live as terms inside the type theory. Notice that Prop is
itself a (atomic) type. Explicitly, via an axiom:

h Prop: Type

In what we call higher order logic (on top of a higher order signature E)
we shall use finite product and exponent types (as in the calculus Alx(E) in
Section 2.3), and connectives and quantifiers as in first order predicate logic.
Thus we have in particular constants T, ± : Prop for true and false.

314 Chapter 5: Higher order predicate logic

Since Prop is now a type, we may quantify over it as in

Va: Prop, {a D a)

or in
Va: Prop. 3P: a -^ Prop. 3x: a. Px.

This gives typical propositions in a higher order logic.
For propositions ipi,... ,ipn,ip in context F we continue to use sequents

T \ ipi,.. .,(fri l~ V̂ as regulated by the rules for first order predicate logic in
Figure 4.1. But there is a crucial difference: in higher order logic, propositions
are special terms (with type Prop), which leads to the question of how logical
equivalence IC (for propositions) is related to (internal) equality ==Prop ^^ ^he
type Prop of propositions (for terms of type Prop). The following rule equates
them (for predicates).

extensionality (of entailment)

F h P, Q: cr -> Prop T,x:a\ 0 , Px \- Qx T,x:a\ 6 , Qx h Px

F I 6 h P =,^Prop Q

See also [91, Definition 2.2.9]. We shall not standardly assume this rule in
higher order logic, and shall mention explicitly when it is used.

5.1.2. Example. An important consequence of this extensionality of entail-
ment rule is that a proposition a: Prop is derivable if and only if the equality
(a =Prop T) is derivable. In one direction this is easy via Lawvere's equality
rule (see Lemma 3.2.3):

0 I 0 h a[T/a]

a: Prop | a =prop T h a

For the converse one uses the above extensionality of entailment rule with
cr = 1, so that 1 -^ Prop =. Prop. We then get

a: Prop h a, T : Prop a: Prop | a, a h T a: Prop | a, T h a

a: Prop \ a h a =prop T

Let us summarise.

5.1.3. Definition. Let E be a higher order signature. It gives rise to a higher
order logic with

• for types: finite product 1, x and exponent types —>;
• for propositions: finite conjunctions T, A and disjunctions ± , V, equality =a,

for a: Type, and existential and universal quantification 3x: a. (—), Vx: a. (—)

Section 5.1: Higher order signatures 315

over types a (including the important special case were a is Prop), satisfying
the rules in Figure 4.1.

We will say that this higher order logic on S has extensional entailment
if it includes the above "extensionality of entailment" rule.

A higher order specification consists of a higher order signature E to-
gether with a collection A of sequents in the higher order logic associated with
E; these are taken as axioms. Such a higher order specification determines a
higher order theory, by closing A under derivability.

Notice that we do not standardly include subset types {x: cr | <̂ } or quotient
types a/R in higher order logic. Neither the requirement that equality is very
strong. All this may be added separately. Recall that we call a logic extensional
if its equality is very strong [i.e. if its internal and external equality coincide);
this is not related to the above extensionality of entailement rule.

5.1.4. Example. Higher order logic as formulated above contains consider-
able redundancy. For example, one can define

± — Va:Prop. a

T = ± D ±
(pW ip — Va: Prop, {(f D ot) D {{tp D (y) D ct)

(p Alp — Va: Prop, ((f D {'fp D a)) D a)

3x:a.(p — Va: Prop. (Vx: (7. (^ D a)) D a.

And for terms M, N.a^

(M ^a N) = \JP:a-^ Prop. PM D PN

The latter definition yields what is commonly called Leibniz equality; it
says that terms are equal if they have the same properties. Thus implication
D and universal quantification V are the essential connectives.

5.1.5. Lemma. The above definitions yield connectives that satisfy the rules
in Figure 4-^-

Proof. We shall do 3 and =̂ 7 and leave the remaining connectives as an
exercise below. The introduction rule for 3 is obtained as follows.

r h M: a r , a: Prop | 0 , Vx: a. [p D a) h Va:: a. {(p D a)

F, a: Prop | 6 , Vx: a. (^ D a) h (p[M/x] Da F | 6 h ip[M/x]

F, a: Prop | 0 , \/x: a. {(p D a) ha

F, a: Prop | 0 h {^x: a. {(p D a)) D a

F I 0 h Va: Prop. (Vx: a. {<p D a)) D a = 3x: a. (p

316 Chapter 5: Higher order predicate logic

and the elimination rule (with x not in 0 , V̂) as

T,x:a\ e,(p h ^p

rhV^:Prop T \e \-3x:a.ip T,X:(T \ Q \- (f D ip

r I 0 h {ix: a.{(pDilj))DjP T | 0 h ^x: a. [ip D V̂)

r | 0 h^

We turn to Leibniz equality. The reflexivity, transitivity and replacement
rules for equality are easily established. For symmetry, assume (M =a N) —
\/P:(T -> Prop.PM D PN. In order to get [N =a M), assume P:a -^ Prop
with PN. Take

P' = Xx: a. Px D PM: a -> Prop.

Then, instantiating the assumption M -a N with P' yields P'M D P'N.
Since P'M we get P'N = {PN D PM), and PM follows, as required. D

Power types

In higher order logic we can write

Pa — a -^ Prop: Type

for the cr-powerset type. We can think of terms in Pa either as predicates on
cr, or as subsets of a. Such a type allows us to quantify over predicates, as
in Va: Pa. a =pa CL- It comes equipped with a typed membership relation Ga
described by

x: cr, a: Pa h ar G^ a = a • a:: Prop.

There is then the familiar (typed) inclusion relation Ĉ ^ on Per, as:

def

a: Pa, b: Pa h a C^ 6 = Vx: a. {x Ga «) D (^ ^a b): Prop.

For a proposition x:a,y:T h (p{x, y): Prop it makes sense to write
x:a \- {yerl ip{x, y)} = Xy: r. (f{x, y): Pr.

So that we get a subset term. Note that this is different from subset types
as described in Section 4.6, since there, {y- r \ (p{x, y)} was a type. Notice the
difference in notation between the term {x E a \ ip} and the type {x:a\ip}.By
construction, the terms <f{x,y) and z ET {y E T \ (p{x,y)} are (/?)-convertible,
so that we may replace one by the other. In particular, they are logically
equivalent.

We mention some elementary results concerning these constructs.

Section 5.1: Higher order signatures 317

5 .1 .6 . L e m m a . Assume we are in higher order logic with extensional entail-
ment.

(i) Write for x\ a,

{x]a - Xz'.a. [x -a z):Pa,

for the singleton predicate associated with x. Then,

x: o;y:a\ {x}a -Pa {y]a H x = ^ y.

(ii) The inclusion relation C ĵ is (internally) a partial order on the power-
type Pa:

a: Per, 6: Pa \ a C^j b,b C^ a \- a —Pa b.

Proof, (i) If {x}cj —P(j {y]a^ then we have equalities of propositions

T =Prop (^ =<7 x) = p r o p {x]a ' X = p r o p {y}a ' X =Prop {v =a x).

Hence we get x =(j y, by Example 5.1.2.
(ii) Assume a C^ b and b C^ a. Then a,b:Pa — a ^ Prop satisfy the

premises of the extensionality of entailment rule, so tha t a —Pa b. •

The singleton m a p { —}a*cr -^ Pa described in (i) will play an important
role in the rest of this chapter. Above one sees that it is internally injective.
This result thus holds in all models of higher order logic with extensional
entailment.

Quotient types in higher order logic

What we call higher order logic does not include quotient types. But of course
one can additionally require these quotient types. It turns out that within
higher order predicate logic, quotient types behave much better than within
first order predicate logic. For example, we have the following result from [133,
Proposition 5.1.10].

5 .1 .7 . L e m m a . In higher order logic with extensional entailment, quotients

are automatically effective: for an equivalence relation R on a type a, one can

derive:

x: a,y:a\ [X]R ^^/R [y]R ^ R{x, y).

Proof. If we have a relation x:a,y:a h R{x,y): Prop which is provably an
equivalence relation, then by transitivity and symmetry, we can form the pick-
term

x: a,y:a \- R{x, y): Prop x: a, y: a,z:a\ R{y, z) h R{x, y) =prop R{x, z)

x: a, a: a/R h pick w from a in R{x, w): Prop

318 Chapter 5: Higher order predicate logic

Hence by using reflexivity, we get,

x: (T,y\(T\ [X\R -a/R [y\R h T ^p^op R{x, x)

— pick w from [X\R in R{x,w)

=Prop pick w from [y]R in R(x,w)

R{x,y). •

When we first introduced quotient types in Section 4.7, we explained that
the quotient a/R by an arbitrary relation R should be understood as the
quotient by the equivalence relation R generated by R. This can be made
precise in higher order logic.

5.1.8. Lemma. For an arbitrary relation x'.a^y.a h R{x,y):Prop one can
form in higher order logic the least equivalence relation R containing R as

x:a,y:(T \- R{x,y) = VS*: cr x cr ^ Prop.

(Equiv(5) A Incl(i?, S)) D S{x, y): Prop.

In this expression we use the abbreviations,

Equiv(5) = "ix'.a. S{x,x) Ayx,y:a.S{x,y) D S{y^x)

A Va?, y, z: a. S(x, y) A S[y, z) D 5(x, z)
def lnc\(R,S) = yx,y:a.R{x,y)DS{x,y).

The relation R then yields the same quotient type as the equivalence relation
R that it generates, in the sense that there is an isomorphism of types,

a/R ^ a/^.

Proof. The isomorphism is given by the two terms

a: a/R h P{a) = pick x from a in [x]-^: a/R
— def

6: a/R h Q{b) = pick y from 6 in [y]R : a/R,

where Q is well-defined because R(x,y) implies [X]R =a/R [VIR^ since the
latter is an equivalence relation containing R. Then for b: a/R,

P[Q(b)/a]

— pick y from 6 in ^[[y]ii/a] by commutation from Exercise 4.7.1

= pick y from b in (pick x from [y]/e in [x]-^

= pick y from 6 in [y]-^

= b.

In a similar manner one obtains a conversion Q[P{a)/b] = a, •

Section 5.1: Higher order signatures 319

We conclude this section with two examples of the use of quotient types in
higher order logic with extensional entailment. The first example involves the
standard factorisation of terms as a surjection followed by an injection. And
the second example describes the Abelian quotient of an arbitrary group.

5.1.9. Examples . Assume we have quotient types in higher order logic with
extensional entailment.

(i) We first notice that for a relation R on cr, the canonical map [—]: ^ -^
a/R is always surjective (in the logic). Consider therefore the proposition,

a:a/R\-ip{a) = 3x: cr. a =^//^ [x]: Prop.

Obviously, y: cr | 0 l~ < (̂[y]) =Prop "''? ^^^ ^hus for a: cr/R,

(p(^a) — pick y from a in '^{[y]) =Prop P'̂ k y from a in T = T.

Thus 3x: cr. a —a/R [x] holds for a: a/R.
This result can be used to factor an arbitrary term x:cr h M[X):T as a

surjection followed by an injection:

. M X / [-] M X
ya ^ T) - ya ^ cr/A > ^ r)

In this diagram, K is the kernel relation,

def

x:a,y\a \- K{x,y) = (M{x) =r M{y)): Prop

and M{a) = pick x from a in M{x) for a:a/K. Then obviously M([a:]) =
M(x). Moreover, this term M is (internally) injective: one can derive

a: cr//i, 6: a/K \ 'M{a) -r Jdib) h a -a/K •̂

as follows.

M[a) -r M[h) - pick x,2/from a,6 in M([x]) =:̂ M([?/])

= pick x^ y from a, h in M[x) —j M{y)

= pick X, y from a, 6 in A (x, y)

= pick X, y from a, 6 in [x] =a/K [v]

- « -a/K •̂

This factorisation is the one from Example 4.8.8. Its universal property is
described in Exercise 5.1.6 below. This factorisation is also familiar from topos
theory: it is almost literally as in the proof of [169, Theorem 1.52] (describing
the factorisation of an arbitrary map in a topos as an epi followed by a mono).

320 Chapter 5: Higher order predicate logic

(ii) Let G:Type be a type which (internally) carries a group structure
(0, +, —(•))• Consider the following relation ^ on G,

u,v:Ghu^v =^ \tR:GxG^ Prop. (Equiv(i?) A Cong{R)

A Mx, y: G. R{x -\-y,y-{-x)) D R{u, v) : Prop

where the predicates Equiv(/i) and Cong(i^) express that R is an equivalence
relation, and is a congruence. The latter is described by

Cong(i?) = yxi,X2,yi,y2'G.R{xi,X2) A R{yi,y2) D R{xi - yi,X2 -2/2).

It is then easy to see that if we have Equiv(i?) A Cong(i?) then i?(0,0), and
R{x^ y) D R{—x, —y). Also, with some elementary reasoning one obtains that
Equiv(^) ACong(^), where ^ is the relation on G defined above.

def

We now put G = G / ^ , with canonical map x:G h [a:]:G. Then we can
define for a,b:G,

6 =' [0]

a 4- 6 = pick u, v from a, 6 in [u + v]
def

— a pick u from a in [—u]

so that we get group operations on G via representatives. This yields an
Abelian group structure, as may be verified by the interested reader. The
canonical map [—]:G -^ G is a universal group homomorphism: for any ho-
momorphism M.G^H into an Abelian group H, we get a unique homo-
morphism M in

[-]
G: ^G

I

^ I M
M ^ \ Y

H, Abelian

def

One puts M{a) = pick u from a in M{u). This is well-defined because one
can form the kernel relation x,y:G h K{x,y) — [M{x) =H ^(2/))-P''op
and show that it is a congruence and an equivalence relation. It also satisfies
K{x-{-y, y-\-x), since M{x+y) =H M{x)^M{y} -H M{y)^M{x) =H M{y-{-x),
because the group operation • of H is commutative. Thus ii u ^ v, then
K{u,v) and so M{u) —H M[V).

Section 5.2: Generic objects 321

Exercises

5.1.1. Use the extensionality of entailment rule to derive in higher order logic,

a: Prop, /3: Prop | a D / 3 , / 3 D a l - a =prop /3.

5.1.2. Check that the connectives ± ,V ,T ,A as defined in Example 5.1.4 satisfy
the rules in Figure 4.1.

5.1.3. For a proposition x:a^y:r h (p{x^y):Prop in higher order logic with ex-
tensional entailment, show that Wy: T.ip(x,y) is logically equivalent to the
equation {y e T \ ip{x, y)} =Pr {y G r | T} .

5.1.4. Prove that in higher order logic with quotient types there are conversions,

pick X from a in T = T

pick X from a \n {ip A ip) = (pick x from a in ip) A (pick x from a in t/̂).

Conclude that in higher order logic with extensional entailment the pick-
operation preserves entailment h.

5.1.5. Define in higher order logic an order < on Prop by

def
a: Prop, f3: Prop \-a < (3 = a D f3: Prop,

and show that (Prop, <) is (internally) a Hey ting pre-algebra.
5.1.6. Consider the factorisation M = M o [—j/ĉ cr —> r from Example 5.1.9

(i), and show that it is universal in the following sense. If we can write
M = Q o P , where Q: p -> r is internally injective, then there is a unique
term (up-to-conversion) P: a/K —)• p with conversions P o [~]K = P and
Q o P = M.

5.1.7. Let R he a relation on a and S a reflexive relation on cr/R. Prove that
in higher order logic with extensionality of entailment and with quotient
types, the quotient a/R/S is isomorphic to the type (j/T, where T is the
relation T{x, x') = S{[X]R^ [^']R) on a.

5.2 Generic objects

Higher order signatures as described in the previous section involve a special
atomic type Prop, v^hich is such that predicates on a correspond to "charac-
teristic" terms a -^ Prop. Categorically, such a correspondence is described
in terms of so-called 'generic objects' . These can be defined easily for split
fibrations, but for arbitrary fibrations there are some complications. In order
to describe these mat ters properly, we need a fibred Yoneda lemma. But we
shall start with the easy case of split fibrations.

322 Chapter 5: Higher order predicate logic

E

5.2.1. Definition. A split fibration jrP has a split generic object if there
is an object fi G IB together with a collection of isomorphisms

Oi
B(/, Q) ^ Obj E/

natural in / ; that is, 9j{u o v) = v*{Oi{u)) for v: J —> I.

It may be clear that the above Q E B plays the role of Prop, and that 9
identifies terms / —> fi with predicates X G E/ on / . The following result
gives a slightly different formulation of the same notion.

E

5.2.2. Lemma. A split fibration -^P has a split generic object if and only
if there is an object T G E with the property that

MX e^.3\u:pX -^pT.u*{T) = X.
E

Proof. Assume jrP has a split generic object {^,0) as described in the
above definition. Take T — ^n(idn) ^ I ^ - Then for X G E/ we have that
ej^{X)\I -^^ = pT satisfies

e-[\xy[T) = ej\xY{ea(id^)) = ej{id^o6j\x)) = x.
And it is easy to see that 9J^{X) is unique in satisfying this property: if
X = u*(T) = ei[u), then u = ej\X).

In the reverse direction, assume T G E as in the lemma, and write Q. = pT G
B. For / G B and u: I ^ ^, let Oi(u) = u*{T). It is then clearly a bijection.
And Oi{u ov) = {uo vy{T) = v*{u*{T)) = v*{Oi{u)), for v:J-^L D

5.2.3. Examples , (i) Let C be a category with a small collection Q = Obj C
of objects. Then Cl G Sets forms a split generic object for the family fibration
Fam(C)

4- . The set of functions / ^ Q is actually equal to the collection of

objects of the fibre Fam(C)/ over / .
In [252] a (split) fibration is called 'globally small' if it has a (split) generic

object. This family example provides a justification for this terminology. The
smallness aspect will become more apparent in Proposition 5.2.7 below. Later,
in section 9.5 a fibration is called 'locally small' if its fibred homsets are small
(in a suitable sense).

(ii) A special case of (i) is C = 2 = { ± , T } with ± < T. The family
Fam(2) Sub(Sets)

fibration I is then isomorphic to the subobiect fibration i on
Sets . . . Sets

Sets, see Exercise L7.3. The generic object is the set {_L, T} in Sets, together
with the isomorphism between subsets of / and 'characteristic' functions / ->
{-L,T}.

Section 5.2: Generic objects 323

£(s,n,>i)
(iii) Consider a split classifying fibration i constructed syntactically

(see Section 3.1) from a higher order specification (E , n , ^) . Such a fibration
also has a split generic object, namely the type Prop G C^(D). For an object
(or type) cr G C^(5]), the morphisms M\a -> Prop in Cl[Ti) are by definition
the terms x\a \- M : Prop, and thus the propositions in context cr, i.e. the
objects over a E ff(D).

(iv) Let B be a distributive category. Write Q == 1 + 1 G B. Then Q forms
a boolean algebra, see Exercise 2.6.1. Each homset B(/ , Q) is then partially
ordered b y ^ < V ^ <^ (p /\\l) — ip. Hence the assignment / H-> B(/ , f i) yields
an indexed category B^P -^ C a t . The resulting split fibration has Q as split
generic object by construction.

These generic objects can be described on a more abstract level in terms
of a fibred Yoneda lemma. This result—and also the subsequent corollary—
may be found in [27]. We recall from Exercise 1.10.2 tha t the Grothendieck
construction applied to the represent able functor B (— , /) : B ^ P —)• C a t yields

B//

the domain fibration >ldom/ These fibrations dom/ play the role of repre-

sentable objects in fibred category theory.

E

5.2 .4 . L e m m a (Fibred Yoneda). (i) For a cloven fibration ^"P and an ob-
B

ject / E B there is an equivalence of categories

E/ c:̂ Horn(^dom/, pj

between the fibre category over I and the hovfi-category of fibred functors
M/I -^ E over B and vertical natural transformations between them.

The equivalence is natural in I in the sense that for each morphism w: I ^ J
in M, the diagram

E j ^ Hom(^dom/, p)

E/ >• H o m (d o m j , p)

commutes up-to-unique-isomorphism.

(ii) In case p is a split fibration, the equivalence in (i) is an isomorphism
and the naturality diagram commutes on-the-nose.

324 Chapter 5: Higher order predicate logic

Proof, (i) Each object X E E/ gives rise to a functor Fx'-^/I -^ E by
u I-)- u''[X) on objects, and on morphisms by,

/
J ^ K

\

(Fxw ^
u*(X) ^v*iY)

I \ X J
where Fx{<f>) is the unique arrow in E above (p satisfying v{X) o Fx(<j>) =
u{X).

In the reverse direction, every fibred functor G:M/I -^ E over B gives an
object G(id/) G E/. These operations X \-^ Fx and G H^ G{idj) constitute
an equivalence, since

Fxiidj) - id}(X)

^ X.

FGi.dr){^) = U*G{idi)

= G{u*{idj)) since G is a fibred functor

= Gin).
Naturality in / holds, because for w: I ^ J , one has

F^*iX){u) = u*w*(X)

^ {wouy{X)

= Fx{w o u)

= FxiUJ^))-
(ii) Obvious, since in the split case, all the above isomorphisms are identi-

ties. D

5.2.5. Corollary. Every fibration is equivalent to a split fibration.

E

Proof. For a fibration -^P , define a split indexed category on B by
IB

/ i-> Hom(dom/, p) and (/ - ^ j) H-> (- o]J^) .

The resulting split fibration (obtained by the Grothendieck construction) is
by the previous lemma equivalent to p. D

This result may be used to transform fibred models of certain type theories
into equivalent split models, see e.g. [134].

Section 5.2: Generic objects 325

E

5.2 .6 . Def in i t ion . A fibration j^P is r e p r e s e n t a b l e if it is equivalent to a

domain fibration ^domn for some object f2 E B.
E

The fibred Yoneda lemma tells us tha t if a (cloven) fibration -j^P is rep-
resentable, say with an equivalence p '2:^ dom^ for Q G B, then there is
an object T G E above Q yielding a functor B/Q - ^ E by u ^-^ u*{T).
Further, this means that in the reverse direction there is a fibred functor
^ : E -^ B/Q together with vertical natural isomorphisms (p:id ^ / / (—)*(T)
and tp:id ^ i / ((—)*(T)). But since the fibration domn has discrete fibre
categories tp must be the identity and thus H{u*(T)) = u in B/Q.

E Split(E)
For a split fibration -^P there is a spl i t fibration of o b j e c t s ^HIPII

where Split(E) is the subcategory of E with all objects from E, but with
Cartesian maps coming from the splitting only, see also Exercise 1.8.9. Next
we will show how a split generic object for p exists if and only if this fibration
of objects IIPII is representable.

E

5.2.7. P r o p o s i t i o n . A split fibration j^P has a split generic object if and
Split (E)

only if the associated fibration of objects IS representable.

Split (E)

Proof . Assume that the split fibration of objects i\\P\\ is representable,
say via / f :Spli t (E) -> B/Q together with isomorphisms (fx-^ -^ HX*{T)
as described above. Then ipx = id, since | |p|| has discrete fibre categories.
Thus we obtain isomorphisms Obj E/ = Split(E)/ ^ (B/Q)/ = B(/ , Q), which
commute (on-the-nose) with reindexing.

Conversely, given Q with the isomorphisms 0j as in Definition 5.2.1. The
object T — ^n(idn) G E^ induces a fibred functor M/Q -^ Split(E) by u \-^
u*{T) = Oi{u), which is an obvious isomorphism. This shows tha t | |p|| is
representable. •

Next we turn to generic objects for non-split fibrations. This is a subtle
mat ter : an equality like in Lemma 5.2.2 has to be replaced by an isomorphism.
There are several alternatives.

E

5.2.8 . Def in i t ion . Consider a fibration ^P and an object T in the total

category E. We call T a
(i) weak gener ic o b j e c t if

MX G E. 3 / : X -^T.f is Cartesian,

326 Chapter 5: Higher order predicate logic

or, equivalently,

VX G E. 3u:pX -> pT. 3 / : u*{T) -^ X. / is a vertical isomorphism,

(ii) generic object if

yX e E. 3\u:pX -> pT. 3 / : X ^T. / i s Cartesian over u

or, equivalently,

VX E E. 3\u:pX -> pT. 3 / : u*{T) -> X. / is a vertical isomorphism,

(iii) and a strong generic object if

VX G E. 3! / : X -> T. / is Cartesian

or, equivalently,

VX G E. 3!w:/>X -^ pT. 3 ! / : u*(T) -> X. / is a vertical isomorphism.

5.2.9. Lemma. Generic and strong generic objects are determined up-to-
isomorphism (but not the weak ones).

In a preorder fibration, there is no difference between a generic object and
a strong generic object.

Proof. Exercise. •

For these generic objects we seek a reformulation of the above notions in
terms of representable fibrations. This will be achieved for (ordinary) generic
objects, so that they form the most natural notion among the above three
options (weak, ordinary, and strong).

E

Recall {e.g. from Exercise 1.1.4) that for every fibration -^P there is a
Cart(E)

fibration of objects i\P\ where Cart(E) is the subcategory of E with all

objects but Cartesian morphisms only.

E

5.2.10. Proposition. A fibration ^P has a generic object if and only if the
Cart(E)

associated fibration of objects is representable.

Proof. Assume p has a generic object T G E, say with Q = pT G B, satisfying
the description in Definition 5.2.8 (ii). We intend to show that the fibration
Cart(E)

MP\ is equivalent to domn (and thus representable). One defines a functor
IB

ii/:Cart(E) —> B/Q by mapping X to the unique arrow ux'-pX -^ Vt with

Section 5.2: Generic objects 327

u*[T) = X, vertically. For a Cartesian morphism / : X —> Y we get uy o pf —
ux, by uniqueness, since

{uYopfriT) s (pfru*y(T) - {pfr(Y) - x,
the latter because / is Cartesian. By definition we have (—)*(T) o H '= id. We
get iJ(t/*(T)) = 1/ by uniqueness, since by definition H{u*{T)y{T) ^ w*(T).

Conversely, assume the fibration \p\ is represent able, say via i/:Cart(E) ->
B/Q with isomorphisms v^x*-^ -^ HX*{T) natural in X G E, where
HX.pX -^ Q. For any u:pX -> Q which also satisfies u*(T) = X ver-
tically, we get a vertical isomorphism H{u*{T)) = HX in B/Q, and thus
u = H{u*(T)) = HX. D

Mono(Se t s)

5.2.11. Examples, (i) Consider the (non-split) fibration 4- of
monos (injections) in Sets. The inclusion

T = (l = { T } C { ± , T } = 2)

is a (strong) generic object for this fibration: for every injection rn: X >-^ I
there is a unique map Xm* / —)• 2 for which there is a pullback square,

X ^ 1
J V

This map Xm is then determined by Xm{i) = T <^ 3x ^ X. m{x) — i.
(ii) A weak generic object often arises in the following situation. Let B be

a category with finite limits and aiA —> J5 be an arbitrary morphism. Write
V for the collection of morphism of the form u*{a) which are obtained from a
by pullback along some u. We write V^ for the full subcategory of B"^ with

objects in V. Then the codomain functor 4- is a fibration with a as weak
IB

generic object.
E

5.2.12. Remark. Suppose j^P is a fibration with a generic object, say given
by T G E^. Fibred structure for p then induces structure on Q which captures
the fibred structure on objects. For example, if p has fibred Cartesian products
X, then one obtains a map &: fi x ft —> Q such that for parallel maps u,v:I ^
ft there is an isomorphism:

t/*(T) xv%T)^{ko{u,v)Y{T).

Thus the map & describes the object part of fibred Cartesian products—since
every object X is isomorphic to i/*(T) for a unique u.

328 Chapter 5: Higher order predicate logic

This m a p & comes about as follows. The object part of the Cartesian prod-
uct functor on E works also on Cart(E) and hence—by Proposition 5.2.10—on
B/Q. It leads to a natural transformation with components

B (/ , QXQ) ^ B (/ , ^)

and thus by the Yoneda lemma to a m a p &: Q x Q —> Q.
In a similar way fibred exponents yield a m a p =>: Q x ^ ^ ^ . And if B is

Cartesian closed, simple coproducts and products lead to collections of maps
(for every / G B),

3 / V/
Q^ ^ Q and Q^ ^ Q

A similar phenomenon occurs for split fibrations with split generic objects.

We conclude this section with morphisms and generic objects.

5 .2 .13 . Def in i t ion . Let (Ip j ^ ^ ^ Y] be a morphism between

fibrations p and p', each with a (weak, strong) generic objects, say T E ^
and T' G lE^/. We say that [K, L) preserves t h e s e gener ic o b j e c t s if the
induced Cartesian map LT —> T' is an isomorphism.

A bit stronger, (A', L) preserves these generic objects o n - t h e - n o s e if this
m a p LT —> T" is an identity.

Preservation on-the-nose is most appropriate for split generic objects.

/ E X (j^^ L) / Y M
5 .2 .14 . L e m m a . Suppose (^ 1 —^ I y^ j is a morphism of split

fibrations with split generic objects. If{K, L) preserves these on-the-nose, then
the following diagram commutes.

Obj El ^ Obj TSj^j

B(/ , f i) ^ ^ (A V , ^ ')

Proof . Exercise. •

Section 5.2: Generic objects 329

Exercises

5.2.1. (From [81, Section 2] Define a PER E = {(n, n) \ n-0],^ n - 0^} .
(i) Prove that for a PER /?, there is a bijective correspondence between

maps /? -^ E in PER (or in u;-Sets) and subsets ^ C |i?| which are
saturated(2.e. which satisfy: n ^ A and nRn' imply n G A) and for
which there is a r.e. subset J5 C N with A = \R\n B. These subsets
are called "natural subobjects" of R.

NatSub(PER)
(ii) Define a fibration 4- of natural subobjects, with split

PER,
generic object using E G PER.

5.2.2. Recall the natural numbers object N = (Eq(N) C N x N) in P E R from
Exercise 1.2.10.
(i) Conclude from the previous exercise that maps E ^ N in P E R can be

identified with r.e. subsets of N.
(ii) Check that maps R —)• 2 {= 1 + 1) can be identified with recursive

subsets of N.
E

5.2.3. Consider a fibration -^P and a functor F : A —>• IB with a right adjoint, and

the resulting fibration F*(p) obtained by change-of-base along F.
(i) Assume first that p is split and has a split generic object. Show that

F*{p) also has a split generic object,
(ii) Assume next that p has a generic object, and show that F*{p) also has

a generic object.
E

5.2.4. Let ^P be a split fibration on a base category with Cartesian products.
(i) Show that for an object / G B, the (split) exponent fibration dom/ =4̂ p

from Exercise 1.10.6 is isomorphic to the fibration obtained from p by
change-of-base along / x (—): IB —)• B.

(ii) Conclude that p has spht simple products/coproducts if and only if
each diagonal functor p —)• (dom/ ^ p) has a spht fibred right/left
adjoint.

5.2.5. Recall the category M S of metric spaces and non-expansive functions from
Example 4.6.3 (iv), see also Exercise 4.6.2. A subset A C X of a metric
space X is closedf each limit point of A is contained in A.
(i) Check that these closed subsets are stable under pullback. Organise

them in a (poset) fibration over MS.
(ii) Show that for a closed subset A C X there is a characteristic metric

predicate XA'X -^ [0, oo] forming a pullback diagram,

A ^ 1
Y I Y

0

X ^ [0, oo]
XA

330 Chapter 5: Higher order predicate logic

[Hint, Define XA{X) = inf{X(x, y) \ y e A}.]
ClSub(MS)

(iii) Conclude that the fibration i of closed subsets has a weak
^ ^ ^ ^ MS

generic object.
(iv) Use this to show that the regular subobjects {i.e. those subobjects

which have an equaliser as underlying mono) in M S are precisely the
closed subsets.

5.2.6. Prove Lemma 5.2.14.
5.2.7. Show how the maps 3/ and V/ come about in Remark 5.2.12.

E
5.2.8. Consider a (split) fibration -^P with a (split) generic object Q on a Carte-

IB

sian closed base category B. Prove that for a morphism u: / —)• J in B the
following diagram commutes.

EKXJ >• B(A^ X J, Q) — ^ ^ B (/ C Q-^)

(id X uY Q" o -

EA'X/ >• M{K X / , Q) ^ B (/ C , Q^)

5.3 Fibrations for higher order logic

In this section we define appropriate 'higher order' fibrations as models of
higher order logic. Several examples are given as instances of a general "tripos"
construction. But most importantly, a topos is defined as a category B for

Sub(l)
which its subobject fibration 4- is such a higher order fibration. This will

B

turn out to be a powerful notion. It can be defined in various other and more
elementary ways (as will be shown in the next two sections), but the approach
via higher order fibrations is appropriate from a purely logical perspective.
Towards the end of this section we also describe the higher order fibrations
resulting from regular subobjects in the categories of u;-sets and of PERs .

Definition 5.1.3 in the first section of this chapter describes higher order
logic. The aspects which are not captured in first order fibrations (as described
in the previous chapter) are the presence of a type Prop of propositions and
of exponent types.

5 .3 .1 . De f in i t ion . A h igher order fibration is a first order fibration with

• a generic object;
• a Cartesian closed base category.

Section 5.3: Fibrations for higher order logic 331

Such a higher order fibration will be called split if the fibration is split and
all of its fibred structure (including the generic object) is split.

5.3.2. Examples. For a frame (or, a complete Heyting algebra) X, the
Fam(X)

family fibration i is a split higher order fibration. It is a first order
Sets

fibration as described in Example 4.2.5 and has the underlying set X G Sets
as split generic object by Examples 5.2.3 (i) and (ii). Obviously, the base
category Sets is Cartesian closed.

UFam(PN)
In a similar way, the realisability fibration 4- from Example 4.2.6 is

Sets

a split higher order fibration. Its split generic object is the set PN G Sets.
We need not say much about the interpretation of higher order logic in

higher order fibrations, since we have already seen how to interpret simply
typed A-calculus in Cartesian closed categories, and predicate logic in (pre-
order) fibrations. But there is something to say about the extensionality of
entailment rule

r \- P,Q:a^ Prop T,x:a\ 0 , Px h Qx T,x:a\ 6 , Qx h Px
r I 6 h p =,^p,op Q

Fam(X)
since it may fail. In a family fibration i of a frame X, the assumptions

Sets
of this rule applied to predicates P,Q\ J zz^ X^ in Sets express that

PUm < Qm^ and Q(i)(i) < P(j)ii),

for all j E J and i G /—where < is the order on X. Hence we may conclude
that P = Q, 3,8 required (since internal and external equality coincides).

UFam(PN)
In the realisability fibration i the same assumptions for P, Q: J =1

Sets
{PNY yield that

n ^o')(o 3 Q{j){i) 1^0, I n ^w(o ̂ pum I / 0-
^{j,i)eJxi / \u,i)eJxi /

This means that there are realisers inhabiting P{j){i) D Q{j){i) and Q(j){i) D
P{j){i), for all j , i. But this is not enough to conclude P — Q: take for example
P zrz %j e J.%1 G / . {0} and Q = \j e J.%i G / - { l } - In this realisability
example the truth of a proposition (̂ C PN means 9:? 7̂ 0, which is not the
same as (̂ = T, since T — PN. Hence, this realisability fibration is not a
model of higher order logic with extensional entailment.

These examples both form instances of what is called a tripos in [145, 267].
Mostly, these triposes are considered with Sets as base category. We recall

332 Chapter 5: Higher order predicate logic

that in a higher order fibration we require 'simple' quantification]J, fl along
Cartesian projections. By the constructions in Examples 4.3.7 (i) and (ii) we
then get quantification]J^, JJ^ along arbitrary maps u in the base category,
but Beck-Chevalley need not hold for these. This Beck-Chevalley condition is
required explicitly for triposes, although it is not needed to model higher order
simple predicate logic (but it does lead to a model of higher order dependent
predicate logic, as in Proposition 11.2.2 (ii)).

, E

5.3.3. Definition (See [145, 267]). A tripos is a higher order fibration cl-
over Sets for which the induced products f]^ and coproducts JJ^ along an
arbitrary function u satisfy the Beck-Chevalley condition.

(By Lemma 1.9.7 it suffices that Beck-Chevalley holds either for products
or for coproducts.)

These triposes are mostly used as an intermediate step in the construction
of certain toposes (see Section 6.1). But [267] is a study of "tripos theory" on
its own.

5.3.4. Example (Triposes built from partial combinatory algebras). A par-
tial combinatory algebra (PCA) consists of a set A together with a partial
application function -: A x A —^ A and two elements K, S ^ A such that

Kxl, Sx]., Sxyl and Kxyc::^x, Sxyz'2:^ xz{yz),

where P^ means that P is defined and where Kleene equality P c:i Q means
that P is defined if and only if Q is defined, and in that case they are equal.
As above, we often omit the application dot •. The element / = SKK G A
satisfies la = a, for all a E ^ . Examples of PC As include the natural numbers
N with Kleene application • and all models of the untyped A-calculus, see [32]
for more information.

For such a PCA [A, •) one can prove combinatory completeness: for every
polynomial term M (x i , . . . , x„) built from variables a^i,..., x„, constants cfor
c G v4, and application •, there is an element a E A such that for all elements
6i, . ..,6n E v4,

a6 i - - .6n- [[M] l (6 i , . . . , 6„) ,

where [[MJ is the function A^ ^ A obtained by interpreting the polynomial
M. One uses Schonfinkels abstraction rules:

Xx.x = 1= SKK

\x. M - KM if X is not free in M

Xx.MN = S{Xx.M)(Xx.N).

Then one takes a = Xxi - - -Xn-M to get combinatory completeness.

Section 5.3: Fihrations for higher order logic 333

In this way one can define pairing in PCAs as in the untyped A-calculus:

def
a, 6) = \z. zab := S(SI{Ka)){Kb)

with projections

def ^

nc — cK and 7T'C^=C{KI).

Then n{a, h) — a and 7r'(a, b) — b.
UFam(PA)

In [145] it is shown how each such PCA A gives rise to a tripos 4-
Sets

As predicates on a set / one takes functions (p: I -^ PA. These are pre-ordered
by the relation h, given as:

^ V̂̂ ̂ (f]^{i)Dm] / 0

where for subsets X,Y C A,

X DY = {f eA\^aeX.f'ai a n d / . a e y } .

Notice the uniformity: for (f \- ^p to hold, there must be a single "realiser'
a ^ A with a G (p{i) D ip{i) for all i E / .

There are the usual propositional connectives for these predicates on /:

T/ = %ie LA

(f Atj; = Xi e I. {{a, b) \a e (f{i) and 6 G i^[i))

pWiP = MeL {{K, a)\ae ^{i)} U {{KI, b) \ b e i^{i)}

^ D ^ = Me L(p{i) D i^[i).

We show that V is join and leave the other cases as exercises. We have (p h
9? V V̂, since

and similarly ^ \- ip y ip. Next suppose we have <p ^ x -̂nd ^ H x? say via
realisers

fef] ^{i) D x(0 and gef] ^(i) D x(0-
i£l iel

Then
h - Xz. (/,^)(7r.)(7r'z) G Qlv^ V V)̂(i) D x{i)-

Indeed, if {K, a) £ {(pV ^)(i), with a G ̂ (i), then

/i(ii:, a) = (/, g)Ka = 7r(/, ̂)a - fa E x (0

334 Chapter 5: Higher order predicate logic

and similarly h{KI, b) = gb E xlO-
For a predicate (f: I x J ^ PA, we define an equality predicate Eq(<^) by

Then it can be shown that Eq(9?) \- i/j <^ ip \- S{I,J)*{ip). This yields
equality. Finally, for a function w: / —> J in Sets and a predicate (p: I -^ PA,
we put

n.(v^) = ^jeJ.f]{u{i)^jj)D^{i)

UuM = ^jeJ.[j{u{i)=jj)A^{i)

where

(u(i) =j j) = Eq{u o TT, 7r')ii,j) = | ^ ^If^ = ^

(In case 7 = 0, the above intersection over / equals A.) Then one easily
checks that xp h flul^) O {i^ ^ u) \- (p and]J^(<^) \- ip <=> (f h [ip o u).
Beck-Chevalley holds for these products and coproducts.

It may be clear that if we apply this construction to the PC A (N, •) with •
UFam(PN)

for Kleene application, then we get the realisability tripos i which
was first introduced in Example 4.2.6. But the construction also yields 'realis-
ability triposes' starting from models of the untyped A-calculus, like {Doo, •) or
{Pto, •); the latter (and especially the resulting topos) is investigated in [261]
within 'synthetic domain theory'.

There are variations on the above construction: in [147] the starting point is
a 'right-absorptive C-PCA' which serves as a bases for a tripos using modified
realisability. The resulting topos (as in Section 6.1) is used to give generic
proofs of strong normalisation for various typed A-calculi. In [239, Chapter IV]
a tripos is constructed which captures another version of realisability, namely
Lifschitz' realisability—and the resulting topos is studied.

Next we turn to an important class of examples of higher order fibrations.

5.3.5. Definition. A topos is a category IB with finite limits such that its
Sub(l)

subobject fibration i is a (split) higher order fibration.

The subobject fibration of a topos thus has a generic object. In this situation
with a poset fibration it does not matter whether we call this generic object
'split' or not. The same applies for the rest of the higher order structure.

Such a generic object corresponds to a 'subobject classifier', which gives
a correspondence between subobjects and characteristic maps, as in Exam-

Section 5.3: Fibrations for higher order logic 335

pie 5.2.3 (ii). This will be made explicit in the next result. It forms the core
of a more elementary description of toposes in the next section.

Sub(B)

5.3 .6 . L e m m a . A subobject fibration I has a (split) generic object if

and only if M has a s u b o b j e c t classifier. The latter is a (monic) map

true: I ^ Vt such for each mono m: X >-^ I there is a unique ^character-

istic' or 'classifying' morphism char(m): / —)• Q forming a pullback diagram,

X — - ^ 1

char(m)

t r u e

- ^ Q

Sub(l)

Proof . By Lemma 5.2.2 the fibration i has a split generic object if
and only if there is a subobject true: fio -̂̂ ^ such tha t for each subobject
m: X ^^ I there is a unique map char(m): I ^ Q with char (m)*(t rue) = m,
as subobjects. The latter means tha t there is a pullback diagram,

X

m
y j

^ 0
Y

t r u e

char(m)
- ^ Q

Thus if IB has a subobject classifier true: 1 ^ 2̂ as in the lemma, then the
subobject fibration obviously has a split generic object. The converse holds if
we can show tha t for the above mono true: QQ ^^ ^ the object CIQ is terminal.
This will be done: for each object / G B, the identity mono I y-^ I yields a
unique m a p / = char(id): / —> Q and a pullback diagram as on the left below.
Thus we have at least one m a p / ' : / —>• QQ. If also g: I -> QQ, then we get a
pullback as on the right, since t r u e is a mono.

id

/

yj
r

Y

t r u e

/
-^ f i

t r u e

t r u e o g

But then by uniqueness / = t r u e o g. Hence g = f, since t r u e o g — f =
t r u e o / ' and t r u e is monic. •

336 Chapter 5: Higher order predicate logic

The above notion of subobject classifier was first formulated by Lawvere
and Tierney in 1969 in their axiomatisation of set theory and sheaf theory.
Here we treat a subobject classifier as an instance of a generic object. More
about toposes may be found in the next few sections. At this stage we only
mention that the category of sets is a topos. The subobject classifier is the
generic object 1 ^ 2 described in Example 5.2.3 (ii).

In toposes the extensionality of entailment rule from Section 5.1 comes for
free.

5.3.7. Lemma. The subobject fibration of a topos is a model of higher order
logic with extensional entailment.

Proof. Assume IB is a topos, and let f,g: J nt ^^ be predicates satisfying the
assumptions of the extensionality of entailment rule. This means that

(ev o / X id)*(true) = (ev o ^ x id)*(true),

as subobjects of J x / . But then, by uniqueness, one gets ev o / x id = ev o
g X id, and thus f = g. Q

We mention two further examples of a higher order fibration, involving the
fibration of regular subobjects (see Exercise 1.3.6) in the categories of a;-sets

RegSub(l)
and of PERs. It is left to the reader to check that a split fibration 4-
of regular subobjects in a category IB with finite limits has a (split) generic
object if and only if the category B has a regular subobject classifier: a
regular mono true: 1 >-^ Q such that for any regular mono m: T >-^ I there is
a unique classifying map / —> Q which yields m as pullback of true.

5.3.8. Lemma. Consider the category u;-Sets of uj-sets described in Sec-
tion 1.2. Recall that it comes with a left adjoint V: Sets -> a;-Sets to the
forgetful functor (/, E) »-> / .

(i) Regular subobjects of an object {I,E) G cj-Sets correspond to subsets
X C I, with existence predicate inherited from {I,E).

RegSub(a;-Sets)
(ii) The fibration i of regular subobjects in u;-Sets has V2 G

u;-Sets as (split) generic object—where 2 = {±, T} .

Proof, (i) Given an object (/, E) G cj-Sets and a subset X C I of its carrier
set, consider its characteristic function / -^ 2 and the function 7 -> 2 which is
constantly T G 2. These form a pair of parallel maps (/, E) = | V2 in u;-Sets,
the equaliser of which is given by the inclusion {X, E \ X) >-^ (7, E).

Conversely, if m: (X, Ex) ^^ (7, Ej) is equaliser of / , g: (7, Ej) izj (J, Ej),
then X' = {i ^ I \ f{i) = g{i)} C 7 comes with an inclusion (X', Ej \ X') ^^
{I,Ej) which equalises f^g. Therefore it must be isomorphic to m.

Section 5.3: Fihrations for higher order logic 337

(ii) For (/, E) G cj-Sets, there are isomorphisms between the sets of

(a) regular subobjects of (/, E)
(b) subsets X C I
(c) functions / -^ 2 in Sets
(d) morphisms (/, E) —)- V2 in cj-Sets

Thus V2 E a;-Sets is a split generic object for the fibration of regular subob-
jects. •

5.3.9. Propos i t ion . The regular subobjects in u;-Sets give rise to a split
RegSub(C<;-Sets)

higher order fibration i . Its logic is classical.
u;-Sets

Proof. The generic object comes from the previous lemma. Fibred finite
conjunctions and disjunctions are given by finite intersections and unions.
The exponent X ^ Y oi X,Y C I for {I,E) E cj-Sets is given by
X ^Y = {I-X)[JY. Thus the negation ^X oi X is its complement {I-X).
Quantification along a projection n: (/, E) x (J, E) —^ (/, E) in a;-Sets are
also given by the set theoretic formulas:

product: {X C I x J) ^ {i E / | Vj G J. {ij) G X}

coproduct: {X C I x J) ^ {i G / | Bj G </. {ij) EX}. D

This will turn out to be an instance of a more general result: the regular
subobject fibration of a category of separated objects in a topos is a higher
order fibration with classical logic, see Corollary 5.7.12. This general result
applies, since cj-Sets will turn out to be the category of regular objects in the
eff'ective topos EfF, see Section 6.2.

The situation for regular subobjects in the category P E R is difi'erent.

5.3.10. Propos i t ion . Regular subobjects in the category P E R form a first
order fibration, but not a higher order fibration.

RegSub(PER)
Proof. The first order structure of the fibration i is described

P E R

in Proposition 4.5.7. Here we show that it does not have a generic object,
following an argument due to Streicher. Suppose, towards a contradiction,
that Q G P E R is a generic object. Then for R G P E R there should be
isomorphisms

PER(i ? , Q) ^ RegSub(i^)

^ P{N/R) by Proposition 4.5.7 (i).

The homset PER(i? , fi), like any homset in P E R , is countable. But the
powerset P{N/R) can be uncountable, for example if ii is the natural numbers
object Â = (Eq(N) C N x N) with quotient E/N ^ N. D

338 Chapter 5: Higher order predicate logic

We conclude by noting tha t these fibrations of regular subobjects in u;-Sets
and in P E R arise in the following change-of-base situations.

R e g S u b (P E R) ^ RegSub(a;-Sets) ^ Sub(Sets) = F r e d

J J
P E R ^ ^ u;-Sets ^ ^ S e t s

Exercises

5.3.1. Verify that N with Kleene application • is a PCA.
5.3.2. Check some more details in the realisability tripos construction in Exam-

ple 5.3.4, especicJly,
(i) that the connectives T, ± , A, D in the fibre have the required properties;
(ii) that fl^,]J[^ are right and left adjoint to substitution u*;
(iii) that Beck-Che valley holds for these products and coproducts.

5.3.3. Show that the category of finite sets is a topos.
E

5.3.4. Let ^P be a higher order fibration, say with generic object T ^lE^. For
IB

parallel morphisms w, f: / =^ Q put u < v if and only if u*{T) < v*{T) in
the fibre over / .
(i) Show that each homset]B(/, U) is a Heyting pre-algebra.

[Hint. Use Remark 5.2.12.]
(ii) Show that Q is internally complete and cocomplete in the following

sense. For each pair of objects / , J G B, the functor (between preorders)

$ (/ , Q) ^ B (/ X J, Q)

has both a right and a left adjoint,
(iii) Assume that the equaliser exists of A, TT: Q x Q iz^ Q and write it as

< ^^ Q X Q—where A is the induced conjunction map on Q as in
Remark 5.2.12. Prove that for u,v:I =4 ^ one has u < i; as above if
and only if (u^v): I —^ Q x Q factors through < -̂̂ Q x Q.

5.3.5. Prove that a category B with finite limits has a regular subobject classifier
RegSub(B)

if and only if its regular subobject fibration i has a (split) generic
IB

object.

5.4 Elementary toposes

In the previous section we introduced toposes as categories whose subobject
fibrations are higher order fibrations. This gives a distinctly logical description

Section 5.4: Elementary toposes 339

of toposes. It turns out that there are more elementary formulations of this
notion. The first alternative formulation will be given below. We will show tha t
it is equivalent to the previous definition. This involves some basic (logical)
constructions in toposes. Two other alternatives will be discussed in the next
section

There is much more to say about toposes than the few logical aspects that
we touch upon below, and in the next four sections. Here, we merely collect
some useful facts for the readers convenience, mainly as a preparation for
the effective topos EfF, to be introduced in the next chapter. Not all details
are given; more information may be found in the extensive literature, see
e.g. [188, 169, 18, 24, 218] and the references given there.

5 .4 .1 . Def in i t ion , (i) An (e l ementary) t o p o s is a category IB which has

• finite limits;
• exponents (so tha t B is Cartesian closed);
• a subobject classifier true: 1 -̂» fi. Thus for each mono m: X >-> / , there is

a unique characteristic map char(m): I -^ Q with m = char (m)*(t rue) , as
in.

m

X — -^ 1
Y

t r u e

char(m)
-^Q

(ii) A logical m o r p h i s m between two toposes B, B' is a functor F : B —)• W
which preserves finite limits, exponents and the subobject classifier. The latter
means that the canonical map FQ —^ Q' is an isomorphism in

F (t r u e

F (l) =

FQ

true'

-^Q^

Su
We can immediately see (by Lemma 5.3.6) tha t if a subobject fibration

i is a higher order fibration—so tha t B is a topos as defined in the

previous section—then B is an elementary topos. Our aim in this section is

to prove that the converse also holds, i.e. tha t the elementary description

coincides with the logical description.

340 Chapter 5: Higher order predicate logic

5.4.2. Example. As we have already seen in the previous section, the cate-
gory Sets is a topos with subobject classifier

true = %x. 1 f̂ .-,
1 > ^ {0,1} = 2

More generally, for each locally small category C, the category C = Sets^°^
of presheaves C^^ -> Sets and natural transformations between them, is a
topos. Finite limits are computed pointwise as in Sets. The exponents and
subobject classifier are obtained via the Yoneda Lemma, as will be sketched.

For presheaves F, G: C?P =t Sets, the exponent F => G: C°P ^ Sets should
satisfy

{F^G)[X) ^ C (C (- , X) , F^G) by Yoneda

^ C (C (- , X) X F, G) because F ^ G \s exponent.

Therefore, one simply defines,

(F => G)(X) t ^ C (C (- , X) X F, G) .

The verification that this indeed yields exponents in C is a bit involved, but
in essence straightforward.

A subobject S >-> C(—,X) of a representable presheaf C(—,X) can be
identified with a sieve on X G C. That is, with a set S of arrows with
codomain X {i.e. S C Obj C/X) which is "down closed":

^—^ i n C I ^ / O ^ G 5

fesj

Thus an appropriate presheaf Q: C°P -> Sets should satisfy

Q(X) ^ C (C (- , X) , Q) by Yoneda
= Sub(^C(—,X)j because Q classifies subobjects

= {5 I 5 is a sieve on X}.

Hence one simply puts

Q(X) = {5 I 5 is a sieve on X}.

And for a morphism f:X -^ Y in C there is a map fi(/):Q(X) —> ^{Y)
defined by

(F, sieve on Y) y-^ {g:Y ^ X \ f o g eT}.

The generic subobject true: 1 -^ fi is then given by maximal sieves:

truex(*) = i X = {/ G ArrC I cod(/) = X}.

Section 5.4: Elementary toposes 341

We leave it as an exercise to verify all remaining details.

5 .4 .3 . N o t a t i o n . In a topos, we write PI for the p o w e r o b j e c t Q^. It comes
equipped with a m e m b e r s h i p p r e d i c a t e E/ >—̂ PI x / ; it is the subobject
corresponding to the evaluation m a p ev: PI x / -4- 2̂ as ev*(t rue) . For maps
x: J ^ I and a: J -^ PI we can then write

X Ej a <=> (a, x) factors through E/ >-̂ PI x / .

Also there is a s i n g l e t o n m a p {} : /—)• PI, obtained in the following way.
The diagonal morphism S{I) = (id, i d) : / ^^ I x I on I has a characteristic
m a p c h a r (^ (/)) : / x I ^ Q. The exponential transpose of the latter is the
singleton map:

A(char(J(/))
{ } =^ (/ ^ Q^ = PI)

Next, consider this singleton map in the mono ({ }, id): / -̂> PI x / , and its
characteristic map PI x / —> Q. Exponentiation yields a morphism s: PI -^
PL Informally, s{a) — {x \ [x] — a]. We form the lift object J_/ via the
equaliser:

s

U> ^ PI^ ^ PI

id

In Sets , the power exponent 2^ is the ordinary powerset PI of / . And LI
is the lift of / : the pointed set LI = {0} U {{i} \ i e 1} C PI obtained from
/ by adding a base point. Partial functions J -^ I between sets correspond
to total functions J -^ LI. This will be generalised to arbitrary toposes. But
first we need an elementary result.

5.4 .4 . L e m m a , (i) The singleton map {}:/—>• PI is monic.

(ii) The singleton map { } factors through LI ^-^ PI, i.e. it restricts to a
map {}: I ^ LI, which is a mono again by (i).

As a result of this lemma, x is the only element of {x} = { } o x, see
Exercise 5.4.3 below.

Proof, (i) Assume parallel maps u,v:J z4 I with {} o u = {} o v. Then
one gets char(^(/)) o w x id = char(^(X)) o v x id = w, say. Consider the
corresponding subobject w;*(true) in,

342 Chapter 5: Higher order predicate logic

I/;* (true) t r u e

Both {u,id):I >-^ J x / and {v/id):I ^^ J x / are obtained by pullback of
t r u e along w—since

(w,id) = {ux id)*((J(/)) and (t;,id) = {v x id)*(J(/)) .

Hence (w, id) = {v, id), as subobjects of J x / , and so u = v.

(ii) We have to show that 5 o { } = { }, where s: PI -^ PI is as introduced
in Notation 5.4.3. We compute:

so{} = A(char(({ }, id) o { } x id) ^ A(char((J(/)) = { }

where the equality (*) comes from the fact tha t the left square (**) below is
a pullback by (i).

S(I)

I X I>-

I

({},id>
t

-^ PI X I

-^ 1
Y

t r u e

Q
{ } X id char({ },id)

Categorically, a partial m a p / —̂ J is (an equivalence class of) a span

m
I ^ ^X -^ J

It tells tha t u is defined on a subset X of / . Two such spans I <—< X -^ J
n y

and / -̂̂ y —)• J are equivalent if there is a necessarily unique isomorphism
(p:X ^Y with n o (f — m and v o ip — u. ksiov subobjects, one usually does
not distinguish notationally between such a span and its equivalence class.

5.4 .5 . P r o p o s i t i o n . The singleton map { } : J ^^ -LJ is a part ia l m a p

classif ier; for each partial map I ^-< X -^ J, there is a unique morphism

Section 5.4: Elementary toposes 343

v: I ^ LJ forming a pullback square,

X

Proof. Given I ^^ X —> J^ consider the 'graph' mono {m,u):X ^^ I x J,
its characteristic m a p / x J -> Q, and the resulting exponential transpose
I -^Q-^ = PJ. The latter factors through I J >-> PJ. D

5.4.6. Corol lary . The assignment I \-^ 1.1 is functorial, and the singleton
maps {}:/—> ± 7 are components of a natural transformation id => _L.

Proof. For a m a p u: I ^ J, there is a partial map ± 7 ^< I ^ J and thus a
unique morphism J-u: ± 7 —> ± J , in a pullback square

D

Such classification of partial maps is an important first step in the axioma-
tisation of domain theory, see e.g. [144, 81, 259], and also [296].

Next we are going to show that every topos is locally Cartesian closed
{i.e. tha t all of its slice categories are Cartesian closed). In Sets , the expo-
nent in the slice S e t s / 7 of two 7-indexed families {Xi)i^j and (Yi)i^j is the
pointwise exponent (function space) (Xf => Yi)i^i. It can alternatively be de-
scribed in terms of suitable partial maps f:X ^Y, namely those / with for
all X Ei Xi, f{x) is defined and f{x) E Yi. This will be used below.

5.4.7. P r o p o s i t i o n . A topos is a locally Cartesian closed category (LCCC).
A logical morphism preserves the LCCC-structure.

Proof. A topos IB has finite limits by definition, so that each slice category
B/7 has finite limits. We only have to show that IB/7 is Cartesian closed.

/ X \ (^ \
Assume therefore families I y^ I and I i 1 • ^ ^ ^hen have a partial

map I X X ^ I, namely

{(f, id) (p
I X X ^ <X ^ 7

344 Chapter 5: Higher order predicate logic

Let it be classified by ^ : / x X —> ± 7 . We define the exponent family (f ^ tp
to be

W

(f => i) J

A(^)

{Li>)^ = A(±V o ev)
t

For an arbitrary family
Z

we have to establish a bijective correspon-

dence between maps f'-X >^ ^ ~^ i^ ^^^ 9'X~^{f=^i^) ^^ W^- ^̂ arises as
follows.

• Given f: Z Xj X ^ Y , consider the partial map Z x X ^^Y,

Z X X ^ <Z XjX
f

-^Y

It induces a map f:Z xX ^ 1.Y, and hence A (/) : Z -^ {±Y)^. The latter,
together with x- ^ —^ ^ yields a mediating map Z —> W with respect to
the above pullback. It is the m a p we want.

• Conversely, given g: Z —^ W, one obtains the appropriate m a p Z XjX —> Y
in.

Z XTX> ^ Z X X
g xid

X id

X X V ?

These exponents in the slices are preserved by logical morphisms, because
they are defined in terms of the topos structure as in Definition 5.4.1. D

This result has important consequences for the codomain and subobject
fibrations of a topos.

5.4 .8 . Corol lary . / / B is a topos, then its codomain fibration ^ is fibre-

wise a topos: each fibre M/I is a topos and reindexing functors u* are logical

morphisms (they preserve the topos structure).

Section 5.4- Elementary toposes 345

Proof . Each slice has finite limits and exponents; the latter by the previ-
ous result. And if true: 1 ^^ Q is subobject classifier in B, then the m a p
/* (true) = id X true: I x 1 ^ / x Q i s a morphism between families,

r (t r u e) / ^ > < ^ \
f f)-/*(«)

which is a subobject classifier in B / / . The proof uses that a m a p between
families in B / / is a mono in B / / if and only if it is a mono in B.

Obviously, pullback functors preserve all this structure. •

Sub(B)

5.4 .9 . Corol lary . / / B 25 a topos, then its subobject fibration i is a

higher order fibration.

A category B is thus a topos as in Definition 5.4.1 in this section if and only
if B is a topos as defined in the previous section.

Proof . Because a topos B is locally Cartesian closed, each pullback func-
tor u*:M/J -^ B / / has a right adjoint f] ^ , by Proposition 1.9.8 (iii). These
functors fl^ restrict to functors f lu-S^t) (/) -^ Sub(J) , because right adjoints
preserves monos. With these products we can define implication D as in the
proof of Theorem 4.5.5. Thus, in the subobject fibration of a topos, we already
have r^, V, D, A, T and = . The latter three always exist in subobject fibrations.
The missing logical operations -L, V ,3 are then definable, using Q,V and D,
as in Example 5.1.4. Thus we have a higher order subobject fibration. D

Exercises

5.4.1. Use characteristic maps to show that each mono in a topos is a regular
mono. Conclude that a map in a topos which is both a mono and an epi is an
isomorphism. Categories with this property are sometimes called balanced.

5.4.2. Check that the constructions described in Example 5.4.2 indeed yield a
topos of presheaves Sets . Describe the subobject classifier true: 1 —)• Q
for C is (a) a monoid, (b) 2 = (• -^ •), (c) N = (• ^ • - > • -) • • • •), and
(d) an arbitrary poset,

5.4.3. Show that for 'generalised elements' x,y: J ^ I in a topos, one has

^ ^i {y} ^ X = y

where {y} = { } o y: J -> PI.
5.4.4. Show that

(i) {}:1 ^ H i s t r u e : l >-^ Q;
(ii) LI >-^ PI is a split mono.

346 Chapter 5: Higher order predicate logic

5.4.5. (From [169, 1.45]) For an object / in a topos, consider / as family over
1, and form the product Iltrue^^) °^^^ ^ along t rue : 1 -)• Q. Notice that

(j 1 can be obtained as puUback t rue* (A 1, where / ^ 0 is t r u e o !.

There is thus a unit map / -> n t r u e (^) ' Prove that it gives an alternative
description of the partial map classifier { } : / - > ±7.

5.4.6. In the subobject fibration of a topos there are implication D operations in
the fibres. It induces a map 3:17 x Q —)• fi, like in Remark 5.2.12. Prove
that this map D is the classifying map of the order < -̂> Q x Q, obtained
as equaliser of A, TT: Q x Q z^ Q.

5.4.7. Verify that a logical morphism preserves images. More generally, that a log-
ical morphism between toposes yields a morphism preserving the structure
of the corresponding higher order subobject fibrations.

5.5 CoUmits, powerobjects and well-poweredness in a topos

In this section we mention some further results on toposes, which are of less
importance for the main line of this book. They involve two more alternative
formulations of the notion of topos: one involving powerobjects PI = Q^,
and one involving well-poweredness of the associated codomain fibration (in
a fibred sense). Also we show that every topos has finite colimits. The proof
involves some special properties of subobject fibrations.

We start with powerobjects.

5 .5 .1 . T h e o r e m . A category B is a topos if and only if it has both

• finite limits;
• p o w e r o b j e c t s ; / o r each object I there is a power object PI together with

a ''membership^' relation £i >-^ PI x / which is universal in the following
sense: for each relation R >-^ J x I there is a unique ''relation classifier^'
r: J —^ PI forming a pullback square,

R ^ G /
Y I Y

J X / ^ PIxI

r X id

One thinks of r: J -> PI as j ^ {i £ I \ R{j, i)}.

Proo f . If B is a topos, then one takes PI = fi^ and G/ as classifier of
evaluation, as in Notation 5.4.3. Every relation R >-^ J x / , as a mono,
has a classifying m a p c h a r (i ?) : J x / -> Q and thus we obtain a m a p

Section 5.5: Colimits, powerobjects and well-poweredness in a topos 347

fi^ = PI by abstraction. The outer rectangle below r = A(char(i?)): J
is a pullback:

R
V

J X I
r X id

PIx I

• * 1
V

t r u e

char(i?)

so that we can conclude from the Pullback Lemma tha t the rectangle on the
left is a pullback.

In the reverse direction, if one has powerobjects, then the relation Gi : 1 -̂̂
P l x l = P l i s a s u b o b j e c t classifier. Further, exponents J^ can be constructed
as suitable subobjects J^ y-^ P{I x J) of relations which are both single-valued
and total . For the details, see e.g. [188, IV, 2]. •

This result gives the most economical formulation of ' topos' ; it is due to
Kock. It is remarkable tha t the above two requirements suffice to give us all
of the structure of higher order logic.

We also like to mention tha t taking powerobjects is functorial (and yields
a monad, see Exercise 5.5.2 below).

5 .5 .2 . P r o p o s i t i o n . For a topos M, the assignment I H-> PI extends to a
functor B —> B. The singleton maps {} / : /—> PI are components of a natural
transformation i d i => P.

Proof. For a morphism u: I -^ J, consider the image Uidxw(^/) ^~^ ̂ ^ ^ ^
of the composite

E/ > ^ PI xl
\dx u

-^ PI X J

By the previous result, there is a unique classifying m a p P{u): PI -^ PJ in a
pullback square

Y J

PIx J

Y

^ PJ X J
P{u) X id

We get P(u) o { } / = { } J o w: / -^ P J , because both maps classify the

348 Chapter 5: Higher order predicate logic

same relation, namely the graph (id, u): / ^^ / x J of u, in:

u
I —

(id, u)

IxJ

^ J —
"J

u X id

S{I)

-^JxJ
{ } J X id

V

-^ PJx J

and

/ —

(id, u)

IxJ-

-* IJidx«(€/)
J

-*€j

-^ PI xJ -* PJxJ
{ }/ X id P(u) X id

where in the latter case the square on the left is a pullback by Beck-Chevalley:

({ } / x i d r a , , j G /) - U . d x . (({ } / x i d r (E /))

^ (id,w). D

We turn to finite colimits in a topos. Remarkably, they come for free. To
see this we need the following auxiliary result.

5.5.3. Lemma. Since a topos is a coherent category, it has a strict initial ob-
ject 0, see Theorem 4-5.3. Write false: 1 —^ Q for the classifying map obtained
in

0 ^ 1
y j

true

-^ f i
false

For an arbitrary object I, put 0/ = A (false o TT): 1 ^^ PI. Then 0/ and the
singleton map { }/: / ^^ PI are disjoint: there is a pullback square

0:=—

M
-^ 1

Y

/ > -
ih

^ PI

Proof. Exercise. D

Section 5.5: Colimits, powerobjects and well-poweredness in a topos 349

5.5 .4 . P r o p o s i t i o n . Each topos has finite colimits; they are preserved by
pullback functors (i.e. they are universal^.

Moreover, these colimits are preserved by logical morphisms between toposes.

Proof . We already know tha t a topos has an initial object 0. For objects / , J
consider the subobjects

({ } / , 0 j) : I^PIxPJ and (0/ , {]j): I y-^ PI x PJ.

By the previous lemma, these are disjoint. Hence their join IV J >-^ PI x PJ
is / -f J -̂> P / X PJ by Exercise 4.5.1.

(More informally, one constructs the coproduct / + J as the set

{{a, b) G PI X PJ I (a is a singleton and b is empty)

or [a is empty and 6 is a singleton)}.

See also [186, 11,5, Exercise 2].)
In order to show that a topos has coequalisers, we use Proposition 4.8.6 (ii),

and construct for a relation {ro,ri):R ^^ I x / a quotient object I/R. Let
{fo,ri): R ^^ I X I he the least equivalence relation containing R; it may be
obtained as in Lemma 5.1.8. Write r = A(char(i^)): / —>- PI for the relation
classifier of R, and factor this map as

We must show that maps I/R —> J are in bijective correspondence with maps
of relations R —^ Eq(J) , i.e. with maps u: I —> J satisfying u o ro = u o n.

For i, z', j G / with R{i, i') one has a logical equivalence

R{iJ)JOR{i'J)

because R is symmetric and transitive. More categorically, one has an equality
of subobjects,

(ro X idy(R) = (Fi x idy(R) over RxL

As a result, char(i?) o FQ x id = char(i?) o Fi x id, and so r o FQ = r o Fi.
This gives us c o FQ = c o Fi, because r = m o c and m is a mono. We also
get c o ro = c o r i , since R < R. Hence a morphism v: I/R —^ J gives rise to
a morphism u — v o c: I -^ J with u o r^ — u o ri.

And if we have a morphism u:I ^ J with u o r^ — u o ri^ then
R < [u X uY[5[J)) — Ker(i/). Since this kernel Ker(w) is an equivalence
relation containing i i , we get R < Ker(w). The required mediating m a p
I/R ^ J is now obtained from the fact tha t covers are orthogonal to monos.

350 Chapter 5: Higher order predicate logic

see Lemma 4.4.6 (vii), in a diagram:

/ >I/R

/ I m

/
/

PI

j> ^ pj
{}j

The outer rectangle commutes, as may be concluded from the following com-
putation.

{Piu)or){i) = P{u){{i'jI\Rii,i')})

= Mi') \R{i,i')}

= {u{i)} by reflexivity of R

Colimits in a topos are preserved by pullback functors u*, because each u*
has a right adjoint f|^. And since these colimits are described in terms of the
logical structure of a topos, they are preserved by logical morphisms between
toposes. •

In this proof we rely on logical tools. There is a more categorical argument
due to' Pare: by using Beck's Theorem one can show that for a topos B, the
opposite category W^ is monadic over IB. Thus W^ inherits limits from B,
i.e. B inherits colimits. Details may be found in [188, 169, 18]. This proof has
the advantage that it directly applies to non-finite colimits as well; they exist
in a topos as soon as the corresponding limits exist.

Notice that since colimits are stable under pullback, epimorphisms are pre-
served by pullback functors (since the fact that a map is an epi can be ex-
pressed in a pushout diagram). One can further show that coproducts are
disjoint, but the argument is non-trivial, see e.g. [188, IV,6, Corollary 5].

5.5.5. Corollary. The epis in a topos are precisely the covers (I.e. the regular
epimorphisms).

Proof. Images can be constructed as in Exercise 4.4.8 and in Exam-
ple 5.1.9 (i). Explicitly, given a map u: I -^ J one forms the coequaliser

Section 5.5: Colimits, powerobjects and well-poweredness in a topos 351

/ -» J ' of i/'s kernel pair I Xj I ^ I, as in,

Ixjl ^ ^ / "^ ^ J

— X . "
J'

Then J' -^ J is internally injective, as proved in Example 5.1.9 (i). In a
subobject fibration this means tha t it is monic. In case u is an epi itself, then
so is J ' ^^ J . Hence the latter is an isomorphism (see Exercise 5.4.1). Thus
every epi is a regular epi and hence a cover, see Lemma 4.4.6 (viii). D

We turn to another characterisation of toposes, in terms of well-powered-
ness. An (ordinary) category C is called w e l l - p o w e r e d if for each object
X E C the collection of subobjects of X is a small set (as opposed to a
proper class). In a fibred definition of this concept the reference to small sets
is eliminated and replaced by a reference to objects of a base category of a
fibration.

E
For a fibration ^P we say tha t a map in E is ver t ica l ly m o n i c if it is

IB

vertical, say in the fibre over / , and is a mono in this fibre category E / . We say
tha t substitution functors pre serve m o n o s if for each morphism w: / —> J in
IB and vertical mono m: X' ^^ X over J , one has that u* (m): u* {X') -^ u*{X)
is vertically monic over / . In case substitution functors preserve fibred pull-
backs or have left adjoints, then they preserve monos. A vert ica l s u b o b j e c t
is a subobject in a fibre category which comes from a vertical mono. Below
we shall write VSub / (X) for the collection of vertical subobjects of an object
X over / .

E

5 .5 .6 . Def in i t ion . A fibration -j^P is said to be w e l l - p o w e r e d if both

• substitution functors preserve monos;
• for each X G E, say over / G B, the functor

(]B//)op ^ S e t s given by (j - ^ /) H ^ VSubj(i /*(X))

is represent able.

The latter means tha t for each X G E there is a m a p SX: Sub(X) —> / in
IB together with a vertical mono s: X' >-^ tSX*(X) which is universal: for each
u: J -^ I with a vertical mono m:Y ^-^ ^ * (^) over J , there is a unique m a p

352 Chapter 5: Higher order predicate logic

v: J ^ Sub(X) in B with SX o v = u such that there is a commuting diagram

Y ^ X'
Y Y

m \ s

u*{X) ^SX*{X)

where u*{X) —> SX*{X) is the unique Cartesian arrow over v with u*{X) —>
SX*{X) ^ X is u*{X) -^ X, so tha t Y —^ X' is uniquely determined. All
this says is tha t there are isomorphisms

M/l{u, Sx) ^ VSubj(i /*(X)) , natural in u: J ^ I.

5.5.7. T h e o r e m (See also [246, 4.2.1]). A category B with finite limits is a

topos if and only if its codomain fibration ^ is well-powered.

Proof . If the codomain fibration on B is well-powered, then for each object
/ E B we have can view / has a constant family over the terminal object
1 G B. We take as powerobject

The isomorphism characterising well-poweredness gives us

B (J , P (/)) S] B / I ((^ |) , 5 (^ |)) s V S u b j (J ' (/)) S S u b (J x /) .

This shows that P(I) indeed behaves like a powerobject.
Conversely, assume B is a topos. Since every slice category

it carries a power object functor P/I:M/I —)• B / / . For a family

a m a p u: J ^ I we then get isomorphisms

M/l{u, P/I{^)) = Sub(w x / ^) ^ YSuhj{u*((p)). D

Exercises

5.5.1. Describe an 'undefined' element J./: 1 —)• LI. And prove that ±0 = 1.
5.5.2. (i) Check that the assignment u H-> P{U) in Proposition 5.5.2 preserves

identities and composites,
(ii) Extend P to a monad on B with singleton maps { } as unit.

[It can then be shown that algebras of this monad are the (internally)
complete lattices in B, see [169, after Proposition 5.36].]

Section 5.6: Nuclei in a topos 353

(iii) Extend also ± to a monad and show that the maps ±7 -̂> PI form a
morphism of monads L >-^ P.
[Algebras for this J_ monad are investigated in [179].]

(iv) Define the non-empty power object P^ I >^ PI by the following
puUback diagram,

P + /

{} = true

and show that P^ also forms a submonad of P.
5.5.3. Let B be a topos. For every object / G B we have a slice topos B / / , and

thus a power object functor P/I:M/I -^ M/I.
(i) Show that these fibrewise functors combine into one single fibred power

object functor B"" ^ B"".
(ii) Check that in the case where B = Sets, this fibred functor is given by

(X.).e/ ^ (PX.).€/-

5.5.4. Prove in purely categorical terms that the rectangle in the proof of Propo-
sition 5.5.4 commutes.

5.5.5. Consider an ordinary category C, recall Exercise 1.2.2, and prove that
Fam(C)

(i) substitution functors of the family fibration i always preserve
vertical monos;

Fam(C)
(ii) the category C is well-powered if and only if its family fibration 4-

Sets
is well-powered.

5,6 Nuclei in a topos

In this section we describe nuclei (also called Lawvere-Tierney topologies) in
a topos and study the associated closed and dense subobjects in some detail.
We show in particular tha t the fibration of closed subobjects is a higher order
fibration, just like the fibration of ordinary subobjects in the underlying topos.
Thus we can do higher order logic with closed subobjects. For the special case
of the double negation nucleus ->->, the logic of this fibration of -«-i-closed
subobjects is classical: the entailment ->-i(f h (̂ is (forced to be) valid.

We start with the s tandard definition of a nucleus in a topos as a morphism
j : Q -^ Q satisfying some special properties. An alternative, more logical,
approach is possible in which a nucleus is introduced as an operation ^ \-^lp

354 Chapter 5: Higher order predicate logic

on propositions, see Exercise 5.6.6 (and also [339]). This operation may also
be studied as an operation of modal logic, see [103].

The conjunction operation A: fi x Q -> f} in the next definition arises as in
Remark 5.2.12.

5.6.1. Definition. In a topos, a nucleus (or Lawvere-Tierney topology)
is a map j : Q —> fi making the following three diagrams commute.

fi Q
J X J

Q X Q >- Q X Q

fi

true V true A A

Q -^Q

5.6.2. Example (Double negation). The example of a nucleus that we will
be most interested in is the double negation nucleus -i-i: f2 -> Q in a topos.
The negation map -•: 1̂ -^ Q. is the unique map giving rise to a pullback
square,

1 ^ 1

false J true

Q - ^ Q

see Exercise 5.6.1—where false: 1 —> Q is the characteristic map of 0 >-̂ 1.
Since Q is an (internal) Heyting algebra (see Exercise 5.1.5), we have.

1 ^ - - i - . ^ ^ , -"true = true. ^[<p^'^l)) i(p A -^-^^p

which yields that -<-• is a nucleus. The difficult case is to deduce -^-^{(p A ip)
from -i-i(^ and ->->ip. We shall give a derivation in propositional logic.

^ h 9? ^ h ^

(p,ip \- (p Alp -'(V? A ip) I—"(v? A ip)

<f,jp,^((pAi;) h _L

^,

—I

ijj, ~>{(p A tp)

- . - . < ^ , - . (V ? A V^)

-i</?,-i(<^ A tp) h

-i-,(p^ - . -

1 i(p

h i .

—ijp

- .^ , - . (v?A rP)

—t—itp

h i

h

-i-iip h

—i—ttp

—}—\(p

-up, -i-it/^ I—i- i (^ A ip)

Section 5.6: Nuclei in a topos 355

5 .6 .3 . E x a m p l e (Grothendieck topologies). A nucleus j on a presheaf topos
C = Se t s^ corresponds to a G r o t h e n d i e c k t o p o l o g y on C The latter
consists of a mapping J tha t assigns to every object X G C a collection
J{X) of sieves on X, such tha t the following three conditions are satisfied.

Ident i ty . The maximal sieve ^X — {f \ cod(f) = A"} is in J{X).
Stabi l i ty . If a sieve S is in J{X) and / : Y ^ A is an arbitrary map , then

the sieve r{S) = {g: Z -^ Y \ f o g e S} is in J (y) .
Trans i t iv i ty . If 5 E J (A) , then also R G J (A) , for a sieve R with f*(R) G

J{Y) for each / : Y ^ A in 5 .

Such a pair {C^J) is also called a s i te , in case C is a small category. The
elements of J{X) are covers or cover ing fami l ies . Details of the correspon-
dence between j and J may be found in [188].

Often one describes such a Grothendieck topology via a basis, i.e, via col-
lections /C(A) of families of maps with codomain A , such tha t the induced
collections of sieves

J{X)^{lR={fog\feR})^^^^^^

form a Grothendieck topology. One says that J is generated by /C. The families
R G AT (A) are also called covers of A .

As particular examples of sites we mention the following,
(i) Each frame A, considered as a poset category, carries the s u p t o p o l -

ogy , with as covers of x E A the down sets S C Ix with \/S — x. The frame
distributivity ensures that we get a topology.

This applies in particular to the case where A is the frame 0{X) of opens of
a topological space A . In terms of bases, we get tha t a collection S = (Ui)i£i
of opens Ui covers U G 0{X) if [j-^j Ui = U.

(ii) For a regular category C there is what is called the regular epi t o p o l -
o g y ? given by the following basis. The covers of an object A G C are singleton
sets {¥ ->X} of covers {i.e. regular epis, see Lemma 4.4.6) with codomain
A . The associated sieves are sets with elements of the form ^ - o .

5.6 .4 . N o t a t i o n . For a subobject m: X y-^ I one writes rn: X ^^ I for the
c losure obtained as pullback

A ^ 1
Y I Y

m t r u e

- ^ f i —-^ Q
char(m)

A subobject A ^^ / is called c losed if A = A and d e n s e if A = / . We write

356 Chapter 5: Higher order predicate logic

ClSubj(/) ^ Sub(/) and ClSubj(B) ^ Sub(B) for the full subcategories of
closed subobjects (on / E B and in B).

5.6.5. Lemma, (i) Closure commutes with pullbacks: if the diagram on the
left below is a pullback, then so is the one on the right.

X
Y

X
Y

-^ J

^Y
Y

-^ J

Briefly, u*{n) — u*{n). Especially, if n is closed or dense, then so is u*{n).
(ii) For a subobjects X >^ I and Y y-^ I one has.

X<X, X = X, XAY = XAY, X <Y =f^ X <Y.

Proof, (i) Because

chsiTyu*{n)j — char(n) o u

= j o char(77) o u

= j o char(w*(n)j

— char(^w*(n) j .

(ii) Easy, using the diagrams in Definition 5.6.1.

The following equaliser will be important.

id

Q; - ^ Q Q

As a result, X -̂̂ / is closed if and only if char(m): / ^ Q factors through
fij -̂> fi. In particular, we can write true: 1 -̂̂ fij.

For an object / , write S{I):I ^^ I x I for the closure of the diagonal
S{I) = (id, id): / -̂» / x / . It yields a map / x / -> ftj, and hence by exponential
transpose the j-singleton map

{ } j

5.6.6. Proposition. Let y.Q -^ Q be a nucleus in a topos B. Since closed
ClSubj(l)

subobjects are closed under pullback, we get a split fibration I of closed

Section 5.6: Nuclei in a topos 357

subobjects. It is a higher order fibration with extensional entailment, in which:

• T , A; D and W are as for ordinary subobjects.

• ± j = X, X VjY =: X\JY, U j (X) = U (^) ^rid Eqj(X) = Eq(X) , and thus

-njX = X D X.
• true: 1 >-» Qj is a (split) generic object.

Hence closure (—) defines a fibred functor Suh{M) -> ClSubj(B) overM which
preserves all this structure, except the generic object.

Notice by the way that these fibrations of closed subobjects have full subset
types.

Proof . By (ii) in the previous lemma, closed subobjects are closed under
finite meets. And if X >-> / , Y ^^ / are closed, then so is X D Y:

{X DY)<{X DY) ^ {X DY)AX <Y

^ {X DY) AX < Y since X is closed

<^ {X DY) AX <Y since Y is closed.

The latter obviously holds since it is evaluation (or the counit). Similarly for
a closed subobject X ^^ I x J,

^ TT* n (^) < ^ by Lemma 5.6.5 (i)

O 7T* Yl(X) < X since X is closed.

And the latter holds (it is the counit again).
As for coproducts, one obviously has ± < X , for closed X . And for closed

subobjects X, Y, Z in the same fibre,

X < y a n d X < Z <^ XWY < Z

^ xvy = xvjy<z.
Similarly for simple coproducts]J and equality Eq. Finally, t r u e : 1 >^ Qj
is split generic object because the characteristic maps of closed subobjects
factor through Qj. And extensionality of entailment follows like in toposes,
using this generic object as in Lemma 5.3.7. •

This result allows us to do higher order logic with closed subobjects. For
ClSubj(l)

example, a m a p u: I -^ J in the base category of a fibration i of closed

subobjects is internally injective (with respect to this fibration) in case one

has in the internal language,

i: / , i^: I \ u{i) —j u{i') h i = / i'

358 Chapter 5: Higher order predicate logic

see Definition 4.3.9. Spelled out in categorical language, this means that

{uxuy{S{J)) <S{I)

or equivalently,

Ker(i/) = {ux uy{S{J)) < J{I)

But this means that S{I) =t / is the kernel pair oi u: I ^ J. Equivalently,
that the inclusion map S{I) -̂» Ker(w) is dense. A map u with this property
is sometimes called almost monic. And an arbitrary map u is called almost
epic if it is internally surjective in the fibration of closed subobjects. This
means that in w's epi-mono factorisation the mono-part is dense. Finally, a
map is called bidense if it is both internally injective and surjective in this
logic, see [169, Definition 3.41].

We finish with the following two results about such fibrations of closed
subobjects.

m
5.6.7. Lemma. If X ^^ I is a dense mono in a topos M with nucleus j ,

ClSubj(l)
then the associated reindexing functor m* for the fibration i of closed
subobjects is an isomorphism:

ClSubj(/) "^ ^ ClSubj(X)

n
Proof. The inverse of m* maps a closed subobject Y >-^ X io m o n. Indeed,

m* (m o n) — m* (m o n)

= n since m is a mono

= n.

k

And, the other way round, for a closed Z >-^ I,

m o m*(k) = m A k

— m A k

— k since m is dense

— k. D

5.6.8. Lemma. For j = -i-i the double negation nucleus, the logic of the
ClSubj(B)

fibration i of closed subobjects is classical: one has -i-iX — X.

Section 5.6: Nuclei in a topos 359

Proof. Since

- i j^ jX = (X D _L) D ± see the description of ^ j in Proposition 5.6.6

= {X D 1.) D J- since ± = - i - i± = ± for this nucleus

= -.-^X

= X because X is -i-i-closed. •

Exercises

5.6.1. Recall that negation ->(/? is defined in predicate logic as v? D _L. Show that
-i:!} ^ Q as defined in Example 5.6.2 coincides with (—) D ± :Q -> Q,
where (—) 3 _L = D o (id ,± o !):Q -^ Q is obtained from the induced
structure D:Q x Q ^ Q and ± : 1 -^ Q as in Remark 5.2.12.

5.6.2. Consider the following commuting square of monos,

k
X> ^ Y

and prove
(i) A: is dense =^ n" = m;
(ii) n is closed and rn = n {= n) =^ k is dense;
(iii) A;, n are dense =^ m = n o k is dense.

[Hint. Write the triangle as a pullback.]
5.6.3. Let j : Q -> Q be a nucleus in a topos B.

(i) Show that for each object / G B, the map /*(j) : /*(n) -^ /*(Q) is a
nucleus in the slice topos B / / .

f X ' \ ^ / X \
(ii) Check that a mono I i j "̂"̂ I i) is closed / dense in B / / if and

only if X ^^ X is closed / dense in B.
5.6.4. Consider in a topos with a nucleus an arbitrary map w: / —>• J with an

arbitrary subobject X ;—> / on its domain. Prove that

as (closed) subobjects of J .
5.6.5. Say a map u: I -^ J has dense image if its image \m(u) ;—> J is dense.

Show that M = (closed monos) and £ = (maps with dense image) form a
factorisation system on a topos (see e.g. [18] for the definition).

E
5.6.6. Let l̂-̂ be a preorder fibration with fibred finite products (T, A). Define

a nucleus on p to be a fibred "closure" monad T: E —)• E which preserves

360 Chapter 5: Higher order predicate logic

fibred finite products.
(i) Show that for a topos B, a nucleus j rQ ^ Q as in Definition 5.6.1,

corresponds to a nucleus T = (—) on the associated subobject fibration.
(ii) For a frame A, a nucleus on ^ is a map j:A -> A satisfying x <

j{x), i (i (^)) < Ji^), and j{x Ay) = j(x) A j{y), see [170, 11,2]. Show
that there is a correspondence between nuclei on A and nuclei on the

F3.m(A)
corresponding (regular) family fibration 4-

(iii) Let T be a nucleus on a regular fibration '^P . Show that the fi-

bred category p of algebras (see Exercise 1.7.9; the fibred category
of "closed" predicates) is again a regular fibration. Also that the map
p -^ p^ preserves this structure.

5,7 Separated objects and sheaves in a topos

In this section we present some basic results about separated objects and
sheaves in a topos with a nucleus, and describe (fibred) sheafification and
separated reflection. We will later use these constructions in the special case
of the effective topos EfF, to be introduced in the next chapter: the categories
of sets and of u;-sets can be characterised as the categories of sheaves and of
separated objects in EfF, for the double negation nucleus -"-i.

5 .7 .1 . Def in i t ion . Consider a topos B with nucleus j . An e x t e n s i o n of a

partial m a p I ^^ X ^ J is a. morphism v: I -^ J with v o m = u. We call

(m, u) a d e n s e part ia l m a p in case the mono m is dense.
An object J G B is called a s e p a r a t e d o b j e c t if each dense partial map

/ —̂ J has at most one extension I ^ J. And J is a sheaf if there exists
precisely one extension (again, for each such dense I ^ J).

We write Sepj(B) and Shj(B) for the full categories of separated objects and
of sheaves. There are then obvious inclusion functors Shj(B) M- Sepj(B) ^> B.

In a diagram, J is a separated object / sheaf if there is at most / precisely
one dashed arrow:

u
X ^ J
Y . ^

dense m

Put differently, for dense X >-^ I, the function "pre-compose with m"

/ X - o m / X

B(/, J) ^B(X, J)

Section 5.7: Separated objects and sheaves in a topos 361

is injective / bijective if and only if J is a separated object / sheaf.
The above notion of sheaf is an abstraction of the notion of sheaf on a

site. As we mentioned in Example 5.6.3, a nucleus on a topos C = Sets^°^
of presheaves corresponds to a Grothendieck topology J on C. Expressed in
terms of J", a presheaf P: C^"^ -^ Sets is a sheaf if and only if the following
holds. Assume that S covers X G C and that elements aj E P{y), for (/• Y —̂
X) G 5, form a "matching" family: for f:Y-^XinS and arbitrary g: Z -^Y
one has Ci{jog) — P{g){af). Then there is a unique element a G P{X) such
that aj = P(/) (a) , for all / G 5.

It is useful to notice the following.

5.7.2. Lemma, (i) If J is a separated object and Y >-^ J is a mono, then Y
is separated.

(ii) If J IS a sheaf then a mono Y ^^ J is closed if and only ifY is a sheaf.

Proof. The first point is obvious, so we only do the second. Assume J is a
sheaf and n: Y ^^ J is closed, and consider a dense partial map I ^-< X -^ Y.
Then we get a unique extension v in

X
V

dense m
Y

/ ^ J
V

using that J is a sheaf. But then m < v* [n) and so

id = m < V*(n) — v*{n) — v'^{n),

which shows that v factors through n. This yields the required extension
I -^ Y. It is unique by (i). Hence y is a sheaf.

Conversely, if y is a sheaf, consider the closure n oi n:Y ^-^ J on the left,

y > -
k _

— ^ y

J

dense k

t:J

We get i as indicated on the right, with ^ o Ar = id, because y is a sheaf. But
then, since J is also a sheaf, we get n o i =n. Hence n < n, so n is closed. •

5.7.3. Lemma. Consider a nucleus j in a topos M.
(i) An object J £ M is separated if and only if the diagonal S{J) —

(id, id): J ^^ J x J on J is closed. The latter means that internal and ex-

362 Chapter 5: Higher order predicate logic

ternal equality on J coincide in the fibration of closed subobjects, i.e. that
equality on J is very strong in this fibration.

(ii) The categories Sepj(B) and Shj(IB) are closed under finite limits in M.
(iii) If J £ M is a separated object / sheaf then so is each exponent J^ =

(/ ^ J) G 1 .
(iv) Qj 25 a sheaf Hence each object Pj{I) = l^j is also a sheaf
(v) The ysingleton map { }J: / ^ Pj(/) = Oj is internally injective in the

fibration of y closed subobjects (or, almost monic): its kernel pair is the closure
of the diagonal S{I).

Proof, (i) If J is separated, then TT O S{J) = TT' O S{J). Hence S{J) factors
through the equaliser S{J) of TT, TT': J x J =^ J . Thus S{J) is closed.

fTl n

Conversely, given a dense partial map I ^^ X -^ J with two extensions
v,w: I ^ J , then m < {v, w)*(S(J)), so that

id, =fn<{v, wY{S {J)) = {v,wr{S(J)) = {v,wr{S{J)).

Hence {v,w) factors through (J(J), and thus v = w.
(ii) + (iii) Left as exercises (or see e.g. [188, V,2 Lemma 1]).

(iv) We must show that for dense m:X >-^ I, the "pre-compose with m"
function — o m : B (/ , Qj) -^ M{X, Qj) is an isomorphism. But since t r u e : 1 -^
fij is split generic object for the fibration of closed subobjects we can describe
this operation — o m also as composite,

I B (/ , Qj) ^ ClSubj(/) ^ ^ ClSubj(X) ^ B (X , Qj)

in which m* is an isomorphism by Lemma 5.6.7.

(v) The map { } J : / -^ ^j(-^) is the singleton m a p as defined in
Lemma 5.1.6 (ii), for the higher order fibration of closed subobjects. In the
same lemma it is shown tha t this m a p is internally injective. The argument
may be carried out in (the internal language of) the fibration of j-closed sub-
objects. •

Ordinary singleton maps {}: I ^ P{I) = Q^ are internally injective for the
fibration of ordinary subobjects, and j-singleton maps { }J: / —> Pj (/) = Q | are
internally injective for the fibration of j-closed subobjects. We need to know
that j-singleton maps form a natural transformation, like ordinary singleton
maps, see Proposition 5.5.2. The proof goes analogously.

5.7 .4 . L e m m a . Given a nucleus j in a topos M, the assignment I \-^ Pj{I) =
fij extends to a functor IB —> IB, and the ysingleton maps { }j form a natural
transformation i d i => Pj- D

Section 5.7: Separated objects and sheaves in a topos 363

The j-singleton maps can be used to characterise separated objects and
sheaves.

5.7.5. Lemma. Consider a topos B with nucleus j and an arbitrary object
/ E B. Then

(i) / is a separated object if and only if the y singleton map {}y I -^ P'^{^)
on I is a mono in B;

(ii) / is a sheaf if and only if {}f I -^ -^j(^) ^̂ ^ closed mono.

Proof, (i) The (if)-part follows from the first and last point of the previous
lemma: if / is a separated object then the diagonal S{I) on / is closed, so that
the kernel of {)j is contained in S(I) = S{I)- This makes { }j a mono. The
(only if)-part follows directly from Lemma 5.7.2 (i).

(ii) By Lemma 5.7.2 (ii), using (i) and the fact that Pj(/) is a sheaf. •

This result suggests how to obtain a separated object or sheaf from an
arbitrary object, simply by taking the monic or closed monic parts of the
corresponding j-singleton map { }j. This will lead to left adjoints to the cor-
responding inclusion functors.

5.7.6. Definition. In a topos B with nucleus j , write for an object / G B,

(/ — W) = (/^^s(/)>^P,(7))

for the epi-mono factorisation of the j-singleton map { }j. And write

a(/) tf TiT)
for the closure of s(/) >-^ Pj(I).

We notice that s(/) is the image {a:Pj(/) \3i:I.a =Pj(/) {Oj} of the sin-
Sub(l)

gleton map { }j in the fibration i of ordinary subobjects in B, and that

a(/) is the image {a: Pj{I) \ 32: / . a —p^{i) {^j} of the j-singleton map { }j in
ClSubj(B)

the fibration 4- of j-closed subobjects in B—where we use that Pj{I)
is separated. It is almost immediate—using Lemma 5.7.4—that the assign-
ments / i-> s(/) and / 1-̂ a(/) are functorial, using the universal properties of
epi-mono factorisations.
5.7.7. Theorem. The assignment I i-)- s(/) is left adjoint to the inclusion
Sepj(B) M̂ B. And I ^ a(/) is left adjoint to Shj(B) ^ B.

The functor a(—) is called sheafification. And s(—) is separated reflec-
tion. A proof of this result using internal languages is described in [337].

Proof. We first consider separated reflection. For a map u: I —^ J in M with a
separated object J as codomain we have to produce a unique map v: s(/) —)• J

364 Chapter 5: Higher order predicate logic

with V o ej — u. But this follows from functoriality of s and the fact that
{ }J: J -> Pj{J) is a mono by Lemma 5.7.5 (i)—so that its epi-part ej is an
isomorphism.

The argument for sheafification is similar. •

Later in this section we shall make use of the following two standards facts
about sheafification. A proof of the first result occurs in almost any text on
topos theory. Exercise 5.7.5 below elaborates on a proof of the second result.

5.7.8. Lemma. The sheafification functor a preserves finite limits. •

5.7.9. Lemma. A morphism f is bidense (I.e. both internally injective and
surjective in the logic of closed subobjects) if and only if 8i{f) is an isomor-
phism. •

5.7.10. Remarks, (i) The above adjunction Shj(B) t^ B forms an example
of a geometric morphism. This is a second notion of morphism between
toposes, the first one being 'logical morphism', see Definition 5.4.1. In general,
a geometric morphism F : A ^ B between toposes A, B consists of a pair of
adjoint functors

/ F* \

with F* finite limit preserving.

\ ^* /
One calls F* the 'inverse image' and F* is 'direct image' part of F. These
geometric morphisms play a more important role in topos theory than logical
morphisms. They satisfy a factorisation property and are used, for example,
in functorial semantics for geometric logic, see e.g. [188, Chapters VII and X].

(ii) If B is a topos with nucleus j , then (by Exercise 5.6.3) each slice

topos B / / has a nucleus /*(j). Hence one can define what families (| 1

of /*(j)-separated objects and families of /*(j)-sheaves are. This is to be un-
derstood fibrewise: each Xj is a j-separated object or a j-sheaf. In this way

FSepj(l) FShj(B)
one gets fibrations i and 4- of such families.

Also, one can define separated reflection and sheafification in M/I. This gives
rise to fibred functors FsrB"^ -^ FSepj(B) and FaiB"^ -> FShj(B), which are
fibred left adjoints to the respective inclusions. Everything is fibred because
separated reflection s and sheafification a are defined by constructions that
are preserved by pullback functors. We shall return to this point towards the
end of this section.

We are now in a position to give a more refined version of Lemma 5.7.2.

Section 5.7; Separated objects and sheaves in a topos 365

5 .7 .11 . L e m m a . Consider a mono X >-^ I in a topos B with nucleus j .
(i) / / / 25 a sheaf, then

X ^-^ I is closed <^ X >^ I is a mono in Shj(B).

(ii) And if I is a separated object, then

X ^^ I is closed O" X ^^ I is a regular mono in Sepj(B).

Thus (i) and (ii) say that there are change-of-base situations,

Sub(Shj(B)) ^RegSub(Sepj(B)) ^ ClSubj(B)

J J
Y

Shj(B) C ^Sep j (B) ^

Proof, (i) The implication (=>) follows from Lemma 5.7.2 (ii). Conversely,
by the reflection Shj (B) (^ B, a mono in Shj (B) is also a mono in B. It is then
closed because / is a sheaf, see Lemma 5.7.2 (ii) again.

(ii) If m: X -̂̂ / is closed, then X is separated by Lemma 5.7.2 (i). It is
an equaliser in Sepj(B), namely of char(m), t r u e o ! : / i4 Qj. In the reverse
direction, assume m.X ;—> / is an equaliser in Sepj(B), say of u^v.I =4 K-
Since X ^^ X is dense and K is separated, the two maps u om,v orn:X z:^ K
must be equal. But then m <m^ since m is an equaliser, and so m is closed.

D

Sub(Shj(B)) RegSub(Sepj(l))
5.7 .12 . Corol lary . Both the fibrations i and i of

'^ ^ Shj(l) Sepj(B) -̂
subobjects in a category of ysheaves, and of regular subobjects in a category of
y separated objects are higher order fibrations. In particular, Shj(B) 25 a topos.

And in case j 25 the double negation nucleus -«-', both these fibrations are
models of classical logic.

Proof. By Proposition 5.6.6 and Lemma 5.6.8. •

Thus, by forming the category Shj(B) of j-sheaves in a topos B, we get
a new topos. It can be characterised in a universal way: for example, every
geometric morphism F : A ^ B whose inverse image part F * sends bidense
maps to isomorphisms, factors through Shj(B) <̂-> B (see [169, Theorem 3.47];
similar such universal properties are described there). The passage from B
to Shj(B) can thus be understood as forcing "j-isomorphisms" (i.e. bidense
maps) to be actual isomorphisms. An important special case of this Shj(—)
construction is the ' 'Grothendieck" topos Sh(C, ^7) "-^ Sets^""" of sheaves on
a site (C, J ') . It plays a central role in [188].

366 Chapter 5: Higher order predicate logic

We conclude this section with an explicit description of fibred sheafification,
as mentioned in Remark 5.7.10 (ii). This requires the following auxiliary result.

5.7.13. Lemma. Consider in a topos with a nucleus two morphisms m: X -^
X' and u'.X -^ J with common domain, where m is bidense and J is a sheaf.
Then there is a unique morphism v: X' -^ J with v o m = u.

Proof. Simply take v = (^j)~^ ^ a(w) o a(m)~^ o r/^s using Lemma 5.7.9
(where r] is the unit of the sheafification adjunction). D

This lemma applies in particular when m is itself a unit component rjj. The
next result occurs (without proof) in [150] (before Lemma 6.5). It gives an
explicit description of fibred sheafification.

5.7.14. Proposition. Consider a topos B with a nucleus j , and for an ar-
bitrary object I £ M the slice topos M/I with the induced nucleus /*(j); see
Exercise 5.6.3. Sheafification Fs in this slice category can be described as the

f ̂ \ (^' '\
mapping which sends a family I y*̂ j ô the family I y^ I obtained in
the following pullback diagram.

Proof. It is not hard to see that the family <p' is a sheaf in
/ z \ / y \ / z

dense mono I i ^ I ^^ I r] ^^^ ^ morphism I y^

Because m is a dense mono Z -̂̂ Y in IB, we get a unique g:Y -^ ^{^) with
g o m = 6 o f. Then a(^) o g = rjj o tjj because a(/) is a sheaf. The required
map Y -^ X' is then obtained as mediating map for the pullback.

What remains to show is that the family (p' is universal. Assume therefore a

morphism I j ^) ^ I j ^ 1 to a sheaf ip in M/I. Let us write rj^: X ^ X'

for the unique map—obtained from the above pullback—with (f' o rj^^ =z ip
and 0 o T]i^ = rjX' We claim that Si{r]ip) is an isomorphism. This follows from
the fact that sheafification a preserves pullbacks (as stated in Lemma 5.7.8):
applying a to the pullback p' -> a(y?) in the proposition yields a new pullback.
As a result, a(^) is an isomorphism, since Si{r]j) is an isomorphism. But then
8L{T](P) = SL{9)~^ O 8L{r]x) must be an isomorphism as well. Hence T]^p is bidense

Section 5.8: Separated objects and sheaves in a topos 367

in B, by Lemma 5.7.9, and also in B//—since epi-mono factorisations and
closures in B / / are the same as in B. Therefore Lemma 5.7.13 applies (in

); it yields the required map (p' -^ il). D

Exercises

5.7.1. Show that an object / in a topos with a nucleus is separated if and only if
the unit r//: / —>• a(/) of the adjunction Shj(B) ^ B is a mono.

5.7.2. Show that the inclusion Shj(B) M- Sepj(B) also has a left adjoint.
5.7.3. Prove that if X is a sheaf and / is a separated object, then any mono

X >-^ I IS automatically closed.
5.7.4. Show that J is a sheaf if and only if LJ is a sheaf and {}'- J ^-^ 1-J is

closed.
5.7.5. Consider a topos with a nucleus j . The aim of this exercise is to get a proof

of Lemma 5.7.9 (following [169, 3.42 and 3.43]).

(i) Prove that if a mono m: X ^ X ' is dense, then a (m) :a(X) ^ a(X')
is an isomorphism.

(ii) Prove also the converse of (i): if a(m) is an isomorphism for a mono
m, then m is dense.
[Hint. Notice first that if a(m) is an isomorphism, then for any map
u: X -^ J to a sheaf J there is a unique v: X' -^ J with v o m = u^
like in Lemma 5.7.13. Apply this to the case J = Qj. It yields a unique
map v:X' -^ Qj with g o m = true o !x. This v then classifies both
the identity X' ^^ X' and m's closure rn: X >—» X'.]

(iii) Conclude from (i) and (ii) that if w: / -^ J is intemcdly injec-
tive/surjective {i.e. almost monic/epic) if and only if a (u) :a (/) -^ a (J)
is monic/epic. And also that u is bidense if and only if SL{U) is an
isomorphism—as stated in Lemma 5.7.9.

5.7.6. Let B be a topos with nucleus j .

fX\, ^,
(i) Assume that I y 1 is an /*(j)-separated object. Show that for each

Iback u* I

the same for sheaves.

(ii) Prove also that if I ^ I is a J*(j)-separated object/sheaf, then the

product Yiu \ 7) ^̂ ^^ /*(j)-separated object/sheaf, for u: J —^ I.

5.7.7. Assume a topos B with a nucleus. Use the characterisation of sheafification
on shces B / / from Proposition 5.7.14 to show that sheafification on families
leads to a fibred functor Fs on B~^ (with respect to the codomain fibration).

map u: J —^ I the puUback u* { ^] in B / J is J*(j)-separated. Prove

368 Chapter 5: Higher order predicate logic

5.8 A logical description of separated objects and sheaves

We conclude this chapter with a logical description of separated objects and
sheaves in terms very strong equality and unique choice. Recall from Exer-

E

cise 4.9.1 that for a fibration ^ with equality and subset types we say that
equality on J G B is very strong if internal and external equality on J
coincide, or—in terms of subset types—if the canonical map J -^ {Eq(J)} is
an isomorphism. And unique choice on J G B holds if for each single-valued
relation R G E/x j the canonical map {R} -^ {U(^)} is an isomorphism. The

ClSubj(l)
main result below is that with respect to the fibration i of j-closed

M

subobjects, (a) an object J G B is separated if and only if equality on J is
very strong, and (b) J G B is a sheaf if and only if unique choice holds on J .
It gives us a purely logical characterisation of separated objects and sheaves.
It may be used in more general situations like in Exercise 5.6.6 where one has
a notion of nucleus suitably generalised to fibrations.

Recall from Section 4.9 that what characterises subobject fibrations is: full
subset types, very strong equality, and unique choice. The first of these points
is present in fibrations of j-closed subobjects; the second point is by (a) above
obtained by restricting to separated objects, and the third one comes by (b) by
a further restriction to sheaves. Thus, by restriction to sheaves, the fibration
of closed subobjects becomes a subobject fibration (on these sheaves). And
since we already know (from Proposition 5.6.6) that such a fibration of closed
subobjects is a higher order fibration, we obtain an alternative road to the
result that a category of sheaves in topos is itself a topos, see Lemma 5.7.11.

To obtain the main result, we prepare the grounds in the lemma below.
As already stated, we consider the logic of closed subobjects with respect to
some nucleus j on a topos B. That is, we work in the internal language of the

ClSubj(l)

higher order fibration 4- . A functional relation R: / —1-> J herein is a

predicate i: I,j: J h R{i,j): Prop satisfying:

{R is single valued) i: I J: J,f: J \ R{iJ),R{i,f) h j =j f

{R is total) i: / I T h 3j: J. R{i,j).

ClSubj(B)

See Example 4.3.8. In 4- this means that the relation (ro, r i) : i^ ^-»/x J
is a closed subobject satisfying

The tuple (ri o TTQ^TI o TTI): R' >-^ J x J factors through S{J), where jR' is

Section 5.8: A logical description of separated objects and sheaves 369

obtained as kernel (equaliser):

(7ro,7ri)
R'> ^ R

• the image of VQ: R ^ I is dense.

See the description of equality and existence in Proposition 5.6.6. It turns out
ClSubj(B)

that there is a close connection between these functional relations in 4-
B

and dense partial maps in IB. This correspondence is the basis for the alter-
native logical description of separated objects and sheaves below.

5.8.1. Lemma. Consider the logic of closed suhohjects, as above.
m u

(i) If I ^-< X -^ J is a dense partial map, then the closure of its ordinary
graph (m, u): X y-^ I x J is a functional relation I —f-̂ J.

(ii) Consider a map v: I -^ J and a dense partial map (m, u): I -^ J. If v
is an extension of [m, u), then the closures (id, v) and (m, u) of the (ordinary)
graphs are equal. And if J is separated, the converse also holds.

(iii) If R: I —H- J is a single-valued relation (ro, ri): i? ^^ / x J, then
(a) ro: R -^ I is a mono if J is separated;
(b) ro is closed, if J is a sheaf.

Proof, (i) Notice that the graph {m, u) is described in the internal language
Sub(l)

of the fibration 4- of ordinary subobjects as the proposition
B

i: / , j : J h 3x: X. m[x) =j i A u{x) —j j : Prop.

Thus the closure {m,u) is described by the same expression, call it G{i,j),
ClSubj(B)

but this time in the internal language of the fibration 4- of closed
B

subobjects. We reason informally in this language to show that this graph G
is functional.
• If G{i,j) and G{i,f), say with x, x' such that m(x) = / i A u{x) =j j and

m(x') —J i A u{x') =j / , then m{x) —j i —j m[x'). Hence x —x x' since
m is internally injective, by Exercise 4.3.6. So j =j u{x) —j u{x') —j j ' .

• For i: I we have 3x: X. m{x) —j i since m is dense. Take such an x and put
j = u{x). Then G{iJ).

(ii) If V extends (m,w), then we get (m^u) = (id,t;) by applying Exer-

370 Chapter 5: Higher order predicate logic

cise 5.6.2 (i) to the triangle of monos

m
X> ^ I

(m^u)
IxJ

(id,t;)

For the converse, assume J is separated and (id, v) = (m, u). Write (m, u) =
(ro, r i): R^^ I x J. There are then dense monos n: X ^^ R and k: I ^^ R, so
we can form their puUback, as in.

^ ' " ' "^^ (ro.Vi) /<'^'^>

Since dense maps are closed under pullback, this k' is dense. Thus we can
conclude that v o m = u—and thus that v extends (m, u)—from the fact that
J is separated, and the calculation,

V o m o k' = V o TQ o n o k'

= V o ro o k o n'

= V o n'

= ri o k o n'

= ri o n o k'

= u o k'.

(iii) For a single-valued relation (ro,ri): R y^ I x J, where J is separated,
we first establish that TQ is a mono. Assume therefore u^v.K i4 R with
VQ o u = VQ o V. Then there is a (unique) w:K —>• R' with TTQ o it; = t/
and 'Ki o w — v^ where TTQ^TTIIR' Z^ R is the kernel pair of VQ: R —^ / , as
described before the lemma. We get that (ri o w,ri o v) factors through
(ri o 7ro,ri o TTI), and hence through S{J) = S{J). Then ri o u = ri o v and
so (ro,ri) o u = (ro,ri) o v. Hence u = v so that we may conclude: VQ is a
mono.

Section 5.8: A logical description of separated objects and sheaves 371

Next we assume tha t J is a sheaf, and show that the closure TQ. R >-^ I
of VQ: R >-^ I is VQ. By pulling the closed mono true: 1 ^^ Qj back along the
evaluation m a p ev: Qj^ x J —> Qj, we get a closed mono Ej >-^ Q^ x J. Hence
the object Ej is a sheaf. This yields a m a p v in

(char(i?) o r o , r i)

dense k

R

where we use tha t the closed relation R >-^ I x J has a relation classifier

char(i?): / -> fij^ as in the square below. We write w for the composite R —>

Gj >-̂ ^ y X J in the diagram. Then TV o w = char(i?) o TQ: R -^ Q^, because

Q^ is separated. We then get a m a p

R —
Y

/ V

>-e j > ^ Q / x J

char(i?) X id ^

which shows tha t ro < TQ, and so tha t TQ is closed.

^Q{ X J

D

5.8 .2 . T h e o r e m . Let j be a nucleus in a topos B.

(i) An object J EM is separated if and only if equality on J is very strong
ClSubj(l)

in the fibration i of yclosed subobjects in B.
IK

(ii) And J EM is a sheaf if and only if unique choice holds on J, in this
same fibration of closed subobjects.

Proof, (i) By Proposition 5.6.6, internal equality on J is the closed subobject
Eq (J) = 8{J) on J X J. It coincides with the diagonal S(J) on J if and only
if J is separated, by Lemma 5.7.3 (i).

(ii) Assume J is a sheaf, and (ro^ri): R >-^ / x J is a single-valued relation

372 Chapter 5: Higher order predicate logic

in the fibration of closed subobjects. Then

LJj(^) = LI(^) by Proposition 5.6.6

— Im(7r o (ro , r i)) see Theorem 4.4.4

^0

^0

because ro is a mono,

see Lemma 5.8.1 (iii) (a)

since ro is closed, by (b).

Hence the canonical m a p {R} —)• { U j (^) } is the identity, which is certainly
an isomorphism.

Conversely, assume unique choice holds on J. From Exercise 4.9.1 we know
tha t equality on J is then very strong, so that J is a separated object. Let
/ -̂̂ X —> J be a dense partial map . Then R = (m, u) is a functional relation
/ —H- J , by Lemma 5.8.1 (i). The coproduct U j (^) — ^j''J-R{hJ) is T
because R is total . Hence we get two isomorphisms in the diagram

R
Y

iUiiR)}

(m, u)

Ix J

so tha t there is a t;: 7 —> J with

^ I

^ R

(id,t;> \ / (^rn,u)
I X J

But then v extends {m,u) by Lemma 5.8.1 (ii). •

Exercises

5.8.1. Prove that in a topos B with nucleus j ,
(i) an object J G B is separated if and only if each functional relation

ClSubj(ffi)

R: / —H- J in 4- is the graph (in this fibration) of at most one

map I ^ J.
(ii) And that J is a sheaf if and only if there is a unique such map, for

each functional relation R.

Chapter 6

The effective topos

This chapter concentrates on one particular topos, namely the effective topos
EfF. It can be seen as a topos in which the ordinary set theoretic world is
combined with the recursion theoretic world. For example, there is a full and
faithful functor Sets —)• EfF. But also the endomorphisms N -^ N on the
natural numbers object Â in EfF can be identified with the total recursive
functions N ^ N.

We shall be mostly interested in this topos as a universe for modelling var-
ious type theories. Therefore our view and description of EfF is rather limited
in scope. For example, we only sketch in the last section of this chapter how
one can do mathematics inside EfF, and suggest that this is "recursive math-
ematics". For a more elaborate account we refer to the last part of Hyland's
original paper [142] on the effective topos. Another interesting aspect of EfF,
namely the combination of higher types and effectivity, see [296] is ignored.
For the role of EfF in the analysis of (higher order) Kleene realisability, we
refer to [239, 240]. And Turing degrees within EfF may be found in [258]. Here
we simply use EfF as a "forum" or "universe" in which we can discuss sets,
u;-sets and PERs. Especially, the (internal) category of PERs inside cj-Sets
and EfF—complete in the first case, and nearly so in the second—will interest
us. In this chapter we shall describe families of PERs and of u;-sets over EfF
in a concrete fashion. These will be used later to model type theories.

Our presentation of the effective topos is the "logical one", based on the
UFam(PN)

higher order predicate logic of the realisability fibration i , as used by
Hyland. There are alternative ways to introduce EfF, namely as completion
with colimits of certain categories. For example, in [41] EfF is obtained by

373

374 Chapter 6: The effective topos

adding quotients to the category u;-Sets of cj-sets (or 'assemblies', as they are
called there). And in [292] EfF results from a two-step completion of Sets,
by first adding recursively indexed coproducts and then quotients of (pseudo)
equivalence relations.

The material in this chapter is entirely standard, except the indexing of
UFam(a ; -Se t s)

(jj-sets by objects of EfF via the split fibration 4- instead of via the
FSep(Eff)

non-split fibration i of (-i-i-)separated families in Section 6.3. Later,
Eff _

in Section 11.7, the relation between these fibrations will be described: the
last one is the so-called "stack completion" of the former.

6,1 Constructing a topos from a higher order fibration

In Example 4.3.8 we have associated with a regular fibration p the categories
Rel(p) of types (objects of the base category) with ordinary relations and
FRel(p) of types with functional relations. In this section we shall describe a
similar construction, which yields for a higher order fibration p an associated
topos Set(j9). Objects of Set (p) are types / with an (abstract) equality relation
« ; morphisms are suitable functional relations (in the logic of p) between the
types. This construction includes the topos of sets with a Heyting-valued
equality of Four man & Scott [80] and the effective topos EfFof Hyland [142].
The latter is of most concern to us and will be further investigated in the next
three sections of this chapter.

The construction of the topos Set(p) will be described in purely logical
terms; that is, in the internal language of the fibration p. As such, it may
be found in [145], except that there, one starts from a 'tripos' instead from
the slightly more general notion of 'higher order fibration' that we use, see
Example 5.3.4. A more detailed investigation may be found in [267].

Although we are essentially only interested in the special case where the
U F a m (P N)

fibration p is the realisability fibration i from Section 4.2, we do
Sets

present the construction of the topos at a more general level. We do so, because
all the time we reason in the internal language, and nothing particular of this
realisability fibration is used.

E

6.1.1. Definition. Let -j^P be a regular fibration. Write Set(p) for the cat-
egory with

objects pairs (/, « /) where / G B is an object of the base category
and ^j G E/x/ is an 'equality' predicate on / . The latter

Section 6.1: Constructing a topos from a higher order fihration 375

is required to be symmetric and transitive in the logic of
p. This means that validity in p is required of:

11,12-1 I i\ « / 12 ^ h « / h

n , ^2, h' I I i\ « / h.h « / 3̂ l~ h « / '̂3.

objects (^5~/) ~^ {Jj^j) ar^ equivalence classes of relations F G
E/xj from / to J, which are

• extensional:

11,12'hh^h'J I n « / «2,ii « J J2,F{iiJi) h F{i2,J2)

• strict:

i: / , j : J I F{i, j) h (i « / i) A (j « j j)

• single-valued:

i:IJij2'J I F{iJi),F{ij2) ^ ji ^J h

• total:
i : / I i ^i i h 3j:J.F{iJ).

The equivalence relation on these relations F is logical equivalence (in the
internal language) as described by isomorphisms in the fibre. For convenience,
we usually write representatives F instead of equivalence classes [F].

Sometimes we also omit the subscript and write ^ for « / . And we write
\h ^l h\ for ii « / 22 Notice that the abstract equality « / is not required
to be reflexive. We write Ej{i), or E{i), for \i « / i\. Thus Ej{—) is a unary
"existence" predicate on / , defined categorically by Ej{—) = (id, id)*(?^/) G
E/.

The identity morphism on an object (/ « /) of Set(p) is the (equivalence
class of the) relation « / itself:

ii,i2'.I "̂ n « / 12- Prop.

F G
And composition of (/, « /) —> (J, « j) —>• (/\, «/<:) in Set(p) is the compos-
ite relation G o F, given as:

i: / , /?: Â h 3 j : J. F(2, j) A G(i, fc): Prop.

Some elementary verifications in the internal language demonstrate that these
identities and composites are again extensional, strict, single-valued and total.

Notice that all the logical machinery from p that we need in order to define
Set(p) is 3, =:, A, T, as in a regular logic.

376 Chapter 6: The effective topos

The following are the main examples.

6.1.2. Examples, (i) If fi is a complete Heyting algebra [i.e. a frame), then
Fam(n)

the above Set(—) construction applied to the regular family fibration i
of set-indexed families of elements of fi described in Example 4.2.5, yields
the category Q-set of Heyting valued sets as introduced in [80]. Objects of
Q-set are sets / together with a 1]-valued equality predicate ^j: I x I ^ Q.
satisfying (in Q)

\h ~ / ^2! < h'2 « / n |

In « /«2 | A |i2 « /23! < Ih^iisl

for all elements 2*1,22,23 E / . Morphisms (/ , « /) -^ {J^^j) in Q-set are
fi-valued functions F : 7 x J —> Q which are extensional, strict, single-valued
and total. The latter means for example, that for each i G / ,

E{i) = \i^ji\< y F{ij).
jeJ

(This category ^^-set should not be confused with the category a;-Sets of
a;-sets (7, E) with E: I ^ PN from Section 1.2.)

UFam(PN)
(ii) The same construction applied to the realisability fibration 4-

from Example 4.2.6 produces the effective topos Eff from [142]. Objects of
EfF are sets 7 together with a PN-valued equality predicate « / : 7 x 7 -^ PN
satisfying

P I (in « / i 2 | D |22«/ n l) ^ 0

f] (in « / 22| A |22 « / isl D In « / 23I) ^ 0
ii,i2,i3€il

where A and D are the operations PN x PN =4 PN described in Example 4.2.6.
A morphism (7 ,« /) -> (J, ~ j) in EfF is then an equivalence class of a

relation F\I x J -^ PN which is extensional, strict, single-valued and total.
Explicitly, this means that there are realisers

ni E p j (|n « /22 |A | i i ?^ji2| A P (n , i i) D P(i2,i2))

"2 € f l (F{^,j):iE,{i)^EJ{3))

Section 6.1: Constructing a topos from a higher order fibration 377

ns e f l (F{iJi) A F(i,J2) D | i i « J h\)
i€l,juJ2€J

n, e f]{Eii)D[jF(i,j)).
i£i jeJ

Thus, for example, for i E I and m E £^(i) one has tha t 714 • m is an element
of F{i,j), for some j G J-

Similar realisability examples arise by applying the Set(—) construction to
triposes, as constructed in Example 5.3.4, start ing from a partial combinatory
algebra. This yields many more such examples, see for instance [239, 261, 264].

Sub(l)
(iii) If we start from a topos B, we have a higher order fibration i of

IB

subobjects. Also here we can apply the Set(—) construction, which will yield
a new topos.

Our aim in this section is to show that these categories of the form Set(p)
are toposes, in case p is a higher order fibration. The following is the first step.

E

6.1 .3 . P r o p o s i t i o n . For -j^P a higher order fibration, the category Set(p)
m>

has finite limits and is Cartesian closed.

Proof. As terminal object in Set(p) one takes the terminal object 1 G B with
the t ru th predicate

x: l,x': 1 \- \x ^i x'\ = T : Prop

as equality. We shall write 1 = (l , « i) G Set(p) for this object. A morphism
F: (I,^) —> 1 in Set(p) is (an equivalence class of) a predicate F G E/x i = E/
satisfying

21,22:/ I F(ii),ii ^ 2*2 h F{i2)

i: I I F(2*) h E{i)

i:I I E(i) \-3x:l.F{i)

so that F{i) is logically equivalent to E{i). There is thus a unique such map

The Cartesian product of (/, ^j) and (J, ^j) is the object / x J G B together
with equality predicate

z,w: I X J h \7rz ^j 7rw\ A {TT^Z « J 7r'w\: Prop.

The projection maps (/, ?)̂ <— (/ x J, ^) -^ (J, ^) are then given by the
predicates

\ z:I X J,i: I \- \7rz ^j i\ A Ej{7r'z): Prop

1 z:I X J J: J h ITT'Z ^J j \ A Ej{7rz): Prop.

378 Chapter 6: The effective topos

And tupleing of two maps F: {K, «) -^ {I,«) and G: [K, «) -> (J, ^) involves
the predicate

k: K, z:Ix J \- F{k, irz) A G{k, TT'Z): Prop.

For parallel maps F, G, an equaliser,

F

(/ ,«) > (/, «) ' ^ ^ (J, «)

G

is obtained by taking as new equality predicate ^ on / ,

21,22:/ h In «22 | =^|n «22 | A3i: J .F(2i , j) AG(i2,i):Prop.

This predicate ^ is also the equaliser map ^ : (/, ^) ^^ (/ , «) of F, G.
Finally, in order to form the exponent of objects (/, «) , (J, «) E Set(p), we

take P{I X J) = fi(^^'^) as underlying object with existence predicate

def

/ : P(I X J) \- E{f) = " / is extensional and strict

and single-valued and total" : Prop.

That is,

E{f) = Vii,i2:/.Vji,J2:«/. In ^ / '̂2! A \ji « j J2I A / (i i , i i) D f(12,32)
A yi:Lyj:JJ(iJ)DEj{i)AEj{j)

A ^r-L^h,h'J-f[h3i)^f[h32) D lii « J i2|
A W.LEj{i)D3j:JJ{iJ).

The equality relation on the object P[IxJ) underlying the exponent (/, «) =>
(J ,«) is then

f,g: P{I X J) h 1/ « 5| t ^ ^ (/) A E(g)h^i: I.^j: J. f{i,j)J09{i,j): Prop.

The evaluation map Ev: ((/, w) => (J, w)) x (/ ,«) ->̂ (J, w) is given by

/ : P (/ x J) , i : 7 , i : J h E v (/ , i , i) t V (i , i) A £ (/) : P r o p .

And for a morphism H: {K,«) x (/ ,«) —>• (J, «) , we get an abstraction map

k:K,f:Ix J b AiH){k, f) =^ £'(Ar) A £^(/) A

Vf G / . Vi 6 J. /f (/, i, j) 3 : / (i , i) : Prop. D

As a first step towards understanding (the logic of) subobjects in Set(p),
there is the following quite useful result.

Section 6.1: Constructing a topos from a higher order fibration 379

6.1.4. Lemma. A morphism F : (/ , «) —>• (J, ~) in Set(p) is a monomor-
phism if and only if the following entailment holds in p:

i i , i 2 : / , j : J | F(iiJ),F(i2j) H ii « / 22-

Proof. Assume validity of the above statement, and assume that two mor-
phisms G,H:(K,^) =t (/, ~) in Set(p) are given with F o G = F o H,
i.e. with

k: K, i : J I 0 h [3i: L F{i, j) A G{k, i)]jo[3i: L F{i, j) A H(k, i)].

We need to show that G{k^i) implies H{k,i). Assume therefore G{k,i)]
then Ej{i), so F{i,j) for some j:J. We then have 3i: I. F{i,j) A G{k,i), so
F(i',j) A H{k, i') for some i': / . But then F{i,j) A F{i',j), and so i « / f by
the assumption. Hence H{k,i).

Conversely, the pullback of F against itself is the object (/ x / , ^) where

z, w: I X I \- \z ^ w\ = \z « / x / w\ A 3j: J.F{7rzJ) A F{'K'Z,J)\ Prop.

In case F is a mono in Set(p), this predicate must be equivalent to JTTZ « /
7rit;| A ITT'Z ^J TT'WI A \'KZ « 7r'z|, see Exercise 6.1.2. We then get the statement
as in the lemma. •

In order to get a better handle on subobjects in Set(p), one uses so-called
strict predicates.

E
6.1.5. Definition. Let ^P be a higher order fibration.

(i) For an object (/ , «) G Set(p), a strict predicate on (/ , «) is a predi-
cate A G E/ which satisfies in p

21,22:/ I A[ii),ii « / 2*2 \- A{i2) and i\ I \ A[i) h Ei[i).

(ii) We form a category SPred(p) of Hi-equivalence classes of strict pred-
icates, by stipulating that a morphism from a strict predicate A on (/ ,«) to
a strict predicate B on (J, ?̂) consists of a map F: (/ , «) -> (J, ~) in Set(p)
for which we have in p

i:I\A{i) \-3j:J.F{iJ)AB{j).

This category SPred(p) comes with an obvious forgetful functor SPred(p) ->
Set(/>). As usual, we do not distinguish notationally between a strict predicate
and its equivalence class.

E

6.1.6. Proposition. Assume jj^P is a higher order fibration.
SPred(p)

(i) The above functor i is a poset fibration. The order in the fibre
Set(p)

over (/ ,«) 25 the order inherited from p^s fibre over I: for strict predicates

380 Chapter 6: The effective topos

A,B on (/ , «) one has

A<Bin SPred(p) over (/ ,«) ^ i: I \ A{i) h B{i) in p.

(This may look confusing^ since < on the left is a partial order, whereas h on
the right is a preorder; but we should have written the equivalence classes of
A,B on the left.)

(ii) Strict predicates on (/ , «) correspond to subobjects o / (/ , «) in Set(p)
in the sense that there is an isomorphism of fibred categories,

Sub(Set(p)) = ^ SPred(p)

Set(p)

SPred(p)
(iii) The fibration i of strict predicates is a higher order fibration.

Jf for the time being, we mark its connectives with a tilde'^, then expressed
in terms of the connectives of p (which are written in ordinary fashion), we
have

• propositional connectives in the fibre over (/, ^) are L = 1.,W = \/,T = Ej,
A = A and ADB = Ei A{AD B).

• For a strict predicate A over (/, «) x (J, «) ,

3j:J.A{iJ) = 3j:J.E(j)AA{iJ) = 3j:J.A(iJ)

y : J. A(i, j) = E{i) A Vi: J. E{j) D A{i, j)

E^q{A){iJ,f) = A(iJ)A\j^jf\.

• The object Q E M in the basis of p with logical equivalence DC as equality
^Q, carries a (split) generic object, namely the strict predicate

a: Prop h t rue(a) = \a « n T|: Prop.

Thus, in the logic of strict predicates in p—or subobjects of Set(p)—the
operations T, D, V and Eq are only slightly different from those of p.

Proof, (i) For a morphism F: (/, «) —>- (J, ^) in Set(p) and a strict predicate
B on (J ,«) , one gets a strict predicate on (/, ^) by

i: I \-F*{B)(i) "M 3j: J. F(i, j) A B(j): Prop.

For strict predicates A, B on (/ , «) one has A < B over (/ ,«) if and only if

i:I\A{i) l -3 i ' : / . | i « / i ' | A B (i ') .

But the predicate on the right of the turnstile h is clearly equivalent to B{i).

Section 6.1: Constructing a topos from a higher order fihration 381

(ii) For a strict predicate A on (/ , «) one forms a new object (/, « ^) by

def
2 1 , 2 2 : / H |2i ^A «2| = ^(«'l) A |2i « / 2211 Prop

It gives rise to an obvious mono in Set(p),

And conversely, given a mono M : (X, '^x) ^-^ (-^J ^) c>ne forms a strict predi-
cate AM on (/ , ?5:i) by

i'.I ^ AM{i)^^^x:X.M{x,i):?xop.

Then, start ing from a strict predicate A, we get

A^^{i) = 3 2 ' : / . | 2 ' « ^ 2 |

= 3 2 ' : / . ^ (2 ') A | 2 ' ' ? ^ / 2 |

- A[i).

And in order to show that M and W ^ M S '^^ ""is® ^o -̂̂ e same subobject of
(/ , «) we define maps G, 7/ in

G

(^,«x) (/,« ^ M J

by G{x,i) = M(x ,2) = H{i,x). It is easy to see tha t G and H form an
isomorphism between M and « A M -

For a morphism F: (/ , «) -^ (' / j^) from A to B in SPred(p) one gets a
commuting square

\

F '
(^ , « B)

(J , «)

by put t ing

i: I,j: J h F'(i,j) "5 '̂ F (i , i) A Aii) A 5 (i) : Prop.

Remaining details are left to the reader.

def

382 Chapter 6: The effective topos

(iii) It is easily verified that the prepositional connectives are as described
above. The existential and universal quantification have this form since weak-
ening along the projection TT: (/ ,«) x (J ,«) -^ (/ ,«) is given by

7r*(B){iJ) = 3i':L7r{i,i'J)AB{i')

= 3i':L\i^i'\AE{j)AB{i')

- E{j)AB(i).

For equality, consider the parametrised diagonal

(/ , «) X (J ,«) z . ^ l i i Z ^ ((/,«i) X (J,^)) X (J ,«)

Then for a strict predicate B one has

S*iB)(i,j)^B(i,j,j),

SO that putting Eq(i, j , /) = ^(2,i) A \j « j / | yields the required adjunction

Finally, for each strict predicate A on (/ ,«) we get a characteristic map
char(A): (/ ,«) -^ (Q,«) in Set(p) by

def

i: / , a: Prop h char(A)(i, a) = E'(i) A \A{i) « n a|: Prop.
Then

char(74)*(true)(2) = 3a: Prop. char(74)(i, a) A t rue(a)

= Ba: Prop. \A{i) ^ci « | A E{i) A \a ^Q, T |

^ E(i) A \A{i) ^n T|

- A{i),

We still have to show that char(^) is unique with this property. So assume
F: (/ ,«) -^ (fi,«) also satisfies F*(true) ^ A, then

A{i) ^ F*(true)(i) = 3a: Prop. F(i, a) A \a « n T| ^ F(2, T),

so that

(*)
char(A)(i, a) ^ £"(0 A | ^ (0 « n a | = ^ (0 A \F{i, T) « n ct| ^ F(i, a)

where the last isomorphism (*) arises as follows. Given F{i,a), one has E(i)
by definition; also one has F(i, T) « n <̂) since: from F(i, T) we get a « n T by
single-valuedness; this yields a. Conversely, given a, we get a « n T, and thus
F(i, T) from F(i, a) . For the reverse of (*), assume E(i)A\F(i, T) « n <̂ |- From
£•(2) we get F(z, /?) for some /3. But then, as we have just shown, F(i, T) « n /?•
This yields a « n F{i, T) « n Ẑ , and thus F(i, a). •

Section 6.1: Constructing a topos from a higher order fibration 383

6.1.7. Corollary. If p is a higher order fibration, then Set(p) is a topos.

Proof. The isomorphism of fibred categories in the previous proposition
Sub(Set(p))

makes the subobject fibration i a higher order fibration, and it hence
Set(p)

makes Set(p) a topos, see Corollary 5.4.9. D
6.1.8. Examples, (i) If fi is a complete Heyting algebra, then we get Four-
man and Scott's category fi-set as a result of applying the Set(—) construc-

Fam(ri)

tion to the higher order family fibration i . The object Q, with ordinary
equality forms a subobject classifier with truth map true: 1 -^ Q given by

truelx Gt] — \
^ ' ^ [± otherwise.

It can be shown that this category Q-set is equivalent to the category of
sheaves on Q—with "sup" topology as in Example 5.6.3 (i), see [80] or [36,
III, 2.8 and 2.9] for details. This result is due to Higgs.

(ii) Our main example is Hyland's effective topos Eff arising from ap-
UFam(PN)

plying the above construction to the realisability fibration i . Its sub-
object classifier true: 1 -^ Q has codomain Q — PN with equality given by

where a, (3 C N. Thus a and /S are identified if and only if there are codes
n,m £M with

"ik E <y-n ' k G l3 and ^k E f^.m • k E a.

This effective topos Eff—or als called realisability topos—will be further in-
vestigated in the remainder of this chapter.

We conclude this section with a characterisation of epis and quotients.

6.1.9. Lemma. A morphism F: (/ ,«) —> {J,^) is an epimorphism in Set(p)
if and only if in the logic of the fibration p it is the case that

j:J\E{j) \-3i:I.Fii,j).

Proof. Since Set{p) is a topos, F is an epi if and only if it is a cover, and the
latter if and only if it is an internal epi in the logic of the subobject fibration
of Set(p), see Lemma 4.4.7. If we use the equivalence between subobjects and
strict predicates from Proposition 6.L6 (ii), and express 'internal surjectiv-
ity' in terms of strict predicates, we get j:J \ E{j) h 3z : / .F (i , j) , see also
Exercise 6.1.3. •

384 Chapter 6: The effective topos

6.1 .10 . L e m m a . Let (/ , ~) be an object ofSet{p). Call a strict relation R =
{i,i':I h i^(i, i '): Prop) a l m o s t an equiva lence re la t ion o n (/ , «) if R is
symmetric and transitive and satisfies i: I \ E(i) h R(i, i).

In that case R is obviously an equality predicate on I, and it forms an epi
i ? : (/ , «) -^ {I,R) in Set(p).

Moreover, every quotient (/, ^) -^ (J, «) is of this form (/, «) -^ (/, R) for
such an almost equivalence relation R.

Proof . The first part of the lemma is easy. For the last part , assume an epi
def

F:{I,^) -^ (J, «) . We get a strict predicate R{i,i') — 3j: J. F{iJ) AF{i'J),
which is almost an equivalence relation on (7 , «) . The logical characterisation
of F as epi in the previous lemma yields that (7 , «) -^ (J , «) is the same
quotient as (7,?^) -^ (7,7^). O

Exercises

6.1.1. In order to check that two representing elements F^G of maps (7 ,«) = |
(J^^) in Set(p) are equivalent, show that it suffices to have F < G (in the
fibre over I x J).

6.1.2. Prove that an object (7,?^) G Set(p) is isomorphic to the object (7 x 7 , ^)
with equality

z,w: I X I \- \z ^ w\ = \i:z ^j 7rw\ A\Tr z ^i n w\ A {nz P:̂ TT Z\: Prop.

6.1.3. Let F : (7 , «) -> (J, ~) be a morphism in Set(p). Check that its graph
(id ,F) : (7 ,«) >-̂ (7 ,~) x (J, ~) , considered as a strict predicate, is simply
i:I,j:J \- F{i,j): Prop.

6.1.4. For F : (7 ,«) -> (J, ̂) in Set(p), prove that the resulting substitution func-
tor F*: SPred(p)(jg-) -> SPred(p)(/«) has both a left and a right adjoint
given on B = {j: J h B{j): Prop) by

i: I h 3F{B){i) = 3j: J. F(z, j) A B{j): Prop
def

ill I - V F (B) (0 = F (O A V J : J .F(2, j) D BO): Prop.

6.1.5. Describe singleton maps {} : (7 ,«) -^ P(7,?^) in Set(p).
E

6.1.6. Let iP be a higher order fibration. Define a functor Eq:B —)• Set(p) by
B

equipping an object 7 G B with internal equality (7,Eq(7)). Show that one
can recover p from Set(p) via the change-of-base situation,

E ^ Sub(Set(p))

— ^ Set(p)
Eq

Section 6.2: The effective topos and its subcategories of sets, uj-sets, and PERs 385

6.2 The effective topos a.nd its subcategories of sets, uj-sets, and
PERs

We now start the investigation of the effective topos EfF, arising as a special
case of the construction described in the previous section. We focus on how the
categories of sets, of u;-sets and of PERs are related to EfF (following [142]).
In particular, we will describe how the double negation nucleus -i-i on Eff
has S e t s as its category of sheaves and a;-Sets as its category of separated
objects. In the next section we shall deal with families of u;-sets and of PERs
indexed by objects of EfF.

We start by identifying global elements in EfF.

6 .2 .1 . L e m m a , (i) For an object (/ , «) G EfF, the set T{I,^) of global ele-
ments 1 -^ (/, ^) can be described as the quotient set

r (/ , «) = {iel\ E(i) i^ 0 } / - where i ~ f' <^ \i ^i'\^ 0.

(ii) For a map F: (/, ^) -)• (J, ^) in EfF we get a function TF: T{I, ^) -^
r (J , «) by

W ^ { i e J | F (i , i) ^ 0 } .

This describes the global elements (or sections) functor T: EfF-> S e t s .

Notice that ^ is a part ial equivalence relation on / , and so an equivalence
relation on the subset of / for which i ~ i (that is E{i) ^ 0), see Exercise 1.2.5.

ProoF. (i) A morphism G: 1 -^ (/, ?)̂ in EfF is a function G\ I ^ P N with
G(io) ^ 0 for some to £ F Then E{io) / 0 and we have an equivalence,

z : / | T \-G{i)3Z\i^iol

so that G may be identified with the class [io]. Conversely, given such a class,
we get a (unique) m a p 1 -> (/ , «) in EfF by this logical equivalence DC.

(ii) Assume an equivalence class [i] E T{I,^); then E{i) ^ 0, and so
F{i,jo) ^ 0 for some jo E J. Hence E{jo) ^ 0 and we have an equivalence
F (i , j) i c | i « io | like above. D

6.2 .2 . P r o p o s i t i o n . There is a functor V: S e t s -^ EfF which maps a set J
to the object {J,=) with

\ J - J \ - U i ^ I J - J) - I 0 otherwise.

This functor V is full and faithful and has the global sections functor T: Eff -^
S e t s as left adjoint.

386 Chapter 6: The effective topos

Because F preserves finite limits, we have a geometric morphism Sets ->
EfF. It is what is called an "inclusion of toposes", since the direct image part
V is full and faithful.

Proof. For a function / : J —>• K one gets a morphism V / : V J -^ VK in EfF
by the predicate

l v / M J - « ; - I 0 otherwise.

We establish a bijective correspondence

r(/,«) ^ J in Sets

(/ , «) - — ^ VJ in Eff
G

in the following manner. Assuming a function f:T{I,^) -> J, there is a
predicate / : / x J -> PN given by

j^..^^(E{i) i f E (i) # 0 a n d / ([i]) = j
0 otherwise

which yields a map (/ , «) -> V J in EfF. And conversely, given a map G as
above, one gets a function F (/ , «) —> J by the following recipe. For a class
[i] e r (/ , «) one has £"(2) / 0, and so G(i,j) / 0 for some j E J . But this j
is unique, since the equality of V J is actual equality on J.

Notice that the counit e: FVJ ^ J is thus given by [j] = {j} »->• j . Hence
it is an isomorphism, and, as a result, V: Sets —> EfF is full and faithful. For
future reference, the unit rj: (/ ,«) —> VF(/ , «) is given by the predicate

Etafi U']) = I ^ (') '^ ̂ ^ = f*"̂ ' '•'• '^ I* ̂ '"I ^ ^
'̂ ' '• -"̂ [0 otherwise. D

If we replace Sets by a;-Sets then we have a similar result.

6.2.3. Proposition. There is an inclusion functor X:UJ-Sets —^ Eff which
maps an uj-set (J, E) to the object (J, =E) with

'•̂ ^ -̂ ' \ 0 otherwise.

This functor X is full and faithful and has a left adjoint s, which maps an
object (/, «) G Eff to the set F(/, «) of global elements of {I,«) with existence
predicate

Em = u E{i').
'•'en

Section 6.2: The effective topos and its subcategories of sets, uj-sets, and PERs 387

The notation s for this left adjoint is in accordance with the notation s for
separated reflection in Section 5.7, because that is what this functor will turn
out to be.

Proof. We seek correspondences

s(/,?^) >• {J,E) in cj-Sets

(/ , «) — ^ I (J , ^) = (J ,=£) inEff
G

They are essentially as in the proof of the previous proposition, except that
we have to be more careful about codes.

• Starting from a morphism / : s(/ , ^) -^ {J,Ej) in a;-Sets, we have by defi-
nition a function / : r (/ , «) -^ J for which there is a code e satisfying: for
each m G E[[i]) — Ui/Gm ^^(0 ^^ ^^iNe e m E Ej(f{[i])). We get a predi-
cate / as in the previous proof. The code e is then used for the validity of
strictness and single-valuedness:

i:I,j:J\niJ) h E(i)AE(j)

r-I,Jj'--J\7{i,J)J{i,f) \- \J=JJ'\-

• Conversely, for a map G:{I,^) —> (J, =E) in EfF we may assume codes

ni G f]{E{i)D\jGii,j))
iei jeJ

n2 e n {G{iJ)DE{i)AE{j))
{ij)eixJ

For each [i] E r (/ , «) there is a unique j E J with G{i,j) 7̂ 0. A code for
the resulting function r (/ , «) —> J is obtained as follows: if m E ^([2]) =
Ui/Gh] ^/(O) s^y '^ ^ ^i{^') ^̂ ^ ^' ^i^h \i ~ i'\^ 0; then the unique j E J
with G{i,j) / 0 also satisfies G[i',j) ^ 0. Using the above codes ni , 712 we
get ni • m E G[i'^j)^ and so the second component of n2 • [ni • m) is in
Ej[j).

Again, the counit of the adjunction is an isomorphism, so that the functor
cj-Sets -^ EfF is full and faithful. D

It is easy to see that the functor V: Sets -^ EfF factors through the embed-
ding cj-Sets -^ EfF via the functor Sets -^ a;-Sets from Section 1.2. If we also

388 Chapter 6: The effective topos

involve the inclusion PER -^ u;-Sets, then we get a summarising diagram

Sets

cj-Sets c ^ Eff

PER

in which all arrows <^ from left to right are full and faithful functors, and the
arrows in opposite direction are their left adjoints. Thus, these adjoints t:^
are reflections. In this diagram, the categories Sets and EfF are toposes, but
a;-Sets is not a topos, see Exercise 6.2.5 below.

The images of these functors <^ in EfF can also be described intrinsically.
Therefore we need the following notions.

6.2.4. Definition, (i) An object (/ ,«) G Eff will be called canonically
separated if both

\i ^j i'\ ^ 0 n> i = i' and Ei(i) ^ 0

for all i,i' E / . Or equivalently, if

SO that » / is completely determined by its existence map Ej: I —^ PN.
(ii) And (/, «) is canonically a sheaf if both

If ^j i'\ ^ 0 r:> i = i' and P I E{i) / 0.
i€l

Such a canonical sheaf (/ ,«) is thus certainly canonically separated.
(iii) Finally, (/, ^) G Eff is called modes t (or a modest set, or also an

effective object) if it is canonically separated and satisfies

^ / (i) n ^ / (i ') ^ 0 => i = i'.

Often we say that an object is canonically separated, a sheaf or modest if it
is isomorphic to an object which is canonically separated, a sheaf or modest.

6.2.5. Proposition, (i) The category uj-Sets is equivalent to the full subcat-
egory of Eff on the canonically separated objects.

(ii) And Sets is equivalent to the full subcategory of canonical sheaves.
(iii) Finally, PER is equivalent to the full subcategory on the modest sets.

Proof. The canonically separated objects (/ , « /) are determined by their
existence predicates Ej.I -^ PN, which satisfy Ej{i) ^ 0. These correspond

Section 6.2: The effective topos and its subcategories of sets, uj-sets, and PERs 389

to u;-sets. And the Ej: I -^ PN with disjoint images {i.e. the modest sets)
correspond to PERs, see Exercise 1.2.9. And if Hfc/ ^ ^ (0 7̂ ^^ then we may
as well assume Ej{i) = N. But such objects correspond to sets. •

The double negation nucleus in EfF

In the remainder of this section, the notions of 'closed', 'dense', 'separated
object' and ' sheaf will refer to the double negation nucleus -i-i on the effective
topos EfF. We first notice tha t for a E ^ — P N one has

^ a = (a D ±) = { n i V m G a . n . m G 0 } = | 0 ^ ^ j ^ ^ ^ ^ . ^ ^

And thus

f I w cA^ f N if a ^ 0
-.-.a =. {n I Vm G -^a. n • m G 0} = I 0 otherwise.

Thus ->-ia simply tells whether a is empty or not; it forgets about all the
realisers (elements of a) .

A subobject of (/, «) in EfF can by Proposition 6.1.6 (ii) be identified with a
UFam(PN)

strict predicate A: I -^ PN on / G S e t s in the realisability fibration i
Sets

Its double negation is given by the predicate

- - A (i) = E{i) A {{E{i) A (A{i) D A.)) D ±)

E{i) ifA{i) 7^0
I otherwise.

Such a predicate A is thus closed if

And A is dense if for each i G /

E{i) ^ 0 ^ A{i) i^ 0.

The latter is of course different from 'A holds', which is

m^w^^wj 0̂-
(This validity requires a uniform realiser.)

We start with two basic lemmas.

390 Chapter 6: The effective topos

6.2.6. Lemma. Closed subobjects of (/ ,«) E EfF can be identified with or-
dinary subsets o / r (/ , «) G Sets. More formally, there is a change-of-base
situation,

ClSub(Eff) ^ Sub(Sets)

Eff ^ Sets

r
Proof. Closed strict predicates A on (/ ,«) are turned into subsets by

^ ^ { [i] G r (/ , «) M (i) ^ 0 } .

And conversely, given a subset 5 C r (/ , ^) one gets a closed strict predicate
1^(0 i f£(i)^0and[f]e5

^ ^ [0 otherwise. D
6.2.7. Lemima. (i) Consider a canonical subobject {I,^A) ^^ {^^^) n̂ EfF
given by a strict predicate A on (/ , «) . Then

(/, «) is canonically separated/modest

=> {I,^A) is canonically separated/modest.

(ii) / / R is almost an equivalence relation on (/, ^) which is closed, then
(I, R) in the quotient (/, «) -^ (/, R) is canonically separated. And it is modest
if (/ ,«) 25. Vice-versa, if (/, R) is canonically separated, then R is closed.

Proof, (i) Consider the subset I' = {i £ I \ A{i) ^ 0} of / , with equality
\i « j / i'\ = A{i) A \i ^i i'\, which was written as ^A earlier. Then (/, «^) is
equal (as a subobject) to (/ ' , « / /) . Hence it is canonically separated/modest
if (/ , «) is.

(ii) Assume R: I x I —> PN is a closed and almost an equivalence rela-
tion on (/ , «) . Closedness means that R[i,i') is E{i) A E[i') if R[i,i') / 0
and 0 otherwise. One can then show that (/, R) is equal (as a quotient) to
(r (/ , «) , P) where

Hnl M = |J^^(''i ' '*2) I A ^ [n] and z'2 E N) .

And if (/ ,«) is modest, then r (/ , «) = / , so that E{ii) DE{i2) i^ 0 implies
E{i\) n (̂2*2) 7̂ 0 and thus i\ — 2*2. Finally, if (/, fl) is canonically separated,
then, if R{i^i') ^ 0 we get 2 = 2'. Hence closedness follows from reflexivity
2 : / | ^ (2) 1 -^(2 ,2) . •

Our next aim is to show that the (-i-i-)sheaves in EfF are sets and that the
(-1-1-)separated objects are u-sets. The first can be established by a three-line

Section 6.2: The effective topos and its subcategories of sets, LO-sets, and PERs 391

topos-theoretic argument using the geometric inclusion Sets <̂-> EfF, see [142]:
there must be a nucleus j on EfF with Sets 2:̂ Shj(EfF); since V: Sets -^ EfF
preserves the initial object, one gets j < -i-i. But since Sets is Boolean, one
must also have j > -"-t.

Because we have not seen all the topos theory used in this argument, we
give a direct proof, based on the theory in Sections 5.7 and 5.8.

6.2.8. Theorem. The category of sheaves of the double negation nucleus -«->
on the effective topos EfF is equivalent to Sets. And the category of separated
objects is equivalent to u;-Sets.

ProoF. We use the 'logical' characterisations of separated objects and sheaves
in Theorem 5.8.2. For separated objects, to prove the result, it suffices to show
that

(J, ^) if canonically separated <^ C\ (-"-"Ij ~ j i ' | D \j ^j f\) / 0.

where the right hand side expresses that internal and external equality on
(J, ?̂) coincide (in the fibration of closed subobjects).

For the implication (=>) assume

m G - - I J ~ j ; I - I 0 otherwise.

Then m G E{j) A E{j') and \j « j j ' | ^ 0. The latter yields j = / , because
(J ,«) is canonically separated. Hence the first projection pm is in E(j) —

For the implication (^) , assume e is a code in the non-empty set on the
right. We show that the unit r]\ (J,«) -> Vr(J , ^) is a mono. Since VT{J, ^)
is separated. Lemma 6.2.7 (i) yields that (J ,«) is isomorphic to a canonically
separated object, as required. By Lemma 6.1.4, the unit rj is monic if and only
if we have validity of the following entailment.

i i , i2 : J , [i3] : r (J ,«) I Eta(ii,[i3]),Eta(i2,[i3]) H |ji w J2I.

(See the end of the proof of Proposition 6.2.2 where the predicate Eta
is described explicitly.) If we have elements mi G Eta(ji,[j3]) and m2 G
Eta(J2, [is]), then mi G E{ji) and |ji ^ js] ^ 0 and also m2 G ^(^2) and
\J2 « jsl ?̂ 0- Then |ji ?̂ ^2! 7̂ 0, so that the pair (mi,m2) is in ->-i|ii « J2I,
and so we may conclude that e • (mi, m2) is in \ji ^ J2\-

Now we come to sheaves. Let (J ,«) be canonically a sheaf. In order to
prove that (J, ?̂) is a sheaf, we use Theorem 5.8.2 (ii). (An alternative is
in Exercise 6.2.6 below.) We thus have to show that unique choice holds on
(J ,«) in the fibration of closed subobjects. Following Definition 4.9.1, let

392 Chapter 6: The effective topos

R: I X J -^ P N be a closed single-valued strict relation on (7, ^) x (J, «) . We
have to show that the canonical m a p F is an isomorphism in

{IxJ,^n) - - - - (/ , «)
Y Y

(/ , «) x (J , «) - (/ , «)

where ^ is the equality of the coproduct 3n{R) = ""^[Jj^j R{~^j)' The
canonical m a p F is given by

F (i , j , 0 = \i^i'\AR{iJ)=G{i,i'J).

We use Lemmas 6.1.4 and 6.1.9 to show tha t F is both a mono and an epi,
and thus an isomorphism in EfF. Since the relation R is single-valued, F is a
mono. In order to show that F is an epi, we need to find a realiser in

C]\i^i\D[JR(i,j),
iei j€J

f]\E{i)D[jR{iJ) iG/wi th [JR{iJ)^ib \ .
jeJ J

We use codes k E f]j^j E{j), and e e f]{ij)eixJ~'~'^i'^^^) ^ ^ihj)- Assum-
ing m G E{i) where [jj^j R{hj) ^ 0, we get R(i,j) ^ 0 for some j E J . Then
(pm, k) G E{i) A E(j), so that e • (pm, k) G R{i,j). And this for all i G / , as
required.

Conversely, if (J , «) is a sheaf, then we already know that the unit m a p
T]: (J , «) -> V r (J , «) is a mono. It is easily seen to be dense. But it is closed
by Exercise 5.7.3 since (J , «) is a sheaf, so this unit is an isomorphism. •

Exercises

6.2.1. Verify that the global sections functor F i E f F ^ Sets satisfies

/ t r u e \ / 1 \
r (i — ^ Q) = {i—^{0,1}).

6.2.2. Give direct proofs that the functors Sets -> Eff and a;-Sets -> EfF are
full and faithful (without using the adjunctions like in Propositions 6.2.2
and 6.2.3). Check also that F r E f F ^ Sets preserves finite limits.

6.2.3. Prove that the separated reflection functor s: EfF-> a;-Sets preserves finite
products. (It does not preserve finite limits.)

Section 6.3: Families of PERs and u)-sets over the effective topos 393

6.2.4. Show that an object (/, «) 6 Eif is a modest set if and only if it is canoni-
cally separated and satisfies: \i ^i i'\ = Ei{i)r\Ei(i') for each pair i, i' G / .

6.2.5. The point of this exercise is to show that the category a;-Sets of a;-sets is
not a topos. We use the a;-set (N,E) with E{n) = {n}, which is a natural
numbers object in a;-Sets, see Exercise 1.2.10.
(i) Let / : (/, E) -^ (J, E) be a morphism in a;-Sets. Show that / is monic

in u;-Sets if and only if / is injective (between the underlying sets / , J) .
And similarly that / is epic in a;-Sets if and only if / is surjective.

(ii) Let yl C N be an arbitrary subset. We define an u;-set (NjE^i) by

1 {{^^^)} otherwise.

There is then an obvious morphism of u;-sets 2:(N,E'^) -^ (N , J E) ,
which is tracked by a code for the second projection {m,n) \-^ n. By (i)
this map i is both a mono and an epi. If u;-Sets were a topos, then i
should be an isomorphism, see Exercise 5.4.1. Verify that a code for an
inverse of i yields a decision code for A. But A is an arbitrary set...

6.2.6. Here is an alternative proof that objects of the form VX are (->-<-)sheaves
in EfF; it involves less hacking with realisers than above. First show that
for a dense mono {I,^A) ^-^ (^ J ^) ? given by a strict predicate A: I ^ PN
on (/, ^) one gets r(I,'^A) = T{I,^) in Sets . Deduce now that any dense
partial map (I,^) ^-< (I^^A) —>• VX has a (unique) extension (/, J^) —)•
VX, using the reflection (F H V).

6.2.7. Notice that the fact that the regular subobjects in C4;-Sets yield a higher
order fibration with classical logic (as stated in Proposition 5.3.9) is a con-
sequence of Theorem 6.2.8 and Corollary 5.7.12.

6.2.8. Prove the fact, used in the proof of Theorem 6.2.8, that if (J, «) is separated,
then the mono r/: (J, ?:i) ^^ VF(J, ?̂) is dense.

6.3 Families of PERs and co-sets over the effective topos

Later on v ê shall be using the effective topos EfF as a universe for models
of type theories, in v^hich types are interpreted as PERs (in polymorphic
type theories, see Chapter 8), and kinds as cj-sets (in polymorphic/dependent
dependent type theories, see Chapter 11). In order to do so we need to consider
PERs and u;-sets suitably indexed by objects of EfF. This is the subject of the

UFam(PER) UFam(u;-Sets)
present section. We shall define split fibrations i and i ,

^ Eff Eff
UFam(PER) UFam(u;-Sets)

v^hich are very much like the fibrations i and i of cj-set-
CJ-Sets , C<;-Sets

indexed-PERs and cj-set-indexed-cj-sets, tha t we introduced in Section 1.2.
Although we use each of the names U F a m (P E R) and UFam(cc;-Sets) twice
(over c<;-Sets and over EfF), we refer in each case to two different categories: the

394 Chapter 6: The effective topos

total categories UFam(PER) and UFam(a;-Sets) will be different, whether
we consider them over a;-Sets or over Eff. But as long as we present them
together with their base categories, confusion is not likely to occur.

(In the next chapter we shall see that PERs form an "internal category" in
UFam(PER) UFam(PER)

u;-Sets and also in EfF, and that the fibrations i and i
a;-Sets Eff

are the "externalisations" of these internal categories.)
We start with PERs indexed by objects of EfF. This is as in [143].

6.3.1. Definition. For an object (/ , «) G EfF, consider the following "fibre"
category.

objects r (/ , «)-indexed families (-R[i])[i]er(/,«) of PERs.

morphisms f:{R[i]) —)- {S[i]) are r (/ , «)-indexed collections / =
(/[i])[i]€r(/,«) of maps / [,] : % -> ^ in PER which
are uniformly (or, effectively) tracked: for some code
e G N ,

Vi e L^me E(i), e • m tracks /[,] in PER.

A morphism F\ (J ,«) -> (/ ,«) in EfF induces a reindexing functor F* by

{R\i]) H-> {RT{F){\J])) ^^^ (/[»•]) "^ (/r(F)(L?])).

Application of the Grothendieck construction yields a split fibration, which
UFam(PER)

will be written as i
Eff

This indexing of PERs by objects (/, 9^) G EfF is clearly similar to the in-
dexing of PERs by objects (/, E) G a;-Sets, as in Definition 1.4.8. This will be
made precise in the proposition below. But first we introduce a similar index-

UFam(u;-Sets)
ing of a;-sets over EfF via global sections. This yields a fibration 4-

Eff
where the total category UFam(a;-Sets) has, in the fibre over (/ ,«) G EfF:

objects r (/ , ?^)-indexed families (Xfj]) of cj-sets
morphisms (-^[i]) —^ (̂ [«]) ^^^ r (/ , «)-indexed collections {f[i]) of

maps f[i]'-X[i^ -^ yjj] in cj-Sets which are uniformly
tracked: for some code e G N one has Vi G /.Vm G
E(i).e • m tracks /[jj in cj-Sets.

Reindexing F* is above, for PERs.
In the next result we relate indexing over EfF and indexing over ct;-Sets,

both of PERs and of a;-sets

Section 6.3: Families of PERs and oj-sets over the effective topos 395

6.3.2. Propos i t ion . Indexing of PERs and of uj-sets over EfF and over
u;-Sets can he related in the following manner.
(i) There are change-of-base situations,

UFam(PER) ^ UFam(PER) UFam(a;-Sets) ^ UFam(a;-Sets)

J J
Eff -^ u;-Sets EfF -^ u;-Sets

where s: EfF —> a;-Sets is the separated reflection functor, as introduced in
Proposition 6.2.3.

(ii) Similarly, we have change-of-base situations.

UFam(PER)
J

u;-Sets ^

UFam(PER) UFam(a;-Sets) ^ UFam(u;-Sets)

-^EfF u;-Sets ^ -^EfF

(iii) The reflection P E R ^ a;-Sets lifts to a fibred reflection over EfF, in
a diagram:

UFam(PER) c ^ UFam(u;-Sets)

EfF

ProoF. (i) By definition of indexing over EfF.
(ii) Because if (/, «) G EfF comes from anu;-set (/, E), we have r (/ , «) = / ,

so indexing over (/, «) E EfF takes the form of indexing over (/, E) G u;-Sets.
(iii) By a pointwise construction. •

In the previous section we saw that cj-sets can be identified within EfF as
the (-'-'-) separated objects. So an alternative approach to cj-sets indexed by

objects (/ ,«) G EfF would be to consider families I ^ ^ . I in EfF which

are separated in the slice topos EfF/(/, ^). We recall from Exercises 5.7.1 and
(X,«)

Proposition 5.7.14 that such a family | J^^) in EfF/(/, ^) is separated if

396 Chapter 6: The effective topos

and only if the mediating map r]^ is a mono in:

(X,«)

(*)

a,«)
»?(/,«)

•^vr(/,«)

The underlying reason is that the sheafification functor a: EfF-> EfF is VF,
/ (X,«) \ f * \

and that sheafification in the slice EfF/(/ ,«) of , ̂ ^ ^ is ,^^ . , see

Proposition 5.7.14.
The full subcategory of EfT^ of (-<-'-)separated families is then written as

FSep(Eir)
FSep(Eff). The codomain functor is a fibration i

Eff

We first show that, when we restrict ourselves to cj-sets as indices, we indeed
get families of u;-sets in this way.
6.3.3. Propos i t ion . / / (/, ^) G Eff is a separated object, then a family

^^ j is separated if and only if the object (X, ^) is separated. This

means that there is a change-of-base situation,

UFam(a;-Sets) -^ w-Sets"^

a;-Sets ^

FSep(Eff)

^EfF

Proof. If (/,?^) is separated, then the unit r](^i^<^y. (/ ,«) -^ VF(7,«) in the
above diagram (*) is a mono. Hence the map • —> VF(X, ^) as well, because

it is obtained by pullback. Thus we have: the family ^^ I is separated

<^ the map //(̂ is a mono <^ the unit ^(x,w) is a mono <=> (^ J ~) is
separated. D

UFam(a;-Sets) FSep(Efr)
The relation between the fibrations i and 4- is rather

Eff Eff
subtle, and involves the manner in which the indexed u;-sets are given to us.

Section 6.3: Families of PERs and uj-sets over the effective topos 397

The full story appears in Section 11.7 where it will be shown that the latter
fibration is the 'stack completion' of the former. At this stage we merely note
the following result, which will be crucial in modelling type dependency with
indexed c<;-sets.

6.3.4. Propos i t ion . There is a full and faithful fibred functor over EfF

UFam(u;-Sets) ^ FSep(Eff)

{i,x)^{i\x')\ =

Eff

As a result, we have full and faithful fibred functors (over EfFĵ

UFam(PER) ^ UFam(a;-Sets) ^ FSep(Efr) ^ Eff"'

Proof. For a family X = (-^[i])[2]Gr(/,«) of a;-sets in UFam(a;-Sets) over
(/ ,«) G EfF, form the set

{X} = {(i, x)\i e I with Ej{i) / 0, and x G X[,]}

with equality

^i'\A E[x) if [{\ = [i'] and x = x'
otherwise.

Then E{i, x) = E[i) A E{x) ^ 0 for all (i, x) E {X]. Further, the set of global
sections of this object is the disjoint union

r({x},^)-]J x^y
[^•]er(/,«)

We can define a projection map T^X'- {{^]^ ^) ^ {h ^) in EfF by

7Tx{{i.x),i')^ \i^ii'\AE{x).
We claim this yields a separated family over (/ , «) . Consider therefore the
following pullback diagram.

d ^ } , ^) ^ - ^ ^ ^ ^ _ ^({X},«)

398 Chapter 6: The effective topos

The map rjx herein is described by

rlx{{^ux,)A^2A^3.^2))) = y^ otherwise

which is a mono by Lemma 6.1.4. Hence the family I r ^^ I î separated.

For a morphism (F, /) : {X[i]) -> [Yu]) in UFam(a;-Sets), where F: (7, «) -^
(J, ^) is a map in EfF between the underlying index sets and / is a (uniformly
tracked) family of maps /[i]*-^[i] —> ^r(F)([2]) in cj-Sets, we get a morphism
{ F , / } : { X } - ^ { y } i n E f f b y

such that TTy o {F, / } =: F o TTx. We leave it to the reader to verify that this
yields a full and faithful fibred functor. •

Exercises

6.3.1. Show that the following diagram commutes, combining the functors from
Propositions 6.3.3 and 6.3.4.

u;-Sets-" ^ FSep(Efr)

UFam(u;-Sets) ^ UFam(u;-Sets)

-Sets ^ ^ Eff

6.4 Natural numbers in the effective topos and some associated
principles

In the final section of this chapter, we outline some aspects of the effective
topos as a mathematical universe. In particular, we mention the natural num-
bers object N in Eff. It appears that Eff is the world of 'recursive mathemat-
ics': maps N ^ N in Eff can be identified with total recursive functions. This
may even be internalised to give a stronger statement. We mention some of the
principles that hold in Eff, like Markov's Principle, the Axiom of Countable
Choice and Troelstra's Uniformity Principle. And in the end we investigate an

Section 6.4-' Natural numbers in the effective topos and some associated principles 399

alternative description of PERs (or modest sets) as subquotients of N. This
description also applies to families of PERs (over separated objects).

The material in this section comes from [142]. More information may be
found there, and also in, for example, [297, 262, 218].

6.4.1. Proposition. The object N = (N, E) with E{n) — {n] and \n^ m\ —
E(n)C\E[m) is natural numbers object in EfF. It is a modest set, by definition.

Proof. The zero map 0:1 ^ Â in EfF comes from the zero element 0 G N =
r(N, E) in Sets as |- = 0|: 1 -> (N, E), or as predicate

^ ^ ~~ 1̂ 0 otherwise.

And the successor morphism S: N -^ N is the predicate

^(n,m)-<^^ oth-
= m + 1

otherwise.

Consider a diagram 1 —^ (L^) —^ (^5~)' where io E / is some element
with E{io) ^ 0 (see Lemma 6.2.1). Write F (") = F O • • • O F (n times), so
that FW(ii , i2) = \ii « i2\ and F("+^)(ii,i2) = Bza:/. F(")(ii, 23) A ̂ (23,22),
and define a morphism G: (N, F) —)• (/, «) by

G(n,i) = F(n)AF(")(2o,i).

It is easy to see that G is then a mediating map: G o 0 = [io] and G o
S = F o G. Uniqueness of G is a bit more involved. Assume H also satisfies
H o 0 = [io] and H oS = F o H, then we may assume codes

a e f]G(0,i)DH(0,i) c G p | G (n + l , i) D l[JG{n,i') A F{i',i)\
i n,i \ i' /

b € f]G{n,i)D E(n) d G f | j | J / / (n , 0 A F(i',f) J D F (n + l , i) .
n,f n,i \ i' /

The following serves as motivation. Assume that we already have what we
have to produce, namely a realiser e in E{n) D (G(n, i) D H{n^ 2)), for all n, i.
Then e • n is in G(ri, i) D H{n,i), and this e • n can be used to construct a code
in G{n -f- l , i) D i/(n -h 1,2). If m G G{n + 1,2*), then cm — (mi,m2} where
mi G G(n, 2') and m2 G F(2', 2) for some i' G / . But then (e-n) -mi G i^(ri, 2').
So if we write 7713 = ((e • n) • mi,m2), then

m3 G i/(n, 2') A F(2', 2) C [J H[n, i') A F(2', 2),
i'

so that d • m3 G //^(n + 1,2). And this for every 2 G / .

400 Chapter 6: The effective topos

This tells us how to obtain such a code e by primitive recursion on n, as

e • 0 = a and e - [n-\- \) — Am. d - {{e - n) • p(c • m), p'(c • m)).

Finally, if we put
e' = Ak.{e-{b'k))-k

then e' G Hn,! ^ l ' ^ ' 0 ^ ^ (" J 0^ making G, if equal maps (N, E) -> (/, «) . •

In Brouwer's intuitionism, the real numbers M are understood in such a
way that all functions M —> M are continuous, see [335, 4.12]. Classically this
is not true of course, but there are toposes in which this does hold, see [188,
VI, 9]. In a similar manner, all functions N -^ N in the effective topos EfF
are recursive. This suggests that in EfF we are in the world of "recursive
mathematics", where all functions are computable.

In this way, toposes provide a rich supply of universes for various kinds of
mathematics.

6.4.2. Theorem. Morphisms F:(N,£') -> (N,£') in Eff can be identified
with (total) recursive functions / : N —> N.

Proof. Since the natural numbers object Â = {^yE) is separated, and the
embedding a;-Sets -> EfF is full and faithful, we have that a morphism
F: (N, E) -^ (N, E) in EfF corresponds uniquely to a morphism / : (N, E) -^
(N,E') in w-Sets, where E{n) = {n}, see Exercise 1.2.10. But the latter has
a code e E N satisfying f{n) —en. Thus / is a total recursive function.
Translating this back to F in EfF, we can write F as

{n} if m = e • n
a

^ (^ , n) ^ / i ^ > ifm = e-
^ ' ^ [0 otherwise

We would like to have an internal version of this result telling that for each
/ : N^ there is an e: A/" with f(n) — enm the internal language of EfF. Then
one can properly say that Church's Thesis holds. But therefore we need to
know what Kleene application e • n is in EfF. It turns out to be the same as
in Sets, but this requires the following result about the exponent object N^
in EfF, and Markov's Principle.

6.4.3. Lemma. The exponent N^ in Eff may he described as the canonically
separated object (TR, E) where

TR = {total recursive functions / : N —> N}

E{f) - {e E N I e 25 a code for / } .

Proof. Essentially this is because separated objects form an exponential
ideal. Thus the exponent N^ in Eff is the same as in a;-Sets. D

Section 6.4: Natural numbers in the effective topos and some associated principles 401

In an arbitrary topos IB we have the object 2 == 1 -h 1 with cotuple
[false, t rue]: 2 -^ ^. This map is a mono, by Exercise 4.5.1, since false, true
are by definition disjoint. So one can identify the subobject 2 ^^ Q as the set
{a: Q I a V -"a} of decidable propositions. It is not hard to show that a sub-
object X ^^ / is decidable [i.e. X V -iX = /) if and only if its characteristic
map / -^ Q factors through 2 >-̂ Q. By exponentiation we get that

2^ = { :̂ n^ I Vi: / . f3{i) V -n/?(f)} ^ Q^

is the object of decidable predicates.

6.4.4. Proposition. In Eff Markov^s Principle holds: one has

V^: 2^ . --i(3n: N. /?(n)) D 3n: N. p{n).

Recall that in constructive logic, the premise ->-i{3n: N. I3(n) is logically
equivalent to -tin: N.^l3{n). Markov's Principle says that if for a decidable
predicate f3 on N we know that it is impossible that /? fails for all natural
numbers, then /? must hold for some number n. This n can for example be
obtained by testing /?(0), /?(!), /?(2), . . . , /?(n) until a candidate n is found. But
there is of course no bound for this search. Therefore, the status of Markov's
Principle within constructive mathematics is not uncontroversial. But since
this search for the candidate n can be done via minimahsation in a computable
way, Markov's Principle holds in Eff.

Proof. It is convenient to identify 2^ with {/: N^ \ Vn: N. f{n) = 0 V f{n) =
1}, so that we can use Lemma 6.4.3. For a total recursive function / E TR,
let

Af = 3n: N. {E{n) A \f{n) « 1|) C N.

We have to produce an inhabitant of

f] E{f)D{-^-^AfDAj).
/GTR

Recall from Section 6.2 that -'-^Af is either 0 of N, so a realiser for it will not
contain any useful information. For / G TR and e G E{f), we know that e
is a code for / . If m G "•"•^z, then there is an n G N with f{n) = 1. Thus
minimahsation fin. (e-n = I) is defined and gives us a least such n. Therefore,
e' = Am. fin. (e • n = 1) takes ~^~~^Af to Af.

In the other case when -^-^Aj = 0, then e' vacuously takes -^-*Af to Aj.
Hence Ae. Am. ^n. (e • n = 1) is a realiser for Markov's Principle. •

6.4.5. Example. Recall Kleene's Normal Form Theorem {e.g. from [236,
Theorem II. 1.2] or [66, 5, Corollary 1.4]): the basic predicates of recursion
theory,

e -n f , e ' n I, e - n = m

402 Chapter 6: The effective topos

are definable in first order arithmetic via the T-predicate and output function
[/, as

e - n f <=> -^3x:N.T{e,n,x)

e-ni <^ 3x:N.T{e,n,x)

6 71 = 171 <^ 3x: TV. T(e,n,x) A t/(x) = m
The predicates T and U{—) = (—) are primitive recursive. Hence they are
decidable, and so -•-•-closed. But then also the above predicates e • n t , e • n |
and en = m are -•-•-closed, by Markov's Principle. Hence their interpretation
is as in Sets. (They are 'almost negative formulas', see [142] for a complete
account.)

We can formulate and prove Church's Thesis inside EfF:

V/: N^. 3e: TV. Vn: N. f{n) ^e-n.

Again we use Lemma 6.4.3. We have to produce a realiser in

n E{f) D (U E{e) A n E{n) D \f(n) « e • n|)
/6TR \e6N n6N /

But one can simply take Ae. (e, e).

Markov's principle is one of the corner stones of the Russian school of
constructive mathematics, founded by Markov.

We turn to the Uniformity Principle.

6.4.6. Definition. A type (or object) U is said to be uniform (with respect
to N) if

Va: Q^^^. (Vi/: U, 3n: N. a{u, n)) D (3n: N. Vix: U. a{u, n)).

6.4.7. Proposition. In Eff* the powerobject PN = Q^ is uniform. D

We refer to [142] for the proof. This principle can be understood as follows:
PN is a very amorphous collection since predicates on N can be described
in very many ways. Thus if we have assigned a natural number n to each
predicate u: PN, then the only conceivable way of so doing would be to pick
the same n for every u. See also [335, 4.9]. Uniformity may be used to prove
the existence of products of PERs over PERs in EfF, see [297], so that one
can interpret second order products in polymorphic type theory.

PERs as subquotients of N

In the remainder of this section we will use the natural numbers object
AT = (N, £') in EfF to give an alternative description of (families of) PERs. Re-
call from Exercise 1.2.5 that PERs may be described as equivalence relations

Section 6.4'- Natural numbers in the effective topos and some associated principles 403

on subsets of N, i.e. as quotients of subsets of N. The latter are also called
'subquotients' of N. This alternative description can also be given inside EfF.

6.4.8. Proposition. The category PER of partial equivalence relations is
equivalent to the full subcategory o/EfF on the separated ^subquotients' {X, E)
of N = (NjE"). That is to those separated {X^E) occurring in a diagram

(One may equivalently require the mono to be closed.)

Recall from Lemma 6.2.7 (ii) that the quotient (Y, «) -^ (X, E) with (X, E)
separated may be described via a closed, almost equivalence relation R on
(y,«).

Proof. Given a PER i? C N x N, we obtain such a subquotient,

{n/R,G) ^Z- {\R\,») JU (N,E)

where the (closed) mono M is obtained from the inclusion \R\ = {n \ uRn} C
N. Thus M(n, m) = {n} D {m}. And the epi P: (| i i | ,«) -^ (N/fi, G) is then
given by P(n, [m]) = {n} D [m].

And if we have a subquotient

then {X, E) is modest (and hence comes from a PER): if n G E(xi) fl E{x2)
for xi, 2̂2 G X, then, using appropriate codes a, 6, c, d we get:

a - n G P(2/i,a:i) nP(?/2,a!2) for some yi, 2/2 G y

6 . (a -n) G E{yi)nE{y2)

c ' {b ' {a ' n)) G M(i/i, mi) fl M(2/2 5 ?^2) for certain mi, m2 G N

d - (c - (6 - (a -n))) G ^ (mi) H £;(m2).

But since Â = {^,E) is modest, the latter implies mi == m2. Reasoning
backwards we get \yi « ^2! since M is a mono, \xi « X2\ and thus xi = X2,
since (X, E") is separated. D

This result has an extension to families of PERs, provided we restrict our-
selves to a separated index object.

6.4.9. Proposition. For a separated index object (/, E) G Eff, the fibre cate-
gory l]¥dim{P'EiIl) (^j E) of (I, E)'indexed families of PERs is equivalent to the
full subcategory of the slice category EfF/(/, E) on the separated subquotients
of the constant family (/, Ey{N).

404 Chapter 6: The effective topos

Proof . First notice that r (/ , E) = I. So assume an /-indexed family of PERs
Rz= {Ri)i£j and form the diagram

{{R}, 2) - ^ {\\R\\,«) - ^ (/, E)x(m, E)

(I,E)

where M is a (closed) mono determined by the subset | |i?|| = {{h^) \ i G
/ and nRiu} C / x N = T({I,E) x {N,^)) and ({/?}, ^) is as defined in
the proof of Proposition 6.3.4, resulting from the inclusion U F a m (P E R) -̂>
UFam(cc;-Sets) ^ EfT^. The morphism P: {\\R\\,^) -^ {{R},^) is given by

p((i,n),(i',K]) = |z«i ' |n({n}nK]) .
It is an epi by Lemma 6.1.9.

And if we have such a diagram

(X,«) ^ ^ (Y,«) J ^ (I, E) X (N, E)

{I,E)

where P is an epi, M is a mono and <̂ is a separated family, then (X,«) must

be separated by Proposition 6.3.3 so that we can identify with an
(^ '^) /

(/, E')-indexed family (X,-, E',)ig/ in i . The same argument as in
UFam(a;-Sets)

i
u;-Sets

the previous proof, applied fibrewise, yields tha t each (X,-, Ei) is modest. •

Exercises

6.4.1. Prove that a decidable predicate (v̂ V -K/?) is -i-i-closed (""""V̂ D <)̂.
6.4.2. Consider for a subset A C N, the canonical subobject (N , ^ ^) -̂̂ (N,E) in

Eff arising from y4:N -> P N as a strict predicate:

i {(".0)} if n
€A
iA.

Show that A is decidable in recursion theoretic sense if and only if A—
i.e. (Nj-E^) >-^ (N,£^)—is decidable in topos theoretic sense.

6.4.3. (i) Prove that if IJ is iiniform and IJ -^V^ then V is uniform.

Section 6.4-' Natural numbers in the effective topos and some associated principles 40S

(ii) Let (U,^) e EfFbe such that f)^^^ E{u) ^ 0. Prove that {U,^) is
uniform,

(iii) Conclude that every quotient of a sheaf is uniform in Eff. It can be
shown that every uniform object is in fact a quotient of a sheaf.

6.4.4. Prove that the following Axiom of Countable Choice holds in EfF:

Va: Q ^ ^ ^ . (Vn: Â . 3m: N. a{n, m)) D (3 / : N^.^n: N. a(n, f{n))).

406 Chapter 6: The effective topos

This Page Intentionally Left Blank

Chapter 7

Internal category theory

So far, indexing has been described mainly in terms of fibred categories, but in
Section 1.10 also (briefly) in terms of indexed categories. In this chapter a third
formalism for indexing will be presented, namely internal categories. These
are categories described internally in another "ambient" category, using the
diagrammatic language of category theory to express the familiar constituents
of a category. An internal category is thus like an internal group: it is obtained
by interpreting the defining requirements of a category in some more general
universe than the category Sets. One can also describe functors and natural
transformations internally. And one can say when an internal category is, for
example, Cartesian closed.

Below we describe the basic (standard) ingredients of internal category
theory. Our emphasis is on the relation between internal and fibred categories.
It turns out that with an internal category one canonically associates a (split)
fibration, which is called the externalisation of the internal category. Many
concepts in internal category theory can also be expressed externally using
fibred category theory. One of the more important results is that if a fibration
is complete (in a fibred sense: it has fibred finite limits and products [u* H Yl^)
satisfying Beck-Chevalley), then every "internal diagram" has a limit. Such
a diagram can be understood as a functor from an internal category to the
fibration. We thus have a fibred version of a familiar result in ordinary category
theory: if a category has equalisers and arbitrary products, then every small
diagram has a limit.

Partial equivalence relations (PERs) form an example of an internal cate-
gory in the category of cj-sets, and also in the efi'ective topos. Externalisation

407

408 Chapter 7: Internal category theory

gives the (already defined) fibrations of PERs indexed by u;-sets, and of PERs
indexed by objects in the effective topos.

The role of internal categories in the semantics of (higher order) type the-
ories was first emphasised by Moggi and Hyland [143]. It will be investigated
in the next chapter (and also in Chapter 11).

7.1 Definition and examples of internal categories

As we have seen in Section 3.3 the concept of a group (and of other alge-
braic structures) can be expressed in diagrammatic language, and can thus
be described in arbitrary categories (with finite products). The idea is tha t a
group in a category—i .e. an 'internal group'—is an object G equipped with
morphisms

m e i
GxG ^G 1 ^G G ^G

for multiplication m, neutral element e and inverse i. These are required to
make some diagrams commute, expressing the fact tha t m is associative, e is a
neutral element for m and tha t i provides an inverse for m, see Example 3.3.1.
Clearly a group in the category S e t s of sets and functions is just a group in
the original sense. But an internal group in the category S p of topological
spaces and continuous functions is what is called a topological group. And an
internal group in the category P o S e t s may be called an ordered group.

An obvious question is whether one can also describe categories diagram-
matically. This involves describing one category inside another. It gives us
extra generality, comparable to the generality provided by the description of
a group as an internal group in a category, as in the examples just mentioned.
For the description of internal categories we shall need more than just finite
products in the 'ambient ' category: we also need equalisers to form objects of
composable arrows.

7 .1 .1 . Def in i t ion . Let B be a category with finite limits. An in terna l cat-
egory C in B consists of the following data . First there are two objects
CQ,CI G B which should be understood as the object CQ of objects of C
and the object Ci of arrows of C. These come equipped with morphisms in B

ii

X
C\ Ci and Co >• Ci

Section 7.1: Definition and examples of internal categories 409

representing the operations of domain 9o, codomain di and identity (on an
object) in C . These should make the following diagram commute.

Co

C o - T — C i
do di

^Co

Further, a composition morphism m is required. Therefore, we need the fol-
lowing two pullback diagrams.

T i
C2 = Ci XCoCi ^Ci

J To do

C i
di

Co

C3 = Ci X Co Ci X Co Ci

J
Co

di O TTi

C i

Co

They yield the objects C2 and C3 of composable tuples and triples of arrows in
C . The composition morphism of C is then a morphism m: C2 —)• Ci satisfying

Ci

Co

TTO
C2

Ci

TTl
Cl

5 l

Si
Co

to get the domain and codomain of the composites right. Further, there are
the familiar categorical equations,

i X id id X i
Co X Co Cl ^ C2 -< Cl X Co Co

Cl

id X m
C*3 >• C2

m X id m

Co
m

Cl

An internal category C is thus a 6-tuple (Co, C i , 5o, 3i , i, m) as described.
Usually we refer to C by writing the graph C = (Ci —^ Co) of domain
and codomain maps only. We often call the category B in which C lives the
ambient category of C.

In the internal language of the ambient category M—i.e. in the internal lan-
Sub(]B)

guage of the subobject fibration i on B—one can express commutativi ty

410 Chapter 7: Internal category theory

of these diagrams via the familiar equations describing ordinary categories.
Therefore we make use of the fact that subobject fibrations always have very
strong equality and full subset types. For instance,

C2 = {{f,9y-CixC,\di(f) = do(g)}
Cs = {{{f,9),h):C2xCi\dii9)=dom.

Commutativity of one of the above diagrams may then be expresses equation-
ally as

{f,9y-C2 19 \- do{m{f,g)) =c, do(f).

Or, equivalently, using that we have full subset types, as

f:Cu9:Ci \ d^(f) =c„ do{9) H doim(f,g)) =c„ doif).

Similarly we have an equation,

x:Co,f:Ci I X =c„ doif) ^ rn(i(x),f) = c . /•

Thus, in the internal language of the ambient category we can reason with
internal categories as if they were ordinary categories. Indeed, an internal
category C in IB is an ordinary category within the world of B, just like an
internal group in B is an ordinary group seen from the perspective of B.

Notice, by the way, that in order to formulate what an internal category
is, we only need the pullbacks C2 and C3 of composable tuples and triples.
Hence the requirement that the base category has all pullbacks is really too
strong. But in order to use the internal language of B we need more pullbacks
to express substitution.

Notice also that (variables for) internal categories are written in boldface: C,
instead of C for ordinary categories. Sometimes one calls an internal category
a small category (in some base category). This terminology comes from the
first of the following examples.

7.1.2. Examples, (i) An ordinary category C is by definition small if its
collections of objects and of morphism are sets (as opposed to proper classes).
Thus, C is small if and only if C is an internal category in Sets, with

Co = ObjC and Ci =] J C{X,Y)
X,Ye€

and with obvious domain and codomain maps Ci —^ Co from the disjoint
union Ci of all homsets to Co.

(ii) Every object / in a category B forms a (discrete) internal category /
with / both as object of objects and as object of morphisms. The domain and
codomain maps / =1 / are identities, and so are the maps for identities and
composition.

Section 7.1: Definition and examples of internal categories 411

In general, an internal category C is called d i s c r e t e if its morphism of
identities i: Co -> Ci is an isomorphism.

(iii) Here are some finite internal categories. A terminal object 1 yields a
discrete internal category I with one object and one arrow. It is terminal
among internal categories (in a fixed base category), as will become clear in
the next section, once internal functors have been introduced.

An internal category 2 with two objects and only two (identity) arrows is
the discrete category 2 = 1 -f 1.

An internal category (• -^) can be constructed with 1 + 1 as object of
objects and 1 + 1 + 1 as object of morphisms. Domain and codomain maps
(1 + 1 + 1) =4 (1 + 1) are obtained by making appropriate case distinctions.
Similarly one gets an internal category (• n^ •) with 1 + 1 as object of objects
and 1 + 1 + 1 + 1 as object as morphisms.

(To make these examples work, we have to assume tha t the coproducts +
are disjoint and universal.)

These are first, in a sense degenerate, examples of internal categories. Next
we describe how PERs form an internal category in u;-Sets and also in EfF.

7 .1 .3 . E x a m p l e (Internal categories of PERs) . Recall the full subcategory
P E R <^ u;-Sets of partial equivalence relations from Section 1.2. This cate-
gory P E R is small, so it is internal in S e t s .

More interestingly, PERs also form an internal category in u;-Sets with as
object of objects

P E R o = V P E R

where V is the inclusion functor S e t s —)• a;-Sets described in Section 1.2. Thus
P E R o is the set P E R of PERs with trivial existence predicate E{R) = N. As
object of morphisms P E R i one uses a disjoint union as underlying set in

PERi = I Y[^/(R^S), E\
\R,SePER J

where the sets N / (i ? => S) are quotients by the exponent PERs R ^ S =
{{n,n') I ym,m'mRm' =^ n • mSn' • m ' } , and where E is the existence
predicate on the disjoint union given by

E(R, 5, [n]R^s) = {men\m{R=> S)n} = [nU^s-

There are then obvious projection morphisms P E R i =1 P E R o forming do-
main and codomain maps . And the identity morphism P E R o - ^ P E R i maps
a per R to (R, R, [An.n]). The description of the internal composition m a p
is left to the reader. Some more details may be found in [143, 8] or [199,
Section 8].

412 Chapter 7: Internal category theory

The inclusion functor a;-Sets <^ EfF is right adjoint, and thus preserves
finite limits. This means that the diagram (PERi —^ P E R Q) is also an
internal category in EfF.

We close this section with two general constructions that yield internal
categories, starting from a single map.

7.1.4. Examples. Let a: A -^ B he a.n arbitrary, but fixed morphism in
a category B with finite limits. We describe how to construct two internal
categories in B from a. In the first one, the object of objects will be the
domain A and in the second case it will be the codomain B^.

(i) Form the kernel pair of a: A -^ B by pullback of a against itself. This
yields two morphisms do, di in

AXB A

do

A

di
-* A

and also

AXB AXB A
J

T l
-^ AXB A

do

-* B AXB A
di

There is then a (unique) diagonal V.A-^AXBA with 5o o i = id = 5i o i.
Also, there is a unique mediating m:AxBAxBA-^AxBA with do o m =
do o TTo and 5i o m = 5i o TTI. In one single graph:

AXB A XB A AXB A B

It is not hard to verify that one gets an internal category this way. Informally,
the objects are elements x £ A and a morphism x —^ y exists if and only if
a(x) = a{y). The identity i maps x E A to the pair {x, x) and the composition
of (x, y, z) is simply {x,z).

What one gets is an internal groupoid, which plays an important role in
descent theory, see e.g. [168] for a recent reference with pointers to the litera-
ture. If one continues forming pullbacks AXB - - -XBA one obtains a simplicial
object in B, see [169, Remark 2.13].

(ii) For the second construction we need an exponent in a slice category of
B, and so we now assume that B is locally Cartesian closed. This construction
may be found in [169, Example 2.38] or [268, 3.2]. The resulting internal
category is called the full in te rna l category associated with a:A —^ B
and is written as FullB(a), or just Full(a) if the base category B is clear
from the context. The reason for this terminology may become clear from

^ An early source for these constructions is Lawvere's "Perugia Lecture Notes"
(1972/1973).

Section 7.1: Definition and examples of internal categories 413

Example 7.3.4 (ii). Later this construction will be described for an arbitrary
"locally small" fibration, see Theorem 9.5.5.

We start the construction of the internal category Full(a) by forming the
families 7r*(a), 7r'*(a) in the slice category M/{B x B) by pullback, and writing
((9o,5i) for the exponent 7r*(a) => 7r'*(a) in M/{B x B), say with domain
Bi. This yields a pair of parallel maps [Bi) B) with B as object of
objects. Informally, the morphisms between objects x,y £ B are all maps
a~^{x) -^ ci~^(y) in B between the fibres oi a: A —^ B over x and y.

In order to describe internal identity and composition maps we need the
following correspondence (*), between maps in appropriate slice categories:

{u,v) ^ (5o,5i)
(*)

u*{a) >- v*{a)

It arises from
LI(u , .)H = {u,v) ^ (go , a i) = 7r*{a) ^ 7r'*(a)

id ^(i/,t;)*(7r*(a)=>7r'*(a)) ^ u*{a)^v*(a)

u*{a) ^ ^*(^)

The morphism of identities i: (id, id) -^ (9o, 9i) then arises by applying this
correspondence (*) to the identity map id*(a) —>• id*(a). And the composition
morphism m: {do o 7ro,5i o TTI) -^ (5o,9i), with 7ro,7ri as in Definition 7.1.1,
is obtained as follows. By applying (*) downwards to the identity (9o,5i) —>
(^o,5i) we get a morpism 55(a) -^ dl{a). We can apply both TTQ and TTJ and
then compose, as in:

{do o 7ro)*(a) ^ {do o 7ri)*(a) ^ (5i o no)*{a) ^ (5i o 7ri)*(a)

This yields, by (*) upwards, the required internal composition map.

In [87] this last construction plays a special role in a categorical character-
ization of the definition of a type theory within a logical framework (see also
Section 10.2) as an internal category in an ambient category corresponding

• u •

to the framework. This internal category arises from a family (^ I where

U is the universe of the type theory, elements of which name types of the
framework.

Exercises

7.1.1. Prove formally using the rules for full subset types that one can derive (i)

414 Chapter 7: Internal category theory

from (ii) ctnd vice-versa.
(i) a:C2 I 0 h do{m{a)) =c„ doiMa));
(ii) f:Cug:C, \d,(f) =Co d^{9) H 5o(m(i{/,p))) =c„ 9o(/) ,
where o(—) and i(—) the "out" and "in" operation associated with subset
types, as in Section 4.6.

7.1.2. Describe in diagrammatic language when an internal category is an internal
groupoid [i.e. a category in which every morphism is an isomorphism). Show
that each interned group G yields a groupoid internal category (G —) 1).

7.1.3. Describe the internal composition morphism for the internal category P E R
in a;-Sets in Example 7.1.3.

7.1.4. Consider a preorder in a category: a relation R ^^ Ax A which is reflexive
and transitive (see Section 1.3). Show that it forms a (preorder) interned
category in which the pair (^o,^i) is a mono. (In fact, this mono-condition
defines internal preorders.)

7.1.5. Prove that the category Full]ft(a) in Example 7.1.4 (ii) is an internal preorder
in IB if and only if the map a: A —^ B \s 3. mono in B.

7.1.6. The following example of an internal category is in the overlap of the con-
structions in Example 7.1.4 (i) and (ii). Let B be a category with finite
products, cind let A be an object in B.
(i) Describe the interned category resulting from applying construction in

Example 7.1.4 (i) to the imique map ^ -> 1 from A to the terminal
object 1 G B.

(ii) Do the same for the construction in (ii) starting from the identity
A -^ A. Notice that one gets the same internal category.

[This particular internal category has a universal property, see Exer-
cise 7.2.6 (ii).]

7.1.7. Give a definition of an internal 2-category.
7.1.8. Notice that an interned category in an ambient category B consists of several

maps in B satisfying certain equations in the logic of the subobject fibration
Sub(B)

i on B. See if the latter equational aspect can be generalised to a
B

(preorder) fibration ^ , by using the internal equality of the fibration, so
that one gets a notion of "category with respect to a fibration". What
logiccd structure should the fibration have, so that one can express such a
notion?

7.2 Internal functors and natural transformations

Just like categories can be described inside an ambient (or base) category,
also functors and natural transformations can be described internally. The de-
scriptions are the ones familiar for ordinary categories. They can be expressed
either in diagrammatic language, or in the internal language of the subobject

Section 7.2: Internal functors and natural transformations 415

fibration on the base category B. In this way we get a (2-)category cat(B)
of internal categories and internal functors (and internal natural transforma-
tions), in a fixed base category B. It allows us in particular to say what an
internal adjunction is. And in terms of these adjunctions we can define familiar
structure, like products x , in internal categories. This will be the subject of
the present section. In the subsequent section we shall see that these internal
notions correspond to fibred notions for the "externalisation" of the internal
category; the latter is a fibration which is (canonically) associated with the
internal category.

7 .2 .1 . Def in i t ion . Assume two internal categories C = (Ci
D = (Di ^ Do) in an ambient category B.

(i) An in ternal func tor F : C -> D is given by two morphisms

^ 0 ^ , ^ ^ 1

Co) and

Co -^ Do and Ci -* A

(in B) mapping objects and arrows of C to objects and arrows of D , in such
a way that domains, codomains, identities and compositions are preserved.
Tha t is, such that the following four diagrams commute.

Fi X Fi
Ci xco Ci ^ Di XDO Di

Ci
Fi

^ D ,

It is easy to see that one obtains a category in this way, with composition in
the obvious way. We shall write cat(B) for the resulting category of internal
categories in B and internal functors between them.

(ii) An in ternal na tura l t r a n s f o r m a t i o n a between two internal func-
tors F , G: C =t D consists of a single m a p a: Co -> Di yielding for each object

416 Chapter 7: Internal category theory

in C a morphism in D such that the following diagrams commute.

Fo

Do *
do

Co

Di

Go

di
^ Do Di XDO DI

Ci

Di Di XDO DI

In the internal language of (the subobject fibration on the) base or ambient
category M we can express commutat ivi ty of, for example, the last diagram in
(ii), as

f:Ct\</>\-m{aido{f),G,{f)) =c. m(F^(f),a(d,{f)).

Or, in more readable form, as

f:Cux:Co,y:Co \ x =Co do{f),y=Co di{f) h G i (/) o a, =c, ay o F i (/) .

7.2 .2 . P r o p o s i t i o n . Assume B is a category with finite limits. Then the cat-
egory cat(IB) of internal categories in B also has finite limits. And if M is
additionally Cartesian closed, then so is ca t (B) .

Proof . One can either prove this purely categorically, or by making use of
the internal language of B. We shall sketch the first approach for finite limits
of internal categories, and the second one for exponents.

The discrete internal category 1 on the terminal object 1 G B is terminal in
ca t (B) . And the Cartesian product of

/ 5n \ / On \

c =
do

Ci Co and D
Jo

DI '^^DO

IS

/

C x D = Ci xDi

5o X 5o \

" ^ Co X Do

\ di X di I
with similar componentwise maps for composition and identities.

The equaliser E q (F , G) of two internal functors F , G: C =4 D is obtained
from equalisers in B,

E q (F , G) o

Fo F\

> ^ Co Do and E q (F , G)i > ^ Ci Di

Go Gi

Section 7.2: Internal functors and natural transformations 417

Using the universal properties of these equalisers we get domain and codomain
maps (Eq(F,G)i z=4 Eq(F,G)o), and also maps for identities and composi-
tion.

In case the base category B is Cartesian closed, then we may use V in
the logic of subobjects in B, by Corollary 1.9.9. For the internal functor
category D*̂ = ((D^)i = 4 (D^)o) we define

(D^)o = {(Fo, Fi): Df° x Df' \ "FQ, F I form an internal functor C -^ D"},

where the latter predicate may be written out as

"Fo, Fi form an internal functor C -> D"

^ V/:Ci.5o(Fi(/)) =c„ Fo(do{f))Adx(F^if)) =c„ Fo(di(f))

A\fx:Co.Fiii(x))=c,i(Foix))

AW,9y-C2.F^{m{f,9)) = c . m{F^{f), Fi(g)).

Similarly we take

(D^)i = {(F,G,a) : (D^)o x (D^)o x Df° | "a is an internal

natural transformation from F to G"}. •

For cat(B) to be a 2-category, we need to know about the interaction be-
tween internal functors and internal natural transformations. Consider there-
fore the diagram of internal functors

with an internal natural transformation a as indicated. One gets two new
internal natural transformations:

TJ

Co — ^ Co -^-^ Di yields

And similarly:

IT

Co - ^ Di ^ D[yields

418 Chapter 7: Internal category theory

All this permits us to say what an internal adjunction is: it is given by
two internal functors

F

c ""^^"D

G

together with two internal natural transformations

and

satisfying the familiar triangular identities:

Ge o r]G = id and eF o Frj = id.

Of course, this is just and adjunction {F H G) in the 2-category cat(B).
By combining these internal adjunctions with the finite products that we

have for internal categories, we can describe structure like products or equalis-
ers inside internal categories. Let C be an internal category in a base category
B. One says that C has an internal terminal object if the unique internal
functor !: C -^ i from C to the terminal internal category 1 in B, has an in-
ternal right adjoint, say t : i - > C. The internal counit natural transformation
(! o t) ^ id]^ is then the identity. The unit rj: idc => (t o !) consists of a map
7/: Co —> Ci with (among other things),

do o T] = id di o rj = t o I
CQ >- Co and Co ^ Co

This T] thus maps an internal object X in C to an arrow X —>• t in C. It is
of course the unique internal map from X to t. This uniqueness follows from
naturality and the triangular identities. But it may also be expressed in more
elementary terms, see Exercise 7.2.4 below.

In a similar way, the usual external definition of Cartesian products x can
be internalised readily. One says that C has internal Cartesian products
if the internal diagonal functor A: C -^ C x C has an internal right adjoint.

Equalisers are a bit more involved. We first have to construct the inter-
nal category C ^ of parallel arrows in C, together with an internal diagonal
functor A: C —^ C ^ sending

id
x^ I X — r x

id

Section 1.2: Internal functors and natural transformations 419

We then say tha t C has in terna l equal i sers if this diagonal A: C —> C ^
has an internal right adjoint. One can form C ^ as the category of internal
functors from (• n l •) to C—where (• =4 •) is as in Example 7.1.2 (iii). But one
can also build C ^ using the internal language of B. For example, the object
of objects C ^ is obtained as equaliser,

do X di

Cf > ^ Ci X Ci _ ^ _ ^ Co X Co

{do o 7r',5i o TT)

i.e. as interpretation

C ? = {if,gy.Ci X Ci\do(f) =Co do(g)Ad^(f) =c„ di(g)}.

For internal exponents we use the approach of Exercise 1.8.9. Therefore
assume C has internal Cartesian products x . Write |Co| = Cg, for the discrete
internal category with objects as in C . There is an obvious internal inclusion
functor D: |Co| —> C. Thus we can define an extended internal product functor

prod = (^, X o (D X id))
|Co| X C ^ |Co| X C

and say tha t C has in terna l e x p o n e n t s if this functor has an internal right
adjoint exp. This exp then yields a functor C ° P X C ^ C as usual. Here, the
internal category C ^ P is obtained from C by interchanging the domain and
codomain maps, and by adapting the m a p for composition accordingly. An
internal Cartesian closed category is then, as one expects, an internal cate-
gory with internal terminal object, internal Cartesian products, and internal
exponents.

Finally, one can say that C has in terna l s i m p l e p r o d u c t s (or c o p r o d -
ucts) if for each object / E B, the diagonal functor C —>• C - has an internal
right (or left) adjoint—where C - is the internal functor category from the
discrete internal category / to C .

In the next section we shall see how this internal structure may also be
described "externally" via the "externalisation" of an internal category.

Earlier in this—and in the previous—section we used the internal language
of the ambient category to describe internal categories, functors and natural
transformations. We should warn tha t this does not extend smoothly to in-
ternal structure: for an internal category C in B, having an internal terminal
as above is not the same as validity of the statement:

3t:Co.yx:Co.3\f:Ci.do{f) =Co X Adiif) =Cot

420 Chapter 7: Internal category theory

(in the internal language of the subobject fibration on IB) since internal ex-
istence is not the same as external existence, see the last few paragraphs of
Section 4.3. Similarly, internal Cartesian products via explicit internal func-
tors as above is stronger than the validity of the statement describing the
existence of a pair x^xxy-^yof projection maps, for all x,y:Co. Unless
of course, the Axiom of Choice holds in the ambient category IB. But recall
tha t also for ordinary categories there is a difference between, say, Cartesian
products as given functorially by an adjunction, and Cartesian products as
given by the existence of universal diagrams X <r- X xY -^Y for each pair of
objects X,Y, To get from these diagrams to an adjunction one has to choose
projection maps for each such pair X,Y. There one uses the Axiom of Choice
in the met a-language, which is relatively harmless. In internal category theory
however, this meta-language is the internal language of the ambient category,
in which the Axiom of Choice may fail.

Exercises

7.2.1. Write out in the internal language the predicate "a is an internal natural
transformation from F to G" in the proof of Proposition 7.2.2. Give a
purely categorical description of the object (D)o—e.g. as intersection of
four equalisers.

7.2.2. Verify that aH and Ka (as described after the proof of Proposition 7.2.2)
are internal natural transformations.

7.2.3. Verify that the internal category P E R = (P E R i = 4 PERo) in u;-Sets
(and also in Eff) has Cartesian products x, via an appropriate internal
adjunction.

7.2.4. Show that an internal category C has an internal terminal object (as defined
above) if and only if there are maps

Co and Co - ^ C i

with

Co - ^ C ,

do

Co

2ind

7.2.5. Let PreOrd(B) ^^ cat(]B) be the full subcategory of internal preorders in
IB, i.e. of internal categories (Ci ^ Co) for which the tuple {do,di):Ci -¥
Co X Co is a mono. Prove that this inclusion functor PreOrd(B) M- cat(B)
hcis a left adjoint, in case IB is a regular category.

Section 7.3: Externalisation 421

7.2.6. Consider the "underlying object" functor f/:cat(B) -^ B given by (Ci = z |
Co) H-> Co.

(i) Show that the assignment / H^ (the discrete internal category / on /)
extends to a functor B —>• cat(B), which is left adjoint to U.

(ii) Prove that U also has a right adjoint, which maps / G B to the "indis-
crete" internal category (/ x / ^ /) with Cartesian projections as
domain and codomain maps (see Exercise 7.1.6).

(iii) And prove that if B has (reflexive) coequalisers, then the discrete cat-
egory functor / M- / has a left adjoint Ho, which maps C G cat(B) to
the codomain of the coequahser

Ci

do

di

Co no(c)

7.3 Externalisation

Just like indexed categories in Section 1.10 correspond to certain fibrations
(namely to cloven ones), internal categories also correspond to certain fibra-
tions, namely to so-called small fibrations. This correspondence really is a
tautology by the way we define small fibrations below, as coming from an in-
ternal category. But there is an alternative characterisation of small fibrations
in terms of so-called "local smallness" and generic objects, see Corollary 9.5.6
later on.

We shall s tart by describing how an internal category gives rise to a (split)
fibration. The construction is known as externalisation.

7.3 .1 . D e f i n i t i o n (Externalisation). Let C = [Ci —^ Co) be an internal
category in B. For each object / G B form a category C^ with

o b j e c t s

m o r p h i s m s

maps X:I -> Co in B. We think of these as /-indexed
collections {Xi)i^j of objects of Xf G C.

Y
{I^Co) (/ -^ Co) are maps f: I ^ Ci with

Co
an

Ci
di

Co

This morphism f:X -^ Y can be seen as an /-indexed
family / — {fi'.Xi -> Yi)i^j of maps in C.

422 Chapter 7: Internal category theory

The identity in C^ on X: I -^ Co is the composite map

I ^ Co ^ Ci

where i is the map of internal identities in C. And composition of morphisms

(1,9)

X ^Y AzinC^ is

-^ Ci xc„ Ci m Ci

In a next step we notice that the assignment

extends to a split indexed category W^ -> Cat . A morphism u: I -^ J in M
yields a functor u'^ = — o u: C*̂ —^ C^ by composition. Hence we get a split
fibration on B; it is written as

FamiB(C)

IPC
B or as

Famig(C)

i
1

or simply as
Fam(C)

;
1

The total category Fami(C) thus has maps (/ —)• Co) in B as objects. And
V V . . .

a morphism (/ —^ Co) —> (J —>• Co) in Fam]B(C) is a pair of maps u: I —^ J
and / : / -^ Ci in B with

Fam(C)

We explicitly describe the splitting of 4- . For a map w: / -> J in B and
an object y : J —> Co in Fam(C) over J, one gets an object Y o u: I —^ Co
over / , together with a splitting map in Fam(C)

/You \
(l Co)

(w,i oY o u) u^ Co)

The following holds by construction, and is worth mentioning explicitly.
Fam(C)

7.3.2. Lemma. The externalisation i of an internal category C =

(Ci —^ Co) in B is a split fibration with a split generic object (Co -^ Co) G
Fam(C) above Co G B. D

Section 1.3: Externalisation 423

As mentioned, an ordinary category is small if and only if it is an internal
category in the standard universe of sets. This terminology is extended to
fibred categories: smallness can now be defined with respect to an arbitrary
base category.

7.3.3. Definition. A fibration is called small if it is equivalent to the exter-
nalisation of an internal category in its base category.

7.3.4. Examples, (i) A small category C is, as we have seen, an internal cat-
Fam(C)

egory in Sets. Its externalisation is the familiar family fibration I . Thus
using the Fam notation above is justified. But note that we write Fami(C)
or Fam(C) with boldface C, in case C is an internal category in B.

(ii) Consider the externalisation of a full internal category Full(a) asso-
ciated with a morphism a: A ^ B in a. category B, as described in Exam-
ple 7.1.4 (ii). We claim that morphisms

(/ ^ B) >• {j ^ B)

in the total category Fam(Full(a)) can be identified with morphisms

X*{a) ^ Y*{a)

in IB~ .̂ Indeed, using the correspondence (*) in Example 7.1.4 (ii) we get:

X ^ Y in Fam(Full(a)) over u

{X,Y o u) ^ (5o,(9i) in M/B x B
= (*)

X*(a) ^t/*y*(a) in

X*(a) ^ Y*{a) in B"^ over u

In this way we obtain a full and faithful fibred functor Famf Full(a)) —> B"*".
In particular, the fibre over / G B of the externalisation Fam(Full(a)) may be
identified with the category with

objects maps {X: I —^ B).

morphisms f:X -^Y are morphisms in B / / :

/
• > • '

X*(a)\ /Y*{a)

424 Chapter 7: Internal category theory

With composition and identities as in M/I. This greatly simplifies matters.

The situation in this last example deserves an explicit name.

7.3.5. Definition. An internal category C in B for which there is a full and
faithful fibred functor Fam(C) —)• IB"̂ (over B) will be called a full internal
(sub)category in B.

In a locally Cartesian closed base category, these full internal categories are
the ones of the form Full(a) for some morphism a. This is the content of the
next result.

7.3.6. Proposition. Let C = (Ci —^ Co) be a full internal category in a
locally Cartesian closed category M, say via a full and faithful fibred functor
V: Fam(C) —> B~̂ . Then C is isomorphic to an internal category of the form

Full(a), namely for a = V{Co 4 Co) G B/Co-

Proof. By Yoneda: for a family {X, y) : / —> Co x Co we have:

M/Co X Co((X,y) , TT^a) => 7r'*(a))

^ B/Co X Co{{X,Y) X 7r*(a), 7r'*(a))

^ B/Co X Co(lJ(;^y)(X,y)*7r*(a), 7r'*(a)) by definition of x

- B//((X,y)*7r*(a), (X,y)*^'*(a)) since U(x,y) ^ i^^^y

^ M/l{x*(V{id)), y*(^(id)))

^ M/l{v{X), V{Y)) -P is a fibred functor

^ Fam(C) / (x , Y) V is full and faithful

^ B/Co x C o ((X , y) , {do,di)).

Hence (5o, 5i) =. 7r*(a) => 7r'*(a), as families over Co x Co- D

PERs in cj-Sets and in Eff" form such a full internal category. In fact, the
externalisations are familiar fibrations that we introduced earlier.

7.3.7. Proposition, (i) The internal category PER = (PERi = 4 P E R Q)
UFam(PER)

in LO'Sets has as externalisation the fibration i of PERs overuj-sets
from Definition 1.4-8. It is a full internal category in u;-Sets via the composite
of the full and faithful fibred functors

UFam(PER) ^ UFam(u;-Sets) -^-^ cj-Sets"^

Lj-Sets

Section 7.3: Externalisation 425

obtained from Example 1.8.7 (ii) and Proposition 1.4-7.
UFam(PER)

(ii) And PER in EfF has as externalisation the fibration i from
Eff

Definition 6.3.1. It is also a full internal category in EfF via the composite

UFam(PER) ^ UFam(u;-Sets) ^ FSep(EfF) ^—^ EflT

Eff

from Propositions 6.3.2 and 6.3.4- '-'

There is more to say about externalisation; it is functorial in the following
sense.

7.3.8. Propos i t ion (Externalisation, continued). Fix a base category M. The
assignment,

(Fam(C) \
C h-^ (i) extends to a (2-)functor cat(B) — ^ Fibspiit(B)

which is ''locally full and faithful", i.e. full and faithful both on 1-cells and
on 2-cells. Moreover, it preserves finite products, and also exponents (where
exponents of split fibrations are as described in Exercise 1.10.6).

Proof. Most of this is straightforward formal manipulation. For example,
an internal functor F — {FQ,FI):C -^ D yields a (split) fibred functor
Fam(C) -^ Fam(D), call it Fam(F), by

/ X X . Fo o X . . / . Fi o /
(/ ^ C o) ^ ^ (/ - i ^ o) , (/ ^Ci) ^-^{l - A)

And an internal natural transformation a: F => G between internal functors
F,G:C =^ D yields a vertical natural transformation Fam(F) => Fam(G)
between the induced fibred functors, with components

/ X \ / a o X \
[I - C o) ^ ^ { l - i ^ i)

Every split fibred functor H: Fam(C) —> Fam(D) arises in this a way: such
an H gives rise to a pair of maps

HO = H{CO ^CO):CO ^ Do, HI = H{CI ^ Ci):Ci ^ A

forming an internal functor C -> D, whose externalisation is H again. And
these HQ, HI are unique in doing so.

426 Chapter 7: Internal category theory

Similarly, every vertical natural transformation a:Fam(F) => Fam(G)
comes from a unique internal natural transformation. Notice that for each
object X:I -^ Co in Fam(C) one can describe a^ as a map I -^ Di forming
a morphism in Fam(D),

. FQ o X . ax . Go o X .
[I ^ i^o) ^ (/ Do)

Hence by taking the object X to be id: Co -^ Co we get a (unique) map
a = aid^ :Co —^ Di whose externalisation is the natural transformation a.
Therefore we must show that ax = a o X. But this follows from naturality
of a, if we consider the morphism

/ X X (^ ' 0 / id X
(/ ^ Co) ^ (Co ^ Co)

in Fam(C).
Finally, showing that externalisation preserves finite products and expo-

nents is a matter of writing out definitions. •

This technical result has some important consequences.

7.3.9. Corollary. An internal category C in M is internally Cartesian closed
Fam(C)

if and only if its externalisation i is a split Cartesian closed fibration.

Proof. Because externalisation preserves and reflects 1- and 2-cells, and pre-
serves finite products of internal categories. We shall illustrate the details for
Cartesian products x.

C has internal Cartesian products

f there is a 1-cell

prod
C X C ^ C

<:=> < in cat(IB) with 2-cells
T] s

id = = > prodA and Aprod > id
[in cat(B) satisfying the triangular identities

Section 7.3: Externalisation 427

(there is a 1-cell

<=> <

Fam(C)
i
1

/ Fam(CXC)

\ 1

in Fibspiit(B) with 2-cells

V
id > prod A and

Fam(C)
i

prod

Aprod =>id

I in Fibspiit(B) satisfying the tr iangular identities
/ Fam(C) \

"^ [^ I has split Cartesian products.

Fam(C)
i

There is also the following result.

7 .3 .10 . CoroUarye An internal category C in a Cartesian closed category B
Fam(C)

has internal simple (co)products if and only if its externalisation i has

split simple (co)products.

Proof . One can reason as before, using Exercises 7.3.3 and 5.2.4:

C has internal simple products

[for each object / G B, the internal diagonal functor

C ^ C ^ ^ <

^ \

has an internal right adjoint
[for each / G B, the fibred diagonal functor

Fam(C)
i
1

1 / /
i
1

Fam(C)
i
1

l̂ has a split fibred right adjoint
/ Fam(C) \

<:̂ I 4- I has split simple products.

But one can also simply unravel the definitions. Briefly, internal right ad-
joints n^ : C - -^ C give right adjoints F a m (C) j x / -> F a m (C) j to weakening
TT* by

A(x) n̂
Co) ^—^ [j ^ Cl ^ Co) (J x / ^

And conversely, right adjoints F a m (C) j x / -^ F a m (C) j yield maps Cf -> Ci
for i = 0 , 1 , by considering for J = Cf their action at evaluation Cj x I -^ d.

D

7 .3 .11 . E x a m p l e . We can now conclude tha t the internal category P E R in
(j -Sets is internally Cartesian closed and has all internal simple products and

428 Chapter 7: Internal category theory

coproducts over a;-sets (see Example 1.8.3 (v) and Lemma 1.9.6). But P E R
in cj-Sets also has internal equalisers, by a similar argument, so it has all
internal finite limits.

Similarly, P E R is internally Cartesian closed in EfF, via the (first) change-
of-base situation in Proposition 6.3.2 (i) and the fact that separated reflection
preserves finite products (see Exercise 6.2.3).

Thus, internal and external structure are closely related. These matters will
be further investigated in the next section. If there is a choice, we prefer to
describe structure externally using fibred terminology, for two reasons.

• Doing internal category theory diagrammatically is rather cumbersome.
• Using the internal language makes it more convenient, but has its limi-

tations, due to the difference between internal and external existence, as
mentioned at the end of the previous section. And it is this external exis-
tence that we want in modelling logics and type theories.

We close this section by noting that under certain size restrictions, a split
fibration can also be internalised in the topos of presheaves on its base cate-
gory.

E

7.3.12. Propos i t ion (Internalisation). Let j-P be a split fibration which is
'fibrewise small' (I.e. all its fibre categories are small), on a base category
B which is locally small. Then there is an internal category P in the topos
M = Sets® of presheaves ofM, and a change-of-base situation,

E ^ ^ Fam(P)

(where J^rB -> IB is the Yoneda embedding I ^ B(—, I)) in which both y and
% are full and faithful functors.

Thus we can reconstruct the fibration p with base category B from the asso-
ciated internal category P in B.

Proof. We have to define suitable presheaves Po,Pi:W^ =1 Sets forming
objects of objects and of arrows of P = (Pi i z^ Po) in B. Firstly, PQ sends

/H^ObjE/

Section 7.3: Externalisation 429

and secondly, Pi is given by disjoint unions of maps in the fibres of p, as in

/ ^]l Ej{x, Y).
X,YeET

In order to get a commuting diagram, the functor 7i has to send an object
X G E, say above / G B, to a natural transformation

y(i)=M(-,i) =^Po

Its component at K is defined as

w
(K-^I) ^^W*(X)

For a morphism / : X -^ y in E, say above u: I ^ J in M, a suitable natural
transformation

is required. Here one first determines the vertical part f^:X -> u*{Y) of /
(with u{Y) o / ' = /) . Then one can take for ? / / at K

{K-^^I) I ^{w*{X),w*u^{Y),w*{f)) •

Exercises

Sub(Sets)
7.3.1. Show that the subobject fibration 4- is the externahsation of (• —)• •)

Sets ^ ^
in Sets, i.e. of the poset category {0,1} (with 0 < 1). More generally, show

Sub(B)
that for a topos B the subobject fibration 4- is the externalisation of

IB
the internal poset (Q, <) as in Exercises 5.3.4.

7.3.2. Elaborate out the details of the construction Full]ft(a) in Example 7.1.4 (ii)
in case B = Sets , and describe the resulting full and faithful fibred functor
from the externalisation of this (small) category to Sets"*".

Fam(/)
7.3.3. Show that for an object / G B the externalisation i of the discrete

1 / /
internal category / G cat(B) on / is the domain fibration i . Conclude
that C G cat(B) has internal exponents if and only if its externalisation
has split fibred exponents (like in the proof of Corollary 7.3.9, using the exp
functor mentioned towards the end of the previous section).

7.3.4. Consider a full internal category Full (a) built on top of a morphism a: A ^
S in a locally Cartesian closed category B, as in Example 7.1.4 (ii). Show
that it has internal Cartesian products and exponents which are preserved
by the associated functor Fam(Full(a) j —> B~*" if and only if there are maps

430 Chapter 7: Internal category theory

prod,exp:5 x B : B for which one has puUback diagrams:

^ A • —

7r*(a) X 7r'*(a)

Bx B

J

prod
-^ B

7r*(a)=^7r'*(a)

Bx B

J

exp

^ A

-^ B

where x and =^ are Cartesian product and exponent in the slice over BxB.
[These elementary formulations occur in [268]. There one can also find a
similar formulation for simple products (using a single puUback square as
above).]

7.3.5. Definition 7.3.5 says that C = (Ci — \ Co) is full internal category in B if
there is a fibred full and faithful functor Fam(C) —>• B"*". A good candidate
for such a functor is the (internal) global sections functor F. Assume C has
an internal terminal object t:l —^ Co. Define for X: I —^ Co in Fam(C) a
family T{X) over / as puUback:

,.j—
'
r

^ C{t

^ c

• 1 1 —
r

0̂

^ C i

>- Co X Co
X (t o ! , id)

(i) Describe F: Fam(C) —)• Sets"*" for C a small category with terminal
object t £ C

(ii) Show that X ^ F(X) yields a fibred functor Fam(C) -^ B" ' .
(iii) Check that the functors UFam(PER) -^ o^-Sets"" and UFam(PER)

—>• EfT^ in Proposition 7.3.7 are such global sections functors.
[This definition of F occurs explicitly in [143, 0.1]. Its "external" version
as in (i) will be investigated later in Section 10.4, see especially Exam-
ple 10.4.8 (iii) and Exercise 10.4.4.]

7.4 Interna,! diagrams and completeness

The aim in this section is to give a fibred version of a familiar result: if a
category A has equalisers and arbitrary products then each diagram (functor)
C ^ A from a small category C, has a limit in A. Here we replace A by a fibred
category and the small category C by a internal category in the basis. Then
the result also holds in a fibred setting. This is part of the folklore of fibred
category theory, see also [36, II, 8.5]. The only ingredient of this result which
still has to be explained is the notion of a functor from an internal category
to a fibred category. These are called "internal diagrams", and will occupy us

Section 7.4- Internal diagrams and completeness 431

first. (They also play an important role in descent theory, see e,g. [88] for a
survey.)

There are several alternative formulations available for these internal dia-
grams, see Remark 7.4.2 below. The most satisfying formulation from a fibred
perspective is mentioned there as (i). But we choose to start with a different
formulation, because this one is more common in the literature, and because
it will be used in computing limits (in the proof of Lemma 7.4.8).

7.4.1. Definition. Let -^P be a fibration and C an internal category in IB.
An internal diagram of type C in p is a pair {U,fi) where U G Eco is
an object of the total category above the object Co of objects of C, and n is
a vertical morphism OQIU) —> dl(U) in E, called the action of the internal
diagram, satisfying:

m*d*o(U)^irod'o{U)

m*{n)

<dl{U)

m'dliU) — - T^ldKU)

This definition may be found, for instance, in [189, Section 5]. It is in fact
most familiar for the case where the above fibration p is a codomain fibration.

An internal diagram can then be described as a family I ^ 1 together with

an action morphism // in a commuting diagram

U xco Cx - * [/

f

di
-^Co

432 Chapter 7: Internal category theory

satisfying the equations

(id,i 0(f) id X Li
U z ^ ^ x^o Ci C2 xco U = Ci xco Ci xco U ^ Ci xco U

m X id

U CiXoU ^U

see e.g. [169, Definition 2.14], [36,1, Definition 8.21] (where these internal dia-
grams in codomain fibrations are called internal base-valued functors) or [188,
V,7] (where they are called category actions). In the even more familiar case

Sets"^
of sets, an internal diagram in the codomain fibration i can be iden-

' ° Sets
/ ^ \

tified with a presheaf C -^ Sets. Indeed the family J^^] yields a functor
\Co J

C ^ S e t s b y Xh->C/x = V^"M^) and {f:X -^Y)^XueUx-^{u,f). And
conversely, such a functor D:C —^ Sets gives an internal diagram with family
Uxeco ^ (^) ^ ^0 ^^^ ^^^^^^ (^ ' « ' /) ^ (^' ^ (/) («)) ' foJ* f--X -^Y in C.
7.4.2. Remark. There are alternative descriptions of internal diagrams. We
briefly mention three of these below, without going into all the details.

E

(i) First of all, an internal diagramof type C in -^P is nothing but a fibred
IB

functor Fam(C) -^ E from the externalisation of C to p. Indeed, given an
internal diagram {U^fi) as defined above, one obtains a functor Fam(C) —>• E
by

And conversely, given a fibred functor F: Fam(C) -^ E one takes as carrier
object U = F(idco) in Eco • Further, the identity on Ci is a morphism ^o —^ di
in Fam(C). And F{di) = i^(idc„ o di) ^ d*(F(idc,)) = d*(U) since F is a
fibred functor. Therefore we get an action morphism // as composite

F(idcJ
duu) s Fido) — > F{d,) ^ di(u).

It is not hard to verify that these passages from internal diagrams to fibred
functors and vice-versa, are each others inverses.

These fibred functors Fam(C) -^ E are sometimes easier to handle than the
internal diagrams {U^fi). For example, with this fibred functor formulation, it
is almost immediate that internal functors G: D —)• C take internal diagrams
of type C to internal diagrams of type D, simply by pre-composition with the

Section 7.4- Internal diagrams and completeness 433

external functor Fam(G). And by post-composition one transforms internal
diagrams in one fibration into internal diagrams in another fibration. Also, this
correspondence extends to appropriate morphisms, see Exercise 7.4.3 below.

As an example, we see that an internal category of the form Full® (a) comes
equipped with a canonical internal diagram, namely the functor Fulli(a) -^
M~^ described in Example 7.1.4 (ii).

(ii) There is however a second alternative description of internal diagrams,
which is closer to the original description in Dehntion 7.4.1. The correspon-
dence occurs for codomain fibrations in [169, Proposition 2.21] and in [188, V,
7, Theorem 2]. It is mentioned in full generality in [30], but is independently
due to Beck.

E

For a fibration ^P with coproducts]J^ and an internal category C in B,
consider the functor

It is a monad, and its algebras T{U) —^ U are precisely the internal diagrams
di{u)-^ di[u).

We only sketch how to get a unit and multiplication for this monad, and
leave further details to the meticulous reader. A unit idE^ => T is obtained
as composite

and a multiplication T^ => T as composite,

(BC)

T' = Ua,doUaJo = Ua^U.^^od'o

= Ua.onAdo o Ttor

= Ua^orr^idoomy
Ua £dX

S Ua. Um m* as ' : Ua, ô* = T.

(Where ' B C stands for Beck-Chevalley.)
(iii) If the fibration additionally has products {u* H Ylu) ^^en the above

monad T = JJ^ SQ has a right adjoint Yl^ 5*. By the Eilenberg-Moore The-
orem (see e.g. [188, V, 8, Theorems 1 and 2] or [36, II, Proposition 4.4.6])
this right adjoint is a comonad and its category of co-algebras is isomorphic
to the category of T-algebras. Hence internal diagrams can also be described
as CO-algebras of fl^ 5*.

434 Chapter 7: Internal category theory

What we are most interested in are internal diagrams that are parametrised
by an object / of the base category.

7.4.3. Definition. Consider an internal category C in the base category of
E

a fibration -^P. Let / be an object in B. An /-parametrised internal
diagram of type C in p is an internal diagram of type / x C in p, where /
is the discrete internal category associated with / , see Example 7.1.2 (ii).

More concretely, it is given by an object U G E/xCo together with a vertical
action morphism /i: (id x 9o)*(f/) —^ (id x 5i)*([/) over I x Ci, making some
diagrams commute (as in Definition 7.4.1).

E

7.4.4. Lemma. Let jrP be a fibration and C be an internal category in M,
Fam(C)

with externalization ^Pc . For an object / G B the following are essentially
the same.

(i) I-parametrised internal diagrams (of type C in p);
(ii) fibred functors F in

^ E

(iii) objects of the fibre over I of the 'exponent' fibration pc ^ P, described
in Exercise 1.10.6.

Proof. The correspondence between (i) and (ii) is obtained essentially as in
Remark 7.4.2 (i): given an /-parametrised internal diagram (f7,//) as above
one gets a fibred functor B / / Xi Fam(C) —)• E by

And conversely, given a fibred functor F as above, one takes

/xCo

U

In order to define the action /i, we notice that for i = 0,1, there is are isomor-

Section 7.4: Internal diagrams and completeness 435

/xCo

And also that we have a morphism inM/I XB Fam(C),

(id/xCi,7r')

^{idxdiYiU)

IxCi

/ Co

IxCi

/ Co

Hence, by applying F and using the appropriate isomorphisms, we obtain a
vertical action morphism fi: (id x doYiU) —^ (id x 5i)*(t/) over I x Ci.

The correspondence between (ii) and (iii) is immediate from the description
of the exponent fibration in Exercise 1.10.6. •

In a next step, these parametrised internal diagrams can be organised in a
fibred category.

E

7.4.5. Definition. Consider a fibration j^P with an internal category C in
IB. We form a category Er with

objects

morphisms

triples (/, U, ^) where {U, n) is an /-parametrised internal
diagram of type C in p.
(/, U, jj) —>• (J, V, v) are tuples {w, f) where w: I —^ J is a,
morphism in B and f:U-^VisBi morphism in E above
w X id: I X Co —>• J x Co for which there is a commuting
diagram,

(id X doTiU) ^ (id X (9o)*(\^)

(idx5i)*((7) (idx5 i)* (7)

in which the dashed arrows are the unique ones above
ii; X id: / X Ci ^ J X Ci, induced hy f:U -^ V.

Notice that in the notation E^ the role of the fibration p is left implicit. In
the literature one sometimes finds for an internal category C in B the notation
B^ for the fibre over 1 of the category of diagrams (B"^)^ in the codomain
fibration on B.

436 Chapter 7: Internal category theory

E

7.4.6. L e m m a . Let j^P and C be as in the previous definition.

(i) The category E ^ of internal diagrams is fibred over B via the projection
(I,U,fi)^L

(ii) There is a fibred diagonal functor A : E -> E ^ which maps an object
X E E, say over / G B, to the object TT*{X) G E/XCO together with the action

(id X ao)*7r*(X) — ^ ^ 7r*(X) —=-^ (id x a i)* (X) .

Proof, (i) For a morphism w: I -^ J in IB and an object (J,V,iy) in E ^
above J , take for U the reindexed object [w x id)*(l^) G E/xCo ? ^ind for /i the
following composite over / x C i .

(idx5o)*(C/)

1 (it; X id)*(z/)
(u; X id)*(id X 5o)*(l^) ^ (u; x id)*(id x ai)*(VO

(i d x 5 i) * ([/) .

(ii) Easy. •

We are finally in a position to say what limits with respect to internal
categories are. We shall do this in two stages (as in Section 1.9, see especially
Theorem 1.9.10) by first describing 'simple' limits, and taking ordinary limits
to be simple limits relativised to all slices of the base category.

7.4.7. Def in i t ion . Consider an internal category C in the base category of
E

a fibration iP .

(i) We say tha t this fibration p has s i m p l e l i m i t s of t y p e C if the fibred
diagonal functor A : E —> E^ has a fibred right adjoint.

(ii) And we say that p has all smal l l i m i t s in case for each object / G B
and for every internal category C in B / / , the localisation fibration /* (p) in

M/I

X i E ^ E

J P

dom/

has simple limits of type C.

Section 7.4-' Internal diagrams and completeness 437

Note tha t for split fibrations one can also have split (simple) limits. These
involve split adjunctions in the above definition. Here one uses tha t for a split
fibration, the fibration of diagrams is also split.

The main technical work is in the following result.

E

7.4.8. L e m m a . Assume j^P is a fibration with fibred equalisers and simple

products Y[(j J) (i e . products along Cartesian projections TT: I x J ^ I). Then

p has simple limits of type C, for every internal category C in B.

P roo f . For an / -parametr ised diagram consisting of an object U G E/xCo
with action p: (id x doY{U) —> (id x 5i)*(f/) , we have to construct an appro-
priate limit object L = l im(/ , U,p) E^i • Therefore consider the following two
maps (for i — 0 ,1) .

^},c.nii,co)iu)

(id xdiYie) I-
(id X diriTic, n(i,co)(u) —^— ^ (id X diYiu)

They give rise to two (vertical) maps

^lc.nii,Co)(U) ^ {id X d.nU),

the first one by taking 2 = 0 and composing with the action p, and the second
one directly for i = 1. By transposing these two, we get maps

n(i,co)(u)^^nii.cjidxdir(u)
and so we can construct L y-^ Y[(i c) (^) ^^ ^^^ equaliser of these (in the fibre
over /) . This yields an appropriate limit: for X E E/ transposition yields a
correspondence

X ^ n (/ ,Co) (^) equalising n (/ ,Co) (^) =^ Uii,c,)(^<^ x ^ i) * (^)

^ / ,Co(^) ^ ^ forming a map of diagrams A{X) -^ {U,p)

It may be interesting to note that the construction in this proof is essentially
the one used for ordinary categories, see [187, Diagram (1) on p. 109].

Finally, the main result can now be obtained without much difficulty.

7.4.9. T h e o r e m . A fibration with products Yl^ cine? fibred equalisers has all
small limits.

438 Chapter 7: Internal category theory

Proof. For a fibration p as in the theorem, each fibration /*(/>) has simple
products, by Theorem 1.9.10. Hence we are done by the previous lemma. •

We close this section by noting that for small fibrations p a converse of
this theorem can be established. Indeed, assume a fibration p — pj^ arising

Fam(D)
as externalization 4- of an internal category D in B, which has all small

.® . .

limits. In particular, it has simple limits, so each diagonal functor
Fam(D) \ A / Fam(D)^

i ^ ^
M J \ 1

has a (split) fibred right adjoint. Using Lemma 7.4.4 this means that each
fibred diagonal functor

PD ^ (pc => Pu)

has a (split) fibred right adjoint. But this corresponds to the statement that
each internal diagonal functor

A
D ^ D ^

has an internal right adjoint. This yields that D has

an internal terminal object: take C = 0
internal binary products: take C = 2 = (• •)
internal equalisers: take C = (• ^ •)

Fam(D)

In order to show that the fibration ^PD also has products Hu^ î suflfices
by Theorem 1.9.10 to show that each fibration

/Fam(r(D))\
'•(PD)=(.J, j

has simple products. Therefore it suffices to show that for each object (or
family) u G B / / the diagonal functor

r (D) — ^ (/*(D))^

has an internal right adjoint—where u is the discrete category associated with
Fam(D)

the object u in B / / . But this holds because i has all small limits. Thus
we have the following result.

Section 7.^; Internal diagrams and completeness 439

F a m (D)
7.4 .10. T h e o r e m . A small fibration i has all small limits if and only

M

if it is a complete fibration. D
There is a s tandard result (due to Freyd, see Fact 8.3.3 later on) saying

that there are no (ordinary) categories which are both small and complete.
In contrast, fibred categories which are both small and complete do exist:
(the externalisation of) P E R in cj-Sets is an example, see Lemma 1.9.6 and
Example 1.8.3 (v). It will provide a model for various typed calculi later on.

For a small complete category C in a universe B there are various pleasant
properties which are lacking for ordinary categories. For example, complete-
ness automatically yields cocompleteness, see [143, 255], which in S e t s only
holds for posets. In what is called "synthetic domain theory" one tries to ex-
ploit such properties to obtain a smooth theory of domains within universes
other than S e t s (especially toposes), see for example [144, 331, 260]. In these
more general universes one treats domains and continuous functions simply as
sets and ordinary functions (following ideas of D. Scott) . This should make it
easier to describe models of term (or program) languages with various kinds
of fixed points.

Exercises

7.4.1. Describe the fibred functor Fam(C) -^ Sets"*" corresponding to a presheaf
Sets"^

C -^ Sets, considered as an internal diagram in ^
Sets

7.4.2. Consider an internal category C in a base category B with finite limits. De-
s(l)

scribe an internal diagram of type C in the simple fibration i on B, and
IB

compare it with an internal diagram in the codomain fibration i on
B. Check that if C is an internal monoid [i.e. if Co is terminal object), then
there is no diff'erence between diagrams of type C in the simple fibration
and in the codomain fibration.

E
7.4.3. Consider internal diagrams {U^pt) and (V, t/) of type C in a fibration

B

as described in Definition 7.4.1. A morphism f:(U,p) —)• (V,/3) of such
internal diagrams (as defined in [189]) is a vertical map f:U-^V making
the following diagram commute.

d'oiu) ^ d'o(V)

^1 (/ ;

440 Chapter 7: Internal category theory

Notice that such morphisms of internal diagrams are in fact morphisms in
the fibre over the terminal object 1 G B of the category E of internal
diagrams as above.
Show that the resulting category of internal diagrams is equivalent to the
category of fibred functors Fam(C) -> E and vertical natural transforma-
tions between them.

7.4.4. Show that a fibration p has simple limits of type C if and only if the diagonal
functor A:p -^ (pc ^ p) has a fibred right adjoint. This diagonal maps an
object X G E, say over / G B, to the functor A{X):M/I x^ Fam(C) -^ E
given by

/'
vv;^' |^.*(x)GE,,.

7.4.5. Check that if -̂ has fibred (finite) limits, then so has a fibration -̂ of
internal diagrams.

7.4.6. Let C be an internal category in B.
/ Ci \

(i) Prove that the family I iiOo^Ol) I carries a "Hom" action for
I CQXCO I

a diagram of type C^^ x C in ĵ;
IB

(ii) Show that the resulting fibred "Yoneda" functor

Fam(C) ^ (B ^) ^ ^ ^

is full and faithful.

Chapter 8

Polymorphic type theory

Types in simple type theory (STT) are built up from atomic types using type
constructors like —>, x , 1 or + , 0 , as described in Chapter 2. In polymorphic
type theory (PTT) one may also use type variables a, /?, 7 . . . to build types.
This is the main innovation in P T T ; it gives rise to an extra level of indexing:
not only by term variables (as in STT) but also by type variables. This forms
the topic of the present chapter.

We distinguish three versions of polymorphic type theory, called first order
P T T A-)-, second order P T T A2, and higher order P T T XLO, We informally
describe the differences: in f i rs t o r d e r p o l y m o r p h i c t y p e t h e o r y A—>• there
is an identity function

Xx: a. x: a —> a

where a is a type variable. It yields by substi tuting a specific type a for a,
the identity function

Xx: cr. x: cr —>• cr

on a. In s e c o n d o r d e r p o l y m o r p h i c t y p e t h e o r y (denoted by A2) one
may abstract type variables, as in:

/ = Xa: Type. Xx: a. x : Ua: Type, (a -> a).

We then get the identity on a type a by application (and /?-reduction):

la — Xx: a. x:(T -^ a.

Similarly, one can have a polymorphic conditional term,

if: H a : Type, (bool x a x a) —> a

441

442 Chapter 8: Polymorphic type theory

which can be instantiated to a specific type a by application ifcr. Notice
that such polymorphic product IlaiType. cr(Qf) is impredicative: it involves
quantification over all types, and in particular over the product type itself.
This impredicativity makes second (and higher) order PTT very powerful, but
it introduces various (semantical) complications.

There is one further system, namely higher order polymorphic type
theory Xuj in which one can form finite products and exponents of 'kinds'
like Type (and quantify over all of these). Then one can form terms like

Aa:Type -> Type. A/?: Type, a/? —> /?: (Type —)• Type) -> (Type -> Type).

Such polymorphic type theories were first introduced by Girard in [95] for
proof theoretic purposes, and independently by Reynolds in [285] with motiva-
tion stemming from computer science. In computing it is not practical to have,
for example, a sorting algorithm for natural numbers and also one for strings
efc, but instead, one would like to have an algorithm which is parametric, in
the sense of Strachey: it should work uniformly for an arbitrary type with an
arbitrary (linear) order on it. One turns such a parametric algorithm into a
specific one (which works on natural numbers or strings) by suitably instan-
tiating it—by substitution or application, as for the identity cr —)• cr above,
see [44, 228] for more details. This parametricity puts a certain uniformity
restriction on the indexing by type variables a in terms (M(a):cr(a))^.j .

The functional programming language ML (see [224, 223]) is loosely based
on the first order polymorphic lambda calculus A-^ (and so is the type theory
of the proof assistant ISABELLE [250]). But there are some subtle difi'erences,
as will be explained in Section 8.2. There is also a higher order functional
programming language QUEST, see [43] and the references there for more in-
formation, which is based on Xu).

The names A-> 'lambda-arrow', A2 'lambda-two' and Au; 'lambda-omega'
come from Barendregt [14]. However, the calculi as described there are not
precisely as we use them: here they are described on top of a so-called 'poly-
morphic signature'. Further, we standardly consider them with finite product
types (and kinds for Au;) and with sums E. Equality however, is an additional
feature. In contrast, only the 'minimal' systems (with only -^ and 11) are
considered in [14].

Our treatment of the syntax of polymorphic type theory will concentrate on
the essentials, and, for example, Curch-Rosser (CR) and Strong Normalisa-
tion (SN) properties will not form part of it. Actually, CR is straightforward,
but SN is non-trivial for (minimal versions of) second and higher order poly-
morphic type theory. CN was first proved by Girard in [94], using so-called
candidats de reducibilite (also called saturated sets, see [300]). Girard's proof
can be simplified by erasing types, see [325, 225]. It is presented via a (modi-

Section 8.0: Polymorphic type theory 443

fied) realisability interpretation in [147].
The fibred categories needed to model polymorphic type theories are essen-

tially as for (higher order) predicate logics, except tha t the fibres need not be
preordered (as in Chapters 3, 4, 5). This extra structure is used to accommo-
date for terms inhabiting types, or, under a propositions-as-types reading, for
proof-objects inhabiting propositions. These proof-objects give rise to non-
trivial morphisms in the fibres, by considering proofs rather than provability.
In the language of internal categories one can say tha t for P T T we do not use
internal preorders (as for predicate logics), but proper internal categories.

The chapter starts with the syntactic aspects of polymorphic type theo-
ries: in the first section we describe how specific calculi can be defined on
top of a polymorphic signature—giving atomic types and kinds with function
symbols—and we establish their relation to predicate logics, via propositions-
as-types. The subsequent section is about actual use of especially the second
order polymorphic calculus in encoding inductively and co-inductively defined
types, and data-types with encapsulation. The semantic study starts in the
third Section 8.3 with a naive set theoretic approach. It turns out to work
only for first order polymorphic type theory, but it is illuminating as a start-
ing point, because it gives a clear picture of the double forms of indexing in
PTT—via term variables and via type variables. Also, it will be used to explain
the famous negative result of Reynolds [287, 288], stating that there are no
set-theoretic models of (impredicative) polymorphic products H a : Type. cr(a).
We analyse this result along the lines of P i t t s [269], and see that in higher
order logic there cannot be an embedding Prop -̂̂ cr of propositions into a
type cr of a polymorphic calculus. This rules out set-theoretic models—except
trivial ones, since in a set theoretic model Prop is {0 ,1} . But we shall see
tha t for PERs R in a;-Sets and in EfF there are indeed no such inclusions
Prop ^ R—iov Prop ^ V2 in u;-Sets and Prop = P N in EfF. In the fourth
section we present the general definitions of fibred categories corresponding to
the three versions A ^ , A2 and Aa; of P T T . Attention is devoted in particular to
examples involving PERs indexed over sets, over a;-sets, and over objects of the
effective topos EfF. But also to a P E R model which is relationally parametric
(in the sense of [286]). In the fifth section we concentrate on two constructions
to turn fibred categories for P T T into internal categories for P T T . And in the
last and sixth section we describe how one can have "logic over P T T " in a
way similar to how predicate logic is a "logic over S T T " . We will use such a
logic in a categorical description of relational parametricity (as in [204, 293]).
This relational parametricity was originally introduced by Reynolds in an at-
tempt to circumvent the abovementioned problems with set theoretic models
of second order P T T . The hope was tha t restriction to a certain class of "para-
metric" functions would allow the existence of set theoretic models—^just like

444 Chapter 8: Polymorphic type theory

there are no set theoretic models X = X^ of the untyped A-calculus (for car-
dinality reasons), but restriction to continuous functions does yield examples
of solutions X. This plan was later abandoned by Reynolds. But relational
parametricity survived as a notion because it turned out to be important as
a criterion for "good models", in which various syntactically definable opera-
tions satisfy the appropriate universal properties, and in which polymorphic
maps are automatically "natural" , see [340, 11, 273, 118] (or Exercises 8.4.5
and 8.4.6 below). But see also [237] for other applications of parametricity.

The literature on (the semantics of) polymorphic type theory is extensive.
We mention [38, 226] for set theoretic notions of model, and [307, 268, 56, 37]
for category theoretic (indexed and internal) notions. An easy going introduc-
tion to the indexed models is [61]. Translations between the set theoretic and
the indexed notions may be found in [220, 155], and between the indexed and
internal notions in [268, 8]. References about parametricity in models (besides
the above ones) may be found in Remark 8.6.4 (v).

8.1 Syntax

In simple type theory (STT) we used an infinite set of term variables

Var — {i^i,t'2,^^3, • • •}•

In polymorphic type theory (PTT) we will additionally use an infinite set of
type variables

TypeVar = { a i , a 2 , a 3 , . . . } .

Jus t like we sometimes used a?,y, z , . . . for term variables, we shall be using
a, /?, 7 , . . . for type variables.

In S T T there are types o-:Type and terms M: a inhabiting such types, but
in P T T the situation is more complicated: there are types criType and terms
M: a inhabiting types, but also what are often called kinds A\ Kind and terms
M : A inhabiting these kinds. This gives a picture with two simple type theories
(with Type and with Kind), but on different levels. However, these levels are
connected, since the types cr:Type occur as terms of the distinguished kind
Type: Kind. This is like in higher order logic where propositions (p\ Prop are
terms of the type Prop: Type. Indeed, there is a close correspondence between
these polymorphic type theories and higher order predicate logics. It will be
described as a propositions-as-types analogy below, in which inhabitants of
types will appear as proofs of the corresponding propositions. In the type
theories A-^ and A2 the only (atomic) kind is Type, but in Aa; one may have
more kinds (and form finite products and exponents of these). Thus A ^ and
A2 are 'single-kinded', whereas Aa; is 'many-kinded' .

Section 8.1: Syntax 445

As in simple type theory, a specific polymorphic calculus is built on top
of a suitable signature—called "polymorphic" signature in this context—
describing the atomic ingredients of the calculus. Although these polymorphic
signatures are the appropriate starting point for a completely formal presen-
tation, we postpone their definition and introduce the rules of P T T first. It
is better, we think, first to get acquainted with the systems, since these poly-
morphic signatures are somewhat complicated (two-level) structures.

First we are going to set up a calculus of kinds, types and terms. We shall
write

H = (a i : v 4 i , . . . , a „ : y l n) and V - [xi:ai,... ,Xm'(Tm)

for k ind c o n t e x t H and t y p e c o n t e x t F. A well-formed term M : r with free
type variables a i : y l i , . . . , a „ : Afi and free term variables xi'.ci^..., Xfji'. Cm
takes the form

ai\ Ai, .. ., an: An \ xi: (Ti,.. ., Xm- (^m I- M : r

where the sign ' | ' works as a separator between the kind context and the type
context—^just as in predicate logic, where it separates the type context and
the proposition context there, see Section 3.1. In such a sequent it is assumed
tha t the ai and r are well-formed types in kind context ai\ Ai^... ,an'^ An,
which we shall write in explicit form as

ai\Ai,...,an:An f- cr,:Type.

We sometimes write cr(a) instead of a in order to see the free type variables
a in a type a explicit. Similarly, we also write M (a , x) to make both the type
and term variables a and x explicit in a term M .

Here are two examples of terms:

a: Type | / : a —> a, x: a h f{f{x)): a (3: Type | x: /? h If3x: /?,

where in the latter case / is the polymorphic identity Aa: Type. Ax: a . a: :
H a : Type, (a —> a) .

Substitution of terms inhabiting kinds for variables of appropriate kinds
will provide indexed categorical structure. This will be described in more
detail later, and at this stage we only suggest how this works. Suppose for
a kind context ^ = (ofi: Ai,..., ctn- -^n

) we have terms inhabiting the kinds
B i , . . . , 5 ^ in S, say

H h cTi: JBI, • • • E \- am'- Bm•

Then we can transfer types and terms in kind context (/?i: 5 i , . . . , firn • ^m) to
types and terms in context S by substituting c r i , . . . , cr^ for / ? i , . . . , / ?^ . This
is done by

r (^) H^ T[al^] and M(/?, x) ^ M[cr/0, x].

446 Chapter 8: Polymorphic type theory

We have prepared the grounds so that we can describe the rules of the three
polymorphic type theories A—)-, A2 and ACJ. For the first two systems, A ^ and
A2, we require Type to be the sole kind, so that there are no rules for kind
formation except the axiom

h Type: Kind.

This is the type theoretic analogue of the higher order axiom h Prop: Type in
higher order predicate logic. Categorically, the PTT axiom h Type: Kind will
be captured by a generic object, which gives a correspondence between types
a\A \- cr:Type over A: Kind and "classifying" maps a: A -^ Type between
kinds.

First order polymorphic type theory A—>

In the system A-^ of first order PTT we use finite product types (1, x) and
exponent types -^ in every kind context S = (a i :Type, . . . , a„:Type). The
rules for these type constructors are

S h cr: Type H h r: Type E! h cr: Type E! h r: Type

S h i : Type S h cr x r: Type E h a -^ r: Type

plus the rules for finite tuples and projections, and abstraction and applica-
tion terms. These are as in STT, see Section 2.3, except that the extra kind
contexts are written. For example, the rules for abstraction and application
are (essentially) the STT-rules:

E\T,x:a h M:T E\T h M:a-^T E: | rf-Ar:cr

E\T \- Xx:a.M:a~^r E\T h MN: r

with conversions as in STT. Basically, A—> is Alx with type variables.

Second order polymorphic type theory A2

Our second system A2 of PTT has new type constructors: products 11 and
sums S for forming (second order) product types Ha: Type, a and sum types
Ea:Type.<7, which bind the type variable ct:Type in a. These products and
sums thus have formation rules:

E, a: Type h a: Type S, a: Type h a: Type

E h Ha: Type, cr: Type E h Ea: Type, cr: Type

Associated with these new types there are rules for introducing new terms:
they allow us to abstract over types via polymorphic functions Aa:Type. M,
and to form polymorphic tuples (r, M) where r is a type and M is a term

Section 8.1: Syntax 447

of type a[T/a\. The use of these new terms is illustrated in the next section.
Here we merely present the rules. The introduction rules for H and E are:

H, a : Type | T h M:cr
(a not in F)

[a not in T, p)

S I r h \a\ Type. M: H a : Type, a

H h r : Type S | T h M : cr[r/a]

S I r h (r , M) : E a : T y p e . c r

An the elimination rules are:

S I r h M : n a : T y p e . cr H h r :Type

S I r h Mr:a[T/a\

S h /?: Type E, a: Type | F, x: cr \- N: p

H I F, z: E a : Type, cr h unpack z as (a , a?) in N: p

In the term unpack 2: as (o:, x) in TV in the latter rule, the type and term vari-
able a and x m N become bound. They are linked, as a tuple, to z in A .̂
Possible alternatives for this "unpack" notation use "let" and "where" as in:

let (a , x) :— z in iV, Awhere (a , x) :~ z

The associated conversions are

(Aa: Type. M) r = M[T/a\ {(3)

Aa: Type. M a = M [T])

unpack (r , M) as (c^,ar) in A = N[r/a,M/x] (/?)

unpack M as (a , x) in iV[(a,x)/2:] = N[M/z] (77)

To be more precise, with explicit contexts, types and restrictions, these con-
versions read as follows.

E, a\ Type | F h M\ cr H h r : Type
(a not in F)

E: I F h (Aa: Type. M) r = M[r/a\. a[T/a]

E I F h M : n a : T y p e . c r

E I F h Aa: Type. M a = M : H a : Type, cr

E h r : Type E | F h M : (T[r/a] E, a: Type \T,x\a [- N:p

E I F h (unpack {T,M) as {a,x) in N) - N[T/a,M/x]:p

E I F h M : S a : Type, cr E | F, z: E a : Type, a \- N\p

E I F h (unpack M as {a,x) in 7V[(a, ar)/z]) = N[M/z\:p

(a ^ F , / >)

448 Chapter 8: Polymorphic type theory

Higher order polymorphic type theory Xuj

In our final system XLJ the requirement that Type is the only kind is dropped: in
XUJ one can have more atomic kinds A: Kind than just Type. Additionally, there
are rules for forming finite products and exponents of kinds. Thus one can form
1: Kind, A x B: Kind and A-^ B: Kind, for A, B: Kind, regulated by the STT-
rules for (1, X, —>•) as in Section 2.3. The calculus XUJ has all features of A2 with
(higher order) polymorphic products and sums Ua: A. a and Ea: A. a over all
kinds A\ Kind (and not just over Type: Kind). Since this gives us conversions
for inhabitants of kinds A: Kind, we have in particular conversions for types
a: Type. This calls for a rule which tells that type-inhabitation is stable under
conversion:

conversion
r l-M:cr r h cr = r: Type

r h M : r
This rule forms part of higher order polymorphic type theory XUJ.

We summarise the type and kind constructors in the following table.

P T T

A->

A2

Aa;

1 kinds

Type

Type

Type,

\,AxB,A-^B

types

1, 0- X r, (7 —> r

1, (7 X r, cr —)• r,

Ila: Type, cr, Da: Type, a

1, (7 X r, cr ^ r,
lia.A.a, T^a:A.a

As we mentioned in the beginning, the proper starting point for a specific
polymorphic calculus is a polymorphic signature, containing basic kinds and
types together with function symbols for these. Such a polymorphic signature
consists of two connected levels of ordinary signatures. It involves a combina-
tion of the higher order signatures used in higher order logic, and the ordinary
signatures used in simple type theory.

Here is an example of what we may wish to specify in a polymorphic sig-
nature for a first or second order calculus. Remember that there are no kinds
other than Type (for first and second order), so there are only function symbols
in a kind signature:

List: Type —> Type, Tree: Type, Type —> Type.

Section 8.1: Syntax 449

These may come with function symbols in type signatures:

nil: 0 —> List(a), cons: a, List(a) —> List(a).

involving a type variable a : Type. And for trees one may wish to have function
symbols

nil: 0 —> Tree(a,/?), node: a, Tree(a,/?), Tree(a,/?),/? —> Tree(a,/?).

involving two type variables a, j3: Type. In general, one may have such a signa-
ture of function symbols between types for every sequence a of type variables,
i.e. for every kind context. Here is the general notion to capture such struc-
tures.

8 . 1 . 1 . D e f i n i t i o n , (i) A p o l y m o r p h i c s i g n a t u r e consists of

(1) a higher order signature E; we call the elements of the underlying
set K — |E | (a t o m i c) k i n d s and write Type for the base point in |E | , see
Definition 5.1.1.

(2) a collection of signatures {Tia)aeK* where for each sequence of kinds
a — {Ai,...,An) E /i"^, the underlying set |Ea| of types of the signature
Efl is the set of E-terms a i : A i , . . . , a „ : An \~ cr: Type that can be built with
the kind signature from (1). Elements of this set |Ea| will therefore be called
t y p e s with free type variables ai: Ai,... ,an-An-

In such a polymorphic signature (E, (Ea)) we shall refer to E as the k i n d
s i g n a t u r e and to E^ as the t y p e s i g n a t u r e o v e r a G lEl"*".

(ii) For the first and second order polymorphic calculi A ^ and A2 one
restricts oneself to polymorphic signatures (E, (Ea)) where the kind signature
E is single-typed—or better, single-kinded; tha t is, the underlying set |E | is
{Type}. The type signatures are then of the form (E„)nGN (as in the above
example).

A specific polymorphic calculus may now be written as A<)(iS) where ()• is
—>, 2 or cj, and 5 = (E, (E^)) is an appropriate polymorphic signature.

Equality in polymorphic type theory

One can also extend these polymorphic A-calculi with e q u a l i t y t y p e s
Eq^(cr, r) : Type for cr, r : yl where A: Kind. Inhabitat ion of such a type Eq^((j , r)
is intended to mean tha t a and r are equal terms of kind A. This is like inter-
nal equality in equational logic or in predicate logic. Such equality types only
really make sense for the higher order calculus Au;, because only Au; involves
a non-trivial subcalculus of terms for kinds. However, equality types can also
be added to the calculi A ^ and A2—in which case the only kind is Type. We

450 Chapter 8: Polymorphic type theory

shall write A—>=, A2= and Aa;= for the calculi A—>, A2 and Xuj extended with
the following rules for equality types.

H h c r : ^ Z \- T\A Z V- (T\A

E h Eq^i {(T,T): Type S | 0 h r̂ i (cr): Eq^ (cr, a)

2 , a: A,f3:A\- p: Type E,a:A\ T[a/f3] h N: p[a/f3]

E, a: A, 13: A \ T, 2:: Eq^(a , /?) h N with (3 = a y\3 z: p

with (/?)- and (77)-conversions:

E,a:A\T[a/f3] hN:p[a//3]

E,a:A\ T[a/(3] h (TV with a = a via r^ (a)) = N:p[a/(3]

E, a: A, (3: Ah p: Type S, a: A,(3:A\ T, z: Eq(a , /?) h L: p

E,a:A,(3:A\ r , z : E q (a , / ?) h (L[a//?, u (a) / z)] with (3 = a \/\a z) = L: p

In the above introduction rule there is a proof-term r = r^ (a-) for reflexivity
of equality on A, for cr: 74. Often we omit the A and cr when they clear from the
context. In the next lemma we show that similar proof-terms for symmetry,
transitivity and replacement are definable.

8 .1 .2 . L e m m a . There are proof-terms

a,f3:A\x:EqA{a,^) h s (x) :Eq^(/ ? , a)

a , /? ,7 :y l | x :EqA(a , / ?) , y :Eq^ (/ ? , 7) h t (x, y): E q ^ (a , 7)

S I r ,ar :Eq^(cr ,r) ,y: /?[cr /a] h rep{x,y): p[T/a]

yielding combinators for symmetry, transitivity and replacement for the poly-
morphic equality type Eq. Moreover, types indexed by equal type variables are
equal: there is a proof-term

a,(3: A \ x : E q ^ (a , / ?) h \{x):Eqjy^Ma/y], p[(3/j]).

P r o o f . A proof-term for symmetry is obtained in:

a,p:A h E q ^ (a , / ?) : T y p e a : A | 0 h r ^ (a) : Eq^(/?, a)[a/ /?]

a: A, (3: A \ X:EC\A{(^,P) ~̂ ^A{OC) with ^ - a via z: Eq^(/?, ĉ)

And for transitivity in:

Qf,/?,7:A h E q ^ (a , 7) : T y p e

a,f3:A\x:EqA{ci,(3) h :r: Eq^(a ,7) [/? /7]

a , / ? , 7 : A I a: :Eq^(a, /?) ,2/:Eq^(/?,7) \- x with 7 = / ? via t/:EqA(Qf,7)

Section 8.1: Syntax 451

For replacement, consider the following instantiation of the elimination rule.

E,a,(3:A h p [^ / a] : Type E,a:A\x:p \- x: p[(3/a][a/p]

E, a, (3: A \ x: p, y: Eq^(a , /?) h x with /? = a via y: p[l3/a]

By substi tut ing [a/a^r/jS] we obtain a term rep{x,y) = â with r =
a via y: p[T/a] as required. Finally, to see tha t equal index variables yield
equal indexed types, consider for E,j:A h p: Type the following instance of
the equality elimination rule.

S , a : A I 0 h rTypeW/7]):EqType(/>[c^/7],/>[/^/7])K/^]

E,a:A,f3:A \ x:EqA{ct,p)

I- nype{pW/l]) with P = a\/\a x: Eqjy^^ipla/'y], p[f3/-f]) n

Propositions as types

In the beginning of the section we spoke of a formal similarity between pred-
icate logic (as in Chapter 4) and polymorphic type theory. This takes the
form of a propositions-as-types correspondence, like in Section 2.3 between
propositional logic and simple type theory:

predicate logic polymorphic type theory

propositions as types

types as kinds

Indeed, one can view a type a in predicate logic as a kind a in polymor-
phic type theory and a proposition (̂ as a type (p. Under this translation
the propositional connectives T , A , D become the type constructors 1, x , ^ ,
and the quantifiers Vx: a. (p, 3x:a.(p become the polymorphic product and sum
Ha: a. (p. Da : a. (p. At the level of kinds we take Prop = Type, Type = Kind, and
the type constructors 1, x , -^ in predicate logic become the kind constructors
1, X, ^ in polymorphic type theory. Then one can prove tha t

Xi\ai,...,Xn'an I V ? l , . . . , V ^ m J" V̂

is derivable in higher order predicate logic
(*) if and only if

there is a term a i : 5 i , . . . a ^ i ^ n | z i : <^ i , . . . , Zm'-^m H M : ^ in XUJ—

This establishes a typical propositions-as-types relation between provability
in logic and inhabitat ion in type theory.

452 Chapter 8: Polymorphic type theory

For example, consider the proposition

{3x\ a.(p Alp) D [3x: a. (p) A {3x: a. ip)

together with its translation into type theory:

[T^x'.a.ip X -0) ^ [T,x:a.(p) x {T>x:d.ip).

Obviously, the proposition is derivable: take an x:a with (p Atp. Then this
same x can be used to establish (p, and also to establish ip. This proof outline
is recognisable in the following term, inhabiting the translated proposition:

Xz: (Ear: ? . <̂ A -0). unpack z as {x, y) in ((a:. Try), (x, TT'?/)).

A few remarks are in order about the details of the propositions-as-types
correspondence (*).

(1) One can prove the correspondence by annotat ing the rules for predicate
logic in Figure 4.1 with appropriate proof-terms. For example, the deduction
step in logic

Xi\(Ti,...,Xn-<Tn^y'r\ipi,...,(prn ^ ^ ^
[y not m (p)

Xi: (Ti, . . . ,Xn\ (Tn \ ^1, • - ' ,^m \-\fy:T.tp

becomes in type theory

f3:T \ zi:^i,...,Zm:^m \-Miip

ai:ai,. . .an-.o-n \ zi'.pi,.. .,Zm''Pm I- XP:T.M:Uf3:T.jp - "iy.T.^l)

Since we have not standardly included rules for finite coproduct types (+ , 0) in
our polymorphic calculi, we have to restrict ourselves to the fragment of higher
order predicate logic without disjunctions. Of course, such finite coproduct
types can be added in P T T as well, following the description in Section 2.3.

Lemma 8.1.2 gives proof-terms for the equality rules of predicate logic in
Figure 4 .1 . In P T T we do not have the extensionality of entailment rule
(see Section 5.1). So the above propositions-as-types correspondence involves
higher order predicate logic without extensionality of entailment.

(2) A higher order predicate logic is built on top of a higher order signature
plus a number of axioms. Due to the way that we have defined polymorphic
signatures, these axioms can be translated into a polymorphic signature only
if they involve solely predicates and no connectives. For each such an axiom

x:a\Pi{x),...,Pm[x) \-Pm+i{x)

one postulates a function symbol

F: Pi,.. .,Pm —> Pm+i

in the type signature over (? i , . . . , ?n)- This function symbol serves as 'atomic
proof t e rm ' for the axiom.

Section 8.1: Syntax 453

In order to accommodate for all axioms—and not just these restricted
ones—we should adapt the notion of polymorphic signature in such a way
that it can also have function symbols between composite kinds and types
involving ^ , x , 1 and 11, E, ->, x , 1, Eq.

(3) There is a border case of this propositions-as-types correspondence
which should be mentioned separately. Propositional logic can be seen as a
degenerated form of predicate logic in which all predicates are closed [i.e. do
not contain free term variables and are thus merely propositions). This means
that higher order logic without atomic predicate symbols (and without equa-
tions) is higher order propositional logic. If one further restricts oneself in logic
to second order quantification only {i.e. of the form Va: Prop, (p) then one can
get a correspondence between derivability in this logic and inhabitation in
"pure" second order polymorphic calculus A2(0) on the empty signature. This
correspondence occurs in [14].

Exercises

8.1.1. Show that in A2 one can assign the type Ua: Type. (11/3: Type. /3) ->• cr to the
self-application term Xx.xx.

8.1.2. Write down how substitution, both in type variables and in term variables,
distributes properly over the type constructors n , I] ,Eq .

8.1.3. Prove the 'mate' versions of the rules for U and E. That is, assume a is
not in r , p below and establish bijective correspondences between terms M
and Â in

E,a:A\r \- M:(T E,a: A\r,x:a \- M: p

E\r \- N:Ua:A.a E\ T,z:Ea:A.(T h TV: p

This shows that Ha: A.— and Ea:.4. — are right and left adjoints to the
weakening functor which adds an extra variable aiAtoE. h p: Type.

8.1.4. Formulate and derive a similar mate version for equality.
8.1.5. (i) In A2 (and in Aa;) a sum type Eci is definable in terms of 11 and -^:

for E, a: Type h a: Type, put

def
EdO'-Type. cr = 11/3: Type. (Ha: Type. <T—)•/3)->/3

Establish that there are introduction and elimination rules for Ê ^ as
for E, but that only the (/3)-conversion rule holds,

(ii) Show that likewise finite product and coproduct types are definable:

Id = Ha: Type, (a - > a)

Od = na :Type .a

cr Xd T = na:Type. (or ^ r —>• a) —)• a
def

(T-^^T = Ila:Type.{(T-^ a)-^ {T ^ a)-^ a

454 Chapter 8: Polymorphic type theory

[These definitions are the type theoretic versions of the ones we already
saw in higher order logic, see Example 5.1.5. If one is interested in
(/3)-conversions only, these translations show that it is sufficient to re-
strict oneself to versions of A2 and Au; with only -^ and 11, as is done
for example in [14]. But the (r7)-conversion does not hold, since the
type EdCtiType. cr contains "junk": e.g. for (T = a it contains the term
A/9: Type. A/: I la: Type, (a -^ fi). f{l3 -> l3){Xx:j3. x), which is not (convert-
ible to) a pair.]

8.1.6. Along the same fines, describe the rules for Leibniz equafity in Aa;, see
Example 5.1.5. (Here one needs the conversion rule of Xto. And the "non-
Frobenius" version of equality—with type contexts T instead of T[a//3]
in the elimination rule—is obtained. But using arrow types one gets the
Frobenius version, as above.)

8.1.7. Show that the (77)-conversion unpack M as {a,x) in N[{a,x)/z] = N[M/z]
for the polymorphic sum E is equivalent to the combination of the following
two conversions, called (commutation) and [r]').

L[(unpack M as (a,x) in N)/z] = unpack M as {a,x) in L[N/z]

unpack {a,x) as {a,x) in M = M.

[Non-extensional polymorphic sums (as described by 'semi-adjunctions',
see [155]) satisfy the commutation conversion, but not [r]'). The above
definable sums E^ in Exercise 8.1.5 are even weaker: they do not satisfy
(commutation).]

8.1.8. Consider the proof-terms in Lemma 8.1.2. Show that there are conversions:

a: A,P:A\ z: Eq^(a , f3) h t{z, rA{fi)) = z: Eq(a, f3)

a: A,/3:A\ z: Eq^(a , /9) h t(r^(a) , z) = z: Eq(a, /3).

8.1.9. Prove the propositions-as-types correspondence relating provability in
higher order logic and inhabitation in higher order polymorphic A-calculus
\uj= (under the restrictions as mentioned in (1), (2) above).

8.1.10. In Section 2.3 it was shown how (/9)- and (r7)-conversions correspond un-
der the propositions-as-types reading to certain identifications on deriva-
tions.
(i) Write down similar identifications involving polymorphic product 11

and sum E.
(ii) Do the same for equality Eq.

8.1.11. Define an appropriate notion of 'morphism of polymorphic signatures'.

8.2 Use of polymorphic type theory

In this section we briefly discuss three aspects of the use of polymorphic type
theory, namely:

• the polymorphic type system of the functional programming language ML;

Section 8.2: Use of polymorphic type theory 455

• encoding of inductively and co-inductively defined types in second order
polymorphic type theory A2;

• encoding of abstract types and of classes (as in object-oriented program-
ming) in A2, by encapsulation via sum types S .

ML-style polymorphism

As already mentioned briefly in the introduction to this chapter, the type
system of the functional programming language ML is loosely based on first
order polymorphic type theory X^, see [223, 224, 251, 108, 228]. But there
are certain difl'erences between the type systems.

(1) ML is a calculus which is implicitly—and not explicitly—typed (like
the calculi in this book). In the terminology of [14], ML has typing a la Curry,
whereas here we consider typing a la Church. This means tha t ML-terms are
essentially untyped terms, to which one can assign types 'on the outside' .
These types however, are not part of the syntax of terms. This diff'erence will
not be emphasised here.

(2) In ML one distinguishes types and type schemes. The types are our
A—)--types (if we forget about inductively defined types for a moment) , and
the type schemes are of the form

lid: Type, a

where cr is a type and a is a sequence of type variables. Hence one does have
Il-quantifiers inside these type schemes, but only on the outside. There is an
instantiation rule as in A2: if a term M is of type scheme Ha: Type, a, then M
has type cr[r/a] for every type r . Notice tha t one can instantiate with types,
but not with type schemes, because tha t would lead to quantifiers inside. This
is called "ML-style polymorphism".

The crucial diff'erence in the way tha t types and type schemes are used is
tha t term variables of types may be bound by A whereas variables of type
schemes may be bound by let only. We consider two examples. First, assume
a polymorphic term leni l la iType. (Ilst(a) -> N) which gives the length of a
list. Then one can derive the type

list(/?) ^ list(7) ^ N

for the (untyped) term

\x.Xy.\i\en{x) < 100 then \en{y) else 100

Notice that one needs to instantiate the type of len twice for this type assign-
ment: once with /? and once with 7. The above mechanism with 11's on the
outside takes care of this. And the abstractions Xx and Xy are over types: in

456 Chapter 8: Polymorphic type theory

the first case, x has type list(/?) and in the second case, y is of type list(7).
But note that if we wish to A-abstract len in this term as in

\f.\x.\y.\i {fx) < 100 then {fy) else 100,

then we cannot use a Il-type for / . However, for this term we can derive the
(less general) type

(a -^ N) -> a -> a ^ N.

Or, by abstracting a,

riofiType. (a ^ N) -^ a ^ a -> N.

Secondly, one makes essential use of type schemes in typing the term

let / = Xx. X in / / .

One can type / with the type scheme D a : Type, {a ^ a). The first / in the
self-application / / can then be instantiated with [{a -^ o-)/a] and the second
one with [cr/a].

This use of let is characteristic of what is sometimes called "ML-style" or
"let" polymorphism. It is quite successful because there are algorithms which
produce appropriate ML-types for untyped terms, see e.g. [222, 68]. A semantic
study of ML (in realisability toposes) can be found in [265, 198].

Encoding of inductively and co-inductively defined data types

The standard encoding of the natural numbers N in the untyped A-calculus
uses the so-called Church numerals, see [13]. These encoded numerals are the
terms c^ = Xfx. f^^^x for n E N. In A2 all these terms can be typed with type

Nat = Ua: Type, {a —^ a) —^ a ^ a.

It turns out that Nat comes with zero and successor terms

zero = Xa:Jype. Xf:a ^ a. Xx:a.x : Nat

SUGG = Az: Nat. AarType. A/: a - > a. Ax: Q; . / (2 : a / a :) : Nat ^ Nat

which form a "weak" natural numbers object (NNO): for terms P:a and
Q'.cr —^ a there is a (not necessarily unique) mediating term M : Nat —> a
with Mzero = P and M o succ = succ o P , i.e. A2:: Nat. M(SUGG z) =
A2::Nat.P(M2:). Just take M - Xz.Hai. z aQ P. This weak NNO property
is the essence of the encoding of the natural numbers.

Below we show how to encode more general inductive (and co-inductive)
types in A2. Such types are given by appropriate signatures, introduced in
Definition 2.3.7 as 'Hagino signatures' : they consist of a single type (T{X) in-
volving a distinguished type variable X , built with finite product and coprod-
uct types, together with either a constructor Gonstr: cr{X) —> X or a destructor

Section 8.2: Use of polymorphic type theory 457

des t r :X —> (T{X). Their models are described in terms of initial algebras (for
constructors) and terminal co-algebras (for destructors), see Section 2.6. Here
it will be shown that such models always exist in second order polymorphic
type theory A2, but tha t they are only "weakly" initial and "weakly" termi-
nal. This means that given any other (co-)algebra there is always a mediating
map , but it need not be unique. We shall describe the basics of this encoding,
but we do not consider advanced topics like iteration of da ta types (as in
CHARITY [53] and also [124]).

We first have to extend polymorphic type theory with finite coproduct types
(+ , 0). Let us write A-^_(_, A2+, XUJJ^ for the calculi A-^, A2, Au; extended with
coproducts (0,-|-) in each kind context, i.e. with formation rules

E h (J: Type S h r : Type

h 0: Type S h cr -j- r : Type

and with introduction, elimination and conversion rules as in Section 2.3—but
extended with kind contexts. In second and higher order type theory one can
also use the encoded weak finite coproducts described in Exercise 8.1.5.

A Hagino type (T{X) as above occurs in a polymorphic calculus as a type

S, X: Type h cr: Type

where the kind context H contains the type variables a in cr which are different
from X. We assume that such a Hagino type is formed from constants and
type variables using finite product and coproduct types. A constructor is then
a term

H, X\ Type \ x:a V- constr: X or S | 0 h constr: YIX: Type, [a -^ X).

Dually, a destructor is a term

S, X: Type \x:X V- destr: a or H | 0 h destr: YiX: Type. (X ^ cr).

Before we can describe algebras and co-algebras in A2 we have to explain
where the underlying functors come from. They arise by substi tution in types.

8 .2 .1 . L e m m a . For each kind context S (in A2 or Xuj), let C(S) be the cat-
egory of types and terms in context 5 ; object o / C (S) are types E h r : Type
and^ since we have exponent types around, morphisms r ^ p may be de-
scribed as equivalence classes [M] of terms S | 0 h M : r ^ /?. Each Hagino
type S ,X :Type h a.Jype then induces an endofunctor a[—/X]: C^E) -> C{E)
by

(H h r : T y p e) ^ (H h < T [r / X] : T y p e) .

The proof proceeds by induction on the structure of the type cr. At this stage
we are mostly interested in the cases where a is built with finite products x

458 Chapter 8: Polymorphic type theory

and coproducts + only. The result can be extended easily to include -^,11, E
as type formers, see Exercise 8.2.5 below, but some care with positive and
negative occurrences is needed for arrow types.

Proof. We need to describe the action of (T[—/X] on morphisms. Therefore
we distinguish the following cases.

• If cr ^ X, then cr[—/X] is simply the identity functor.
• If cr ^ a occurring in E, then (T[—/X] is the functor which is constantly a.
• Similarly 0[—/X] is constantly 0 and 1[—/X] is constantly 1.
• Suppose cr = cTi X (72 and [M] is a morphism r -> /? in C(Ei). By in-

duction hypothesis we have morphisms (T\[M/X]: a\[T/X] -^ a\[p/X\ and
(T2[M/X]\ a2[TIX] —> a2[p/X]. We need to define a morphism

{CTIX(T2)[T/X] = ai[T/X]xa2[T/X] -^ ai[p/X]xa2[p/X] = {aixa2)[p/X]

We take:

Xz:ai[T/X] X a2[T/X]. {(TI[M/X] • (TTZ), a2[M/X] • (TT'Z)).

• Similarly, for a = ai -\- a2 and [M]: r ^ p we take

((71 4- (T2)[M/X] = Xz:a,[T/X] + (T2[T/X].

unpack z as [KX in K{(TI[M/X] • x), K'y in K,'[a2[M/X] • y)]. D

The category C(E!) that we use in this lemma will turn out to be the fibre
category above kind context E! in the fibration associated with this polymor-
phic calculus, see Example 8.4.2 later on in this chapter.

The basis for the next result is [196, 35]. There it is shown how certain
many-typed signatures can be expressed in A2 in a (weakly) free way. This
result is reformulated in [346] in terms of existence of weakly initial algebras
of "polynomial" functors (T[—/X]. The dual version involving co-algebras ap-
pears there as well; it is independently due to Hasegawa. A more general
approach involving "expressible" functors may be found in [288].

8.2.2. Theorem. Let S, X: Type h a: Type he a Hagino type. In second order
polymorphic type theory, the induced functor o-[—/X] has both a weakly initial
algebra and a weakly terminal co-algebra.

Proof. A weakly initial algebra constr: a[To/X] -^ TQ is obtained as follows.
Put

To = UX:Jype.{a^X) ^X

constr = Xx:a[To/X]. \X-.Type. Xy:a—^ X. y{a[{Xz:To. zXy)/X]x)

where in the second case we use the action of the functor a[—/X] on mor-
phisms, as defined in the previous lemma. This constructor is well-typed, since

Section 8.2: Use of polymorphic type theory 459

the term \Z:TQ. zXy is of type TQ -^ X, so that a[(Xz: TQ. zXy)/X] is of type
(T[TQ/X] -^ cr.

If we have an arbitrary algebra a[T/X] —)• r, given by a term M: a[T/X] —>
r, then we obtain a mediating morphism M = XX'.TQ. XTM: TQ -> r. It is an
algebra morphism, since

M o constr = Xx:a[To/X]. constr x r M

= Xx:a[To/X], M {a[{Xz:To. ZTM)/X]X)

= Xx:a[To/X]. M {a[M/X]x)

= Moa[M/X].

Similarly, there is a weakly terminal co-algebra destr: ri —> a[ri/X], where

n = EX: Type. X x {X -> o").

Before we define the associated term destr, we introduce for an arbitrary term
N: T -^ cr[r/X] a term N:T ^ TI by

N = XX:T.{T,{X,N)).

This will actually be the mediating map. The construction — is also used in
the following definition of the weakly terminal co-algebra destr: ri —)• a[Ti/X].

destr = Ay: Ti. unpack yas{X,z) in a[7r'z/X]{{7v'z){7rz)).

It forms a morphism of co-algebras:

destr o AT = Xx: r. destr{N x)

= Ax: r. unpack (r, (x,7V)) as {X,z) in a[7T^z/X]({7r'Z){7TZ))

= Xx:T.a[N/X](Nx)

= a[N/X] o N. D

We notice that the encoding of weakly initial algebras only uses the type
constructors 11 and —)-. But also the encoding of weakly terminal co-algebras
can be done entirely in terms of 11 and —)-, since the sum E in the definition
Ti = EX: Type. X x (X —)• cr) can be replaced by the definable sum Ed from
Exercise 8.1.5. This yields a diff'erent formulation for ri as:

n = Ila: Type. (IIX: Type. (X -> cr) -> X -^ a) -> a.

Let us apply this Theorem 8.2.2 to our earlier example of the Church nu-
merals, with type Nat = nQf:Type. [a —^ a) —^ a —^ a. Categorically one sees
a natural numbers object as an initial algebra of the functor X H-> l - fX. Tak-
ing the corresponding type cr(X) = 1 -|- X yields, according to the definition

460 Chapter 8: Polymorphic type theory

of To in the proof,

liX: Type. ((1 + X) ^ X) -> X)

Or equivalently, the type of the Church numerals:

nX: Type. [X ^ X)-^ X -^ X

using the isomorphisms,

(1 + X) -> X ^ (1 -> X) X (X -> X) ^ X X (X ^ X) = (X -> X) X X

and Currying. Hence the general approach of the theorem gives an a posteriori
justification for the type of the Church numerals.

We consider another, co-algebraic, example of this encoding. For a type
stream (a) of streams (or infinite sequences of elements) of type a we seek a
pair of destructors (head, tail): stream(a) -^ axstream(a) as (weakly) terminal
co-algebra for the type cr(X) = a x X. The definition of TI in the above proof
yields

stream(a) = EX: Type. X x (X ^ a x X).

The associated head and tail operations are given by

head = Ay: stream(a). unpack y as (a, a:) in 7r((7r'x)(7rar))

tail = A2/:stream(a). unpack ?/as (a, a?) in 7r'((7r'x)(7rar)).

For terms P:a -^ a and Q.a -^ a we then get a mediating term M:cr ->
stream(a) by

M = Xx:a.{x,Xy:o:{Py,Qy)). .

It is easy to see that head o M = P and tail o M — M o Q. An application of
this encoding of streams to a formulation of the sieve of Erastosthenes occurs
in [195].

In [118, 273, 11] it is shown how under certain "parametricity" conditions
the weakly initial algebras and weakly terminal co-algebras in Theorem 8.2.2
become truly initial and terminal (see also Exercise 8.4.5). This also works
if there are enough equalisers around, see [288]. It is desirable to have the
additional uniqueness of true initiality / terminality because it yields reason-
ing properties for these (co-)inductively defined data types. Weak initiality /
terminality only gives definition principles, see [167].

Encapsulation via sum types

Let us consider a signature given by a finite number of atomic types Ofi,..., a„
and a finite number of function symbols F: ai —> 'TI, . . . , F ^ : am —> Tm,

Section 8.2: Use of polymorphic type theory 461

where the cr's and r ' s are built from the a ' s using finite products and coprod-
ucts (say). The n -h m-tuple

(a i , . . . , a „ , F i , . . .,Fm)

can then be seen as a term of the (second order) polymorphic sum type

S a i i T y p e . • • -Dan : Type, (cri -> n) x ••• x (cr^ -> r ^) .

This type thus captures the structure of the signature tha t we started from.
An arbitrary term (p i , . . . , /?„, M i , . . . , Mm) inhabiting this type can be seen
as an instantiation (or model) of the signature.

To be more specific, the signature of monoids contains a unit function sym-
bol e: 1 —> a and a multiplication m:a x a —> a . It gives rise to a type

// = E a : Type, a x ((a x a) -^ a).

As a specific instantiation we can take the triple

{a -^ (7, \x: a. x, Xy: (a -^ a) x {cr -^ a). Xx: a. 7r^y{{7Ty)x))

describing the monoid of terms cr -^ cr for an arbitrary type a. Notice that at
present we have no means for expressing equalities like m{x,e) — x. Therefore
one needs a logic over polymorphic type theory, just like the logic of equations
and predicates in Chapters 3 and 4 is a logic over simply type theory. Elements
of such a logic will be described in Section 8.6.

We thus see tha t a signature (a collection of types and function symbols) can
be represented as a single sum type, in which the atomic types ai are hidden.
In this setting one often speaks of an a b s t r a c t t y p e instead of a signature,
following [227]. Abstractness refers to a presentation without reference to any
particular implementation. The following syntax is used.

abstype a with a îi c r i , . . . , jr^: cr„ Is M in N : p (*)

involving types and terms

E], a: Type h (jf: Type

E\T \- M: S a : Type, (cri x • • • x an)

E I T,xi:ai,...,Xn:(Tn ^ N:p

with the restriction tha t the type variable a is not free in T,p.

In the syntax that we use for S-elimination, the abstype-term (*) would be
written as

unpack M as (a , {xi,..., Xn)) in A .̂

The idea is thus tha t M is a specific representation of the abstract types
E a : Type, (cri x • • • x cr„) which is bound to the free variables a, ^ i , . . . , x„ in

462 Chapter 8: Polymorphic type theory

N. As an example consider the type fi = E a : T y p e . a x ((a x a) —^ a) we
used earlier for the monoid function symbols. The operation which takes a
monoid and replaces its multiplication {x,y) ^-^ x • y by [x,y) >-^ x'^ - y^ can
be described as the following term of type n —^ ji.

Xz: 11. abstype a with e\a,m:a x a -^ a

is z in {a,e,\z\a x a.m[m['Kz)['Kz))[m{'K'Z)['K'z))).

There is a related encoding of classes of objects in object-oriented program-
ming using sum types E, see e.g. [266, 138, 1] (and the collection [109]). If one
understands methods and at tr ibutes (object-oriented operations) as an "em-
bedded" part of objects, then it is natural to encode an object as consisting of
three parts: its (hidden) state space X , its current state as an element of X ,
and its operations as a co-algebra X -^ (^[^)^ where a describes the interface
of the object. These da ta are collected into the type

E X : T y p e . X x (X - > (J (X))

of the class of "objects with interface cr". Here, like for abstract types above,
the state space X is encapsulated via type variable binding in sums.

Interestingly, objects with interface cr(X) may be interpreted as inhabitants
of the carrier ri of the (weakly) terminal co-algebra of the associated functor
cr[—/X] as in the proof of Theorem 8.2.2—provided X occurs positively. This
connection between co-algebras and object-orientation is further elaborated
in [283, 138, 162, 164].

Exercises

8.2.1. Define addition and multiplication terms of type Nat —> Nat —>• Nat for
the Church numerals with type Nat = IlaiType. (a —)• a) —>• a —)• a, via
suitable mediating algebra maps Add(a:), Mult(a;): Nat =^ Nat, using weak
initiality.

8.2.2. Give the encoding in A2 of
(i) Boolecins (with constructors true: 1 —)• bool and false: 1 —)• bool);
(ii) finite lists of type a;
(iii) binary trees of type a of finite depth;
(iv) binary trees of type a of infinite depth;
(v) finitely branching trees of type a which are of infinite depth.
[For the last three examples, see e.g. [124].]

8.2.3. Consider the formulation of the Ccirrier of the weakly terminal co-cilgebra
T\ in terms of II and ^ ,

n = Ila: Type. (IIX: Type. (X -> o-) -> X -> a) ^ a.

as mentioned after the proof of Theorem 8.2.2. Define for this formulation

Section 8.3: Naive set theoretic semantics 463

an associated destructor destr: n -^ (T[TI /X] , and show that it is weakly
terminal.

8.2.4. Define the product of (the signatures of) two monoids as a term fi x ^ ^ ^
using the above abstype notation.

8.2.5. One defines the sets PV(cr) and NV(<T) of posi t ively and negat ively oc-
curring variables in a type cr as follows.

PV(a) = {a} NV(a) = {a}

PV((7 XT) = PV(^) U PV(r) NV(^ X r) = NV((T) U N V (T)

PV((T + r) = PV(cr) U PV(r) NV(^ + T") = NY(a) U N V (T)

PV((T ^ r) = NV(^) U P V (T) NV((T -> T) = PV(^) U N V (T)

PV(na : Type. ^) = PV((T) - {a} NV(na: Type, a) = NV((T) - {a}

PV(Ea: Type, (T) = PV(^) - {a} NV(i;a: Type, a) = NV(cr) - {a}

Extend Lemma 8.2.1 in the following way. Let E!,X:Type h aiJype be a
type with a free type variable X. U X occurs only positively in cr, then
cr[—/X] extends to a covariant functor C(E]) —)• C(E!); and it extends to a
contravariant functor C(E1)°^ -^ ^C^) ^^ case X occurs only negatively.

8.3 Naive set theoretic semantics

As v ê have seen in Chapter 2 on simple type theory, set theoretic semantics
of types and terms involves interpreting a type r as a set J r]] and a closed
term M of type r as an element [[M]] G [[r]]. If M is not closed, say with
free term variables x i : c r i , . . . , a:„: cr„, then it gets interpreted as a function
l M l l : I < T i]] x - - - x | [c r „]] - > [[r l .

In polymorphic type theory there are type variables a , which introduce an
extra level of indexing. In this section we write out the corresponding (naive)
set theoretic semantics. This works fine for first order polymorphic type theory
A-^. The type theories A2 and Au; however, involve (among other things)
second and higher order polymorphic products 11. As shown by Reynolds
in [287], see also [288], these cannot be interpreted in this naive set theoretic
way. So one may ask: why consider this set theoretic semantics? First of all,
the negative result in itself is significant. And in order to explain it, we have
to describe the set theoretic interpretation to some extent. The result shows
that we have to look for other categories than S e t s in order to model second
and higher order polymorphism. Secondly, there are indeed other universes—
like the category u;-Sets of cj-sets, or the effective topos EfF—in which these
polymorphic type theories can be interpreted. Moreover, this can essentially
be done in a naive way, i.e. using the set theoretic formulations, but applied
to the full internal category of PERs in a;-Sets and in EfF.

464 Chapter 8: Polymorphic type theory

We begin by considering what a set theoretic model of a polymorphic sig-
nature (E, (Da)) should be. A model of a higher order signature in predicate
logic is a model of that signature in such a way that the type Prop of propo-
sitions gets interpreted as the set (of sets) 2 = {O,1}=={0,{0}}, where 0 = 0
stands for 'false' and 1 = {0} for 'true'. In higher order (predicate) logic it
is enough to have this true/false distinction, but in polymorphic type theory
there is more structure (given by terms in types, or, by proofs in propositions,
using the propositions-as-types analogy). Thus we let the interpretation of the
kind Type be an arbitrary set of sets W, so that functions between the sets in
U can serve as interpretations of terms.

A set theoretic model of a polymorphic signature (E, (Ea)) consists of

• a set theoretic model of the kind signature E, where the interpretation
[[Type]] of Type is a set of sets U. Each type

ai :Ai , . . . ,Qfn:^n -̂ o-iType

i.e. each type in the type context over {A\^.. .,An)^ is then interpreted as
a function

[[y l i] lx . . -x[[>l„ l ^U

It thus forms a collection of sets [I<T]](a) G ZY for a ^ I ^ i 1 x • • • x I^n I-
• for each function symbol F'.a\,...^am —> CTm+i in the type signature

^(^i,...,^n> ^^^^ ^diid context (^41,... j ^ n) , a collection of functions

[[cri]](a) X •.. X l(Tmi[a) ^ [[^^+i]](a)

for a G I ^ i l X ••• x [[A„]]. Put a bit differently, F is interpreted as a
function [[FJ in the big 'dependent' product

IF^ e n ([I^il(«) X • • • X I^ml(a) => [[(T^+il(a)),
aelAilx-xlAn}

where => is function space.

8.3.1. Remarks , (i) For convenience we may assume that the set li is closed
under finite products of sets, see Exercise 8.3.1 below. This allows us to restrict
ourselves for the interpretation of terms to sets of the form

which makes things more manageable. One sees how the 'double indexing' by
type variables a G [[AJ and by term variables x G [[crl](«) takes place.

Section 8,3: Naive set theoretic semantics 465

(ii) Let us provide some categorical clarity about what we are doing: we
consider the full subcategory l(_ ̂ -> Sets with U as set of objects. This U_
is a small category, and hence an internal category in Sets. A type a: A \-
cr(a):Type gets interpreted as a map |[a-]]:[[yl| -^ U, i.e. as an object in
the fibre over [[yl]] in the externalisation of this internal category l{_. And a
function symbol F:cr(a) —> r (a) becomes a morphism [[crj -> [[r] in this
fibre over [[A]).

(One can also describe U_ as coming from a family in Sets, see Exer-
cise 8.3.5 (iv) below.)

(iii) We will assign meanings [[cr]] and [[MJ to all types S h criType and
terms E\T \- M:a (and not just to the atomic ones in the signature). In writ-
ing [[cr]] and [[Mj we ignore these kind and type contexts E and F. It would
be better to carry them along, but that is notationally rather cumbersome
(see Exercise 8.3.3).

We continue with the naive set theoretic semantics of the polymorphic cal-
culi A ^ , A2 and Au;, on top of a model of a polymorphic signature as above.

(1) For A ^ one assumes that the set U is closed under exponents (function
spaces), I.e. that it satisfies

X,Y eU => Y^ eU.

By an argument similar to the one in Exercise 8.3.1 one may extend ZY to a
set which is closed in such a way.

The exponent type cr —)• r of types cr, r interpreted as functions

IT}

is then given by pointwise function spaces:

Aa.l[rl(a)I"K«)

Abstraction is done as follows. Assume we have a term a:A\x:p,y:a\- M: r,

which is interpreted as |M]] G na€[-4] (l / 'K") ^ II"'K''') =^ II'"K'^))' ^^^^
we get

l\y:(T.Mi "M %a.%x.%y.lMi{a){x,y)

466 Chapter 8: Polymorphic type theory

For application assume terms a\ A \ x: p \- M:a -^ r and a: A \ x: p \- N:a.

These are interpreted as dependent functions [M J G IlaEMl (I/^K^) ^
la -^ rlia)) and [[TV]] G UaelA} (I P I I («) => H^IW) . then one takes

IMNI "M %a.%x.lMl(a){x)(lNl{a){x))

e n {M{a)^lrl{a)).
aelA]

(2) For A2 one would naively assume that U is closed under exponents and
also under dependent products over itself, in order to interpret quantification
of the from Ua: Type, a for a: Type. That is, one additionally assumes that

FeU^ => UFeU

where IIF is the set

UF = {f-M -> \Jxeu ^ W I ^ ^ e U. f{X) € F{X)}.

Below it will be shown that this assumption cannot be true, but for the time
being, we simply continue.

For a type a: A, /?: Type h a: Type, interpreted by

lAlxU ^U

one puts

[[n/?:Type.(r]|1l'
I^I ^ ^ ^U

Second order abstraction goes as follows. Take a term a: A, (3: Type \ x:a \-
M: T, where /3 does not occur in (T. This M is interpreted as a function |[M]] €
U(a,b)€lAixU (II'^I(«) ^ I^I(a ,*)) . so that we can put

I A/?: Type. M I %^ Xa.Ax.Ab.lM}(a,b){x)

e n (l ^] l (a) ^ l n / ? : T y p e . r I (a)) .

Notice in particular that by the restriction in the Il-introduction rule on the
occurrence of/?, the interpretation of [['''JKa) G U does not depend on 6 G W.
For application of terms to types, assume a: A \ x:a V TV: 11/?:Type, r and
a-.AV p:Type, interpreted as I TV] G Flaer^l (I ' ^ I H => IH/?: Type, r 1(a))

Section 8.3: Naive set theoretic semantics 467

and H P I : I^lJ ->• U. Then one takes

iNpl <i' Aa.%xjNl(a)(x)iM(a))

e n (l ' ^] l («)=^Irb / /?] I (a)) .

The set theoretic interpretation of sums E is left as an exercise below.

(3) For Xuj one naively assumes that U is closed under all dependent products
(and not just over itself):

F ^U^ ^ Uj{F)eU

for any set / . The dependent product 11/ is given by

Uj(F) = {f:I^ U e / ^ (0 I ^̂ ' e I- m e F{i)}.

Thus UF in (2) is Ilu{F). One can then extend the quantification to all kinds:
for a: A, p. B h a: Type, one puts

Ul— ^ ^u
%a.niBi{^b.lal{a,b))

The rest is as before.

In the remainder of this section we show (and analyse) the impossibility of
having a set of sets li closed under exponents and products as in (2) above.
Notice that we have assumed these exponents and products in U to be the
same as in the ambient category Sets. The argument we use is very much like
in the proof of the following famous result.

8.3.2. Fact (Freyd [82, Chapter 3, Exercise D]). There are no small com-
plete categories except preorders.

Proof. Let C be a category with a small collection Co of objects and small
collections of hom-sets. Form the set Ci as disjoint union of arrows in C:

Ci=U 1[C{X,Y).
Xe€Y£€

Assume we have two different parallel arrows f :^ g: X zit Y in C Every
subset A C Ci gives rise to an arrow h{A):X —)• Ylc 0^) ^^^^ component
h{A)a for a £ Ci equal to / if a G A, and equal to g else. The assignment
A 1-̂ h{A) is clearly injective. This gives a composite of injections P{Ci) =
2^1 <^ ^ ^ ^ r i c 0^)) ^^ ^ 1 ' which is impossible, since a powerset P{Ci)
cannot be embedded into Ci. •

468 Chapter 8: Polymorphic type theory

Roughly the same argument as used in this proof can be applied to the set
theoretic models that we consider above.

8 .3 .3 . F a c t (After Reynolds [287]). There are no sets of sets U closed under
exponents and dependent product over itself—as in (2) above—except trivial
ones (for which every set X G W has at most one element).

Proof . Assume towards a contradiction that some set X ^U has two different
elements x, y G X. Form the sets

D = UzeuX^ eU and V = Y[Z =: {{Z, z)\Z eU Siudze Z).

There is an obvious injection D ^^V, namely / i-^ [Uzeu^^,/)- And for
every subset A C V there is an element in h{A) G D, with components
h{A){Z){z) equal to ar G X if {Z, z) ^ A and to y E X else. It is clear that
A H^ h{A) is injective, so we have a sequence of injections P{V) = 2^ ^-^ D ^^
V. Again this is impossible. D

It is useful to analyse the logical aspects of this negative result. The contra-
dictions above come from the impossibility of having an injection 2^ ^-^ A in
(classical) set theory. But in a topos 2^ is the object of decidable subobjects
of A, which may very well be embedded into A. The corresponding negative
result in a topos is the following. We explicitly formulate it in higher order
logic, so tha t it applies to other models of higher order logic than toposes.
In particular we wish to use it for the (classical) higher order logic of regular
subobjects in u;-Sets.

8 .3 .4 . P r o p o s i t i o n . An injection Pa >-^ cr cannot exist in higher order
logic—where Pa is the powertype of a: Type defined as exponent type Pa =
a —> Prop.

Proof. We reason informally using an argument due to van Oosten. Assume
m: Pa ^^ cr, and form terms a: Pa and e: cr by

a = {x'.al'ib: Pa.x Eia b Z) X ^a i^{b)} and e = m{a).

It is then clear tha t e ^a <^' But according to the definition of a we do get
e Ga «. Indeed, for every 6: Pa with e Ga 6, the equation e =^ m{b) does not
hold: by injectivity of m it leads to a —pa b and so to e G^ a. Hence e is both
in a and not in a. •

8 .3 .5 . F a c t (Higher order logic version of Fact 8.3.3). For a set of sets U
which is closed under exponents and dependent products over itself, there
is no set X G W with an injection Prop >-^ X m higher order logic with
extensional entailment.

Section 8.3: Naive set theoretic semantics 469

It may be clear tha t the previous negative result (Fact 8.3.3) is a special
case, since in classical set theory [i.e. in the higher order subobject fibration
on Se t s) Prop is 2 = {0, 1}: if there cannot be an injection {0, 1} ^^ X , then
X cannot have more than one element. The use of a set of sets U here is rather
informal. A more precise version may be obtained by doing Exercise 8.3.6. This
more general Fact 8.3.5 is a special case of the main theorem in [269]. The
proof used there is more complicated than the one below, and uses expressible
functors (as in [288]).

Proof. We can give virtually the same proof as before (with the same D and
V) starting from m: Prop ^^ X £U. One now defines P{V) >—> J9 by

{ACV)^XZ ^ U. \z e Z. m{{Z, z) E A).

This yields an injection by extensionality. Hence we get P{V) -̂> D ^-^ V,
which is impossible by Proposition 8.3.4. •

8 .3.6. R e m a r k s , (i) As we shall see in the next section there are indeed
models of higher order logic containing a "set" which is suitably closed under
exponents and products (as in the ambient category) to allow interpretation
of second and higher order polymorphic type theory. These examples involve
the internal category of PERs in cj-Sets and in Eff. It is instructive to see
why there is no injection Prop ^^ R for R a P E R in these cases.

(a) In the classical higher order predicate logic of regular subobjects in
cj-Sets (see Proposition 5.3.9) Prop is V2. As one easily checks, every m a p
V2 -^ (^/R, G) for R a P E R is constant: if e realises such a m a p / , then since
0 G ^V2(0) n ^V2(l) , we get e • 0 E /(O) Pi / (I) . Hence /(O) = / (I) and / is
constant. Thus there is certainly no mono V2 -^ (N/i^, E) .

(b) By essentially the same argument one shows that every m a p Prop =
(PN, JO) -^ (N/ /? , E) in EfF is constant. This is left to the reader.

These considerations show tha t Fact 8.3.5 does not obstruct suitable com-
pleteness of PERs in cj-Sets and in EfF. What it also suggests is to investigate
the collection of those objects X for which all maps Prop -^ X are constant, as
a possible candidate for a suitably complete set of sets U. Such objects X are
called 'orthogonal to Prop'. This aspect of orthogonality of P E R models was
much emphasised by Freyd (see also [41, 150]). It will be further investigated
in Section 11.7.

(ii) It has been argued (see notably Pi t ts [268]) that the impossibility of
having a suitably complete model of polymorphism in S e t s is due to the
classical logic that we have for sets. The above arguments show tha t it is not
the classical nature of the logic (since u;-Sets with regular subobjects also has
classical logic, see Proposition 5.3.9) tha t is to blame, but rather the nature
of the type Prop of propositions (as described in Fact 8.3.5) which obstructs

470 Chapter 8: Polymorphic type theory

the existence of such models. Shortly after [268] Pi t ts expressed this adapted
analysis in [269].

In the end one may think tha t our approach is too naive in the sense tha t we
have required products I I F E U for all F eU^, whereas for the interpretation
of A2 one only needs products of certain F E U^, namely of those F tha t come
from the interpretation of types. The original result of Reynolds in [287] is
tha t this situation already cannot occur. The above Fact 8.3.3 is a diluted
version of Reynolds' result. Also in the sense tha t it involves products with

Exercises

8.3.1. Let U he a. set of sets. Put

Uo = UU {1}, where 1 = {0}

Un^l = UnU{XxY\X,YeUn}

^oo = U n e N ^"•

Show that Uoo is the least set containing U which is closed under finite
products.

8.3.2. Check the validity of the conversions for -> and 11 in (1) and (2) above.
8.3.3. Rewrite the above interpretations as JE! h o-iTypel and J S | F h Mia J

with explicit contexts (for a few crucial cases). Describe the interpretation
of the weakening and contraction rules using this notation.

8.3.4. Let W be a set of sets closed under dependent sums:

FeW ^ Ei{F)eu

where S / (F) = {{i^x) \ i £ I and x E F{i)}. Interpret the S-types of Xu.
8.3.5. Let U he a, set of sets closed under finite products. One can consider U has

a full subcategory U_ «-̂ Sets . Notice that ^ is a small category, and is thus
internal in Sets .
(i) Show that in assumption (1) for the interpretation of A->, ZY is assumed

to be Cartesian closed, with exponents as in Sets .
(ii) Show that the dependent product 11/ and the dependent sum E/ form

(internal) right and left adjoints to the diagonal functor U -^ U .
(iii) Verify that in the specicJ case where ^ = 2 = {0, {0}} (which is used

for logic), U is Cartesian closed and has right and left adjoints II/ , E/ .
(iv) Let V =]J ;^c ty^ = {(^?^) I ^ ^ U 3iid X E X} with obvious

projection I ^ I. Describe the full interned category resulting from

this family as in Example 7.1.4 (ii) and notice that this gives another
way to describe IL

8.3.6. Consider in higher order logic an internal category C = {C\] Co)—given
by types Co, Ci: Type with suitable terms—which is internally Cartesian

Section 8.4' Fibrations for polymorphic type theory 471

closed and has an internal right adjoint to the diagonal C —> C^°. Show
that there cannot be an object X: Co with an injection Prop ^^ C(1 ,X) =
{ / : ^ i | ^ o (/) = C o l A a i (/) = e o X } .

8.4 Fibrations for polymorphic type theory

The double indexing in polymorphic type theory—by type variables and by
term variables, or, by kind contexts S and by type contexts F—asks for a fibred
description. After all, indexing is what fibred categories are all about . The aim
in this section is to define appropriate fibred categories for polymorphic type
theories, and to provide several examples. Prominent among these are models
of PERs , suitably indexed over Se t s , over cj-Sets and over EfF.

As we already mentioned, the set of sets U used in the previous section
corresponds to a full internal subcategory in Sets , and hence by externalisa-
tion to a small fibration over Se t s . The next definition captures the essential
fibred aspects used so far.

8 .4 .1 . Def in i t ion . A p o l y m o r p h i c fibration is a fibration with a generic
object, with fibred finite products and with finite products in its base category.
It will be called spl i t whenever all this structure is split.

Such a polymorphic fibration captures the structure of contexts in polymor-
phic type theory, just like categories with finite products capture the structure
of contexts in simple type theory. One thinks of the objects / of the base cat-
egory as kinds, and of objects X of the fibre over / as types in kind context
/ , which we can write as X = {i: I h Xj-rType). The generic object involves
an object Type in the base category and a correspondence between types
i: I h Xi.Type over / and classifying morphisms of kinds / —> Type in the
basis.

(As an aside, we mention tha t a fibration with fibred finite products and
finite products in its base category is an object with finite products in the
2-category F ib of fibrations over arbitrary bases. See Exercise 1.8.10 for de-
tails. Hence, fibred categories with finite products capture the context struc-
ture of polymorphic type theory, just like ordinary categories with finite prod-
ucts capture the context structure of simple type theory.)

8.4 .2 . E x a m p l e . Let (E, (Ea)) be a polymorphic signature. It forms the
start ing point for a syntactically constructed (split) polymorphic fibration
a(E,(Sa))

4- . The base category Ci{T>) is the classifying category of the (higher

order) signature E, as described in Chapter 2. Objects are kind contexts E =

ai: Ai,..., an'An. Morphisms E' —)• S are sequences of terms (M i , . . . , Mn)

472 Chapter 8: Polymorphic type theory

with 'E' h Mi'.Ai. For a kind A we often write A G C^(S) for the singleton
context {a: A) G (X(E). Especially we have Type G (X[T.). Products in (^(S)
are given by concatenation of kind contexts.

There is a split indexed category on ff(S); the functor (X(E)°P -> Cat
assigns to a kind context S, the category of types and t e rms in context

objects types E! h criType in context El.

morph i sms cr —>• r are terms N — N[x) with 'E\x\a h N[x): r.

The morphism part of this functor ff(5])°P -> Cat is described by substi-
tution in type variables, as described in the beginning of Section 8.1. The

C^(S,(Sa))

Grothendieck construction then yields a split fibration i . It has
•" ^ a(E)

Type G C^(S) as split generic object—since objects over 5 are morphisms
S —)• Type in the base, by construction. The fibration has (split) fibred fi-
nite products because we assume finite products of types (in all polymorphic
calculi).

(We have used terms for morphisms, but what we really mean in this exam-
ple are equivalence classes (under conversion) of terms. But explicitly writing
these classes is cumbersome.)

E

An arbitrary split polymorphic fibration ^ can serve as a categorical
model of a polymorphic signature (E, (E^)) in the following manner.
• Such a model is given first of all by a model of E in B, which interprets

Type as the generic object Q G B. We conveniently describe this model as a
finite product preserving functor M'.Cl{Ti) -^ IB with A^(Type) = Q. Each
type El h cr:Type then gets interpreted as a morphism wM(E) —> Q. Hence
it corresponds to an object Xa above A^(E).

• Secondly such a model of (E, (Ea)) involves for each function symbol
Fio-i,. ..,(Tm —> (Tm-^i in a type context T.{Ai,...,Ar,) over (^ i , . . . , ^n) , a
morphism X^i x- • -xXa^ -> -̂ <7„,+i in the fibre over M[a\: A\^... ^ an'. An)-

It is not hard to see that such a model corresponds to a morphism of fibrations

« (S , (Sa)) ^ E

Cf(S) ^ 1
M

which preserves the structure of split polymorphic fibrations. This gives an-
other instance of functorial semantics—as used earlier for simple type theory

Section 8.4-' Fibrations for polymorphic type theory 473

and logic—where interpretations are structure preserving functors.
By put t ing some further structure on polymorphic fibrations we get appro-

priate fibred categories for first, second and higher order polymorphic calculi
A—>, A2, XLJ. This structure is as in the fibrations used for predicates logics,
but is now used in a situation with proper (non-preordered) fibre categories.
In A ^ there are exponent types a -^ r, which are modelled as fibred expo-
nents. In A2 one additionally has polymorphic products and sums Ua: Type, a
and T,a: Type, a over Type. These are modelled categorically by quantification
along Cartesian projections TT: / x fi -> / , where Q interprets Type. This was
called "simple fi-products/coproducts" in Section 2.4 for the CT-structure
with Q as sole type. In XLJ there is quantification over all kinds (and not just
over Type), which is modelled by quantification along all Cartesian projections
TT: / X J —)• / . This was called "simple products/coproducts" in Section 1.9.
Further, the exponent kinds require the base category to be Cartesian closed.
All this will be summarised in (point (i) in) the following definition. It is
by now quite standard; early work in this direction was done by Seely [307],
Lamarche [185] and Pi t t s [268].

8 .4 .3 . D e f i n i t i o n , (i) A polymorphic fibration with Q. in the base as generic
object, will be called

(a) a A—)'-fibration if it has fibred exponents;
(b) a A2-f ibra t ion if it has fibred exponents and also simple Q-products

and coproducts;
(c) a Acj-fibration if it has fibred exponents, simple products and coprod-

ucts, and exponents in its base category.
(ii) A A-^= / A2=: / Au;=-fibration is a A—)- / A2 / Acj-fibration with (sim-

ple) equality. (The Frobenius condition holds automatically in the presence of
fibred exponents, see Lemma 1.9.12 (i).)

8 .4 .4 . D e f i n i t i o n . Let <> be ^ , 2 , a; or —)-=:, 2 = , a ; = .
(i) A A<)-fibration will be called s p l i t if all of its structure is split. In

particular, its underlying polymorphic fibration is then split. A A<C>-fibration
is called s m a l l if the fibration is small.

(ii) A morphism of (split) A<C>-fibrations is a morphism of the underlying
(split) fibrations which preserves all of the structure (on-the-nose).

The functorial interpretation as described after Example 8.4.2 for poly-
morphic fibrations extends in a rather straightforward to A—)--, A2- and
Acj-fibrations. The interpretation of Ua.A.a and T,a:A.a is much like the
interpretation of ^x'.cr.ip and 3X'.(T.(^ from predicate logic in Section 4.3, ex-
cept that the extra structure of terms has to be taken into account. (See the
'ma te ' correspondences in Lemma 4.1.8 and Exercise 8.1.3.)

474 Chapter 8: Polymorphic type theory

The interpretation of equality is also like in equational logic and in predicate
logic. For objects / , J in the base category, the contraction functor J* induced
by the diagonal 6 — (id, TT'): / x J -> (/ x J) x J has a left adjoint Eq(/j) ,
see Definition 3.4.1. We then have an equality type Eqj = Eq(/ j)(l) over
(/ X J) X J; it may be written as

i : / , i : J , / : J hEq j (i , /) :Type

where i is a parameter. The unit of the equality adjunction yields the reflex-
ivity term

v.I,y.J\ 0 I- r j (j) :Eqj(j , i) = r (E q j) (j) .

For elimination, assume we have a term

f : / , j : J | :c:X(ij j) f -M:y(i j j) .

This is a map <J*(X) -^ (J*(y) over / x J . By transposition and Frobenius we
get a composite

X X Eqj = X X Eq(,,j)(l) S Eq(/,j)(<J*(X) X 1) S Eq(/,j)(<5*(X)) — ^ y

which is the required elimination term in

i:IJ:J,f:J \ x: X(ijj>),y:Eqj{j,f) h M with / = j via 2/: ^(i j j ') -

In the remainder of this section we describe various examples of polymorphic
fibrations. Later, at the end of Section 11.3 there is an example of a model
with only exponent types -> plus polymorphic products and sums 11, E, but
without Cartesian product types l , x . The categorical description of fewer
type formers requires more sophisticated fibred category theory—in the form
of extra levels of indexing, like in Section 2.4 where we used simple fibrations
(instead of ordinary categories) to describe models of simple type theory with
exponents but without Cartesian products.

PER-examples

Next we describe three examples of Au;=-fibrations where types are interpreted
as PERs, indexed over Sets, over cj-Sets and over EfF. The three fibrations
consist of "uniform families of PERs" and can be organised in change-of-base
situations:

UFam(PER) ^ UFam(PER) ^ UFam(PER)

J J
Sets ^ ^ a;-Sets ^ ^ Eff

Section 8.4- Fihrations for polymorphic type theory 475

In this diagram we have used the name UFam(PER) for three different cat-
egories. One could write them as UFamsets(PER), UFamu;-Sets(PER) and
UFamEff(PER), but that involves rather heavy notation. And confusion is
not likely as long as we use these total categories together with their base

UFam(PER) UFama;.Set» (PER)
category, as in i , instead of i

Recall from Proposition 7.3.7 that the two fibrations of PERs over a;-Sets
and over EfF are small. But the fibration of PERs over Sets is not small, as
will be shown in Example 9.5.3 later on.

An efficient way to establish that these three fibrations of PERs are
UFam(PER)

Ac<;=-fibrations is first to show that the fibration i on the right
Eff

is such a Aa;=-fibration and then to appeal to these change-of-base situations.
But computations over cj-Sets are easier than over EfF so we prefer to start
with the fibration of PERs over u;-sets in the middle. Then we can still appeal
to change-of-base since the fibration of PERs over EfF can be obtained via
change-of-base along the separated reflection functor, see Proposition 6.3.2 (i).

UFam(PER)
8.4.5. Proposition (Moggi and Hyland [143]). The fibration i of

CJ-Sets
PERs over uj-sets is a small split XLJ=-fibration.
ProoF. Since the fibration is obtained by externalisation it is by definition
small and split, and has a split generic object. It has a split fibred CCC-
structure, inherited pointwise from PER. It has simple products, coproducts
and equality by Lemma 1.9.6. We give the formulas explicitly: the product Y[
along a projection TT: (/, E) x (J, E) -^ (/, E) in a;-Sets is given on a family
R = {Rij)i^jj^j of PERs over (/, E) x (J, E) by

Yl{R)i = {{n,n') I Vj G J.\/m,m' G E{j).n - mRiju' • m'}.

And the coproduct JJ along this same projection is:

where E{j, [n]) = E{j) A [n] = {(Ar,m) | k G E(j) and m G [n]}, and where
r:cc;-Sets —>• PER is the left adjoint to the inclusion PER M- cj-Sets. Equal-
ity along a diagonal S: (/, E) x (J, E) -> ((/, E) x J, E)) x (J, E) on a family
R = {Rij) over (/, E) x (J, E) is

Eq{R)ijj^ = } ^ ^ ' ' ' e l s l " ^ •

UFam(PER)
We turn to families of PERs over sets. We define the fibration i

of these as the one obtained by change-of-base from the fibration

476 Chapter 8: Polymorphic type theory

over u;-sets along the inclusion V: Sets M- c«;-Sets. The fibre category over
/ G Sets thus consists of

objects /-indexed families R = {Ri)i^j of PERs i?,.

morphisms i? —> 5 are families / = {fi)iei of morphisms of PERs
fi'.Ri —> Si which have a common realiser: there is a single
code e E N such that e tracks every fi.

UFam(PER)
8.4.6. Corollary (After [94]). The fibration i of PERs over sets
is a split \(jj—-fibration.

Proof. This follows from the change-of-base situation

UFam(PER) ^ UFam(PER)

J
Y

Sets ^ • ^ u;-Sets

since the inclusion Sets ^> a;-Sets preserves finite products. Explicitly, for
a family R — {Rij)i^ij^j over I x J^ the product and coproduct along
TT: / X J -> / are, respectively,

Y[{R)i = P I Rij and UWi = V ^^^'
jeJ jeJ

where the intersection f] is the maximal PER N x N in case J is empty, and
where Y is the join in the poset (PER, C) of PERs. •

We shall see later in Example 9.5.3 that this fibration of PERs over Sets
is not small. Hence the non-existence results in the previous section do not
apply in this case.

Our last PER-example involves indexing over the eff'ective topos EfF.
UFam(PER)

8.4.7. Corollary. The fibration i of PERs over Ef^ is a small split
\uj—-fibration.

Proof. This follows from the change-of-base situation

UFam(PER) ^ UFam(PER)

J
t s ^

Eff ^ cj-Sets

from Proposition 6.3.2 (i), because the separated reflection functor s:Eff —>
a;-Sets preserves finite products (see Exercise 6.2.3). •

Section 8.4-' Fibrations for polymorphic type theory 477

These PER-examples may be called "parametric in the sense of Strachey",
since a term inhabiting a polymorphic product D a : Type. cr(a) has a single
underlying code—which may be seen as an untyped program—that computes
each instantiation of the type variable a. The term thus behaves uniformly
for each type.

Next we describe an alternative PER-model , which is parametric in the
sense of Reynolds.

A relationally parametric PER-exampIe

Below we present a different PER-model of second order polymorphic type
theory A2. It is different from the earlier ones (over Sets , cj-Sets and EfF)
in the sense that it may be called relationally parametric in the sense of
Reynolds [286]. Wha t we present is a categorical version of the concrete in-
terpretation described in [11]. Noteworthy is tha t the two properties known
as "identity extension" (for types) and "abstraction" (for terms) which are
explicitly proved for the interpretation of [11] are incorporated here as as con-
ditions in the categorical model. Towards the end of the next section we give a
further analysis of the parametricity in this model, along the lines of [204, 293].

Recall from Proposition 4.5.7 tha t a regular subobject of a P E R R (in the
category of PERs) may be identified with a subset A C N/R of i^'s quotient
set. A (regular) relation on a pair R^ S of PERs may then be described as
a subset of N/R x N / 5 . Especially, there is an equality relation Eq(i^) C
N/R X n/R given as Eq(i?) — {([?^]/?, [^]-R) I ^ ^ l-^D- The main idea in the
model of [11] is to interpret a type as a pair of maps, one mapping PERs to
PERs (as in the earlier PER-models) and one mapping relations to relations,
in an appropriate manner. This is formalised in the following definition, giving
the intended base category of a A2-fibration of parametric families of PERs .

8.4 .8 . Def in i t ion . Let P P E R be the category with natural numbers n G N
as objects. We first define morphisms / : n —>• 1 with codomain 1. These are
pairs / — {P, f^) of functions

F
PER" ^ PER

and

f^^ n inH^/Rix^/Si) p{N/r(R)xn/r{s))
ll<i<n

satisfying the i d e n t i t y e x t e n s i o n condition: for each n-tuple of PERs R G

478 Chapter 8: Polymorphic type theory

PER" one has

Eq[r(R))=r^^(Eq{Ri]^

as subsets of N//P(fi) x N/fP{R). We use the superscripts (-)^ and (-) ' ' for
the components acting on pers and on TTelations.

More generally, morphisms n -> m in P P E R are m-tuples (/i, •. •, /m) of
morphisms / , : n -^ 1.

It is not hard to see that we get a category in this way. For 1 < i < n there
are projection morphisms proj(i) = (proj(i)^, proj(2y): n —> 1 by

proi{iY{R) = Ri and pro]{i)''^^{A) = A.

These clearly satisfy "identity extension". The identity morphism n —^ n is
then the n-tuple (proj(l), . . . , proj(n)). Composition of (/ i , . . . , fm)- n —^ m
and (5^1,.. .,gk)''rn —> /? is the Ar-tuple (/ i i , . . . ,hk):n —^ k, where

hU^) = ^f(/f(^),...,/^(^))
(^iUsi^l = U)(7,v((/[U5(^1..--.(/;;zU5(^l).

where Ui = ff{R) and Vi = ff{S),

By construction, this category PPER has finite products: 0 G PPER is
terminal object, and n + m is the Cartesian product of n, m G PPER. In a
next step we define a fibration over P P E R with maps n —> 1 as objects over
n. In this way the object 1 G PPER becomes generic object of the fibration.

PFam(PER)

8.4.9. Definition. The split fibration 4- of parametric families of
PERs is defined as arising from applying the Grothendieck construction to the
indexed category P P E R ^ P —)• Cat which has as fibre category of n G PPER:

objects maps f = {P.D'.n-^ 1 in PPER.

morphisms a: f -^ g are families of morphisms

fP{R) ^gP{R) ^ ^

between PERs, which:

• are tracked by a single code: some e G N tracks every
a^ in PER:

V^ G PER^ Va G | / ^ (^) | . a^([a]^p(^)) - [e • a]^,^^).

Section 8.4-' Fibrations for polymorphic type theory 479

• satisfy the abs t rac t ion condition: for n-tuples R, S £
PER" of PERs and relations Ai C N/RixN/Si on them,
if

(H, W) e r^j{A) c n/fP{R) x n/r{S)
then

{a^([a]),ag{[b])) = {[e • a], [e • b]) 6 g^giA)

CE/gP(R)xN/gP{S).

(Where we have omitted subscripts of equivalence classes
[—] to increase the readability.)

Reindexing is done simply by composition.
PFam(PER)

8.4.10. Proposition (After [11])- The above fibration i of para-
PPER.

metric families of PERs is a split X2-fibration.
PFam(PER)

Proof. By construction, the fibration 4- has a split generic object
PPER.

1 G PPER. We show that it is a split fibred CCC, and that it has split
simple 1-products. In the fibre over n G P P E R there is a terminal object
In:?^ -^ 1 by l^(^) = N X N, which is pointwise the terminal PER. This
function 1^ on PERs determines its associated function IĴ on relations by the
identity extension condition. The Cartesian product of objects f^g.n^ 1 is
f X g:n —> 1 with

(fxg)P{R) = fPiR)xgP(R)

= {{a,b) I (pa,p6) G / P (^) and (p'a,p'6) G ^ ^ l ^) } ,

which is the pointwise product of PERs; and with action on relations:
{fx9)l§{A) = {([{a,b)],[{a',b')])\{[a],[a^)efy(A)

^nd{[b],[b'])eglg{A)}.

The exponent oi f,g:n zzt I is f ^ g:n -^ 1 with

if^gYiR) = F(R)=>9''iR)

= {{a, a') I V(6, b') G fP{R). (a • 6, a' • 6') € gP{R)}.

This is the pointwise exponent of PERs. On relations we take
if^gy^giA) = {([a],[a'])|V([6],[6'])G/^^-(i).

i[a-b],[a'-b'])eg'-^g{A)}.

480 Chapter 8: Polymorphic type theory

We leave it to the reader to verify that these products fxg and exponents / =>
g satisfy "identity extension", and that the associated (pointwise) projection,
tupleing, evaluation and abstraction operations satisfy "abstraction".

For products Y[we define for an object / : n + 1 —>• 1 over n + 1 an object
J^(/): n —^ 1 over n by

n (/) ' ' (^) = {{a,a')\yU,V ePER.'iB CN/U xN/V.

a e \F{R, U)\ and a' € \fP(R, V)\ and

YiifYR,si^) = {(Hn(/)^(fi)'f'''5n(/)''(5)i
W, V G PER.VB C E/U x N/V.

We need to prove "identity extension" for this product H I /) ' ^'^- ^^ need to
show that for R G PER"

{{[a], [a]) I a G i n (/ r (^) l } = n (/) ^ , ^ (E ^) .

(C) If a G I n (/) ^ (^) h then for each relation B C N/U x N/V on PERs

U^Vwe have ([a], [a]) G / [^ ^^ (^^)(Eq(i^ . | B) by definition of n (/ F (^) .

(D) If the pair of classes {[a], [a']) is in the relation on the right hand side,
then, as special case, for each U G PER we have

(H J a l) G /[^,^),(^_t;)(Eq(^-Eq(f/)) = Eqif(R,U)),

the latter by identity extension for / . Thus [a] = [a'], and the pair ([a], [a'])
of equal classes is in the equality relation on the left hand side.

The adjoint correspondences between maps g —> Ylif) ^^^^ ^ ^^^ maps
^*(^) ~^ f over n -\- 1 are as usual. D

Relational parametricity in the sense of Reynolds [286] means the following.
Consider a term M: Ua: Type. a{a) inhabiting a polymorphic product type. A
reasonable condition to expect of such an M is that it acts uniformly on types
in the sense that it maps related types to related types. Specifically, if we
have a relation r C r x p between types r and />, then the terms Mr: cr[r/a]
and Mp: cr[/>/a] should be in the relation a[r/a] C cr[r/a] x a[p/a]. The latter
relation cr[r/a] is defined by induction on the structure of cr, using appropriate
operations on relations (discussed as operations on "logical relations" on a
category Rel(E) in Section 9.2, see Example 9.2.5 (ii)).

Section 8.4-' Fibrations for polymorphic type theory 481

PFam(PER)
But this is precisely what happens in the fibration i of para-

metric families of PERs, since a type's interpretation carries this action on
relations along: if cr(a) is an object / = (/^, / ^) : 1 —> 1 over 1, then for a term
[n] G N / n (/) ^ inhabiting the polymorphic product H I /) - ^ ~^ 1' ^ ^ have by
definition of H I /) ' for types U,V e P E R with a relation B C N/U x N / V ,
instantiation at U and at V,

[n]fp{U) e n/r{U) and [n]j,^v^ E N / / ^ (y)

yields two terms which are related by fuyiB) C n/fP{U) x N/fP{V),
i.e. which satisfy (M/p(c/)5 M/p(V)) ^ fu vi^)- The latter is the type's action
on the relation B. Hence Reynolds' parametricity holds by construction in
this model of parametric families of PERs.

Towards the end of the next section we give a more formal description of
the parametricity in this model. Consequences of parametricity may be found
in Exercises 8.4.5 and 8.4.6.

Other examples

8 .4 .11 . P r e o r d e r m o d e l s . Any (split) higher order fibration is a (split)
Aa;=-fibration. In this way one gets preorder models (where all fibre categories
are preorders) in which all structure of terms M:a'm types a is destroyed. In a
propositions-as-types view these are 'proof-irrelevant' or ' t ruth-value ' models.
In particular, examples include,

(1) the subobject fibration of a topos;
(2) the fibration of regular subobjects of cj-Sets.

Fam(n)

(3) the family fibration 4- for Q a frame [i.e. a complete Hey ting

algebra).
UFam(PN)

(4) the realisability fibration X . In fact, any realisability fibration
Sets

UFam(A)
i coming from a PCA A, as in Example 5.3.4.

Sets
8.4 .12 . T e r m m o d e l s . Let (S , (Sa)) be a polymorphic signature. The poly-

C£(S,(Sa))
morphic fibration 4- described in Example 8.4.2 can be upgraded to a

X—^/\2/Xu) fibration by incorporating the structure of these type theories—
and taking appropriate equivalence classes of terms as morphisms. For the
categorical products f| and coproducts JJ one uses the mate formulations of
V and 3 in Exercise 8.1.3. We shall describe equality in some detail. The left
adjoint to the diagonal S: A x B -)- {A x B) x B m Cf(E) is given by

{a:A,f3:B \- a'.Jype) ^ {a:AJ: B, fi': B \-a x EqB(/^,/30-Type).

482 Chapter 8: Polymorphic type theory

The required adjunction involves a correspondence between (equivalence
classes of) terms M and N in

a:AJ:B,(i':B\x:(T,y:EciB[P.P') y-M:T
=====^=====================^^ (Eq-mate)

a:A,/3:B\x:a h AT: r[/?//?']

It is given by

M •-> M[p/(3', XB{P)ly] and N ^ N with /?' = /? via y.

A model of one of these type theories in a specific fibration can then con-
veniently be described as a morphism of suitable fibrations with this syntac-
tically constructed "classifying fibration" as domain and the specific fibration
as codomain. This functorial semantics is as described in more detail in earlier
chapters for simple type theory, equational logic and (higher order) predicate
logic.

8 .4 .13 . D o m a i n t h e o r e t i c m o d e l s . There are models of the second order
A-calculus A2 (with at least polymorphic products) which use Scott domains
(see [57] or [108, 61]) or coherence spaces (see [96] or [98]) or algebraic complete
lattices (see [56] or [61]). The constructions are somewhat similar, in the sense
tha t they rely on embedding-projections (in order to circumvent problems
with contravariance of exponent types). We shall describe these embedding-
projections in Section 10.6 for a model of dependent type theory. In [277]
a model of A2 is obtained as a solution of a big domain equation capturing
BMM-models as described in set theoretic terms in [38].

Fam(Clos)
Towards the end of Section 10.6 there is also the fibration 4- of

Clos
closures indexed by closures (as originally described in [302]). It is a small
Aa;-fibration (see also Exercise 10.6.3 there).

Exercises

8.4.1. Be very naive (as in the previous section) and assume a set of sets U closed
under products and sums Ilf, E/ , with U_ M- Sets as associated full subcat-

Fam(iY)

egory. Show that i is a Acj-fibration. What does it taike to interpret
Sets

equality types as well?
8.4.2. (i) Give the precise interpretation for 11 and D in a Aa;-fibration and es-

tablish the validity of the cissociated conversions,
(ii) Do the same for equcdity in a Au;=-fibration (using the interpretation

as described after Definition 8.4.4).
(iii) Check that the interpretation for II in the Aa;-fibration in the previous

exercise, coincides with the set theoretic interpretation given in the
last section.

Section 8.4'- Fibrations for polymorphic type theory 483

8.4.3. Since P E R is a small category, it is internal in Sets. Check that the fibra-
UFam(PER)

tion i of families of PERs over sets is not the externcdisation of
CJ-Sets

this internal category.
8.4.4. Define two parallel maps u,v: I =t J in the base category of a (not nec-

essarily preordered) fibration with equality Eq to be in te rna l ly equal if
there is a vertical map 1(7) -^ Eq(t(, v) from the terminal object 1(7) over
7 to the object Eq(w, v) as in Notation 3.4.2. Check that in the above three
PER-models internal and external equality coincide.

PFam(PER)
8.4.5. (i) Consider the fibration i of parametric families of PERs. The

^ ^ P P E R ^
definable coproducts -hd from Exercise 8.1.5, is given in this situation
on objects f^g.n i 4 1 over n as

(/+d3r(H)

= {{a ,a ') |Vt / ,V€PER.VSCN/t /xN/V.

a e lifiR) -^U)x {gP{R) ^ U) ^ U\

and a' € ! (/" («) ^ V) x (gP{R) =^ V) ^ V\

and ([a],[a']) € (Eq(r(R)) ^ B) x (Eqig^iR)) ^ B) ^ B}.

Prove that -hd is the ordinary (fibred) coproduct using parametricity.

[Hint, Use graph relations of appropriate maps, and prove first that

[K, K'] = id: / -f d 5 -> / +d 9']

(ii) Show also that the definable product Xd from Exercise 8.1.5 is the
ordinary product in this fibration.

[In parametric models the second order definable operations in Exer-
cise 8.1.5 have the appropriate (non-weak) universal properties; similarly,
the weakly initial algebras and weakly terminal co-algebras from Theo-
rem 8.2.2 become properly initial/terminal, see [118, 273, 11]. In the ordi-
nary PER-model of uniform families the weakly initial algebras are shown
to be initial in [149].]

8.4.6. Let !E!,X:Type h cr(X):Type be a type built up with finite products and
coproducts, as in Lemma 8.2.1, and consider its interpretation [[cr(X)]|: n-f-

PFam(PER)
1 -^ 1 as object over n -\- 1 in the fibration i of parametric

PPER
families of PERs.
(i) Describe the corresponding endofunctor between fibres

I ^ [- / X] l : P F a m (P E R) n —> PFam(PER)n

following Lemma 8.2.1.
(ii) For a morphism y:g-^hin the fibre PFam(PER)n define the graph

relation Q{j) C g x h SLS

Qit)n = {(W.TA(W)) I« € Ig'iR)} Q H ^ f l) x N/h^{R).

484 Chapter 8: Polymorphic type theory

Prove by induction on the structure of a that

(iii) Assume now two types E;,X:Type h (7i(X), cr2(X): Type as above.
Show that every inhabitant (3 of [HX: Type. cri(X) -> (T2(X)] | satis-
fies the following naturality condition: for each 'yig ^ h the following
diagram commutes

a,[g/X] ^<T2[g/X]

^ib/X] (T2b/X]

CTi[h/X] ^ a2[h/X]

when interpreted in the fibration of parametric families of PERs.
[Such naturality properties stemming from parametricity are described
in [340]. More generally, "dinaturality" conditions (which arise from nega-
tive occurrences of X) may be found in [11].]

8.4.7. Let C be a CCC. We form the category NP(C)—where 'N' stands for neg-
ative and 'P ' for positive—as follows. Objects are natural numbers n G N.
Morphisms (F i , . . . , Fm)'- n —^ m are given by functors Ft'. (C°^)" x C" ->
C. Especially, we have projections proj^in —)• 1 described by {X,Y) ^ Yt
and {f,g) ^ g^. Given F:n ^ 1, i.e. F:(C°P)" x C" -^ C, we write
^tw.^(^p^n X C" ^ C P for the 'twisted' version of F obtained as the
composite of

(C ? P) " X C " ^ (([;opop)n ^ (([X^p^n ^ ((([;op^n ^ Qi ^op ^ ^p

Now one can define composition in NP(C) by (d , . . . , G^) o (F i , . . . , Fm) =
{Hi,..., Hk), where H^ = G^ o {FI"^ ,..., F^, Fi,..., Fm). Notice that
idn = (proji , . . . , projn). In this way one obtains a category NP(C). It has
finite products: 0 is terminal and n -{- m is the products of n and m. For
arrows F,G:n —)• 1, we put

FxG = p rodo (F ,G) : (C^P)" x Q" _ ^ C x C — > C

F^G = exp o (F^^, G) : (C^P)" X e —> C ^ x C —> C

Next we define an indexed category ^ : NP(C)°P —)• Cat by giving the fibre
categories ^(n) morphisms F : n -^ 1 in NP(C) as objects. Morphisms F —)•
G in ^{n) are families a = {(^x))^e€,^ °^ arrows a^:F{X,X) -^ G{X,X)
in C There is no dinaturality requirement for such families. Show that
applying the Grothendieck construction to ^:NP(C)°P -> Cat yields a
(split) A—)-category.
[This construction comes from [154, Section 3.3]; it is based on [11]. Also
in [154] one finds how a restriction on the above F's and cr's yields the free

Section 8.5: Small polymorphic fibrations 485

A-^-fibration generated by C And in [99] it is shown that the interpreta-
tions of terms in this model are dinatural transformations.]

8.5 Small polymorphic fibrations

We recall that a polymorphic A ^ - , A2- or Au;-fibration is called small if it
arises via externalisation from an internal category in its base category. In
this section we shall investigate how a polymorphic fibration can be turned
into a small one. We describe two ways of doing so. The first internalisation
is based on the "standard construction" as described in Proposition 7.3.12:

a fibration i (which is split and satisfies suitable size conditions) yields an

internal category in the topos of presheaves B = Sets® . This s tandard con-
struction is applied to polymorphic fibrations (actually indexed categories)
in [8]. The second construction is from [268]. It yields for a polymorphic fibra-

tion I a full internal category in the total category E. Moreover, if we move
this internal category via the Yoneda embedding to the topos of presheaves
E = Sets^ then we again have a full internal category, but this t ime in a
topos. Below we shall show tha t this second step (the move from E to E) is in
fact an application of the s tandard construction. What is emphasised in [268]
is tha t his construction turns a polymorphic fibration into a small one in a
suitably rich ambient category (a topos) where the induced internal category
has its Cartesian closed structure and products as in this ambient category.
This facilitates reasoning about such structures.

We shall assume in this section that all polymorphic fibrations (with all
their structure) are split. Further, we shall write Cartesian closed structure in
fibres of a fibration with symbols T, A, 3 for finite products and exponents.
This is not to suggest tha t we have preordered fibres, but in order to be
able to use different notation for the induced structure (see below) on the
total category of the fibration. Such structure in total categories is studied
systematically in Section 9.2.

We start with the s tandard construction for internalisation (as in Propo-
sition 7.3.12). It is repeated in (i) below. The second additional point comes
from [8].

E

8 .5 .1 . T h e o r e m . Let ^P be a split fibration where the base category B is

locally small and all fibre categories E/ are small.

(i) [Internalisation as in Proposition 7.3.12] There is an internal category

486 Chapter 8: Polymorphic type theory

P m B = Sets® with a change-of-base situation:

' j
E ^ ^ Fam(P)

where y (for Yoneda) and % are full and faithful functors.
E Fam(P)

(ii) / / ^P is a A-^- or X2-fibration, then so is the externalisation i ,
^ 1

and the morphism of fibrations {y,7i) in (i) preserves this structure.
(The abovementioned size conditions can be ignored if one is willing to

replace Sets by a suitably larger category of classes.)

Proof, (i) The presheaves PQ and Pi of objects and of morphisms of the
internal category P = (Pi — \ PQ) in B are, on objects, respectively,

/H^ObjE/ and / Ĥ U E / (x , y) .
x,yeE7

See the proof of Proposition 7.3.12 for further details.
Fam(P)

(ii) The fibred Cartesian closed structure of i is defined pointwise
B ^

using the structure in the fibres of p. For example, in the fibre over P G B
the product of objects a, (3: P =^ PQ is given by [a x P)i{a) — a/(a) x Pi{a),
where / E B and a G P (/) .

Next we notice that the split generic object 1} G B of p—with isomorphisms
B(/, 1}) = Obj E/—makes the presheaf PQ of objects represent able. Hence we
can identify the exponent presheaf PQ ° at / G B as

Po^°(/) ^ B{y{I) X y{Q), y{Q)) see exponents in Example 5.4.2

because y preserves products

^ B (/ X Q, fi) since y is full and faithful

= ObjE/xn because Q is split generic object.

Hence the object parts of the required internal product and coproduct functors
rio' IJo- ^0 ° ^ ^0 ^^^ t>̂ described via functions Obj E/xn =^ Obj E/ sending
X Ĥ r i / l ^) ^^^ ^ ^ 11 / (^) ' where H/'LJ/ ^^^ ^^^ right and left adjoint
to the weakening functor TT* induced b y 7 r : / x Q - > Q . D

Notice that we explicitly use representability of the object presheaf in order
to obtain polymorphic products and coproducts. The argument extends to

Section 8.5: Small polymorphic fihrations 487

arbitrary representable presheaves (see Exercise 8.5.1 below), but it is not clear
how to obtain quantification with respect to non-representable presheaves, so
tha t the result can be extended to Acj-fibrations.

We turn to the internalisation of [268]. We shall present it in different
form, using "simple fibrations over a fibration". These generalise "simple
fibrations over categories" as in Section 1.3, see Exercise 8.5.3. But first, we
need the following result, which shows how fibred ("local") finite products and
exponents induce ("global") finite products and exponents in total categories.
A more complete account of the interaction between local and global structure
occurs in Section 9.2 in the next chapter, and in [125, 127].

E

8.5 .2 . L e m m a , (i) Let jrP be a fibration with finite products (1, x) in its

base category, and fibred finite products (T , A) in its fibre categories. The total

category E then has finite products:

• the terminal object T E Ei in the fibre over the terminal object 1 E M is
terminal in E

• the Cartesian product in IE of X G E/ and Y E E j is the object X x Y ==
7r*(X) A 7r'*(y) in the fibre over / x J E B.

(ii) If p additionally has fibred exponents D and simple products Y[(i j)>
then the category E is Cartesian closed. The exponent of X E E/ and Y E E j
is the object

in the fibre over / => J E B, where TT and ev in this expression are the
projection and evaluation maps (7 = > J) <—(/=> J) x I ^ J.

Proof, (i) Reasoning in the total category E will be reduced to reasoning in
fibre categories by Lemma 1.4.10. For Z E E over K E B one has in E,

E(Z, X XY) ^ U ^^ ('̂ ^*(^ ^ ^))
u.K-^IxJ

^ H EK {Z, (TT O uYiX) A (TT' O uYiY))
u:K-)-IxJ

s n]J EK(z,v*{x)^w*iY))

=]1^K(Z,V*{X)) X \[¥.K(Z,W*{Y))
v:K-yI w:K-yJ

s E{Z, X) X E(Z, Y).

488 Chapter 8: Polymorphic type theory

(ii) We similarly compute, again for ^ G E above K G IB,

E(Z, X ^Y)

S] J EK{z,u*Uii^j,i)i^*(X)Dev'{Y)))

S J J E;, (Z, Y\iK,i){^ X id)*(7r'*(X) D ev*(y)))
u:iC-^.(/=>J)

S JJ EK (^, 0(̂ ,̂7)C'̂ "!̂) D (ev o « X id)*(Y)))

= n EKx/(7r*(^), ^ '*(X)Dt;*(y))

= U %x/ (7r*(^)A^ '* (X) , ^;*(y))
^ E (Z X X , y) . D

Notice that, by construction, the functor p:E ^ IB strictly preserves these
finite products and exponents in E.

E

8.5.3. Definition. Let ^ be a fibration with fibred Cartesian products A.
We write Sp(E) for the category with

objects pairs X, X ' G E in the same fibre.

morphisms (X, X') -^ (y, Y') are pairs of morphisms f: X ^ Y and
f':X /\X' -^ Y' in E over the same map in IB, i.e. with

p (/) = p (/ ') -

There is then a projection functor Sp(E) —>• E, namely {X^X') H-> X, which
will be written as Sp. It will turn out to be a fibration, which we call the
simple fibration on p.

The identity morphism on [X,X') G Sp(E) is the pair (id, TT') consisting of
the identity X -^ X together with the (horizontal) projection X /\ X' -^ X'.
The composite of

ix,x') ^^'^'^ . (y,r) ^''''^ . iz,z')
is given by the pair of maps

X — ^ y — ^ z, X AX' ^ y A y — ^ z

where the map (/ o TT, f) arises as follows. Write u — p{f) = p{f) in B and
consider the vertical parts X AX' -^ ^*(^) of / o TT and X AX' ^ u*{Y') of

Section 8.5: Small polymorphic fibrations 489

/ ' . Tupleing these in the fibre yields a map X /\ X' -> u*{Y) A u*{Y'). And
using that substitution preserves products A, we get (/ o n, / ') as composite

X AX'

I
u*{Y)Au*{Y')

= \
u*{Y A Y') ^ Y AY'

It is by construction the unique map over u with TT o (/ o TT, / ') = / o ;r and
7r'o{fon,f') = f'.

Notice that applying the definition to the trivial fibration ^ yields the
s(l)

simple fibration i on B from Section 1.3, for IB with Cartesian products.
We thus have a (fibred) generalisation of our earlier "simple" construction for
(ordinary) categories.

E
8.5.4. Lemma. Let ^P be a fibration with fibred finite products (T, A).

Sp{E)

(i) The above functor ^^p is a fibration with fibred finite products. It is

split (with split products) if p is split (with split products).
(ii) The original fibration p can be recovered from the simple fibration Sp

via change-of'base along the terminal object functor T as in:

Sp(E)

(iii) i is a (split) fibred CCC if and only if ^ is a (split) fibred CCC.

(iv) There is a full and faithful fibred functor Sp (E) -^ E"*" given by

(XAX' \
{X,X^)^{ ^^ j .

It preserves the above fibred CCC-structure.

Proof, (i) Reindexing along a morphism / : X —> y in E above u: I -^ J in
B takes the form

iY,Y')^{X,u*{Y'))

490 Chapter 8: Polymorphic type theory

with as Cartesian lifting (X, u'iY')) -> (7, Y') the pair / : X -> Y and u[Y') o
'K'-.X ^u^{Y')^u*{Y')-^Y',

In the fibre of Sp (E) over X G E one has as terminal object and Cartesian
product:

(X, T[pX)) and (X, X') A (X, X") = (X, X' A X") .

(ii) For / G B the objects in Sp(E) over T(/) G E are the objects in E
over / . And for u: I -)- J in B the morphisms in Sp(E) over T{u) are the
maps T(/) A X -> y in E over w, which can be identified with the morphisms
X -^ y in E over u.

(iii) Given fibred exponents D in p, one defines fibred exponents in Sp(E)
by

(X , X ') D (X , X ") = (^ , X ' D X ' ') .

The converse is easy by the change-of-base situation in (ii).
(iv) Easy. •

E
8.5.5. Theorem, (i) / / ^P is a split X—^'fibration, then the simple fibration
Sp(E)

^^p on p is a full small X—^-fibration: there is a full internal category C in

E whose externalisation is this simple fibration.
Sp(E) IE

(ii) And i is a split A2- (or XLO-) fibration if and only if 4- is a split

A2- (or X(jj-) fibration.
Proof, (i) Let ̂ 2 G B be split generic object for p with natural isomorphisms
^/:B(/,fi) ^ ObjE/. Write T = 6>n(id) G Eo and Co = TQ G lEn for the
terminal object in the fibre above fi. We are going to form the full internal
category Full(a) in E that comes from the (vertical) map in E

as in Example 7.1.4 (ii). Therefore we need the following two observations.
(a) For each morphism / : X —>• TQ in E, say over w: / —> fi in B, we have

a pullback square in E,

u(T) o TT'
X A u*{T) ^ T

J
X ^ T Q

Section 8.5: Small polymorphic fibrations 491

This is not hard to check.
(b) The exponent n*(a) => T^'*(a) in the sHce category E/TQ x Tfi exists,

namely as the (vertical) projection

(TQxTfi)A(7r'(T)D7r'*(T))

TfixTQ

(It is used as pair {do,di):Ci —> Co x Co in the Full(—)-construction in Ex-
ample 7.1.4 (ii).) Indeed, for a family {f,g):X —>• T12 x TQ in E we have

E / T f i x T O ((/ , 5) x 7 r * (a) , n"(a))

^ E/x({f,griT*{a), {f,grn'*{a))

since {f,g) x 7r*(a) S U{f,g}{f'9r^*(a)

/XA(pfriT) XA(pgr(T)

= WX ^'^ , ^'^ 1 by (a)

- lE^x{XA(pfnT), ipgriT))

S ^,x{x, {pf,pgr{7^*{T)Dir'*(T)))

^ E(p;,p,)(x, 7r*(T)D7r'*(T))

/ (Tf2xTQ)A(7r*(T)D7r'*(T))\

^ E/rn.Tn \^if,g), ^^i-^^ j .

The latter projection thus behaves as exponent in the slice.
Hence we have enough structure to form the full internal category Full(a).

The object of its externalisation Fam(Full(a)) over X ElE are the maps X -^
Co = TQ in E. Because the terminal object functor T is right adjoint to p,
these objects correspond to maps pX -^ Q in B, and hence to objects in Fpx —
Sp{E)x because fi is generic object. Similarly, morphisms of Fam(Full(a)) over
X correspond to morphisms of Sp (E) over X.

(ii) Products Y[and coproducts JJ for the simple fibration along the pro-
jections X X y —> X in E are obtained via the products Y[and coproducts]J
along the projections pX x pY -^ pX in B and via products and exponents
in the fibres:

n(x,YMxY,Z) = (X,n(px.py)('^'*(>')3^))
Uix.vM xY,Z) = {X,Ui,x,pY)i^'*iy)^Z)).

492 Chapter 8: Polymorphic type theory

Then

S,{¥)X>.Y(^*{X,W), {XXY,Z))

= ¥^X^PY({XXY)M:'[W), Z)

= EpXxpYi7^*{X)A7r'*(Y)Mr*{W), z)

= EpXxpY{7r*(XAW), IT"(Y)DZ)

S F,x{XAW,UipX,pY)i^'*(Y)DZ))

= Sp{E)x{{X,W),Uix.YMxy'Z)).

And similarly for]J/jj^ y)- Exponents in E exist by Lemma 8.5.2 (ii). •
The full internal category C in this theorem has its fibred CCC-structure

and products Y[as in its ambient category E. The next step is to form a full in-
ternal category in a richer ambient category, namely in the topos E = Sets^°^
of presheaves on the total category E of our fibration. In principle there are
two constructions: apply the standard construction from Theorem 8.5.1 to the

simple fibration i , or apply the Full(—) construction in E to the image

y{a) of the Yoneda functor 3̂ applied the map a = (_f) which gives the

earlier full internal category C in E. It turns out that these two constructions
coincide. The outcome is the main result of [268]. There, only the second con-
structions is described, and it is not explicit that there is an application of the
standard construction involved via the mediating role played by the simple
fibration in the previous theorem.

In the proof below we need the following technicality.

8.5.6. Lemma. Yoneda functors y:C ^ Sets^°^ preserve finite limits and
exponents in slice categories. •

Preservation of finite limits is standard (and easy). For the proof that also
exponents in slices are preserved we refer to [268].

E

8.5.7. Theorem (Pitts [268]). Every split X-)- (or X2-) fibration iP gives

rise to a full internal category P in the topos of presheaves E = Sets^ ,
whose externalisation is again a A ^ - (or \2-) fibration with its structure as
in the ambient category E. Moreover, there is a change-of-base situation

E ^ Fam(P)

I J I
P\

^ T y I
B ^ E ^ E

Section 8.5: Small polymorphic fihrations 493

so that the fibration p can be recovered from the internal category P in E.

(There are also some size restrictions in this theorem, analogous to those
in Theorem 8.5.1.)

Proof. We show that the full internal category D = {Di ^ DQ) in E arising
from the family

is the same as the outcome P = (Pi —] PQ) of applying the standard con-
struction from Theorem 8.5.1 to the simple fibration Sp. For X G E we have,
according to the definition of the object PQ of objects of P in the proof of
Theorem 8.5.1 (i):

PoiX) = Objs(E)x

= ObjEpx

s m{px, n)
S E{X, TQ)

= y{Tn){x)

= Do(X).

And

Pi(X) = Jl s(E)x {Y,Z)
Y,Zes(E)x

a J J Epx{XAu*(T),v*(T))

S] J E(„,„)(X, 7r*(T)D7r'*(T))
u,v:pX^ft

^ E{X, (T O X TQ) A (7r*(T) D 7r'*(r)))

= ^^(domainof 7r*(a) =>7r'*(a))(X)

S (domain of 7r'3^(a) ^ 7T'*y{a)){X) by Lemma 8.5.6
= Di(X). D

Recall that in a polymorphic fibration we require the presence of a generic
object, but such an object need not come from an internal category—uniform
families of PERs over Sets in Corollary 8.4.6 form an example where this is
not the case. Having a small polymorphic fibration gives something extra, and
this 'something' will be characterised later as: for a A->-fibration p there are

494 Chapter 8: Polymorphic type theory

equivalences

9 5 6
p is small <=> p is "locally small"

•<==> p is a "comprehension category with unit"

The latter structures are used for dependent type theory. Thus, in such small
polymorphic fibrations there is more structure than strictly needed for mod-
elling polymorphic type theory.

Exercises

E

8.5.1. Consider the intemcJisation P in B of a fibration jP as in Theo-

rem 8.5.1 (i). Let i? C B be the collection of representable presheaves
B(—, /) . Extend the description of (co)products f j ,]J[in the proof of The-
orem 8.5.1 (ii) in the following way: p has simple (co)products '^ the ex-
ternaJisation of P has simple (co)products with respect to the CT-structure
(B, R). (What the latter means is in Definition 2.4.3.)

8.5.2. Prove that the induced product functor x : E x E -^ E in Lemma 8.5.2 (i)
is a fibred functor (over x : B x B ^ B).

8.5.3. (i) Let B be a category with Cartesian products x. Show that the functor
{X, X') H> (X, X X X') forms a comonad B x B -> B x B, and that its

s(l)
Kleisli category is the total category s(B) of the simple fibration 4-

IB
onB.

E
(ii) Let ^P be a fibration with fibred Cartesian products A. Prove that

B

the assignment {X,X') M- {X,X A X') now yields a fibred comonad
p X p ^ p X p (over B), and that its (fibred) Kleisli category (see

Sp(E)

Exercise 1.7.9) is the total category Sp(E) of the simple fibration 4-
on p.

8.5.4. Consider the full internal category C from Theorem 8.5.5 in the total cat-
E

egory E of a A ->-fibration -jrP .
(i) Show that the object C2 of composable tuples of morphisms of C can

be described as

C2 = (TQ xTQx TQ) A (;r*(T) D n*{T)) A (7r'*(T) D n"*{T)).

(ii) Give a similar description of the object C3 of composable triples in C.

8.5.5. Prove that the functor Sp(E) —^ E"^ from Lemma 8.5.4 (iv) also preserves
simple products f|.

Section 8.6: Logic over polymorphic type theory 495

8.6 Logic over polymorphic type theory

In the three chapters 3, 4 and 5 on equational logic, and on first and higher
order predicate logic, we have considered logics in which one can reason about
terms in simple type theory (STT). Semantically this involved putting a (pre-

order) fibration •[on the base category B incorporating the simple type the-
ory. An obvious next step at this stage is to consider logics over polymorphic
type theory (PTT). Semantically, this will again involve putting a (preorder)
fibration on top of a model of PTT, but it turns out that there are several
ways of doing so, depending on whether one wishes to reason about terms
inhabiting kinds vliKind, or about terms inhabiting types cr: Type (or even
about both at the same time). In this section we briefly discuss some aspects
of "logic over PTT". Such a logic may be called polymorphic predica te
logic (PPL), in contrast to simple predicate logic SPL, as studied so far. The
approach in this section is sketchy because

• PPL is not so very well-known in the literature, but there are exceptions,
like [273, 326, 120];

• some of the relevant techniques—like fibrations over a fibration, and general
forms of quantification—will be developed only in the next chapter.

Towards the end of this section we will describe how PPL may be used
to give an abstract formulation (following [204, 293]) of what makes a
A2-fibration relationally parametric.

Logic of kinds

E

To start, consider a polymorphic A—>-, A2- or Acj-fibration i . The objects of
IB

the base category B are considered as kinds A\ Kind, and the objects of the
total category E over A as types (jiType in context A, written formally as
a: A \- a(a): Type.

We first investigate what it means to put a logic on B, say via a (preorder)
fibration i . This would add a new syntactic category Prop, with inhabitants

IB

a: A \~ (p{a): Prop depending on kinds A: Kind. These propositions are objects
in D over A: Kind in B. They allow us to reason about inhabitants of kinds,
and especially, since Type: Kind, about types.

For example, one may have a logic of subtyping propositions (like in [263,
161]) in this way, with propositions

a: Type, (3: Type h a <: /?: Prop

as objects of the category D. With these, one can consider entailments between

496 Chapter 8: Polymorphic type theory

propositions, like

a, a',/?,/?': Type | a <:a\(5<:(i' h a ' - ^ / ? <: a - > / ? '

expressing the usual contra- and co-variance of exponent types with respect
to the subtyping <: relation. Semantically, such entailments h are to be con-

p
sidered as morphisms < in a fibre of ;̂ , see Exercise 8.6.1 below for a PER

IB

model of such a logic of subtyping.
To mention a concrete example, consider the fibrations over a;-Sets

RegSub(a;-Sets) UFam(PER)

u;-Sets

The (higher order) fibration of regular subobject in cj-Sets on the left hand
side gives us a powerful (classical) logic to reason about a;-sets, as kinds for

U F a m (P E R)

the Acj-fibration i of a;-set-indexed families of PERs on the right
.CJ-Sets

hand side. In this situation we have a logic of kinds.

Logic of types
E

We return to the general situation with a polymorphic fibration i and
0)

consider—as alternative—what it means to put a (preorder) fibration 4- on
top of the total category E of types. Again we may see this as adding a new
syntactic category Prop of propositions, but this time inhabitants <̂ : Prop de-
pend both on (variables in) kinds and on (variables in) types, as in

ai:Ai,...,an:An\xi:ai,...,Xm''0'm ^ (p{a,x): Prop.

These propositions should be considered as objects of D. And we may have
entailments

a i : A i , . . . , a „ : A „ | XI:(TI, ... ^Xm-o-m \(fi,...,(fk ^ i^

in which we have to deal with three separate contexts: for kinds, types and
propositions, corresponding to objects in the three categories B f- E f- D
that we have. These entailments are morphisms < in a fibre of P (over E).

For such a logic of types one expects the usual propositional connectives
± , V, T, A, D. Interestingly, one can have quantification Sx'.a.if and Vx: cr. <̂
over types, but also quantification 3a: A. (p and "ia'.A.ip over kinds—with
the restriction that in first and second order PTT A = Type is the only

Section 8.6: Logic over polymorphic type theory 497

kind. For the latter form of quantification over kinds one has to impose the
restriction that the variable a cannot occur free in the types on which ^
depends. Formally in a formation rule:

ai\ Ai,... ,an\ An,a: A\ xi'.ai,... ,Xm''(Tm h v?: Prop
(a not free in a)

Q;i:Ai, . . . ,a„:yl„ | xi: (TI, . . . , x^: cr^ h Va: A. v?: Prop
P E

Let us see what these logical operations mean in fibrations ^ and ^ of
propositions-over-types, and of types-over-kinds. To illustrate this, we first
syntactically construct a term model example of such a fibration. Let IK the
category with kinds A: Kind as objects, and with terms a: A \- M{a):B as
morphisms A -^ B. Next, let T over IK be the category with types a: A h
a{a):Type as objects (over A), and with terms a: A \ x:a{a) h N(a,x):T{a)
as morphisms cr -> r over A. Finally, let F over T be the category of
propositions a: A \ x:a{a) h (p{a,x):Prop as objects, and with entailments
a: A I x:a{a) \ (p{a,x) h ip{a,x) as morphisms (p -^ ip [or (f < ^J) over

f T

a. Then we have forgetful functors i and i which are split fibrations. For
convenience we assume finite products (1, x) for kinds and for types. In this
situation:
• The propositional connectives _L,V,T,A,D correspond to fibred preorder

r
BiCCC structure for the fibration ^ of propositions over types. Applying
these connectives to propositions does not change the contexts of types and
kinds in which the propositions live.

• Quantification 3y: r. (f and Vy: r. (f over types changes the type context by
binding the variable y.r, but it leaves the kind context a: A unchanged.
These quantifiers 3y: r. (—) and Vy: r. (—) are thus left and right adjoints to
the weakening functors induced by the Cartesian projection morphism

(a: A \- a X T: Type) ^ (a: Aha: Type)

between types, given by the (vertical) projection term

a:A\z:aXT h nz: a or by a: ^ | x: cr,y:T h x: a.

Explicitly, we then have "mate" correspondences

a:A\x:a,y:T\ V (̂a, x) h ip{a, x, y)

a\A\x:(T\ ^ (a , x) h Vy: r. <^(a, x, y)

a: A\x:a,y\T\ p{ot, x, y) h '0(a, x)

a: A\x\a \ 3y: r. (f{a, x, y) h ^(a , x)

498 Chapter 8: Polymorphic type theory

These correspondences are as in (simple) predicate logic over STT, except
that they involve an extra level of indexing given by variables a: Am kinds.
Categorically, this quantification over types in polymorphic predicate logic
(PPL) is given by simple coproducts and products, as in first order predicate
logic, but the relevant adjunctions are vertical with respect to the fibration
T
1̂- of types over kinds, since the kind contexts are not affected. This will be

K.

made precise in Section 9.4.
• Quantification 3/3: B. (p and V/?: B. (f over kinds B: Kind is more subtle. The

f
first thought is probably that it means that the composite fibration 4- of
propositions over kinds has simple coproducts and products. This would
give a functor

(a: A, /?: J9 I x: a{a, /?) h v?(a, /?, x)\ Prop)

^{a\A\ x:a{a,/3) h 3(3: B.(p{a, l3,x): Prop)

which ignores the abovementioned restriction on the occurrence in type
contexts of the variable jS that becomes bound.
What really happens is that the projection morphism in K between kinds

TT

A X B >• A described as a: A^^.B \-a:A

lifts to a Cartesian morphism TT in T, namely

7r*(a:yl h cr(a):Type) >- (^a: A h o-(a):Type)

{a:A,p:B h cr(a):Type)

{a:A,P:B) ^ [a:A)

Then 3/?: B. [—) and V/?: B. (—) are left and right adjoint to the weakening
_ . . ^ _ .

functor TT* induced in ^ by this lifted projection functor TT. This functor
TT* maps

(a: A I x\ cr(a) h V (̂a, x): Prop) !-)• (a: A, /?: 5 | x: cr(a) h il;[a, x): Prop)

by adding a dummy assumption /?: B. Quantification 3/?: B.[—) and
V/?: B.{—) over kinds is then characterised by the "mate" rules

a:A^^:B \ x:(T{a) \ <^(a,/3, ar) h ip{a,x)

a:A\x: a{a) \ 3/3: B. (p{a, l3, x) h ^(a , x)

Section 8.6: Logic over polymorphic type theory 499

a: A^ f3: B \ x: cr(a) | '0(Qf, x) h ^(a , j3^ x)

a: A\ x: cr[a) \ ^^[ci^ x) h V/?: B. (p[a^ /?, x)
In this case we have "lifted simple" coproducts and products. A precise
categorical description will follow in Section 9.3, involving an appropriate
associated Beck-Chevalley condition (which regulates the proper distribu-
tion of substitution over 3/?: B. (p and V/?: B.(p).

Of course, one can do a further step and generalise these preorder fibrations

4; and i of propositions over types to proper, non-preordered fibrations. This

naturally to type theories like AHOL [91, 154], or XLJL [276].

8.6.1. Example. Recall from Proposition 4.5.7 that one can do classical logic
with PERs, using regular subobjects as predicates. And also that such a reg-
ular subobject of a PER R can be identified with a subset A C N/R of its
quotient set. We organise these regular subobjects of (individual) PERs into
families of subobjects of families of PERs over c<;-sets so that we get a model
of a "logic over types" in PTT. Therefore we form a fibration

UFamRegSub(PER)

I
UFam(PER)

with as fibre over an (/, E')-indexed collection {Ri)i£i of PERs Ri:

objects families of subsets [Ai C N/Ri). j .

morphisms [Ai C N/Ri)-^j —> {Bi C M/Ri)-^j exist if and only if
for each i E I there is an inclusion Aj C Bi. This fibre
category is thus a poset.

For a morphism (w,/): (i?,)jg/ —)• {Sj)j^j in UFam(PER) between families
of PERs—i.e. for a morphism of u;-sets u:{I,E) —)• (J,E) and a uniformly
tracked family / = [fi'-Ri —>• Su{i))i^i of morphisms of PERs—we get a
substitution functor (i/ ,/)* which maps

{Bj C m/Sj).^j ^ {{[n]R, I fi{[n]n.) € 5„(,)} C N/i?,),g/-

We now have two fibrations

UFamRegSub(PER)

\
UFam(PER)

\
u;-Sets

500 Chapter 8: Polymorphic type theory

RegSub(PER)
incorporating the fibration i , see Exercise 8.6.2. Each fibre of

PER.
UFamRegSub(PER)

^ is a Boolean algebra, so that we have classical proposi-
UFam(PER) & ' ^ ^

tional logic in this situation. Moreover, this fibration has simple products,
along the vertical projections R x S -^ R over (/, E)—consisting of (uni-
formly tracked) families of PER-projections n = {ni: Ri x Si -> Ri)i^j. For
[Bi C f^/Ri X N/Si)- J we use set-theoretic quantification to get products
and coproducts along these projections:

'is{B)i = {[n]R,\yme\Si\.{[n]R^,[m\s,) e Bi} C N/R^

3s{B)i = {[n]R,\3me\Sil([n]R^,[m]s^) e Bi} C N/i?,-.

In a similar way we have "lifted simple" products and coproducts: for a
projection map TT: (/, E) x (J, E) —>• (/, E) in the base category u;-Sets of
kinds, we have a lifting TT in UFam(PER) at i i = (Ri)i^j over (/, E), which
in its turn acts on predicates on R as

r ((A- c N/i?.-),-e/) = (̂ .- ^ ^/Ri\a,j€J " ('̂ ^ ^/^')ia

/ \ TT = (TT, i d)

{I, E) X (J, E) ^ (/, E)

It acts as weakening of kinds on predicates. Products and coproducts (of
propositions over kinds) along this map TT are again essentially set-theoretic:
for a predicate (^f j Cf^/Ri). j . j one takes

V(j,E)(5) = n^^- ' i ^ ^l^i ^^^ 3(j,j5)(5) - [JBi^j C n/Ri
jeJ jeJ

(where the intersection f] is fi/Ri if J =: 0).
PFam(PER)

In Section 8.4 we have seen the A2-fibration i of parametric fam-
P P E R ^

ilies of PERs, and we have argued informally that it is relationally parametric
in the sense of Reynolds. We now investigate whether we can express this
parametricity more formally in a suitable logic over this fibration. This line
of thought is followed in [273] where a logical system is formulated to express
parametricity. In essence, the key requirement there is that equality should
preserve polymorphic products. In [204, 293] there is a slightly more general

Section 8.6: Logic over polymorphic type theory 501

requirement involving a reflexive graphs • <—- • preserving appropriate struc-
ture, in which the arrow • i— • need not be the equality functor (as in [273]).
We are going to explicitly construct such a reflexive graph for the fibration of
parametric families of PERs.

In fact we shall be slightly more general than [204, 293] in the sense that
we formulate parametricity for A2-fibrations with respect to a "logic of types"
over polymorphic type theory. In the approach below, this logic is a parameter,
whereas in [204, 293] the standard logic of subobjects in a category is taken.
We shall be using the logic of regular subobjects of PERs, as in the above
example.

E
8.6 .2 . De f in i t i on (After [204, 293]). Let {P be a A2-fibration, provided

with a logic over types, given by a preorder fibration ^^ . We say that p

is a re la t iona l ly p a r a m e t r i c A2-fibration if there is another A2-fibration
F
jj^ and a "reflexive graph" of A2-fibrations:

V.

; r
E
iP where P Q ^ J = id = P i oX

Vi

in such a way that that the fibre category Fi over the terminal object in C is
P

the category of relations in the preorder fibration -j; on the fibre category Ei

over the terminal object in
change-of-base situation:

Formally, this requirement is expressed by the

El x E i

PFam(PER)
8.6.3. Proposition. The \2-fibration i of parametric families of

PERs from Proposition 8.4-10 is relationally parametric (as formulated in the
previous definition).

PFamRegSub(PER) RFam(PER)
Proof. We construct fibrations i and i Kivine; us

PFam(PER) R P E R ^ ^
a logic over parametric families of PERs, and a A2-fibration in a reflexive

502 Chapter 8: Polymorphic type theory

graph of A2-fibrations:

RFam(PER) T ^ ^ ^ PFam(PER)

R P E R ^ P P E R

PFamRegSub(PER)
The "logical" fibration i has in its total category:

^ PFam(PER) ^ ^

objects pairs {A,f:n —^ 1) where / = {f^,f^) is a morphism in
PPER—z.e. an object of PFam(PER) over n E PPER—
and A is a family of predicates on / of the form:

luorphisms {A,f:n —>• 1) —>• {B,g:m -> 1) are morphisms (h,a).f -^
g in UFam(PER) satisfying for R 6 PER"

[a] eA^C N/fP(R) ^

The fibre category PFam(PER)i over the terminal object 1 E P P E R is
the category PER of PERs. Thus the fibre category RFam(PER)i over the
terminal object 1 G RPER must be the category RegRel(PER) of regular
relations A C N/R x N/R\ obtained in the change-of-base situation:

RegRel(PER)
J

PER X PER

RegSub(PER)
J

- ^ P E R ^

PFamRegSub(PER)

—^ PFam(PER)

RFam(PER)
as required in Definition 8.6.2. Since the fibration i must be a

R P E R .

A2-fibration we know that the morphisms 1 -^ Q to the generic object fi in
RPER must be regular relations on PERs. We thus define a category RPER
with mappings between relations as morphisms.

objects pairs of maps (n —> p
codomain p G PPER.

J' n') in P P E R with common

Section 8.6: Logic over polymorphic type theory 503

morphisms (n —> p <— n') —-> (m —> q <— m') are triples
{h,h',(f) of sequences where

h: n —> m and h': n m

are morphisms in PPER, and where (f — [(pi,..., ^q) is a sequence of func-
tions (^j in the function space

n n p(N//i'(^)xN//f(5))|

=^ P(M/(5,- o h){R) X n/{g'^ o h')(S)).

We leave it to the reader that this category has finite products: (0 -> 0 f- 0)
is terminal object, and the product of (rz —>• p ^ n') and {m ^ q <r- m')
is [n -^ m -^ p -\- q ^ n' •]- m'). As generic object we shall take the pair of
identities (1 -)- 1 ^ 1).

There are obvious projection functors P P E R i— RPER —> PPER,

namely n f - i (n -^ p Ĥ n'. But there is also a functor P P E R —>
RPER, namely

{ / i d id \

n H-> [n ^ n ^ n)
\h: n ^ mj i-> [(/i, ^, h'^): (n ^ n I - n) —)• (m ^ m f- m)j

where for j < n

h'je n Yl P{n/RixN/Si)
l<i<n

P{N/hP.{R) X N/M(5))

as in Definition 8.4.8. We thus already have a reflexive graph RPER i—-
P P E R between base categories. It is easy to see that these functors preserve
finite products (and also the generic object).

RFam(PER) r -,
We turn to the fibration i . The objects over (n ^ p I- n^)

R P E R

are the morphisms [n -^ p i^ n') ^ (l 4 1 1^ l) in PPER. These
consist of triples {h:n -^ \,h':n' —)- 1,^), where for sequences R E PER",
S e PER"' of PERs and Ai C N/ff{R) x N//;^(5) of relations, we have a
relation <f^si^) ^ ^/h^{^) x N//i'^(5). Morphisms [h.h^ip) -^ (Ar, Ar',^) in
this fibre are pairs of maps

a\ h k over n and ':h' k' over n

504 Chapter 8: Polymorphic type theory

in UFam(PER) for which we have for all R € P E R " , 5 € P E R " ' and
Ai C niP(R) X N//;P(5)

{oc^{[a]),a'.{[h])) G V^^^-li) C N//^^^) x N / F P (5) .

Substitution along a morphism in R P E R is done by composition. It is not
hard to see that these fibre categories are Cartesian closed (by seeing the
objects as "logical relations", essentially using the constructions for the fi-
bred CCC-structure in the proof of Proposition 8.4.10), and that substitution
functors preserve this CCC-structure.

Products n ^^^ most interesting. Consider an object (/i,/i',^) over

(n —> p i— 71) X (1 —> 1 i— Ij = (n -h 1 —> p-\- 1 <— n -h I j

so that ^^R^u),{sy)i^^ ^) ^ N / / I P (^ , ^) xN//i '^(5, V) is a relation for R,U e

P E R " + \ 5, F E PER" '+ i and Ai C f^/ff{R, U) x N/ / ;^(5 , V), B C n/U x

N / F . We have to produce an object V(/i, h', (p) over (n -> p f- n') . We define

V(/i,h',<p) = iUihy.n -^ l,n{h'yn' ^ 1,V(^))

where OC^)' HC^O ^^^ ^^ defined in the proof of Proposition 8.4.10, and V(v?)
is

W, V e PER. V5 C N/U X N / K

RFam(PER)
We leave it to the interested reader to check that this makes i

R P E R

a (split) A2-fibration. It remains to show that we have a reflexive graph
RFam(PER) f=^ PFam(PER) over R P E R ^ P P E R preserving the
A2-structure. There are obvious functors PFam(PER) i— RFam(PER) —y
PFam(PER) namely h^\{h,h',(p) H-> h. And there is also a functor
PFam(PER) —> RFam(PER) which maps

I [f:n^l] ^ [{fjjr):^n^n'}^n)-^{l^l^l)]

[a Ĥ (a, a) .

This functor is well-defined by the abstraction condition for morphisms in
PFam(PER). It is not hard to check that it preserves the A2-structure as
described in the proof of Proposition 8.4.10. •

Section 8.6: Logic over polymorphic type theory 505

RFam(PER)
8.6.4. Remarks , (i) The A2-fibration i of relations on PERs de-

^ ^ RPER
scribed in the above proof looks quite complicated, and possibly even ad hoc.
But it follows in essence from a general construction in [293]. This construction
applies to (suitably complete) small A2-fibrations, and yields an associated
parametric A2-fibration.

RFam(PER)
(ii) The structure that makes i a A2-fibration may be called

RPER . . .
the "logical relations A2-structure". It is explicitly described in logical terms
in [340, 273].

(iii) Earlier in this section we have put a fibration on top of the base cate-
gory of a polymorphic fibration to get a "logic on kinds", and we have put a
fibration on top of the total category of a polymorphic fibration to obtain a
"logic on types". The latter will turn out to be a fibration in the 2-category
Fib(IB) of fibrations on the (fixed) base category B of the polymorphic fibra-
tion. What happens in the previous proof is that we have a logic of relations
both on kinds and on types. Categorically it involves putting a fibration on

PFam(PER)
top of (the product with itself of the) polymorphic fibration i in

PPER
the 2-category Fib of fibrations over arbitrary bases, as in: RFam(PER) ^ R P E R

f PFam(PER) x PFam(PER) ^ P P E R x P P E R

Details about fibrations in 2-categories Fib(IB) and Fib of fibrations will be
given in Section 9.4.

(iv) It is not clear in what sense the functor PFam(PER) —>• RFam(PER)
used in the proof may be seen as an equality functor (as used in [273]) within
the logic given by the structure in (iii).

(v) Essentially, all that we have done is describe one relationally parametric
(PER-) model of second order PTT (in fibred form). We do not claim to have
covered a substantial part of the theory on parametricity, and refer to the
literature [286, 340, 11, 149, 117, 204, 84, 273, 2, 118, 291, 26, 326] for more
information and further references.

506 Chapter 8: Polymorphic type theory

Exercises

8.6.1. (From [161]) Let PER<: be the category of "indexed PERs and inclusions".
It has

objec ts triples (/, R, R') where / = (/, E) is an a;-set and /?, R'
are /-indexed PERs. Hence we may describe such an
object as a pair of parallel maps /?, R': (/, E) =4 VPER
in a;-Sets. (Thus VPERx VPER is split generic object.)

morphisms {I,R, R') -> (J, 5, 5') are morphisms u:{I,E) —^ {J,E)
of a;-sets for which one has for all i E /

Ri C Ri =>- 5it(,) C 5y(,).

(i) Check that the functor PER<: ->• a;-Sets given by (/, R, R') M- / is a
fibration, with posets as fibre categories.

(ii) Show that there is a full cind faithful fibred functor PER<: ->
RegSub(a;-Sets) over u;-Sets. Hence this category of PERs with sub-
typings gives us a "sublogic" of the logic of regular subobjects of u;-sets.

UFam(PER)
In combination with the fibration i we get a logic of kinds,

(J-Sets
as above.

P E R < :
(iii) Prove that the fibration i of sub typings has fibred finite meets.

CJ-Sets
8.6.2. Check that there are change-of-base situations:

RegSub(PER) ^ UFamRegSub(PER)

P E R ^ UFam(PER)

-^ u;-Sets

8.6.3. Check that the V's and 3's (over types and over kinds) in Example 8.6.1
are right and left adjoints to appropriate weakening functors.

8.6.4. Investigate equality Eqs(/3,/3'): Prop for inhabitants fi^fi'.B of B: Kind in
the (term model of the) logic over types in PTT, in terms of left adjoints
to lifted diagonals 8. See also what this means in the model of famihes of
regular subobjects of PERs in Example 8.6.1.

8.6.5. Check that the morphism of split fibrations

/ PFam(PER) \ / RFam(PER) \

V PPER / V RPER)

in the proof of Proposition 8.6.3 preserves polymorphic products] ^ .

Section 8.6: Logic over polymorphic type theory 507

8.6.6. Describe inside a;-Sets an internal category R e g S u b (P E R) of regular sub-
objects in the internal category P E R in u;-Sets. Define an "internal fibra-
tion" R e g S u b (P E R) ->• P E R in a;-Sets and show that the situation

UFamRegSub(PER) ^ UFam(PER)

a;-Sets

cirises by externalisation.

508 Chapter 8: Polymorphic type theory

This Page Intentionally Left Blank

Chapter 9

Advanced fibred category theory

This is the second chapter in this book—after Chapter 1—in which fibred
category theory is studied on its own, and not in relation to a specific logic or
type theory. This chapter collects some miscellaneous topics in fibred category
theory, which are of a more advanced nature. Most of these will re-appear in
the subsequent last two chapters on (first and higher order) dependent type
theory. The notions and results that will be of greatest importance in the
sequel are in Section 9.3 on quantification.

We start this chapter with opfibrations, which are suitable duals of fibra-
tions; they involve an "initial lifting" property, as opposed to a "terminal lift-
ing" property defining fibrations. These are then used in the second section to
describe categorical structure in total categories of fibrations. This structure
is often used for so-called "logical" predicates and relations. It gives rise to
a categorical description of induction and co-induction principles associated
with inductively and co-inductively defined da ta types. The third section gives
a general notion of quantification along a certain class of maps in a base cate-
gory, presented either via a "weakening and contraction comonad", or equiv-
alently, via a "comprehension category". This general notion of quantification
encompasses all forms that we have seen so far. The fourth section 9.4 deals
with another generalisation: a fibration involves objects in a total category
which are indexed by objects in a base category. Logically, propositions in a
total category are indexed by types, to reason about the type theory of the
base category. One can go a step further and investigate multiple levels of in-
dexing. We already saw examples in Section 8.6 where we had propositions to
reason about types, which in turn were indexed by kinds in polymorphic type

509

510 Chapter 9: Advanced fibred category theory

theory. Such double levels of indexing are captured categorically by having
one fibration being fibred over another fibration. This can basically happen
in two ways, depending on whether one keeps the base category fixed or not.
In the last two Sections 9.5 and 9.6 we describe Benabou's notions of 'locally
smair and 'definable' fibration. They involve representation in the base cate-
gory of: homsets in the total category (for locally small fibrations), and best
approximations of an object in the total category, with respect to a certain
property (for definable fibrations). One of the main results is that small fibra-
tions (coming as externalisations of internal categories) can be characterised
as fibrations which are both locally small and globally small (where the lat-
ter means that the fibration has a generic object). And this will imply that
"definable subfibrations" of a small fibration are again small fibrations.

9.1 Opfibrations and fibred spans

We recall that what determines a fibration is a "terminal lifting" property
for morphisms in the base category. There is a dual notion of opfibration
for which one has an "initial lifting" property instead: a functor p:E -> B
is an opfibration if p, considered as functor p: EPP —> W^ between opposite
categories, is a fibration. That is, if each morphismpX -^ / in B has a lifting
X —)• • in E, which is initial in a suitable sense. One then says that E is
opfibred over B. Sometimes opfibrations are called cofibrations.

In this section these opfibrations will be investigated. Most examples of
opfibrations are straightforward dualisations of examples of fibrations. In fi-
brations one can choose reindexing functors u*, and similarly in opfibrations
one can choose opreindexing functors u\. One can think of u* as restriction,
and of u\ as extension, see the examples after the proof of Proposition 9.1.4
below. If a fibration is also an opfibration then there are adjunctions u\ -\ u*.
Lemma 9.1.2 below states that these adjunctions characterise such fibrations
which are also opfibrations (called bifibrations). We further describe categories
which are fibred over one category and opfibred over another. Such structures
will be called fibred spans; they give rise to interesting examples. However,
they form a side topic.

The following is a direct dualisation of Definition 1.1.3, which introduces
fibrations.

9.1.1. Definition. Let p:E —)- B be a functor.
(i) A morphism f:X ^ Y in E over u — pf:I ^ J in B is called op-

cartesian over u if it is Cartesian over u for p: EP^ —^ W^. That is, if each
morphism g:X —^ Z iuE with pg = v o u in M, uniquely determines a map

Section 9.1: Opfihrations and fibred spans 511

h:Y —^ Z over v with /i o / = ^, as in:

E

p(^) —you

(ii) The functor p: E -^ B is an opfibration if p: E°P -> IB°P is a fibration.
Equivalently, if above each morphism pX —)• J in B there is an opcartesian
map X ^ y in E.

An opfibration p: E —>• B will be called cloven or split whenever p: EPP —>
W^ is a cloven or split fibration.

(iii) A bifibration is a functor which is at the same time a fibration and
an opfibration.

Earlier we wrote u*{X) —> X for a Cartesian lifting of a morphism u: I ^
pX. Similarly, we shall write X -^ u\{X) or X —> U^^(X) for an opcartesian
lifting oiu'.pX -^ J in a base category. The assignment X i-> u\{X) extends to
a functor, which may be called opreindexing, extension or sum functor—
because it will turn out to be a left adjoint to substitution w*, see Lemma 9.1.2
below.

(The notation u^ (or Y\^) is often used for a right adjoint to a functor u*.)
We present two easy examples of opfibrations; they are obvious dualisations

of the type theoretic 'codomain' and 'simple' fibrations to 'domain' and 'sim-
ple' opfibrations. First, the domain functor domiB"*" —> B is an opfibration
if and only if the category B has pushouts. Pushouts in B are precisely the
opcartesian morphism in B"*". The fibre above / G B is the opslice / \B .

Secondly, for a category B with binary coproducts + there is a simple
so(l)

opfibration i where the total category so(B) has

objects pairs [I,X) of objects in B.

morphisms {h^) -^ [J^^) ^^^ pairs of morphisms u: I -^ J and
/ : X -> J -f y in B.

The first projection so(B) ^ B is then a split opfibration. One obtains an
opcartesian lifting starting from (/ ,X) E so(B) over the domain of u: I -^ J

512 Chapter 9: Advanced fibred category theory

in IB:

/ ^ J

by taking ?? = {Ji^) and ? = {u,f^'), where K': X —^ J -\-X in the second
coprojection. The fibre over / G B will be called the simple opslice category
and will be written as I\M.

The following result is quite useful.

9.1.2. Lemma. A fibration is a bifibration (I.e. additionally is an opfibration)
if and only if each reindexing functor u* has a left adjoint (written as u\ or

UJ-
Notice that the Beck-Che valley condition is not required for these]J^'s

in the lemma. But the result implies that every fibration with coproducts
{i.e. with adjunctions]J^ H u* satisfying Beck-Che valley) is a bifibration.
Codomain fibrations are thus bifibrations (see Proposition 1.9.8 (i)).

E
Proof. Let ^P be a fibration. For a morphism w:/ -> J in B and objects
X G E/ and y G Ej consider the chain:

Ey(iJ„w, y) ^ E,(x, u-(Y)) s E„(x, y) s E^dj^w. y)
where the isomorphism = in the middle comes from the fact that p is a fibra-
tion. Then:

*
left adjoints]J^ exist <^ isomorphisms = exist

<:> isomorphisms = exist

<=> p is an opfibration. •

The next result is similar to Lemma 1.9.5 for family fibrations over sets.

9.1.3. Lemma. Let C be a fixed category. The assignment

A H-> (the functor category C^)

extends to a functor Cat^P —> Cat. The resulting split fibration will be written
Fam(C)

as i . Then
Cat

Fam(C)
C is cocomplete <^ i is an opfibration.

Section 9.1: Opfibrations and fibred spans 513

Proof. For a functor U:A^B the reindexing functor [/*: C? -^ C^ is given
by pre-composition with U, that is, by U* — (—) o U. A left adjoint is thus
given by left Kan extension. If C is cocomplete, then one can use the pointwise
formula, see e.g, [187].

Fam(€)
Conversely, if I is an opfibration, then, by the previous lemma, every

Cat
functor F E C^ has a colimit 0 ^ (F) in the fibre over the terminal category
1—which is isomorphic to C. •

There is a similar result (due to Lawvere) which is of relevance in the se-
mantics of parametrised specifications. This will be explained after the proof.

9.1.4. Proposition. LetM be a cocomplete category with finite products, such
that functors I x (—):B -> B preserve colimits. There is an indexed category
AlgSpec^P -^ Cat given by

(S , ^) ^ (the category F P C a t (« (S ; , ^) , B) of models of{i:,A) m M\ .

Model(B)
The resulting fibration i is a bifibration.

AlgSpec
Recall from Section 3.3 that these categories of (functorial) models of alge-

braic specifications contain finite product preserving functors as objects, with
natural transformations between them.

Proof. For a morphism (/): (D,^) -^ {T,',A') of algebraic specifications and a
model M:a{E, A) -^ B one obtains a functor (/)i{M):Ci{'E',A') -^ B with the
required universal property by pointwise left Kan extension. Some detailed
computations—using that the functors / x (—):B —)• B preserve colimits—
prove that this functor (j)\{M) preserves finite products. •

This result gives for a morphism <j): (E ,^) -^ {T>',A') of algebraic specifi-
cations and models Al : f f (S ,^) -^ B and M:a{J:\A') -> B of (E ,^) and
{H',A') in B, a bijective correspondence between natural transformations

(f>,{M) => M

If </>: (E ,^) -^ (E ' ,^ ') is an inclusion then <{>'^{N') is restriction and (t>\{M) is
extension: (f)]{A4) yields an interpretation of all the extra types and function
symbols in (E ' , ^ ') . Moreover, the above correspondence tells us that it is the
best possible extension. For more information, see [152] (and [160]) and the
references mentioned there.

In [344] there is a similar bifibration of labelled transition systems over
pointed sets of labels: reindexing u* is restriction along a relabelling map,
and opreindexing i/r is extension.

514 Chapter 9: Advanced fibred category theory

There are many more examples of bifibrations. The classical example in
algebra is given by modules over rings. For a homomorphism of rings f: R —^ S
there is a reindexing functor /*: Mods -> Modi? from modules over S to
modules over R (much like in Exercise 1.1.11 for vector spaces). It has a left
adjoint f\: ModR —^ Mods, called "extension of the base", see e.g. [190, XVI, 4]
or [36, II, 4.7]. It plays an important role in descent theory for modules.

Fibred spans

The notion to be introduced next is due to Benabou. It can be under-
stood as follows. Indexed categories 1^^ -^ Cat are categorical generalisa-
tions of presheaves W^ -> Sets. Similarly, one can generalise profunctors
A°P X B -^ Sets to A°P X B -> Cat. And the fibred versions of the latter are
described as what we call fibred spans. This correspondence is made explicit
in Proposition 9.1.8.

9.1.5. Definition, (i) A fibred span consists of a diagram

E

where p is a fibration and q is an opfibration and these fibred structures are
compatible in the following way.

(a) Every morphism / —> pX in A has a p-Cartesian lifting • —>• X in E
which is g-vertical. Also, every gY -^ J in B has an opcartesian lifting Y ^ •
in E which is p-vertical.

(b) Consider a commuting diagram in E

h

where f,g are g-vertical and ft,Ar are p-vertical. Then

/i, k are p-Cartesian
- . ^ . , => a IS g-opcartesian.

/ IS g-opcartesian J
Or, equivalently,

/ , 0 are g-opcartesian 1 , • ^
, . ^ X • > => n IS p-Cartesian. k IS p-Cartesian J

Section 9.1: Opfihrations and fibred spans 515

(ii) A fibred span will be called split if both the fibration p and the op-
fibration q are split, and the compatibility conditions (a)-h(b) hold for the
morphisms given by the splitting and opsplitting.

It is easy to see that the notion of fibred span comprises both fibrations,
E E

namely as fibred spans ^ ^ and opfibrations, as fibred spans ^ \ . For this
B 1 1 IB

reason, Street [317] calls these fibred spans fibrations. What we call fibrations
and opfibrations then appear as special cases.

The next result gives rise to many more examples of fibred spans. One half
of it appeared as Exercise 1.4.6.

F G

9.1.6. Lemma. Consider two functors A —> C <— B with common
codomain C. The comma category (FIG) together with the associated pro-
jection functors to A and B forms a split fibred span

A B

Proof. Let ^\ FX -> GY be an object of (F | G). It is sent to:

(F X ^ GY^

PF PG

X Y

For morphisms u: I —> X in A and v:Y -^ J inM there are Cartesian liftings
(on the left) and opcartesian liftings (on the right):

F{u)
FI ^ FX

ip o F[u)

GY
G(id)

9
I

F(id)
FX ^ FX

GY

i;i(v?) ^

G{v) o (f

G(v)
^GJ

-^ X Y -^ J a

Fibred spans often arise in situations where one has a category E in which
morphisms X —^ Y consist of two maps X t^ Y \n some other category B.

516 Chapter 9: Advanced fibred category theory

E

One then obtains fibred spans of the form j ^ \op- This is quite common for
models of linear logic, see the first example below, and Exercise 9.1.6.

9.1.7. Examples, (i) Let K be an arbitrary set. Consider the identity func-
tor Id: Sets -^ Sets and the exponent functor (—) =^ A :̂ Sets^P —>- Sets. The
resulting comma category (Id I (—) => K) is the category Game^ of Lafont
and Streicher [184]. It is thus fibred over Sets and opfibred over Sets°P in the
fibred span

Game/<:

Sets Sets°P

(ii) Vickers [338] defines a category of what he calls topological systems,
which form a common generalisation of topological spaces and locales. We
write LOG = Frm^P for the category which has locales (or frames, or complete
Heyting algebras) as objects. A morphism f:A-^Bm LOG is a morphism
of frames f:B—>Am the reverse direction. It preserves arbitrary joins and
finite meets.

An object of this category TS of topological systems is a triple {A, X, [=),
where A is a locale, X a set and \=C X x A 3i relation satisfying

X \=z y^^jtti <^ X \= ai for some i E I

X \= ai A •'' A Gn <^ X \= ai for all i.

Equivalently, [=:: is a morphism of locales VX -^ A.
A morphism {A,X, |=) -^ {B,Y, |=) is a pair {f,g) where f:A^Bissi

morphism of locales and g:X -^Y is sm ordinary function, satisfying

X h m « 9(^) N b.
The resulting category TS of topological systems can thus be understood as
the comma category obtained from the powerset functor V: Sets -> LOG and
the identity LOG -> LOG. Thus we have a fibred span

TS

X \
Sets LOG

In Section 1.10 we have seen a "Grothendieck" correspondence between
cloven fibrations on B and pseudo functors W^ -^ Cat. This correspondence

•
extends to fibred spans ^ ^ and suitable pseudo functors A^^ x IB -^ Cat.
The latter can be understood as "Cat-valued distributors". In order not to
complicate matters, we shall restrict ourselves to the split case.

Section 9.1: Opfihrations and fibred spans 517

E

9 .1 .8 . P r o p o s i t i o n (See [316]). Every split fibred span ^ ^ determines a
functor A°P x B —)• Cat . Conversely there is a generalised Grothendieck con-
struction which yields for every such functor a split fibred span of the form

^ ^ . These constructions are mutually inverse.

E

Proof . Given a split fibred span ^^ ^^ one defines a functor < :̂ A°P X B ^

Cat as follows. For / G A and / ' E B, take ^ (/ , / ') to be the category with

o b j e c t s X eE with pX ^ I and qX = T.

m o r p h i s m s / : X —)• Y are maps / : X —> Y in E with pf — id and
qf = id.

For a morphism (u,u'):(I, I') —> (J, J') in A ° P X M one obtains a functor
$(w, u'): $ (/ , / ') -^ $ (J , J ') by

j X ^ u*(u',(X)) =u',{u*{X))

\ / >^ u'(u',(f))=u',{u*(f)).

In the reverse direction, given such a ^ : A ° P X B —> Cat , let J ^ be the
category with

o b j e c t s (/, / ' , X) where X E ^ (/ , / ') .

m o r p h i s m s (/, / ' , X) ^ (J, J ' , Y) are triples u: I -^ J in A, u'\ V -^ J'
in B and / : ^ (i d / , t/ ')(X) ^ ^(t / , i d j /) (y) in ^ (/ , J ') .

/ ^ .
There are obvious projection functors »/ \ forming a fibred span. •

The above result finds application in the (functorial) semantics of logics
and type theories. Reindexing along a morphism of signatures (or specifica-
tions) in syntax works contravariantly on models, whereas reindexing along
a morphism of models works covariantly. It is precisely this aspect that
Goguen and Burstall [152] seek to capture in the notion of institution. Here
we shall describe these phenomena via fibred spans. Algebraic specifications
form again the paradigmatic example: there is a 'canonical ' model functor
AlgSpec^P X F P C a t -> Cat given by

((E , ^) , B) ^ ^ F P C a t (« (E , ^) , B) .

A morphism ((/>, F) in AlgSpec^P x F P C a t is sent to the functor

M^-^F oMoa[(t>).
The total category of the resulting fibred span is the category of categorical
models described earlier in Exercise 2.2.4, in case A — 0—that is, if the
specification consists only of a signature E without axioms.

518 Chapter 9: Advanced fibred category theory

Exercises

9.1.1. (i) Establish a Grothendieck correspondence between functors IB -> Ca t
and split opfibrations on B.

(ii) Prove that the composite of two opfibrations is an opfibration again.
9.1.2. What are the opcartesian morphism for a codomain functor?
9.1.3. Consider a category B with finite coproducts (0, +) .

(i) Show that the simple opslice 0\^B over the initial object 0 G B is
isomorphic to B.

(ii) Describe the opreindexing functor I\:M = 0\^B -> I\M resulting from
0 - > / .

(iii) Define a full and faithful functor I\M -^ / \ B from the simple to the
ordinary opslice category in a commuting diagram:

E E
9.1.4. Note that if /^ ^ is a fibred span, then so is „ >̂ ^ „„ .

{FIG)
9.1.5. (i) Verify that the fibred span "̂ ^ in Lemma 9.1.6 can be obtained

as instance of the generalised Grothendieck construction in Proposi-
tion 9.1.8, applied to a functor A*̂ '̂ x B —)• Ca t with discrete categories
as fibres,

(ii) Check that the Grothendieck constructions for fibrations and for op-
fibrations are also special cases of this generalised Grothendieck con-
struction.

GC
9.1.6. Describe the dialectica category G C from [244] in a fibred span ^ \nop-

9.2 Logical predicates and relations

Consider a coherent predicate logic over a (simple) type theory with finite
products (1, x) and coproducts (0 ,+) and exponents —^ for types. Propo-
sitions are v^ritten as (X:(T h 9?: Prop), where x:a is the only possible free
variable in the proposition (p. Thus one can view <̂ as a predicate on a. A
category of such predicates can be formed by stipulating that a morphism
{x:a h ip: Prop) -> (y: r h ip: Prop) is given by the equivalence class (under
conversion) of a term M with

x:a \- M:T and x:a \ (p \-ip[M/y].

Section 9.2: Logical predicates and relations 519

This gives us a category of predicates; it is essentially the total category of a
logic as described in Section 3.1. A reasonable question to ask is how to obtain
finite products and coproducts and exponents in such a (total) category of
predicates. Finite products are easy; they are given by the formulas,

1 = (x: 1 h T: Prop)

{x: a \- (p: Prop) x {y.r \- ip: Prop)

= [z: a X T \- (p['Kz/x\ A ^[K'z/y\: Prop).

These finite products of predicates thus sit over the finite products of their
underlying types. Finite coproducts are slightly more complicated:

0 = (ar:0 h ± :Prop)

{x\ a \- if. Prop) + (y: r h ^ : Prop)

= [z: a -{- T \- {3x: a, z — KX /\(p) V (By: r. 2: = K^y A -0): Prop).

And exponents are given by

(x: a \- (p: Prop) z=^ [y.r \ V̂ : Prop)

= [f'.<j-^T\- \fx: a. [if D ^p[(fx)/y]): Prop).

Predicates with this BiCCC-structure are often referred to as "logical pred-
icates". Similar formulas apply for relations, and in this context one talks
about "logical relations". They can be used in the analysis of properties of
type theories (like strong normalisation), see e.g. [311, 228] and the references
there for more information. In this section we describe the categorical aspects
of the above formulas: they can be described as products, coproducts and
exponents in total categories of fibrations. Parts of these descriptions already
occurred in Section 8.5.

The issue in this section is the interaction between local structure (in fi-
bre categories) and total structure (in total categories), and the use in logic
of the global structure. The first result states tha t if a base category has a
certain type of limit, then these limits exist fibrewise if and only if they ex-
ist in the total category (and are preserved by the functor). The same holds
for colimits if one works with a fibration that is additionally an opfibration
(i.e. with a bifibration). We discuss these (folklore) results in some detail. A
further analysis of this interaction between local and global structure may be
found in [125-127] (along the lines of Exercise 1.8.11). The global structure
is used towards the end of this section in a uniform description of the (logi-
cal) induction principles associated with (co-)inductively defined da ta types,
following [128, 130]. See also [124].

Although the abovementioned motivation comes from logic, there is noth-
ing in this section tha t holds only for preorder fibrations. But we shall use

520 Chapter 9: Advanced fibred category theory

logical notation like T, A, _L, V, D for products, coproducts and exponents in
fibre categories—as in Section 8.5. This allows us to distinguish this fibre-
wise structure from such structure in total categories. But it is not meant to
suggest that fibres are preorders.

The next result holds for arbitrary limits, but for simplicity we only consider
finite products. The general case is left as Exercises 9.2.3 and 9.2.4.

E

9 .2 .1 . P r o p o s i t i o n . Consider a fihration ^ with finite products in its base

category B. Then p has finite products in Fib(B) if and only if p has finite
products in F ib . That is, p has fibred finite products (I.e. finite products in
each fibre category, preserved by reindexing) if and only if the total category
E has finite products via fibred functors, and the functor p strictly preserves
these products.

Explicitly, given fibred finite products (T , A) one can define in E;

1 = T G E I and X x 7 = 7r*(X) A 7r'*(y) G E / x j

where X E E/ and F E E j . Conversely, given finite products (1, x) m E one
takes in the fibre over I,

T r r : ! ; (l) G E / and X A Y = (J|(X x y) G E / ,

where !/: / —> 1 and Sj = (id, id): / —)• / x / .

Proof . Lemma 8.5.2 (i) states already that 1 G E and x as defined above are
finite products in E. And p preserves them by construction. For the fibration
p to have finite products in F i b we need to check that the induced product
functor X: E X E ^ E over x : IB x B ^ B is fibred. This follows easily:

{u X vy{X xY) ^ {ux i;)*7r*(X) A {u x i;)*7r'*(y)

^ 7r*'w*(X) A7r'*i;*(y)

= t/*(X) xv*{Y).

Conversely we show tha t X AY — Sj{X xY) G E/ is the binary product
of X and Y in the fibre over / :

E/ (Z , X AY) =¥^{Z, X XY) ^ E / (Z , X) XEI{Z, Y).

The latter because p strictly preserves the binary products. These products A
in the fibres are preserved by reindexing functors: for t/: J ^ / ,

i / * (X A y) = u*S^X xY)

^ S^u xuy{X xY)

=. S*(u*{X) X u*{Y)) because x is a fibred functor

= u*{X)Au*{Y). D

Section 9.2: Logical predicates and relations 521

For coproducts the situation is slightly more complicated, and some ad-
ditional assumptions are needed to get a smooth correspondences between
fibrewise and global structure as for products. We shall use opreindexing, as
conveniently described via adjunctions \[^ H i/* in Lemma 9.1.2. Par t of the
next result occurs as [105, Corollary 4.3]. As before, we only do the finite case.

E

9.2 .2 . P r o p o s i t i o n . Let ^L> he a bifibration with finite coproducts in its

base category M.
(i) Every fibre category has finite coproducts (± , V) if and only if the total

category E has finite coproducts (0, +) and p strictly preserves these.
The formulas are the following. Given (± , V) ; one takes in E;

0 = 1 E Eo and ^ + Y = U J X) V U.'{y) ^ ^i+J

where X G E/ and Y ElEj. Conversely, given (0 ,+) one defines over L:

1 ^ U , ^ (0) and X v y = U v . (^ ^ + ^) '

where ! / :0 —> / and Vj = [i d , i d] : / + L ^ L.
(ii) Under the additional assumptions that the category M is extensive

(I.e. that its coproducts are disjoint and universal, see Section 1.5), and that
the coproducts]J^ satisfy Beck-Chevalley, one obtains the following strength-
ening: p has finite coproducts in Fib(B) if and only if p has finite coproducts
in F ib .

An alternative formulation of the coproduct + in the total category E in
terms of products Yl instead of coproducts]J occurs in Exercise 9.5.9.

Proof, (i) We do the binary case only. Consider X + Y G E/_j_j as defined
above. For Z G E above / i , we have:

u:I+J-^K

u:I+J^K

= II ^i+j{UuoAx)^UuoAy)^z)
= II II E/(U.W, ^) X Ej{UJY),z)

v.I-^K w.J^K
= U Ej(UAnz) X II Ej(UJY),z)

v:I-yK w:J-*K
^ E{X, Z) X E(y, z).

Conversely, we simply have,

El (x V y, z) s Ev, (x + y, z)^ E/ {X, Z) X E/ (y, z)

522 Chapter 9: Advanced fibred category theory

because p preserves coproducts.

(ii) In one direction we have to show that + :E x E —>• E is fibred over
+ :B X IB -> IB. This follows from the isomorphisms:

- L I K ^ * (^) V 1 J K ' ^ * (^) by Beck-Chevalley,

using Exercise 1.5.7

= u^{X)-{-v*{Y).

And in the other direction, assuming that this global functor + is fibred, we
have to show that the induced coproducts V in the fibres are preserved under
reindexing:

u*{XVY) = u*Uvi^ + y)

= Uvi^ + ^Yi^ + Y) by Beck-Chevalley

— IJv(^*(^) "̂ ̂ *(^)) because + is a fibred functor
= t i*(x) vw*(y) . D

In a next step also local and global distributivity can be related. Therefore
we use the additional assumption that Frobenius holds.

E

9.2.3. Proposition. Let j^P be a fibration with coproducts]J^ satisfying
Beck-Chevalley and Frobenius. Assume B 25 a distributive category. Then, p is
a distributive fibred category if and only if the total category E is a distributive
category and p strictly preserves this structure.

Proof. First we assume that all fibre categories are distributive. We consider
arbitrary objects Z G Ex , X G E/ and Y G E j , and write <f for the inverse
of the canonical map [id x K, id x /c']: (A' x /) + {K x J) -^ K x (/ -f J) in B.
We can prove distributivity in E as follows.

ZxiX + Y) = 7r*(Z)An"iUAX)^U.'iY))

= ' r ' (Z)A(U,ax«('^ '*W)vU,dx. ' (' r '* (y)))
by Beck-Chevalley

by distributivity

= Uidx«('^*(^)A7r"(X)) VU„, , , (7r*(Z)A7r"(y))

by Frobenius

Section 9.2: Logical predicates and relations 523

- U^U,dx«(^x^)vU^U,dx«'(^xy)
because <f> is an isomorphism

= {Z xX)-h{Z xY).

In the reverse direction, assuming distributivity in E, distributivity in the
fibres follows from the following computation.

ZAiXWY) = ZAUvi^ + y)
= LIv(^*(^) A (X + y)) by Frobenius

= U v S*^*(^*{Z) X X + V*(Z) X y) by distributivity

= L [v ^ V * (' ^ x i d + V x i d) * (Z x X + Z x y)

- LJv(^ + ^) * (^ x ^ + ^ x ^)
= Llv(^*(^xx) + J*(zxy))
rr {Z AX)y{ZAY). D

We notice that the proof requires only coproducts (]J^ H /c*) along copro-
jections, satisfying Beck-Chevalley and Frobenius. So the assumptions in the
proposition can actually be weakened.

Finally, we consider the relation between exponents in fibre categories and
in total categories.

E

9.2.4. Proposition. Let -j^P be a fibration with a Cartesian closed base cat-
egory M and with simple products TT* H f][^. If the fibre categories are Cartesian
closed, then so is the total category and this global CCC-structure is strictly
preserved by p. For X G E/ and y G Ej one defines

X^Y = n . K * (X) D ev*(y)) G Ei^j.

If there are additionally right adjoints S* H JJ^ to contraction functors, then
the converse also holds: exponents D in fibres can be obtained from exponents
in E via the formula

XDY^A(idr(x^Us(y))

where A{id): I ^ {I => (I X I)).

Proof. The first part of the statement is Lemma 8.5.2 (ii). For the second

524 Chapter 9: Advanced fibred category theory

part we note that in the fibre over / € E we have

E / (Z A X , y) = E / (^ * (Z x X) , y)

s E/x/(zxx, nan)
^ EA(,d)(̂ , x=>nan)

We discuss some examples and consequences of these results.

E

9.2.5. Examples , (i) If j ^ ^ is a bifibration with fibred finite products and
coproducts over a base category IB with finite products and coproducts, then
the total category E has finite products and coproducts, and p preserves them.
This result is a consequence of Propositions 9.2.1 and 9.2.2 above. It applies
in particular when p is the classifying fibration of a coherent predicate logic
with T, A, -L, V, = and 3 as described in the beginning of this section. This is
a bifibration by Example 4.3.7 (i) together with Lemma 9.1.2. The resulting
finite products and coproducts in the total category of predicates as described
in Propositions 9.2.1 and 9.2.2 are the "logical predicate" products and co-
products as in the beginning of the section.

We mention two similar applications. If IB is a coherent category with dis-
tributive coproducts, then its category of subobjects Sub(B) is a distributive
category. And if IB is Cartesian closed, then the associated scone Sc(B) is also
Cartesian closed, and the functor (or fibration) Sc(IB) -^ IB preserves the CCC
structure, see Example 1.5.2 (ii) and Exercise 1.5.4.

E Rel(E)

(ii) Suppose p^ is a fibration as before, and form the fibration 4- of
binary relations in p via the change-of-base situation

Rel(E) ^ E

Rel(E)

like in Section 4.8. It is easy to see that i is also a bifibration with
B

fibred finite products and coproducts, so that we may conclude that the total
category Rel(E) of relations has finite products and coproducts, and that they
are preserved by Rel(E) -^ B. If we apply this to a classifying fibration of a

Section 9.2: Logical predicates and relations 525

coherent logic, we get, for example, as global product of relations:

[x, x': a h R{x, x'): Prop) x (y, y': r | S{y, y'): Prop)

= {z, z':aXT \- R{7rz, nz') A S{7r'z, 'K'Z'): Prop)

This is the "logical relations" product, see e.g. [125, 228].
E

For a fibration ^P as above, we can define an equality functor Eq:B —>
IB

Rel(E) by / H-)- JJ^ (T/)—essentially as in the beginning of Section 4.8. For a
morphism i/:/ ^ J in B we obtain Eq(i/):Eq(/) —> Eq(J) using that T / ->
Eq(/) is opcartesian. Notice that the statement "Eq:B -^ Rel(E) preserves
products x" means that equality on a product is componentwise equality.
This preservation of products is proved explicitly in Proposition 3.4.6).

If our fibration p is a fibred CCC on a CCC B and has simple products,
Rel(E)

then the same holds for 4- . Hence the global category Rel(E) of relations
is Cartesian closed. The exponent of relations R on I and 5 on J is given by
the formula

R=^S = Yln ^*((^ ' X ̂ T{R) ^ (ev X ev)*(5))

where a is the isomorphism

((/ => J) X (/ ^ J)) X (/ X /) - ^ ^ ((/ => J) X /) X ((/ ^ J) X /)

In the special case when R is the equality relation Eq(/) on / one can simplify
the right hand side to

Eq(/) ::^ S = Yl^{ey o TT X id,ey o TT' X id)*(5).

This says informally that maps f,g:I^ J are in the relation Eq(/) => S if and
only if for all i £ I the pair f{i),g{i) is in the relation S. Thus we can say that
equality on maps in B is pointwise if the equality functor Eq:B —> Rel(E)
preserves exponents.

If the fibration p admits quotients—i.e. if the equality functor Eq has a
left adjoint (see Definition 4.8.1)—then one can prove: equality on maps in
p is pointwise if and only if p's quotients satisfy Frobenius. The argument is
standard, like in the proof of Lemma 1.9.12.

(iii) Still in the same situation, we assume now that the terminal object
functor T:B —> E preserves coproducts +. This happens for example when
T has a right adjoint, giving comprehension in the logic of p. Explicitly, this
preservation means that for objects / , J G B the canonical map

LI«(T/) V U«'(TJ) T(/ + J)

526 Chapter 9: Advanced fibred category theory

is an isomorphism. Logically, this amounts to validity of the axiom (scheme):

z: cr -f- r I T h (3x: a. z —o-\.r f^x) V {3y: r. z —O-\-T ^'VY

It is not hard to see that this is equivalent to the following rule: for a term
r h M: <7 + r and propositions F [- (p^ip: Prop

T,x:a\ (p,M =a+T KX \- tp T,y:T \(p,M =a-\-T i^'y l~ i^

This rule is more convenient than the axiom, and has the advantage that it
does not involve existential quantification 3 so that it can be formulated within
(conditional) equational logic. It gives a fibred formulation of universality
for coproducts in a base category, see Exercise 9.2.9 below.

(Disjointness of coproducts + simply means that the coprojections are
internally injective: x^x'.a \ KX =a+T f^^' \~ x —a x'^ and similarly for /c',
together with: x\a,y\T \ KX —O^T K-'y I" ^, expressing that anything (or
equivalently: falsum L) follows from equality of KX, n'y.)

Sign
(iv) Finally, some concrete examples: the fibration i of signatures over

Fam(Sets)
sets is obtained by chane^e-of-base from 4- see Definition 1.6.1. It thus

. . Sets

has all fibred colimits. Hence the total category Sign is cocomplete. The
same argument occurs in [327, Example 1]. Actually, Proposition 9.2.2 only
gives finite coproducts, but, as mentioned, the result also holds for arbitrary
colimits, see Exercise 9.2.4 (ii) below. This cocompleteness of the category
of signatures is instrumental in the theory of specifications. It lets us define
instantiation and put together parametrised signatures via pushouts and other
colimits, see [327, 152] for details.

T

Winskel [344] defines a bifibration i of labelled transition systems over
pointed sets. Local products and coproducts of transition systems are defined
over a particular pointed set of labels. And in terms of these, also global
products and coproducts of transition systems, following the constructions in
this section.

Similar constructions appear in the theory of deliverables, see [40, 217].
Reasoning principles via global structure

We describe how the induction (and co-induction) principles associated with
data types given as initial algebras (and terminal co-algebras) of Hagino sig-
natures can be described in a uniform and concise way using global structure
in total categories of fibrations. This follows [125, 128, 130]. We concentrate
on induction, and mention co-induction in Exercise 9.2.10 below (but see

Section 9.2: Logical predicates and relations 527

also [270, 299, 79]). The approach that we describe here leads to "mixed
induction/co-induction" proof principles in [130], and to proof principles for
iterated data types in [124]. Here we concentrate on the basic ideas: we first
give a formulation of the induction principle in a fibred setting, and then show
that in logics with comprehension this principle holds automatically.

Let B be a category with finite products (1, x) and coproducts (0,+). We
think of IB as a model of a simple type theory. Assume T: B —>̂ B is a polynomial
functor built up from constant functors X \-^ C^ the identity functor X >-> X,
and constructors x, +. We can think of T as the functor which is canonically
associated with a type (T{X) in a Hagino signature, see Definition 2.6.4. We

E

assume we have a fibration]rP giving us a logic to reason about B. We further
assume this p to be a bifibration with fibred finite products and coproducts.
The total category E of predicates then has finite products and coproducts.
This enables us to lift the functor T:B -> B to a functor Pred(T):E ^ E in
a commuting diagram

Pred(T)
E ^ E

by induction on the structure of T. We replace the identity functor, the prod-
uct X and the coproduct -f on B occurring in T by the identity functor,
product and coproduct on E. And we replace the constants C G B occurring
in T by the constant T[C) in Pred(T)—where T(C) is the terminal object in
the fibre over C. (In terms of Definition 2.6.4: we replace the model A\S -^M
of the constants in B by the model T o A: 5 ^ E.)

This lifting of T to Pred(T) is an important step. It brings us from the
world of data types (in the form of algebras and co-algebras of the func-
tor T) to the world of logic about such data types (in the form of alge-
bras and CO-algebras of the lifted functor Pred(T)). Essentially, an algebra
/ :Pred(T)(X) -> X of this lifted functor Pred(T) consists of an underlying
T-algebra u = pf: T{pX) = p(Pred(T)(X)) -> pX, together with a proof that
the predicate X is closed under the operations of the T-algebra u. Dually, a
co-algebra g:Y ^ Pred(T)(y) consists of a T-co-algebra v = pg.pY -> T{pY)
together with a proof that Y is closed under the operations (or transitions) of
V. Such predicates Y are called invariants in [164]: once they hold in a state x,
they continue to hold no matter which of the operations in the co-algebra v are
applied to x. Here we concentrate on Pred(T)-algebras. They incorporate the
assumptions of induction arguments for data types whose form is determined

528 Chapter 9: Advanced fibred category theory

by the functor T.
First we need a further assumption, namely that the terminal object functor

T:IB —> E preserves finite coproducts—e.g. because it has a right adjoint,
describing comprehension in the logic of p—then one gets a canonical (vertical)
isomorphism

T o T =^=^ Pred(T) o T

by induction on the structure of T. Here one uses that T preserves finite
products because it is right adjoint to p (see Lemma 1.8.8).

E

9.2.6. Definition. Consider a bifibration -j^P with a polynomial functor

T:B -> IB as above. An initial algebra a:T(K) ^ K of this functor is called
induct ive if the resulting isomorphism in E

Pred(T)(TA') - ^ ^ TT{K) ^ ^ TA^

is initial algebra of the lifted functor Pred(T): E —> E. Inductive initial algebras
in a fibration p come equipped with an associated induction proof principle
in the logic of p.

We give an illustration of this notion of inductive initial algebra. Consider
Sub(Sets)

the standard fibration i of predicates (subsets) over sets capturing
the classical logic of sets, with polynomial functor T{X) = 1 + X. This func-
tor T: Sets —> Sets has the cotuple [0, S]: 1 + N -=>• N of zero and successor
on the natural numbers N as initial algebra. The associated lifted functor
Pred(T): Sub(Sets) -> Sub(Sets) send a predicate {Y C J) to the predi-
cate (1 -h y C 1 + J) . An algebra of this functor thus consists of a map
(1 -h y C J) —>• (y C J) in Sub(Sets). It consists of a pair of maps

u:J-,j ^̂ ^̂ f̂̂ ^̂ s [yeY^u{y)eY^

Clearly the truth predicate TN = (N C N) carries the algebra [0, S]: (1 -f N C
1 -h N) -> (N C N). Inductiveness of this initial T-algebra [0, S]: 1 + N ^ N
means that this Pred(T)-algebra [0, S]: (l-f N C 1 -f N) -> (N C N) is again
initial. When we spell this out we get: for a Pred(T)-algebra [j, w]: (1 -f y C

Section 9.2: Logical predicates and relations 529

J) ^ (y C J) as above there is a unique map of Pred(T)-algebras:

(1+ N C 1 + N) - - ' -'^-^- ^ (1 + y C 1 + J)

[0,S] [i>"]

(N C N) ^ ^{YCJ)

This means that the unique mediating map v:N —-> J with v o 0 — j and
i ; o S = w o i ' i s a map of predicates (N C N) ^ (Y C J) . Hence for all
n G N we have v(n) G Y. This is the conclusion of the induction principle.
It is obtained by initiality of the algebra Pred(T)(TN) -% TN on the truth
predicate TN on N.

(We have given the "unary" induction principle for predicates; there is
also an equivalent "binary" version for (congruence) relations, see Exer-
cise 9.2.11 (iii).)

The following result shows that in a fibration with comprehension (giving
us a logic with subset types) every initial algebra is automatically inductive.
Hence one can use induction as a reasoning principle in such a logic. We
give a concrete proof below, but a more abstract proof using a "transfer of
adjunction" lemma occurs in [128, 130].

E
9.2.7. Proposition. Let -^P be a btfibration with

• finite products and coproducts in its base category IB;
• fibred finite products and coproducts;
• comprehension, given by a right adjoint { —}:E -^M to the terminal object

functor T-M-^W..

An initial algebra a:T{K) ^ K of a polynomial functor TiB ^ B 25 then
automatically inductive.

Proof. Write (p for the natural isomorphism Pred(T) o T = > T o T. We
have to show initiality of the Pred(T)-algebra Ta o < ;̂̂ : Pred(T)(T/\) -^
TT{K) ^ TK. Assume a Pred(T)-algebra / :Pred(T)(X) -> X in E, say
over 6: T(/) ^ / in B. Let u: K --^ / in B be the unique mediating T-algebra
map in B with 6 o T{u) = u o a. Write

/ ^ih FTed{T){ex) f .
g ^ (T T { X } ^ Pred(T)(T{X}) Pred(T)(X) —^ x)

It gives us a transpose g^ — {^} o T/T^^X})-^({-^}) -^ i^}? which is an
algebra on the extent {X} of X. An easy calculation shows that the (com-

530 Chapter 9: Advanced fibred category theory

prehension) projection nx'-iX} —>• / is a homomorphism of algebras from
{g^'iTdX}) -> {X}) to {b:T{I) -> /) . Hence we also get a unique mediat ing
algebra m a p v: K —> {X} in:

with TTx ^ V = u hy initiality. Transposing this m a p v: K —^ {X} in IB back to
¥. as v^ = ex ^ ~^v: TK -> X gives us the required (unique) mediat ing m a p
of Pred(T)-algebras:

t;^ o T a o (p^ = ^x o T(t; o a) o (fx

= ex o T(5f^ o T(v)) o (pK

= g o TT{v) o (pK

- f o P red(T) (£x) o Pred(T)(Ti;) o v?"^ o pK

- / o P r e d (i ; ^) . D

The above approach to the logic of (co-)inductive da ta types is essentially
syntax-driven: the types of the operations of a da ta type determine a functor
T, and thereby its lifting Pred(T) , in terms of which the proof principles are
formulated. This approach—and its extension to more complicated (co-)data
types—has been implemented in a (front-end) tool for formal reasoning about
such da t a types, see [123, 122].

Exercises

9.2.1. Describe the biceirtesian closed structure in the following total categories
(of obvious fibrations) according to the formulas given in this section.
(i) The category of subsets Sub(Sets).
(ii) The category of set-indexed sets Fam(Sets).

9.2.2. Give the "logiccil relations" coproduct in the term model (of coherent pred-
icate logic).

E
9.2.3. Consider a fibration ^^ with equalisers in its bcise category. Show that B

IB

has fibred equcilisers if and only if E has equalisers and p strictly preserves
them.

Section 9.2: Logical predicates and relations 531

9.2.4. (i) Extend Proposition 9.2.1 to arbitrary limits in the following way. Let I
be some index category and assume the base category B of a fibration

E

•j^P has limits of shape I. Show that p has fibred limits of shape I (as
defined in Exercise 1.8.8) if and only if the total category E has limits
of shape I and p strictly preserves them.
[Hint. Use Exercise 1.8.11 (ii).]

(ii) Do the same for Proposition 9.2.2 (for a bifibration).
9.2.5. Conclude from Proposition 9.2.3 that if a category B has puUbacks and

disjoint and universal coproducts (0, +) , then its category of arrows B"*" is
distributive.

9.2.6. Prove that the exponent Eq(/) =J> 5 in a category of relations is isomorphic
to n ^ (e v o TT X id,ev o TT' X id)*(5), as claimed above.

9.2.7. Prove that for a topos B
(i) the comprehension functor { —}:Sub(B) -> B—which is right adjoint

to truth and gives subset types—preserves finite coproducts;
(ii) the quotient functor Q: ERel(B) -> B which takes the quotient of

equivalence relations preserves finite products.
ERel(]B)

[The fibration 4- is described at the end of Section 1.3. The sec-
1

ond point may also be proved type theoretically using Exercise 5.1.7.]
E

9.2.8. Assume that is a fibred CCC with simple products which also
M

has coproducts JJ -\ u* satisfying Beck-Che valley (and Frobenius by
Lemma 1.9.12 (i)). Prove that the global exponent =J> from Proposition 9.2.4
forms a fibred functor in the situation:

E^P X E — ^ E

px p

That is: {u => t;)*(X => Y) ^ L [„ (^) => v*{Y).
9.2.9. Let B be a category with finite limits and disjoint coproducts -f. Show that

these coproducts -|- are universal if and only if the type theoretic rule

T,x:(T \ip,M =a+r Kx h tp F, y: T | (/?, M =^+r n'y h tp

T\ip \-tP
Sub(B)

is valid in the subobject fibration i on B. Conclude that in a coherent
B

category B with disjoint coproducts -f, one gets universality for free.
E

9.2.10. (From [130]) We consider a fibration {P as in Example 9.2.5 (ii).
B

(i) Prove that if the terminal object functor T:B —> E preserves finite
coproducts, then so does the equality functor Eq:B —^ Rel(E).

532 Chapter 9: Advanced fibred category theory

We now assume that this equality functor Eq preserves finite coproducts
and products; the latter e.g, because it has a right adjoint giving quotients
in the logic of the fibration. Since Rel(E) has finite products and coproducts
we can lift a polynomial functor T: IB -> B to Rel(T): Rel(E) -> Rel(E) by
induction on T, whereby we replace a constant C G B occurring in T by the
constant Eq((7) G Rel(E). By construction we have Rel(T) o Eq = Eq o T.
A co-algebra of this lifted functor Rel(T) can be identified with bisimulation
relation, forming an assumption of a co-induction argument.
Define a terminal co-algebra c: K ^ T{K) to be co- induct ive if the re-
sulting map

Eq(c) ^
Eq(A') ^ Eq{TK) ^ Rel(T)(Eq(A^))

is terminal Rel(T)-co-algebra. This means that the terminal co-algebra
comes with a co-induction proof principle in this fibration.

Sub(Sets)
(ii) Investigate what this means for the fibration i and the

Sets
"stream" functor T(—) = C x (—).

(iii) Prove that if p has quotients (i.e. if Eq has a left adjoint), then every
terminal co-algebra is automatically co-inductive. This gives the dual
of Proposition 9.2.7.

E

9.2.11. (From [1301) Let iP be a fibration with fibred finite products and coprod-
ucts on a distributive base category B. Assume that p is a bifibration with
coproducts Y[^ -\ u* satisfying Beck-Che valley and Frobenius, and that
truth T:B —)• E preserves finite coproducts and equality Eq: B —>• Rel(E)
preserves finite products. (For convenience one may assume that p is a fibred
preorder.)
First relate the "Pred" and "Rel" liftings of a polynomicd functor T: B -^ B
in the following way.
(i) Prove, by induction on T, that there are vertical (natural) isomor-

phisms
S*Re\{T){R) ^ FTed{T){S*{R)).

(ii) Prove similarly that

U , P r e d (r) (X) ^ R e l (T) (U , (X)) .

These isomorphisms actucdly determine a pseudo map of adjunctions
(^i -• U<5,) -> i^ni) H 1J.5^(,))' see Exercise 1.8.7.

(iii) Prove that for an initial T-algebra a:T[K) -^ K the following three
points are equivalent:

• a is inductive {i.e. the canonical map Pred(T)(TAT) -^ TA' is initial
Pred (T)-algebra);

Section 9.2: Logical predicates and relations 533

• the canonical m a p Rel(T)(Eq(A")) -^ Eq(A') is initial Rel (T)-
algebra;

• every congruence on a is reflexive, i.e. for every Rel(T)-algebra R G
E/v'xK on a we have Eq(A') < R.

[The la t te r formulation gives the so-called binary induction principle,

which is formulated in te rms of congruence relations being reflexive.

See also [299].]

E

9.2.12. Let ^P be a fibration with fibred pullbacks and pullbacks in its base

category B. By Proposi t ion 9.2.1 and Exercise 9.2.3 we know tha t the total

category E also has pullbacks and tha t p strictly preserves them.

(i) Describe these pullbacks in E in detail.

Assume now tha t p has coproducts , via adjunctions (] J Hi /*) satisfying
Beck-Che valley. Following Benabou, these coproducts are called d i s j o i n t if
for each m a p u: I -^ J in B and opcartesian morphism t^(X): X —>]J[(X)
in E over u, the diagonal S: X -^ X XTT , . X of the pullback of ulX)

against itself, is opcartesian again (over the diagonal in B). And these co-
products of p are called u n i v e r s a l if for each pullback square in E of the
form

one has: g is opcartesian implies f*{g) is opcartesian.

(ii) Check tha t a category C has set-indexed disjoint / universal coprod-
Fam(C)

ucts if and only if its family fibration i has disjoint / universal
Sets

coproducts (see Lemma 1.9.5).

(iii) Verify tha t for a category B with finite limits, the codomain fibration
^ always has universal and disjoint coproducts .
IB

(iv) Show tha t it suffices for universality to restrict the requirement to
vertical / , as above.

E
9.2.13. Consider a fibration ^ ^ with disjoint and universal coproducts] J as

in the previous exercise. In the following we establish a fibred version of
Proposit ion 1.5.4, involving change-of-base of a codomain fibration along a
copower functor.

(i) Prove tha t if maps f,g:Y^Xm]E above the same m a p in B satisfy

u(X) 0 f = u(X) og:Y-^ JJJ-'^). then f = g.

534 Chapter 9: Advanced fibred category theory

(ii) Consider vertical maps f,g in a. commuting square in E of the form:

h
X

niY)

-^ Z

\9
f

Uu(n

Show that this square is a puUback in E if and only if the canonical
map]J[^(-^) -> ^ is an isomorphism. This shows that for u: I —^ J the
canonical functor E j / y -> E j / JJ^C^) is an equivalence,

(iii) Prove the converse of (ii): if for each map w: / -> J in IB and object
y € E/ the canonical functor E / / y ^ E j / JJ (Y) is an equivalence,
then coproducts] J are disjoint and universal.
[A fibration with this property may be called extensive.]

(iv) Consider for a map u: I —^ J in B and for objects X G E j and y G E/
the following diagram in E

u(X) X u(Y)

u'{x) X y ^-^ X X u j n

ujy)
niY)

(The Cartesian products are in the fibres, and the two projections are
vertical.) Prove that this diagram is a puUback, and conclude from (ii)
that the Frobenius property automatically holds.

(v) Define for each / G B an object] J (/) in the fibre Ei over the terminal
object 1 G B by

where T :B —>• E is the terminal object functor. Extend]J to a functor
B —>• El and show that it preserves finite hmits.

(vi) Check that the whole fibration p can be recovered from its fibre cate-
gory El over 1 G B via the following change-of-base situation.

E ET

cod

U
- * E i

Section 9.3: Quantification 535

9.3 Quantification

Earlier we have seen various forms of qimntification: along Cartesian pro-
jection morphisms TT: I x J -> / i n Definition 1.9.1, along arbitrary mor-
phisms u: I -> J in Definition 1.9.4, along Cartesian diagonal morphisms
S{I, J) = (id, TT'): / X J -> (/ X J) X J in Definition 3.4.1 and also along the
Cartesian projection maps TT: I x X ^ I induced by a CT-structure, see Def-
inition 2.4.3, and along monomorphisms m: X ^^ / in Observation 4.4.1. In
this section we shall introduce a general description of quantification which
captures all of the above examples (and many more). This will enable us to
establish some results for all these forms of quantification at once. The gen-
eral theme is that products and coproducts f|,]J are right and left adjoints
to weakening functors, and tha t equality Eq is left adjoint to contraction
functors. (With fibred exponents one then gets right adjoints to contraction
functors for free, see Exercise 3.4.2.)

Weakening introduces an extra dummy variable x'.a^ and contraction re-
places two variables x^y.a of the same type by a single one (by substi tuting
[x/y\). Indeed, categorically, weakening and contraction are special cases of
substitution, see explicitly in Example 3.1.1. These operations of weakening
and contraction carry the structure of a comonad (VF, £:,(J), where the counit
Ex' WX -^ X corresponds to weakening, and the comultiplication (also called
diagonal) 8x '• WX —f W^X to contraction. Intuitively, the comonad equations
S o eW = id and S o We — id correspond to the fact tha t first weakening and
then contracting is the identity, in two forms:

{T,x:(T \- M\T) H^ (r ,x :cr , y:cr h M : r) i-> {T, x: a \- M[x / y]\ r)

{V,x:a \- M:T) I-> {V,y\a,x\a \- M\T) \-^ (T,y\a \- M[y/x]\T)

For the second one we need a-conversion (change of variables).
Below we shall describe quantification f|, JJ, Eq with respect to an ab-

stract "weakening and contraction comonad" [W,e,S). Since weakening and
contraction are operations which—by their nature—change the context, this
comonad will be on the total category of a fibration. Product and coproduct
are then right and left adjoints to the weakening functors induced by e and
equality is left adjoint to the contraction functor induced by 6. This sums up
the basic framework.

It turns out that a "weakening and contraction comonad" on the total cat-
egory of a fibration corresponds to certain structure in the base category, in
terms of which we can also describe quantification. Part of this correspondence
was noted by Hermida. The latter structure will be called a "coniprehension
category" (following [154, 157]). It is somewhat more elementary than a weak-
ening and contraction comonad. It will be fundamental for type dependency

536 Chapter 9: Advanced fibred category theory

in the next chapter. Therefore, in the sequel we shall mostly be using these
comprehension categories—instead of weakening and contraction comonads.

But we start with comonads.
E

9.3.1. Definition. Let j^P be a fibration. A weakening and contrac-
tion comonad on p consists of a comonad {W,6,S) on the total category E,
satisfying:

(1) Each counit component Sx' WX —>• X is Cartesian.
(2) For each Cartesian morphism / : X ^ Y in E, the naturality square,

is a pullback in the total category E.

The first of these conditions says that weakening is a special case of substi-
tution (see also Example 3.1.1), and the second one is a stability condition. As
a consequence of this second condition the functor W preserves Cartesianness.
But note that W is not a fibred functor p —^ p since we do not necessarily
have p o W = p. And note also that the counit e and comultiplication S need
not be vertical.

If we apply the second condition with f — sx we get a pullback square

W{ex)
W^X ^ WX

J
WX

ex

ex
-^ X

This shows that the diagonal Sx- WX -> W^X is completely determined as
the unique mediating map for the cone WX f̂— WX -^ WX, with respect
to this pullback. It is not hard to see that these Sx^s are also Cartesian. In
fact, if we only have a pair (M ,̂ £:) satisfying (1) and (2) above and define Sx
in this way we get a natural transformation satisfying the comonad equations.
Hence the above definition contains some redundancy. But we like to keep it
as it stands in order to stress that weakening and contraction form a comonad.

Two standard examples are as follows. For a category B with finite prod-
ucts there is a weakening and contraction comonad on the associated simple

Section 9.3: Quantification 537

fibration i with functor VFisf - > s given by

(/ ,X) ^{I xX,X)

and (Cartesian) counit

(7 X X , X) (/ , X)

The (induced) comultiplication is

% , x) = ((i d , 7 r ') , ^ ')
(/ X X,X) ^ ((/ X X) X X,X)

For a category IB with finite limits there is a weakening and contraction

comonad on the associated codomain fibration i
maps

The functor B"^

(XxjX

We turn to quantification with respect to a weakening and contraction
comonad.

9.3 .2 . Def in i t ion . Let W = [W^e^6) be a weakening and contraction
E P

comonad on and let ^^ be another fibration with base B.
1 B

(i) This fibration q is said to have 14^-products if for each object X G E
there is a right adjoint

to the "weakening functor" p{sxy'-^pX —> ^pwx ^ together with a Beck-
Chevalley condition: for each Cartesian map / : X ^ Y in E, the canonical
natural transformation

{pWfY

B>pWY

n.

^ {pfY

n. ^pY

is an isomorphism.
(ii) Similarly, q has j y - c o p r o d u c t s if there are left adjoints W^ H p[exY ^

and the canonical natural transformation U x (^ ^ /) * ^ [pfY U y ^̂ ^^ i^^"
morphism, for each Cartesian map f\X-^Y in E.

538 Chapter 9: Advanced fibred category theory

(iii) Finally, q has W^-equality if there are left adjoints Eqx H piSxY to
the "contraction functors" p{Sx)*j and for each Cartesian map f:X -^Y in
E, the canonical natural transformation

Eqx

(pWfY ^ ipW'f) 2n*

B>pWY
Eqy

J^pW^Y

is an isomorphism.

9.3.3. Definition. If the fibration q above has fibred Cartesian products
X, then we say that q has W^-coproducts satisfying Probenius if it has
ly-coproducts Y[j^ such that the canonical maps

^ZxUxiY) UxiPi^xr{Z)xY)

are isomorphisms.
Similarly, for M^-equality satisfying Frobenius, one requires the canon-

ical maps

Eqx {p(SxnZ)xY) ZxEqx(Y)

to be isomorphisms.

We can thus define quantification with respect to a weakening and contrac-
tion comonad in terms of the induced structure p(€x) and p{Sx) in the base
category. It is not hard to see that quantification with respect to the weaken-
ing and contraction comonads described before Definition 9.3.2 gives simple
and ordinary quantification. These weakening and contraction comonads are
somewhat unpractical to work with, since what one is really interested in are
these induced maps p{ex)'pWX —> pX and p{5x)-pWX -^ pW^X in the
base category. It turns out that such a comonad can be recovered from this
induced structure, if it is suitably described as a "comprehension category".
This structure is much easier to use. Moreover, it will be of fundamental im-
portance in the categorical description of type dependency in the next chapter.
Therefore we shall from now on mostly use these comprehension categories.

(The aspect of 'comprehension' will be explained in the next chapter, see
especially Corollary 10.4.6.)

Section 9.3: Quantification 539

9.3.4. Theorem. Weakening and contraction comonads on a fibration jrP
are in one-one-correspondence with functors V'.IE —^ W^ satisfying

(1) cod o :P = p: E ^ B;
(2) for each Cartesian map f in E, the induced square V{f) in B is a

pullhack.
Such a functor V will be called a comprehension category (on p). We

shall often write {—} = dom o 'PrE —)• B. Thus V is a natural transformation

Proof. Assume a comprehension category 'PiE
functor P y : E ^ E b y

W{X)=VX^X)

with (Cartesian) counit

B-^ on IP. Define a

sx = {wx
VX{X)

X)

A morphism / : X —> y jn E is mapped to the unique map Wf:VX*{X) —^
VY^Y) above {/} with VY{Y) oWf = f o VX{X). This makes s a natural
transformation.

Conversely, if a weakening and contraction comonad {W,s,S) is given, we
get a functor :P: E -> B"^ by

X ^

pWX \
ip{ex) I

pX)
and f ^ (pf^pWf).

Then cod o V = p hy construction. Condition (2) in the theorem holds if
and only if condition (2) in Definition 9.3.1 holds, since for a Cartesian map
/ : X —> y in E the diagram on the left below is a pullback in E if and only if
the diagram on the right is a pullback in B, by Exercise 1.4.4.

WX

ex

X

Wf
-^WY

above

/
- * y

{X}

vx
Y

pX-

{/}

pf

\VY
Y

•pY

Finally, if we start from a comprehension category P , turn it into a comonad,
with ex = VX{X)^ and then into a comprehension category again, we get back

540 Chapter 9: Advanced fibred category theory

the original one: p[ex) — p{T^^{X)) — VX. And if we start with a weaken-
ing and contraction comonad, we get back a comonad which is (vertically)
isomorphic to the original one. D

By this result we have a notion of quantification with respect to an arbitrary
comprehension category. This is the form which will be used mostly. Therefore,
we make it explicit. An alternative formulation in terms of fibred adjunctions
occurs in Exercise 9.3.8.

9.3.5. Definition. Consider a comprehension category "PiE -^ IB"*" and a

fibration m a situation

We say that q has P-products / -coproducts / -equality if q has products /
coproducts / equality with respect to the weakening and contraction comonad
associated with V. Explicitly, this means the following.

(i) The fibration q has P-products (resp. coproducts) if there is for each
object X G E an adjunction

VX*^Y[^ (resp. L I x ^ ^ ^ * W)
plus a Beck-Chevalley condition: for each Cartesian map f.X^Y in E, the
canonical natural transformation

(P/)* XIY =^ Ux {/}* (resp. Ux {fV => (Pfr Uy)
is an isomorphism.

(ii) And q has P-equality if for each X G E there is an adjunction

Eqx H S'x

where Sx is the unique mediating diagonal (id, id): {X} -^ {VX*{X)} in

VX

Section 9.3: Quantification 541

where TT = V{VX''[X)) and TT' = {PX{X)] are the pullback projections.
Additionally there is a Beck-Chevalley requirement: for each Cartesian m a p
/ : X —> y in E, the canonical natural transformation

E q x {/}* =^ {f'Y Eqy

should be an isomorphism—where / ' is the unique morphism in E over {/}

m,

7^X*(X) ^VY''{Y)

^ f
X ^Y

This lemma provides us with various examples of quantification. We con-
sider the most important ones explicitly.

9.3.6 . E x a m p l e s , (i) The weakening and contraction comonad on a simple
s(IB)

fibration i described earlier in this section corresponds to a comprehension

category s(IB) -^ B"^ mapping

/ IxX

(as described in Exercise 1.3.1). It is now much easier to see tha t simple
products and coproducts (along Cartesian projections) is quantification with
respect to this "simple" comprehension category s(B) —)• IB~^.

The diagonals 6{I, J) of this simple comprehension category are the mor-
phisms

J (/ , J) : = (i d , 7 r ')
IxJ ^ {I xj)x J

Tha t is, the Cartesian diagonals S{I, J) as used in Definition 3.4.1 for defining
simple equality.

And if we have a CT-structure (B, T) where T C Obj B then we have a simi-

lar comprehension category s(T) -^ B~^ on the simple fibration 4- mapping

a pair / G B and X E T to the Cartesian projection I x X ^ I. Products

and coproducts with respect to this comprehension category are what we have

called "simple T-products" and "simple T-coproducts" in Definition 2.4.3.

(ii) Next we consider the earlier weakening and contraction comonad on the

codomain fibration I of a category B with finite limits. The corresponding

542 Chapter 9: Advanced fibred category theory

comprehension category B"*" -> B"^ is simply the identity functor. Products
and coproducts with respect to this comprehension category are products and
coproducts along all morphisms in B, as in Definition 1.9.4. The diagonal on

a family (| I is the mediating map X —> X X/ X.

(iii) The inclusion Sub(B) ~> B"*" for a category B with finite limits is a
comprehension category on the subobject fibration on B. Products and co-
products with respect to this comprehension category Sub(B) -> B"^ involves
products Yl^ and coproducts J J^ along all monomorphisms m in the base
category B.

In due course, we shall see many more examples of quantification with re-
spect to a comprehension category. In the remainder of this section we describe
some basic notions and results associated with the general form of quantifica-
tion with respect to a comprehension category. We start by making explicit
what preservation of products, coproducts and equality means in this general
setting.

9.3.7. Definition. Let -j^ —> ^^ be a fibred functor (over B). Suppose
that the fibrations q and r have products (resp. coproducts or equality) with
respect to some comprehension category "PiE ^ B~^. We say that H p re -
serves P-products (resp. coproducts or equality) if for each appropriate pair
of objects X E E, ^ G D, the canonical map

(resp. UxiHA) ^ HUxi^) « ' ^cix(HA) ^ HEqx(A))

is an isomorphism.

There is the following situation, which is as for ordinary categories. The
proof is easy and left to the reader.

9.3.8. Lemma. Fibred right adjoints preserve products fj (with respect to
some comprehension category). Fibred left adjoints preserve coproducts]J and
equality Eq. •

A standard categorical result is that a reflection A ^ B induces products
and coproducts (like x and -h) in A if they exist in B. (By a 'reflection'
we mean an adjunction {F H G) with an isomorphism FG ^ id as counit;
or equivalently, with a full and faithful functor G as right adjoint.) In Ex-
ercise 9.3.9 below one finds the fibred analogue applying to fibred products

Section 9.3: Quantification 543

like X and plus -h. Here we mention the version applying to products H?
coproducts W and equality Eq with respect to a comprehension category.

9.3.9. Lemma. Consider a fibred reflection {F H G) and a comprehension
category V in the following situation.

Then, if the fibration r has products / coproducts / equality with respect to the
comprehension category P i E -> B~^, then so has the fibration q. Moreover,
the right adjoint G preserves the induced products.

Proof. The case of coproducts is easy: for objects X G E and yl G O above
{X}, define

3x{A) = F]\^(GA)

where W^ is the assumed left adjoint to VX*:Cpx -^ ^{X} - Then we get
coproduct correspondences:

3x{A):=FUx{GA) ^B

UxiGA) ^GB

GA ^ VX*{GB) ^ G('PX*(J5))

VX''[B)

the latter, because G is a full and faithful functor. Thus we have adjunctions
{3x H VX*). Equality is transferred to q in the same manner.

For products, we define, as for coproducts,

'ix{A) = FX\^{GA).

We first show that the unit

XlxiGA) GFYl^iGA) = G^x{A)

is an isomorphism. Its inverse is obtained by transposing the composite

S GF{e)
VX*{GFY[x{GA))) ^GFVX'YlxiGA)) ^GFGA^GA

544 Chapter 9: Advanced fibred category theory

Then there are product correspondences:

B ^^x{A)

GB G^x{A) = Y[x{GA)

G{VX* (5)) 2 VX* (GB) ^ GA

VX*{B) -* A D

9.3.10. Lemma. Let ^P and i1 be two fibrations on the same basis
P X I B E

(with q cloven). Form the fibration ^^ \P) by change-of-base. A com-

prehension category "PiE ^ W^ on p can then be lifted to a comprehension
category q*{V) on q*{p), in a diagram:

p*(9)

by assigning to A ElD) and X G E above the same object in B the map

VX{A)
q*{V){A,X) = {VX*{A) ^A)

in D above VX.

Proof. For amorphism (/,5^): (^,-^) -^ i^^^) i n D x i E we get a commuting
square in D

/ / ' ^
VX*(A) ^VY*(B)

\ f \
\ A -B j

where / ' is the unique map above {^} making the square commute. This yields
a comprehension category since if the map (/, g) is Cartesian in D x^ E, then
g is Cartesian in E, so that the underlying square V{g) in B is a pullback.
Hence the above square q*{V){f,g) is a pullback in D by Exercise 1.4.4. •

<l'(V)(f,9) = above T^id)

Section 9.3: Quantification 545

In the "logic of types" in polymorphic predicate logic (over polymorphic
type theory) in Section 8.6 we have been somewhat vague about the precise
categorical formulation of quantification Ma: A.(p and 3a: A. (f oi propositions

E

over kinds. In the categorical set-up we used one fibration \P over types
IB

P

over kinds, and another (preorder) fibration J;̂ of propositions over types.
IE

We suggested that this form of quantification involved quantification along
the liftings in E of the Cartesian projections in B. At this stage we have the

D)

technical means to be more precise: what one needs is that the fibration i has
products and coproducts with respect to the simple comprehension category
5 B = (s(B) -^ B~^) lifted along p. That is, q should have p*(5i)-products and
coproducts.

Exercises

9.3.1. (i) Show that a weakening and contraction comonad on the total category
E of a fibration, restricts to a comonad on the subcategory Cart(E) «—)•
E with Cartesian maps only.

(ii) Assume we have a functor W on the total category of a fibration to-
gether with a natural transformation e.W =^ id satisfying conditions
(1) and (2) in Definition 9.3.1. Prove that there is a unique natural
transformation S:W ^ W^ making (W^e^S) a (weakening and con-
traction) comonad.

P
9.3.2. Let j^^ be a fibred CCC which has coproducts or equality with respect to

IB

a comprehension category "P: E ^ B~^. Show that the Frobenius property
is automatically satisfied.

9.3.3. Give explicit descriptions of all canonical maps in this section: in Defini-
tions 9.3.2, 9.3.3 and 9.3.7.

9.3.4. Prove Lemma 9.3.8.
9.3.5. Investigate what the Beck-Che valley condition says about substitution in

products WaiA.if and coproducts 3a: A. (p of propositions over kinds in
P T

the term model j^ over i (as described in Section 8.6), assuming that
these V and 3 are described categorically wrt. a lifted simple comprehension
category, as mentioned after the proof of Lemma 9.3.10.

n
9.3.6. Let ^9 be a fibration and "P: E —>• B"^ a comprehension category on p.

IB
Show that q has T'-coproducts if and only if both:
• for each X G E and A £]D> above {X}, there is an opcartesian map

A-^]J^(A) above VX;

546 Chapter 9: Advanced fibred category theory

• for each Cartesian map / : X —>• K in E and each commuting diagram

9

in D, above the puUback square V{f) in B, one has:

s is opcartesicin over VY "j
g is Cartesian over {/} > =J> r is opcartesian over VX.
h is Cartesicin over pf J

Give a similar reformulation for equality in terms of opcartesicin maps.
9.3.7. Genercilise Exercise 3.4.2 (ii) to arbitrary comprehension categories: show

that if a fibred CCC q has P-equality then each T'-contraction functor (also)
has a right adjoint in q.

P
9.3.8. Consider a comprehension category VilK —^ B~^ and a fibration j^Q

w

as in Definition 9.3.5. The natural transformation V: {—} => p gives by
Lemma 1.7.10 rise to a fibred functor {V):p*{q) —>• {—}*{q)' It turns out
that quantification with respect to V can be described in terms of adjoints
to (P), as in [74, Definition 7].
(i) Prove that the fibration q has products (resp. coproducts) with respect

to V if and only if {V) has a fibred right (resp. left) adjoint.
(ii) Formulate and prove a similcir result for equality.

9.3.9. Let G: A -> B be a full and fciithful functor, which has a left adjoint F (so
that we have a reflection). Recall the following basic results.

(a) If B has coproducts +, then so has A, given by XvY = F{GX + GY).

(b) If B has products x, then so has A—given hy X^Y = F{GXx GY)—
and G preserves them.

[The proof of (a) is straightforward, but (b) is slightly more complicated;
one first shows that the unit r;: GX x GY —> G{X A Y) is an isomorphism.
Its inverse is {G{ex) o GF(7r),G(£y) o GF(7r')).]

(i) Extend the above results to other limits.
E 0

(ii) Extend it also to fibred reflections: assume fibrations jP and z^
and a full and fciithful fibred functor G: E -> D, which hcis a fibred left
adjoint F. Show that if q has fibred (co)products (like x cind +) , then
so has p. And that G preserves the products.

Section 9,4- Category theory over a fibration

9.4 Category theory over a fibration

547

Up to now we have mostly been studying a single level of indexing, given by
one category being fibred over another. Typical are situations with a logic fi-
bred over a simple type theory—as in logics of equations or of predicates—or
with a calculus of types fibred over a calculus of kinds—as in polymorphic cal-
culi. But in order to study a "logic of types" over a polymorphic calculus, one
has propositions fibred over types and types fibred over kinds, as described in
Section 8.6. Such double levels of indexing will be investigated systematically
in this section. Technically, this will involve fibrations, not in the 2-category
Cat of categories, but in the 2-categories Fib(B) and Fib of fibrations over
a fixed basis B, and over arbitrary bases (see Section 1.7). We shall use the
2-categorical formulation of the notion of fibration from Street [315, 317],
based on Chevalley's result in Exercise 1.4.8. This gives a suitably abstract
reformulation of when a functor p:E ^ B is a cloven fibration, in terms of
the existence of a right adjoint to a canonical functor (E 4 E) —)- (B | p)
between comma categories. Since adjunctions can be formulated in arbitrary
2-categories, we only need suitable comma-objects.

Recall, e.g. from [36, 1.6.1-1.6.3], that the universal property of a comina

object (/ ; g) of two 1-cells A-^ C i^- B in a 2-category can be formulated

as follows. There are projection maps A <— (/ 4- g) —> B together with a
2-cell

{fig)

which are universal: for any object D with 1-cells A i— D —> B and a 2-cell
7: [f o a) =^ {g o b) there is a unique 1-cell d\ D —> (/ I g) with

htod= a, snd o d—b, ad = 7.

A special case is the arrow objecton an object C; it is written as

C ^ = (C ; C) = (idc i idc).

548 Chapter 9: Advanced fibred category theory

It is characterised by the correspondence between

1-cells A ^ C^

2-cells A \^ C

Thus, the arrow category C^ on a category C is the arrow-object in the
2-category Cat of categories. And the comma category (F I G) of functors

F G .

A —y C <— B is the comma object in Cat. Recall that this comma category
(F i G) has

objects triples {X, ^, Y) where X G A, y G B and 99: F X ^ GY
inC.

morphisms (X, ip, Y) -> [X',(p\ Y') are pairs of maps / : X -^ X ' in A
and ^: y ^ y in B with if' o Ff = Gg o <f.

9.4.1. Definition (Following [315, 317]). Consider a 1-cell p: E ^ B in di
2-category, and assume that the comma objects E^ = (E I E) = (id^; I id^;)
and {B I p) = (id^ | p) exist. There is then a unique mediating 1-cell
p: E^ —-)• [B \. p), in the following situation.

(For the obvious 2-cell p o fst => snd o p: E^ ^ B.)
We say that p is a (cloven) fibration in this 2-category if the induced map

p has a right-adjoint-right-inverse; that is, if p has a right adjoint p such that
the counit of the adjunction (p H p) is the identity 2-cell.

For an ordinary functor p:E ^ B the induced functor p :E^ -^ {M I p)
sends (/: X -^ y) »-> (pX,/, X). And p is a fibration in Cat (according to
this definition) if and only if p is a cloven fibration, see Exercise 1.4.8.

We split this section in two, by first considering fibrations in a 2-category
Fib(B) and then in Fib.

Section 9.4-' Category theory over a fihration 549

Fibrations over fibrations with a fixed base category

We first observe the following.

9.4 .2 . L e m m a . The 2-category Fib(IB) of fibrations over a fixed base category

B has comma objects: for two maps of fibrations p —> r i— q in a situation

G

V(FiG)
The total category of their comma fibration i is the full subcategory

V (F ; G) ^ ^ {F i G)

of the ordinary comma category, on the vertical maps (^: FX —> GY m C. It
IS fibred over M via the functor {(p: FX -^ GY) i-^ pX = qY.

E

In particular, for a fibration -^P the arrow object p~^ in Fib(B) exists. We
V(E)

write it as i where V(E) -̂> E"^ is the full subcategory on the vertical maps.

Sometimes we write Vp(E) instead o/V(E)^ in order to have the dependence

on p explicit.
Proof . The category V (F J, G) is fibred over B since for an object (ip: FX ->
GY) G V (F I G) and a map u: I -^ pX in B we have a lifting given by
combining the liftings u{X):u''{X) -^ X in E and u(Y):u*{Y) -> Y in D in
a diagram:

F(u(X))

I I
u^p) \ \<P

Y G{u{Y)) \
G{u'{Y)) ^ GY

pX

There is then an obvious vertical natural transformation

V(FiG) 4

550 Chapter 9: Advanced fibred category theory

with the required universal property. D

We can now characterise fibrations in a 2-category F ib (IB) of fibrations over
a fixed base category B.

P E

9 .4 .3 . P r o p o s i t i o n . Consider two fibrations Ul and iP over M, and a

morphism r:q -^ p of fibrations, as in:

- ^ E

The following statements are then equivalent:
(i) r: q —^ p is a fibration in Fib(B), i.e. the induced fibred functor r in

V(D) V(idp; r)

has a fibred right-adjoint-right-inverse (in Fib(IB)^;
(ii) r is itself a cloven fibration;

(iii) r is ^fibrewise a cloven fibration": for each object I EM the functor

q-Hn=^i
ri

-^Ei=p-'il)

obtained by restricting r to the fibres over I, is a cloven fibration, and for
each morphism u: J —^ I in M and p-reindexing functor w*:E/ —>• E j there
is a q-reindexing functor u ^ : D / -> D j forming a morphism of fibrations (in
F i b ; .

D/ ^ D j

/ / one of these conditions holds, then one calls r a f ibrat ion over p .

Proof , (i) => (ii) Assume the functor r has a fibred right adjoint r, and that
the counit f r => id is the identity. For an object A ElD and a map f:X-^rA
in E, we first write / as a vertical m a p g:X -^ r{u'^{A)) followed by the

Section 9.4-' Category theory over a fibration 551

Cartesian map r{u{A)) as below. This g is then an object (X,^,w^(A)) G
V(idp 4 r), so we can apply the right adjoint r. This yields a vertical map
r{g):A' -^ u'^(A), as in:

u'^iA)

X -^ rA
E

9
r^iu^iA)) {u{A))

It is not hard to see that the resulting composite A' —^ A is an r-Cartesian
lifting of / .

(ii) => (iii) The fact that all the r/ 's are fibrations is already stated in
Lemma 1.5.5 (ii). One obtains a morphism of fibrations as in the square in (iii)
above, since for each reindexing functor t/*:E/ -^ Ej one can choose w* as
follows: for A e Bj with rj(A) = X G E/, take i/#(A) to be the domain of
the r-Miting of u{X): u* {X) -^ X, like in the proof of Lemma 1.5.5 (i).

(iii) => (i) One defines a right adjoint r as follows. For a vertical map (p: X ^
rA, say over / G B, take r{(f) to be the r/-Cartesian lifting ^(A): f>*{A) -> A
in D. Commutativity of the diagram in (iii) ensures that r is a fibred functor.

D

We mention some examples of fibrations over a fibration (in Fib(]B)). Recall
from Definition 8.5.3 (and Lemma 8.5.4) the simple fibration over a fibra-

E
tion: for a fibration jrP with fibred finite products, one obtains a fibration
Sp(E)

^^p on top of p. Notice that for each object / G B, the fibrewise fibration
Sp(E)/ ^ ^ _ _ s(E/)

i is the (ordinary) simple fibration i on the fibre category E/.
E

If -^P is a fibration with fibred finite limits, then the codomain functor
V(E) —)• E is also a fibration over p. It will be called the codomain fibration

V(E)j ^ E / - '
over p (in Fib(B)). The fibre fibration i is the codomain fibration i
on the fibre category E/. See Exercise 9.4.2 below for some more details.

These two examples generalise the simple and codomain fibrations over
categories to simple and codomain fibrations over fibrations: one recovers the
ordinary simple and codomain fibrations "fibrewise".

552 Chapter 9: Advanced fibred category theory

The "logic over types" in polymorphic predicate logic (PPL) as described
in the beginning of Section 8.6 is described by a preorder fibration (giving us
a logic) over a polymorphic fibration. In this same section we have described

p
a term model example of a fibration i of propositions over types, which is a

T
fibration over a fibration I of types over kinds.

^ .
As another example of such a fibration for PPL we mentioned the logic of

UFamRegSub(PER)
ree^ular subobjects of families of PERs in i over families of

^ *̂ UFam(PER)
UFam(PER)

PERs in 4- , as defined in Example 8.6.1.
CJ-Sets

Along the lines of the previous example, we can form for a category B
FamSub(IB)

with finite limits, the fibration _̂̂ giving us the logic of subobjects on
families in B via the change-of-base situation:

FamSu

J
Sub(B)

dom

Such fibrations will be used later in a "logic over dependent type theory", see
Section 11.2.

Fibrations over fibrations over arbitrary base categories

As a first step towards the description of fibrations in the 2-category Fib we
start by identifying comma objects in Fib.

9.4.4. Lemma. The 2-category Fib of fibrations over arbitrary base cate-
{P H\ IC K\

gories has comma objects. For two maps of fibrations q —^ r f-̂ p m a
diagram

H K
E

Section 9.4' Category theory over a fibration 553

there is a comma fibration in F ib ,

({F,H)l{G,K))

((Hi K) \

I
(FIG)

where {H I K) and {F I G) are the ordinary comma categories in Cat , and
where the functor [H \. K) -> (F j , G) sends

^ [^)
(HA ^ KX) ^ [FQA = rHA ^ rKX = GpX)

In particular, for a fibration i-P the arrow object p~^ exists in F ib , and

can be identified as ^^

Notice that we have overloaded the notation p~^ by using it both for the
V(E) E-^

arrow fibration i in Fib(B) and for the arrow fibration -̂ . in F ib . When-
. ®. ®

ever confusion is likely, we shall mention explicitly in which 2-category the
arrow construction (—)'^ lives.

Proof . We only show tha t the functor i is a fibration, since it is easy
^ (FIG) ' -̂

to check that it has the appropriate universal property (as comma object in
Fib) . Consider an object {HA -^ KX) in the total category {H I K), and a
morphism (ti, v): a —> ^{^) ^^ the base category [F I G) in a. diagram:

F{I)

a
Y

G{J)

F{u)

G{v)

F{qA) = r{HA)

r((p)

- ^ G{pX) = r{KX)

We first take Cartesian maps u{A):u*{A) —> ^ in D over u: I -^ qA in A,
and v{X): v* {X) -> X in E over v: J ^ pX in B. Then we let {u, vy{(p) be
the unique mediating m a p H{u*{A)) —^ K{v*{X)) over a with K{v{X)) o
{u,v)*{ip) — <f o H{u{A)). This gives a Cartesian morphism {u,v)*{(f) -^ (p
in {H i K) over (w, v) m{F iG). •

554 Chapter 9: Advanced fibred category theory

9.4.5. Proposition. Consider two fibrations iQ and iP and a morphism
{K, H):q—^p of fibrations:

D
H

• * E

K

The following are then equivalent:

(i) {K,H):q —^pisa fibration (over a fibration^ in Fib, i.e. the
induced fibred functor {K, H) = {K ,H) in

IT*
H

K

(EIH)

(pi{K,H))

IK)

has a fibred right-adjoint-right-inverse (in Fib^;

(ii) both H and K are cloven fibrations, and {p, q) is a map of fibrations
H —)• K which strictly preserves the cleavage.

Proof. Because:^i/ and K are cloven fibrations if and only if Jhe induced
functors H and K both have a right-adjoint-right inverse, say H and K re-
spectively. And: commutation of the diagram q~^ o H = K o [p \^ {K, H))
means that the cleavage is preserved. Finally, H is automatically a fibred
functor by Exercise 9.4.4. •

E

We can also describe codomain and simple fibrations in Fib. Let jrP be
a fibration with pullbacks in Fib. This means that the base category B has
(chosen) pullbacks and that the total category E has (chosen) pullbacks, which
are strictly preserved by the functor p. (Equivalent to the existence of pull-
backs in E is the existence of fibred pullbacks in p, see Proposition 9.2.1.) We

then have two codomain fibrations i and i on E and on IB forming

Section 9.4' Category theory over a fihration 555

a fibration -J-, over i in:

Er̂

E

(cod, cod)

This describes the codomain fibration i on » in Fib.
p

There is also a simple fibration in Fib ^P with Cartesian products in Fib
(see [129]). The latter means that IB and E have Cartesian products and that
p strictly preserves them. These Cartesian products in E may be described
via fibred Cartesian products A in p—like in Proposition 9.2.1. We form a

S(E)

fibration I over p, by stipulating that the new total category S(E) has
s(B)

objects triples {X,I,X') where X,X' e E and / G B satisfy
p(X') =pX xl.

morphisms (X, / , X') —>• (Y, J, Y') are triples of maps / : X —>• Y in E,
u:pX X I ^ J inM and / ' : 7r*(X) A X' -^ Y' in E over
(pf o 7r,u):pX X I ^ pY X J.

One gets a commuting diagram

S(E)

E

- ^ s {XJ,X')^

by

p
X H

^{pXJ)

—^pX

S(E) E ^ ^ ^ s(p)
ffivine: us a fibration >!- over l̂- . It is the simple fibration 4- on p in Fib.
^ ^ s(l) 1 ^ P

For an object X G E over / G B, the "fibre fibration" i is used in [129] as
s (l) j

the fibration resulting from p by adjoining an indeterminate of a "predicate"
X t o p (in Fib).

556 Chapter 9: Advanced fibred category theory

Here is a different example. For a category
be the category of de l iverables in B. It has

with finite limits, let Del(]B)

o b j e c t s pairs of subobjects X y-^ I and U >-^ I x A.

m o r p h i s m s {X ^^ I,U >-^ I x A) —> {Y ^^ J,V >-^ J x B) are pairs
of maps u\ I —^ J and v: I x A ^ B for which there are
(necessarily unique) dashed maps:

X
Y V

and

U
Y

I xA
{U O TT, v)

^ V
Y

J X B

Following the terminology of [217] one calls u a "first order deliverable" and
V a "second order deliverable". These u and v can be seen as programs, and
the dashed arrows indicate tha t they satisfy certain specifications—given as
predicates. Such deliverables are used in a combined development of a program
together with a proof that it satisfies a specification, see [217].

Del(l) Sub(l)
One now gets a fibration ^ over the subobject fibration 4- in:

^ s(B) *̂ IB

Del(B)

Su

^ s

by

{X ^ I,U ^ I xA) I ^ (/, A)

(X - /) h

We mention one last example: in Remark 8.6.4 (iv) we have a fibration

RFam(PER)
i over

R P E R

PFam(PER)^

PPER^
. It gives the fibration of relations over the (prod-

uct with itself of) fibration of parametric families of PERs.

Doubtlessly, many more examples of fibrations in F ib may be found in the
li terature. It is not clear at this stage, precisely what kind of logics one can
describe with these fibrations over a fibration in F ib . Logics over polymor-
phic type theory, like in [273, 326], to reason with parametricity are likely
candidates. The last of the above examples suggests such a link.

Section 9.4-' Category theory over a fibration 557

Exercises

9.4.1. Consider the fibred functors F^G in Lemma 9.4.2. Prove for a morphism
(/ , ^) : (X , ^ , y) - ^ (X ^ c ^ ^ y O t h a t

{ f:X -^ X' is Cartesian in E
and

g:Y ^Y' is Cartesian in D.

9.4.2. Let -^P be a fibration with fibred finite limits, and consider its arrow
V(E)

fibration i in Fib(B).
IB

(i) Prove that the codomain functor V(IE) —> E is a fibration. Show that
it has fibred finite limits again.

(ii) Check that there is a change-of-base situation

E V(E)

- ^ E

where 1:B -^ E is the terminal object functor,
(iii) Notice that for a category A with finite limits, the ordinary codomain

A-^ ^ ^ _ V(A) A
fibration I is the codomain fibration i over ^ .

A ^ A _ 1
(iv) Describe the arrow fibration over an arrow fibration.

E

9.4.3. Let IP be a fibration with fibred finite products. Call a subset T C Obj E
closed under substitution if for every Cartesian map f: X -^ Y in IE with
Y £ T also X £ T. Such a collection T forms a fibred CT-structure.

Sp(T)

Define an associated (generalised) simple fibration 4- over p.
9.4.4. Consider adjunctions (F H G,r],e) and (F' H G',rf',e') in a situation

G'

E
F'

G

•^ A

where qoF' = Fop^poG' = Goq and r}', e sit over ry, e. Prove that the
pair (C, G') is then automatically a morphism of fibrations q ^ p {i.e. that
G' is a fibred functor).
[Notice that Exercise 1.8.5 is a special case.]

558 Chapter 9: Advanced fibred category theory

9.4.5. (i) Define composition in the category S(E) in the construction of the
simple fibration in Fib, and show that S(E) is fibred over s(]B) and
over E, in such a way that liftings are preserved appropriately.

Del(B)
(ii) Check also that the fibration 4- of deliverables is fibred over the
^ ^ s(IB)

Sub(B)
subobject fibration 4-

9.5 Locally small fibrations

Recall tha t an ordinary category C is called locally small if for each pair of
objects X , y E C the collection C{X,Y) of morphisms X -^ Y in C is a
set^ as opposed to a proper class. Tha t is, each collection C(X,Y) is an ob-
ject of the category S e t s of sets and functions. From a fibred perspective,
this dependence of the notion of local smallness on the universe of sets is an
unnatural restriction. In fibred category theory one looks for a more general
formulation which applies to arbitrary universes (or base categories). This is
the same generalisation tha t led us in Section 1.9 from set-indexed products
and coproducts to products and coproducts with respect to (objects and ar-
rows in) an arbitrary universe (given as base category of a fibration). In this
section we shall investigate the fibred version of the notion of local smallness.
It will turn out to have a close connection to comprehension.

E

In a fibration jrP, the base category IB provides a universe for the total
category E. Local smallness for fibrations will involve a representation of hom-
sets in E as objects of B. The situation in ordinary category theory is captured

Fam(C)

as a special case via the family fibration i . Notice that , if C is locally

small, then for every pair of objects X = {Xi)i^j and Y = {Yi)i^j in the total

category Fam(C) over a set / we can form the disjoint union of all homsets

C(Xi,Yi). It comes equipped with a projection function TTQ to / :

Hom,(x,y) 1^' (IIc(Xi, y,)) — ^ i

It forms a morphism in the base category S e t s . There is then an obvious
vertical m a p in Fam(C) over HomjiX.Y), namely

rrJlX) - ^ KiY) given by (7ri)(,,^) = (X.- J u Y^)

This pair (TTOJTTI) satisfies a universal property: for any function u: J ^ I

Section 9.5: Locally small fibrations 559

with a morphism f:u*{X) -> u*{Y) in Fam(C), there is a unique function
v: J —> Homj(X,y) with TTQ o v = u and t;*(7ri) = f. Clearly this function v
sends an element j ^ J to the pair (ti(i),/j) G U J G / ^ (^ * ' ^ *) *

We have described the homsets of C using a language that makes sense for
any fibred category. This formulation will be used in the definition of local
smallness for fibrations below, in the form of a representability condition. The
definition comes from Benabou [27, 29] (see also [36, II, 8.6]), just like almost
all of the results in this section.

The definition below makes use of a particular cleavage in a fibration, but
it does not depend on the cleavage. Lemma 9.5.4 gives an intrinsic (cleavage-
free) reformulation. It is however less intuitive. Exercise 9.5.2 below contains
another alternative formulation.

E

9.5.1. Definition. A fibration jrP is called locally small if for each pair of
objects X, y G E in the same fibre, say over / E B, the functor from (B//)^^
to Sets—or to some suitably larger universe than Sets—given by

{j-^^l) ^—^Ej(t /*(X), i/*(y))

is represent able.
In that case we write

TTO

UomjlX.Y) ^ /

for the representing arrow in B, which comes equipped with a vertical mor-
phism "of arrows" in E over Hom/(X,y) , written as

n*o{X) -7rS(y)

It is such that for each map w: J —>• / in B together with a vertical morphism
/ : u*{X) —^ '^*{y) in E over J G B there is a unique mapf: J —^ RomjiX.Y)
in B making the following two diagrams commute:

where the dashed arrows are the (unique, Cartesian) mediating maps over v.

Sometimes the subscript / in Homj(X, Y) is omitted if it is clear from the
context in which fibre X, Y live. The intuition is that the fibre over i G / of

560 Chapter 9: Advanced fibred category theory

/Hom,(X,y) \
the family I -y^ I in B / / is the homset of vertical maps Xi -> Yf in

E.
We consider some examples. We have already seen that if a category C

is locally small in the ordinary sense, then the associated family fibration
Fam(C)

i is locally small in the fibred sense. The converse is also true, since
Sets

one can consider objects X,Y of C as objects of Fam(C) over a one-element
(terminal) set 1. The resulting set Horrid(X,y) is then the homset C{X,Y),
since elements 1 —> Hom^fX, Y) correspond to maps X -^ y in C.

Fam(c)
The externalisation i of an internal (small) category C in an ambient

category B yields a similar example of a locally small fibration. For objects
X , y : / =4 Co in the fibre of Fam(C) over / , one forms a representing family

Hom(X,y)\
1^0 I via the pullback:

J
Hom(X, Y) ^ Ci

To {do,dr)

-^ Co X Co

For each w: J —)• / in B with vertical / : u*{X) —)• u*{Y) in Fam(C) over J, we
have / as a morphism / : J —> Ci in B satisfying (9o,5i) o f = {X,Y) o u.
This yields the required unique map v: J —-> Hom(X, Y) as mediating map
for the above pullback.

Finally, for an arbitrary category B with finite limits, the associated

codomain fibration i is locally small if and only if the category B is lo-
cally Cartesianlosed: for a morphism u: J —> / in B and for families (p^tp G B/7
over / , we have isomorphisms

M/l{u*(^), «* W) ^ B / / (U . «*(^), i') = B / / (« X V?, V).

Hence the left hand side has a representing object if and only if the right hand
side has one. That is, the codomain fibration is locally small if and only if all
slices are Cartesian closed.

In order to produce a non-example, we use the following easy result. It
gives a relation between local smallness and comprehension (or subset types),
as described in Section 4.6. The proof is not hard, but is postponed until Sec-

Section 9.5: Locally small fibrations 561

tion 10.4 where we shall have more to say about comprehension (see especially
Proposition 10.4.10).

E

9.5.2. Lemma. Let ^P be a fibred CCC. Then p is locally small if and only
the fibred terminal object functor 1:B -> E has a right adjoint. This right ad-
joint is then written as { —] since it provides the fibration with comprehension
(also called subset types, if p is a preorder fibration). •

UFam(PER)
9.5.3. Example. In Example 7.1.3 we saw that the fibration i

. . . u;-Sets
of cj-set-indexed PERs is small; hence it is locally small. But the fibration
UFam(PER)

i of (ordinary) set-indexed PERs, introduced as an example of a
Acj-fibration in Corollary 8.4.6, is not small. We will show here that this
fibration is not locally small, and hence certainly not small. We assume to-
wards a contradiction that the fibration is locally small, and thus—by the
previous lemma—has a right adjoint { —} to the terminal object functor
l :Se t s ->UFam(PER) .

Call a PER S non-empty if its domain l^l = {n G N | nSn} is non-empty,
and write PER^0 ^> PER for the set of non-empty PERs. Consider the
family of PERs X = {R)RePER^^ in UFam(PER), and the resulting set {X}
with projection TTX' {X} -^ PER^0. For every non-empty PER S we have S
as a map S:l -^ PER^0 in Sets, together with a morphism / (5) : 1(1) -^
S*(X) = S over 1 in UFam(PER). Namely, f{S) ^ [ns]s. where ns G | 5 |
is a chosen inhabitant of the domain of S. By the adjunction, f{S) gives a
map v[S)\ 1 —> {X} with TTX ^ ^{S) — S. Collecting these v{S)^s together
yields a function v: PER^0 —> {X}, with TTX o v = id. Transposing v gives a
vertical map / : 1(PER^0) -^ X in UFam(PER) over Sets. It must have—as
any other morphism in this category—a realiser, say e, which works for all
indices. Thus, for every non-empty PER S, fs = [e]s where e G l^l. This leads
to the absurd conclusion that there is an element e which is in the domain of
every non-empty PER S.

Next we give an intrinsic alternative formulation of local smallness.

E
9.5.4. Lemma. A fibration jrP is locally small if and only if for each pair

of objects X, y G E in the same fibre, we can find a span X 4- A —>> Y in
E with f Cartesian over p[g), which is universal in the following sense. For

h k •

each span X ^ B -^ Y with h Cartesian over p{k), there is a unique map

562 Chapter 9: Advanced fibred category theory

(p: B —> A in E making the following diagram commute.

B ^ A

(Such a mediating map (p is Cartesian, since f and f o (p = h are Cartesian.)

E

Proof. Suppose -jrP is a locally small fibration. For X, Y G E/, the required
universal span X <— 7ro(X) -> Y is:

X -^
M^)

t

MY)
- * y

Conversely, assume for X,Y € E/ there is a universal span
as in the lemma. Write TTQ: Romj{XjY) —>• / for p{f) = p{g) in B and TTI for
the vertical part of 7ro(X) •=>• A —> Y. This pair TTQ and TTI is universal as
described in Definition 9.5.1. Q

Earlier in Example 7.1.4 (ii) we have seen how a full internal category Full(a)
can be constructed from a morphism ai^l ^ 5 in a locally Cartesian closed
category B. Below we shall describe a generalisation of this construction—
due to Penon [257]—which may be performed in a locally small fibration.
This gives rise to an important corollary, stating that a fibration is small if
and only if it is locally small and has a generic object.

9.5.5. Theorem. Let jrP be a locally small fibration. Then every object
J7 G E induces an internal category ¥ull{U) in the base category B (provided
there are enough pullbacks in B to say what this means). This internal category

Section 9.5: Locally small fibrations 563

Full(6^) is "full in p": it comes equipped with a full and faithful fibred fund or:

Fam(Full(t/)) ^ E

Proof. For ?7 6 E, write UQ = pU E IB for the intended object of objects
of Full([/). Let us write (5o,5i):[/i -^ UQ x UQ for the representing arrow
of the two objects 7r*{U) and 7r'*([/) in the fibre above UQ X UQ- It comes
equipped with an arrow (the TTI), which we now write as pL\dl{U) -^ dl{U).
By construction we have for X, F : / =4 ^o natural isomorphisms

B / (/7ox^o) ((X ,y) , ((9o,ai))
^

E7(X*(C/), Y^iU))

Internal identities and composition in Full(t/) are borrowed from p via this
isomorphism^ (likefor the earlier "Full(—)" construction in Example 7.1.4 (ii)
for locally Cartesian closed categories): the morphism of internal identities
i: (id, id) —)• (5o, 5i) in IB/(L ô x UQ) is obtained by applying ^"^ to the identity
map id*(^) -^ id*(f/). For internal composition, consider the pullback of
composable maps:

C/2 = C/i xt;„ [/i ^ C/i

J
^0 do

Ui UQ

where we have written ^0,^1 for the pullback projections. What we need is
a composition map m: {do o ^0,5i o ^j) —> (5o, 5i) in M/{Uo x Uo)- It is con-
structed as follows. By applying both ^Q and ^J to ^: 5o(J7) —^ dl(U), we get
a composite:

(aoo6)*(f/)

^S(A«) I

^i*(/^) I
Y

(aio6r(f/)

564 Chapter 9: Advanced fibred category theory

The composition map m: U2 —^ U\ is then obtained by applying ^~^ to this
composite map [do o ^o)*(^) —> {di o ^1)*([/).

The morphism^: 55(f7) -> dl{U) is by construction the action of an internal
diagram of type Full(f7) in p. It corresponds, following Remark 7.4.2 (i), to a
fibred functor Fam(Full(C/)) -> E, given by

{l^^Uo) ^—X*(C/)

This yields a full and faithful functor: we may restrict ourselves to a fibre (see
Exercise 1.7.2), and there we have:

Fam(Full ([/)) / (/4/7o, I ^ Uo) = M/{Uo xUo){{X,Y), {do,di))

^ Ej{x*{U), y*(U)). D

It is not hard to see that the construction of the full internal category
Full(a) starting from a morphism a in a locally Cartesian closed category
B in Example 7.1.4 (ii), and of the associated full and faithful fibred functor
Fam(Full(a)) -> IB~̂ in Example 7.3.4 (ii), are special cases of the construction
in the above proof, when applied to a as an object in the total category IB"*
of the (locally small) codomain fibration on B.

Recall that an ordinary category is small if and only if it has a small collec-
tion of objects and also a small collection of morphisms. The above theorem
yields a similar description for fibred categories.

9.5.6. Corollary. A fibration is small if and only if it is locally small and
has a generic object.

Proof. We have already seen that a small fibration is locally small and has a
generic object, so we concentrate on the (if)-part. Let a locally small fibration

E

^P have T G Ea as generic object. By the previous result we can form an
internal category Full(T) in B, for which there is a full and faithful functor

Fam(Full(T)) ^ E sending (/ ^ ^ Q) I ^ u*{T)

This functor is an equivalence because each object X G E is of the form u*{T)
for a unique morphism w.pX —> fi, since T is generic object. •

This corollary comes from [27]. In somewhat different formulation, it also
occurs in [246, II, Theorem 3.11.1] for indexed categories.

We close this section with a fibred version of a familiar homset description
of ordinary products and coproducts: if a category C has Cartesian products
X, then there are the (natural) isomorphisms in Sets between homsets:

c(z, X XY)^ C(Z, X) X c(z, y).

Section 9.5: Locally small fibrations 565

Similar isomorphisms exist for coproducts +, and for arbitrary limits and
colimits. The next result gives a fibred analogue, for locally small fibrations.

E

9.5.7. Lemma. Let ^P be a locally small fibrations with products JJ^ ^^^
coproducts]J^ on a locally Cartesian closed base category B. Then, for a map
u\L-^J, there are isomorphisms in B / J ;

^n.

n.

'Hom(l/*(X),y)

'Hom(y,l/*(X))^

Notice that Y\u, Û ^ on the left hand side of the isomorphisms = are the product
and coproduct in p, and W^ on the right hand side is the product of the locally
Cartesian closed category B (see Proposition 1.9.8).

Proof. We shall do the first one. For a family

the following pullback square.

V̂ ' = i/*(V^)

We get the required isomorphism by Yoneda:

/ / K,\ / H o m (X , n j y)) \ \

s E (̂v'*(x), r(n„(n)
= ¥.K{r{x),Y[u'r{y))
2 ¥.i(u"r{x), v"(y))

Hom(u»(X),y)

/Hom(u*(X),y)

u\ I

K over J in B, consider

by local smallness

by Beck-Che valley

by local smallness

because ^ ' = u*{ip). D

566 Chapter 9: Advanced fibred category theory

Exercises

E

9.5.1. Let ^P be a locally small fibration. Prove that for an epimorphism u: J -^
B

/ in B the reindexing functor ti*:E/ -)• E j is faithful.
E

9.5.2. Let jrP be a cloven fibration with finite limits in its base category. Show
that p is locally small if and only if for each pair of objects X^Y £ E—not
necessarily in the same fibre!—the functor M/{pX x pY)^^ —> Sets given
by

(/ - ^ pX X PY) ^ - ^ E/ ((TT O uy{X), (TT' 0 uy{Y))

is represent able.
[This formulation occurs in [169, A2].]

Fam(C)
9.5.3. Consider Theorem 9.5.5 for a family fibration i of a loccilly small

Sets
fibration C Show that for a family U = {Xa)aeA € Fam(C) of objects
Xa G C one gets a small category Full(t/) with A as set of objects, and
cirrows a —^ (3 given by morphisms Xa —> X^ in C.

s(T)
9.5.4. Let (B, T) be a Al-category. Show that the associated simple fibration i

is locally small.
E

9.5.5. Let ^V be a fibration and F : A -> B be a functor with a right adjoint,
where A is a category with puUbacks. Consider the fibration F*{p) obtained
by change-of-base along F.
(i) Prove that if p is locally small, then so is F*{p).
(ii) Conclude that if p is small then F*{p) is also small.

[Hint. Remember Exercise 5.2.3.]
E

9.5.6. Let j^P be a locally small fibration.

/ H o m (X , y) \
(i) Show that the assignment {X, Y) \-^ \ -I- I —for X, Y in the

V p ^ /
same fibre—extends to a functor H (for Hom) in

E(°P) X B E

which maps Cartesian morphisms to puUback squares. This gives a
comprehension category 7i on the product fibration p^^ x p.

(ii) Define the associated exponential transpose 3^:p -> cod^ of 7i:p^^ x
p —> cod, see Exercise 1.10.6, and show that ^ is a full and faithful

Section 9.5: Locally small fibrations 567

functor.
[This generalises Exercise 7.4.6.]

E
9.5.7. Let -^P be a locally small fibration on a base category B with finite limits.

IB
Show that each fibre category Ej is enriched over the slice category B / / ,
with respect to its Cartesian structure.

E

9.5.8. (Benabou) Consider a locally small fibration -j^P . The aim is to obtain

(canonical) equivalences

Ei) -^-^ 1 and E/+J —=-^ Ei X Ej (*)

(i) Show that every object in E over an initial object in B is initial in E.
Conclude that if B has an initial object 0, then for all X,Y ^Eo one
gets X = y in Eo. And that if E has at least one object, then Eo ~ 1.

Assume now that the base category B has binary coproducts +.
(ii) Prove that the functor

E/+J ^ E/ X E J

is full and faithfuU.
(iii) Show that this functor is an equivalence if one additionally assumes

that p has coproducts]J and fibred coproducts V, and that the co-
products -h in B are disjoint.

9.5.9. Assume a locally small fibration with fibred finite products and coproducts
A,V and with products and coproducts]~I,]J- Assume additionally that
the base category has disjoint coproducts +. Show that the coproduct -f in
the total category

as described in Proposition 9.2.2,, can alternatively be described in terms
of products as:

x + Y = UA^)^UAy)-
9.5.10. Consider a locally small fibration with fibred coproducts V and coproducts

Y[^ over a distributive base category. Prove that for an object X over
/ X (J 4- K) there is an isomorphism

Explain the logical significance of this isomorphism.
E

9.5.11. (Benabou) Assume a fibration j-P with products J][^. The point of this
exercise is to show that if one has equivalences (*) as in Exercise 9.5.8,
then p automatically has fibred finite products (1, x) . [This shows that
under suitable additional assumptions in Definition 1.9.11 of completeness

568 Chapter 9: Advanced fibred category theory

for fibrations, it is enough to require products Y[^^^ fibred equalisers^
instead of products Y[^^d fibred finite limits.]
(i) Let * G Eo; show that the objects 1(/) = Y[\ (*) ^ ^^ provide the

fibration p with fibred terminal objects.
(ii) For X, y G E/ , let Z G E/+/ be such that K*{Z) ̂ X and K'*{Z) ^ Y.

Show that Y\^ {^) is Cartesian product of X,Y in E / , where V/ =
[id,id]:/ + / —) • / is the codiagonal. (For preservation under reindex-
ing one has to assume that the coproducts + in B are disjoint and
universal.)

E

9.5.12. (See [88]) Call a fibration -j^P a geometric fibration if
IB

(a) the base category B is a topos, and the fibration p is "fibrewise a
topos": each fibre is a topos and each reindexing functor is logical;

(b) the fibration p has coproducts | J which are disjoint and universal (see
Exercises 9.2.12 and 9.2.13);

(c) the fibration p is locally small, or equivalently, by Lemma 9.5.2, p has
comprehension, via a right adjoint {—}:E ^ B to the terminal object
functor 1.

E
Prove that geometric fibrations i on a topos B correspond to geometric
morphisms F : A —)• B with codomain B.

E
[Hint. Given ^ , consider the coproduct functor] J : B —^ Ei from Exer-
cise 9.2.13 as inverse image part. And given F : A —> B, define a fibration
A/F

I by pulling the codomain fibration on A back along F*:B —> A.]
Prove also that the geometric morphism F : A —>• B is an inclusion of toposes
[i.e. the direct image part F*: A -^ B is full and faithful) if and only if the

A/F
fibration l has full comprehension {i.e. the induced functor A / F —>• B"^

IB
is full and faithful).

9.6 Definability

Subset types {i:I\Xi} (v^ith X a predicate on /) in the logic of a preorder
fibration are described in Section 4.6 via a functor {—} from the total category
to the base category of the fibration, which is right adjoint to the truth (or ter-
minal object) functor T. The idea is that { —} singles out those instantiations
i: I for v^hich Xi holds. There is a notion of "definability" for fibrations which
gives more general means for singling out certain instantiations of objects in
a total category and representing them in the base category. This allows us to
consider in an arbitrary base category (and not just in Sets) the (universal)
subobject V ^^ I of those indices i: V for which Xi satisfies some property P

Section 9.6: Definability 569

on the objects of the total category. The notion of definability and the asso-
ciated results in this section are due to Benabou, see e.g. [29] or [36, II, 8.7].
Type theoretic use of definability can be found in [263], where "powerkinds"
are described as objects in a base category of kinds, associated with a col-
lection of inclusion maps between types in a total category of a polymorphic
fibration.

We start with a formulation of definability which is intrinsic, and we later
give an alternative formulation involving a cleavage.

E

9.6.1. Definition. Let ^P be a fibration and P C Obj E be a collection of
objects (or predicates) in the total category.

(i) We call P closed under substitution if for each Cartesian map Y -^
X with its codomain X in P , also the domain Y is in P. This is a minimal
condition to make P a sensible collection of predicates. Notice that such a
collection P is closed under isomorphism: if X G P and X = Y, then Y E P .

(ii) The collection P is definable if it is closed under substitution and
satisfies: for each object X G E there is an object X' ^ P and a Cartesian
morphism ix'-^' -^ ^ which is universal in the following sense. For each
Cartesian map / : Y —> X with its domain Y in P , there is a unique (necessarily
Cartesian) map f: Y —-)• X' with ix ^ f — f •

The idea is to think of X' G P in this definition as the best approximation
of X G E by an element of P , as suggested in the following picture.

Informally, if X = (Xf)^^/, then one may think of X' as the family
(Xf)i^ljg/ I Xj^P] obtained by suitably restricting X, see Lemma 9.6.4 be-
low. In more abstract form, this is made explicit in the next reformulation of
definability.

E

9.6.2. Lemma. Let ^P he a cloven fibration with a collection of objects
P C ObjE which is closed under substitution. Then P is definable if and only
if for each object X G E above / G IB the functor W^ —> Sets given by

J^{u:J^I\u*(X) eP}

570 Chapter 9: Advanced fibred category theory

is representable.
Explicitly, this represent ability means that there is a representing morphism

inM
Ox

[xeP]—^/, with e)^[x)eP
such that each u: J -¥ I with u*{X) G P factors in a unique way through Ox-
(This map 6x must then be a monomorphism.)

Proof. Assume the collection P is definable as described in the above def-
inition. Choose for each object X G E a universal Cartesian morphism
ix'X' -> X and write ex:{X e P} -> pX for p{ix) in B. There is then
a vertical isomorphism 0'^{X) = X' E: P. For a morphism u: J -^ pX with
w*(X) G P there is a Cartesian morphism u{X):u*{X) -^ X in E whose do-
main is in P . Because ix is the best approximation of X in P , there is a unique
map f:u*{X) —> X' with ix o f = u(X). Then pf: J -^ {X £ P} satisfies
Ox ^ pf = Pi'^x ^ f) = p{^{X)) — u. If there is another map w: J ^ {X G P}
satisfying 6x o w = u^ then we get a unique morphism g: u*{X) -> X ' over w
with ix o g = u{X), because ix is Cartesian. But then f — g^ by uniqueness,
and thus w = pg = pf.

Conversely, assume that representing morphisms 9x as in the lemma exist.
Write X' = 0*x(X) G P and ix = J^{X):e*x{X) -> X for the associated
Cartesian lifting. For a Cartesian morphism f:Y-^X with y G P we get a
unique map v:pY —^ {X G P} with 9x o v = pf. But then there must be a
(unique) mediating f':Y ^ X' over v with ix ^ f — f • And if also g.Y -^ X'
satisfies ix o g = / , then pg.pY —> {X G P} satisfies Ox ^ pg = pf- Hence
pg = V = pf, and thus g = f. D

The following two results describe what definability means in familiar situ-
ations.

E

9.6.3. Lemma. Let jrP be a preorder fibration with a terminal object (or
truth) functor T: B -> E. We write Truth C Obj E for the collection of predi-
cates which are true, i.e. Truth = {X G E | T < X vertically}. Then Truth is
definable if and only if the fibration p has subset types (that is, if and only if
the termiritsil object functor T has a right adjoint {—}:E -> B^.

Proof. Assume Truth = {X G E | T < X vertically} is definable. Then there
is a right adjoint X ^ {X e Truth} to T:B ^ E since

E (T (J) , X) ^ { w i J ^ p X | T (J) < w*(X) over J}

= { l i i J ^ p X |t/*(X) GTruth}

^ B (J , { X G Truth}).

Section 9.6: Definability 571

Conversely, if such a right adjoint { —} to T exists, then the associated
subset projections TTX''{X} H^ pX form representing arrows for the functors
in the previous lemma: for a map u: J —^ pX in B we get by Lemma 4.6.2 (ii):

u*(X) e Truth O T < u*{X) over J <^ t/ —^ TTX in M/pX. D

Next we show that for family fibrations (which incorporate the world of
ordinary categories), definable collections correspond simply to subsets of ob-
jects.

9.6.4. Lemma. There is bijective correspondence between definable collec-
Fam(C)

tions for a family fibration i and collections of objects in C.
Sets

Proof. Let P C Obj Fam(C) be a definable collection. Because P is closed
under substitution, if a family Y — (Vi)ie/ is in P , then each of the indexed
objects Yj = j*{Y) is in P , for j G / . But the converse is also true: if each
Yj =z j*{Y) G P , then Y G P . To see this, consider the best approximation
y -> y with y G P . since Y' -> y is Cartesian, we may write y ' =
{yv{k))keK for 21 function v: K —^ I. Since for each j E I there is a Cartesian
map Yj —> y over j:l —>- I with Yj E P there must be by definability of P
a unique map w{j):l -^ K with v{w{j)) — j . These w;(j)'s combine into a
function w: I -^ / i , which is inverse of v. Hence Y = Y', and so y G P .

Thus we consider the collection Pi = {X G C | X G P in the fibre over 1}
of objects in C Then one easily shows that an arbitrary family X = {Xi)iqi
is represented by the inclusion

{iei\XiePi} ^———^i

Clearly, 0'^{X) is in P , because for each j E {i £ I \ Xi £ P} we have
0'^{X)j = Xj E P by construction. And indeed, for a function u: J —^ I, if
u*{X) = {Xu{j))j£j is in P , then each object Xu{j) is in Pi, so that u factors
trough 0x:{iel\ Xi e Pi} ^ L

Conversely, given a collection Q C Obj C, let

Q = {{Yi)iej e Fam(C) | Vf e LYi E Q}

be the closure of Q under substitution. Then Q is definable, since for an
arbitrary collection X — (X,),^/, take the subset V = {i E I \ Xi E Q} '^ I
and the subfamily X' — (X,)j^//. Then X' -> X is Cartesian over the inclusion
/ ' ' ^ / , and is the best approximation of X in Q.

As we have seen in the beginning of the proof, for a definable collection
P C Obj Fam(C) we have IjPi) = {{Yi)i^i \ Mi E LYi E Pi] = P- And for a
collection Q C Obj C we have (Q) ^ = Q. D

572 Chapter 9: Advanced fibred category theory

Fam(Sets)

Consider for example the family fibration i of set-indexed sets. Let
Fin C Obj Fam(Sets) be the collection of those families (X,),^/ for which
each set Xi is finite. This collection is definable, since it comes from the
subcoUection of Obj Sets consisting of finite sets: given an arbitrary family
[Xi)i^i^ there is an inclusion

{f G / I Xi is finite} ^ ^ /

serving as representing function.
Fam(FinSets)

Next consider the family fibration i of set-indexed collections
•̂ Sets

of finite sets. We look at bounded families of these. More precisely, families

which have a common bound: let

CB = {[Xi)i^i e Fam(FinSets) | 3m e N. Vi G / .

Xi has less than m elements}.
We claim that CB is not definable—but it is closed under substitution. Take
as counterexample the family^ = (M)n6N of finite sets [n] — { 0 , l , . . . , n —1},
which is clearly not an element of the collection CB. If CB is definable, then
there is a subset {A G CB} ^-^ N such that each function w: J -> N satisfies:
u*(A) = {W{j)])j^j is in CB if and only if u factors through {A G CB} -̂> N.
For each n G N, considered as map n: 1 —> N, we have n*{A) = [n] G CB.
Hence n E {A £ CB}. This shows that the identity function id:N -^ N factors
through {A G CB} ^ N. But we do not have id*{A) = A e CB. Thus CB is
not definable.

Here is a another illustration, involving PERs. It is adapted from [262].
9.6.5. Example. A partial equivalence relation R C N x N will be called
decidable if there is a "decision code" e G N such that for all n,m Ef^

, . f 1 if nRm
<"-'">= \ 0 othe otherwise.

We write DPER for the set of decidable PERs. We will show that the notion
UFam(PER)

of decidability is definable in the fibration i of a;-set-indexed PERs
CJ-Sets

UFam(PER)
but not in the fibration i of set-indexed PERs. We begin with the

Sets ^

latter.
Call a set-indexed family {Ri)i£i of PERs decidable if there is a single

decision code which works for each Ri. Consider the collection of decidable
UFam(PER)

families of PERs in the fibration I . This collection is not definable.
Sets

Otherwise, there is a for each family R = (Ri)iei ^ subset I' '-^ I such that

Section 9.6: Definability 573

every function u: J -^ I satisfies: u*{R) — {Ru(j))j£j is a decidable family
if and only if u factors through r ^^ I. Consider in particular the family
D — (5)5gDPER, say represented by an inclusion {D} "-^ PER. Then there
is an inclusion DPER ^^ {D]^ since for each R G DPER, the family (over
\) R — R*[D)^ consisting only of i?, is itself a decidable family, which is
obtained by reindexing D along R'A ^ PER in Sets. Thus, D = {S)seDPER
is a decidable family. But clearly no single decision code can work for all
decidable PERs.

For cj-set-indexed families of PERs we can do better. Call such a family
R — {Ri)i£(^j^E) of PERs over an cj-set (/, E) decidable if there is a "uniform"
code e G N such that

Vi £ I.^n ^ ^ (0 - e • 71 is a decision code for Ri.

The crucial difference with the earlier indexing over sets is that the decision
code for the PER Rj now depends on (a code of) the index i G / . This enables

U F a m (P E R)

US to show that the set of decidable families in the fibration i is
CJ-Sets

definable: for an arbitrary family of PERs {Ri)i^(i^E) consider the subset

OR
r = {ie I \Ri isei decidable PER} ^ ^ /

with existence predicate

E'{i) = {(n, m) I n G E{i) and m is a decision code for Ri]

A code for the first projection tracks OR. And 0'^{R) — {Ri)i£(if^E') is a
decidable family, since for each i G / ' and k G E^i) the second projection p'k
is by construction a decision code for Ri.

For a morphism u: (J, E) -> (/, E) in cj-Sets, say tracked by d, such that
u*{R) — (Ru{j))je{J,E) is a decidable family, say with decision code e, we
have that u factors as u:{J,E) -^ (f, E') through OR, tracked by the code
Ax. {d • x,e • x).

The notion of definability can be formulated in much greater generality.
E

Therefore we need the exponent fibration p^ of a fibration -^P with an ar-
bitrary category C, as described in Exercise 1.8.8. Its objects in the fibre
over / are functors C -> E/. Reindexing along w: J -^ / in B is done by
post-composition with u*:Ej -^ E j .

E

9.6.6. Definition. Let ^P be a fibration and C an arbitrary category. A
IB

collection of functors C -^ E (factoring through some fibre) is definable if it
is definable with respect to the exponent fibration p^.

574 Chapter 9: Advanced fibred category theory

(This involves the requirement that the collection must be closed under
substitution with respect to this fibration p^.)

This definition generalises the earlier one, since a collection P C Obj E of
objects of the total category is definable as in Definition 9.6.1 if and only
if, considered as a collection of functors {X:l —> ^xeP from the terminal
category 1 to E, it is definable as above in Definition 9.6.6.

Now we can also talk about definability of collections of vertical morphisms:
E

a collection V C Arr E of vertical maps of a fibration iP is definable if it is
B

definable when considered as a collection of functors (• -^ •) —)- E. Explicitly,
this means that for each vertical map f:X'-^X above / E B, there is a mono
{/ G V̂ } ^^ / in B such that for each morphism u: J —^ I one has u*{f) G V
if and only if u factors through {f EV} >-^ I.

(Notice that this is not really an extension since it is the same as definability
V(E)

with respect to the arrow fibration p"^ = i in Fib(B).)
As a special case, consider the collection

viso = {/ I / is vertical and Cartesian}
= {/ I / is a vertical isomorphism} C Obj V(E).

One says that isomorphisms are definable if this collection vIso of vertical
isomorphisms is definable.

Similarly, one can say that equality of vertical maps is definable if the
collection of functors (• i=t •) -> E given by

{F: (. ^ •) ^ E/ I / G B and Fa = Fb}
b

is definable. This means that for each parallel pair f,f':X =:t Y of maps in
the fibre over / G B, there is a mono {f =: f] >-^ I such that each u: J —^ I
satisfies: u*{f) — u*{f') if and only if u factors through {/ = / ' } ^^ / .

Sometimes the expression "definable subfibration" is used. What this means
E

is the following. First, a subfibration of a fibration -^P consists of a subcat-
egory D <^ E with the property that for each X G ID and Cartesian morphism
/ : y —> X in E one has that / is already a map in D. This implies that the
inclusion D M- E is a fibred functor. If this inclusion is full, one calls the
subfibration full. Such a subfibration D is definable if both its collections
of objects and of vertical morphisms are definable. For a full subfibration this
simply means definability of objects.

We list some results (due to Benabou) related to definability of isomor-
phisms.

Section 9.6: Definability 575

E

9.6.7. Lemma. Let ^"P he a locally small fibration with finite limits in its
base category. Then isomorphisms are definable in p.

Proof. Recall from Exercise 9.5.7 that each fibre category E/ is enriched over
the slice B / / . For objects X, Y E E/ we can combine composition maps c into
a morphism in IB

Hom(X, Y) xi Hom(y, X) - ^ Hom(X, X) x / HomfY, Y)

There is also a morphism

HomiX, Y) xj Hom(y, X) —^ 1 - ^ Hom(X, X) Xj HomfY Y)

obtained from identity maps. Taking the equaliser in B yields a mono

vIso(X, Y) ^ - ^ Hom(X, Y) Xj HomfY X)

The construction is such that for each u: J -^ I with an isomorphism u*{X) -=)•
u*{Y) there is a unique morphism v: J -> vIso(X, Y) with

u={j —^ vIso(X, Y) — ^ Hom(X, Y) X/ Hom(Y, X) ^ /)

For a morphism f:X —)• Y over / , let f: I -^ Hom(X, Y) be the corre-
sponding section of the canonical projection TTQ: Hom(X, Y) -^ / . The required
representing map 9f is obtained by pullback in

{/ G viso} ^ vIso(X, Y)

J

Hom(X,Y)
/

Then 9Uf):9UX) -> OUY) is an isomorphism, with inverse resulting from
the map

TT' o e o / '
{/ G vIso} ^ HomfY X)

576 Chapter 9: Advanced fibred category theory

Finally, if we have a morphism w: J -> / in B for which u'^(f):u*{X) -> u*(Y)
is an isomorphism, then we get a morphism v: J ^ v I s o (X , y) as described
above. This map, together with u: J —^ I satisfies 7 r o e o i ; = : / o t / , so tha t
we get our required mediating m a p J —^ {/ G viso} using the pullback. •

Definability of isomorphisms is important because it implies definability of
some other classes.

E

9 .6 .8 . L e m m a . Let -jrP be a fibration with fibred finite limits and definable

isomorphisms. Then

(i) Equality is definable.

(ii) The collection {X G E | X is terminal object in its fibre} is definable.
(iii) Among the vertical diagrams X <— Z —^Y the ones where Z is product

of X and Y in the fibre, are definable.

(iv) Monomorphisms are definable.

Proof , (i) For parallel maps f,f':Xz=tYin the fibre over / G IB, let e: X ' >-̂
X be their equaliser in E / . The morphism 9e:{e G vIso} ^^ / then represents
equality of / , / ' : a map u: J -^ I satisfies u*(f) = u*{f') if and only if u*{e)
is an isomorphism, and the latter if and only if u factors through ^e-

(ii) For X G E over / , consider the morphism Ox-ii^-x-^ -^ 1-̂) ^ vIso} >-̂
/ . It is the required representing arrow: a map u: J ^ I satisfies tf*(X) is
terminal over J if and only if \u*{x) is an isomorphism if and only if u factors
through Ox-

(iii) Similarly, for a vertical diagram X ^ Z ^Y consider the representing
morphism for the induced tuple Z ^ X xY.

(iv) One uses that a vertical f:Y—^X'\s monic if and only if the diagram

is a pullback. Thus one considers the representing arrow for the induced di-
agonal Y -^ X Xy X. •

Along the same lines we get tha t families of separated objects or sheaves are
definable in a topos B with nucleus j . Recall therefore from Remark 5.7.10 (ii)
the description of the full subfibrations FSepj(B) ^ B"^ and FShj(B) ^ B"^,
with respective fibred left adjoints Fs and Fa.

Section 9.6: Definability 577

9.6 .9 . P r o p o s i t i o n . Let M he a topos with nucleus j . Then the full subfi-
brations FSepj(B) M- B~^ and FShj(B) -̂> B ^ of the codommn fibration,
consisting of families of separated objects and of families of sheaves, are both
definable.

Proof . For a family I Y 1 consider the vertical unit r]^:(p-^ ^8(99) as a

m a p in the slice category M/I. Since the codomain fibration of a topos is locally
small (because a topos is locally Cartesian closed) isomorphisms are definable.
Hence we take, as before, a representing morphism {r]ip E viso} ^^ / . Then,
for a m a p u: J —^ I:

u*(ip) is separated in B / J <=> lu*{<^) is an isomorphism

^ w*(7/(^) is an isomorphism

<^ u factors through {rj^^ E vIso} -̂> / .

For sheaves one similarly uses the unit <̂ —> ¥ai[(^). D

We close this section by showing tha t the properties of being globally, re-
spectively locally small, are inherited by subfibrations with definable collec-
tions of objects respectively arrows. Global smallness means that there is a
generic object. This implies tha t definable subfibrations of small fibrations are
also small.

E

9 .6 .10 . T h e o r e m . Let p^ be a fibration.

(i) Assume p is globally small, i.e. has a generic object. Consider a defin-
able collection of objects, given as a full subcategory D ^)- E. Then the induced
subfibration D ^^ E —)- B a/50 has a generic object.

(ii) Assume now that p is locally small; then a definable collection of
vertical maps, given as a subcategory D ^-^ E gives rise to a subfibration
D ^-)' E -> B which is locally small again.

Proof, (i) Let T G E over Q G B be the generic object of p. This means tha t
for every X G E there is a unique u:pX -^ Q with u*(T) = X, vertically.
Consider the representing arrow 9: {T eB} y-^ Q, and write V = 0* {T) G D

. ^
over {T E^}. This is the generic object for the subfibration 4- . For an object

Y EB there is a unique arrow v:pY -> Q with v*(T) = Y £]D). Hence v
factors through 6>, say as i; = (9 o w. Then w*{V) ^ Y, and w:pY -^ {T eB}
is the only m a p with this property.

(ii) If p is locally small, then we have for each pair of objects X,Y G O /
in the same fibre, a m a p TTniHomfX, Y) —> / in B together with a verti-
cal morphism 7ri:7ro(X) -^ 7rJ(y) in E, satisfying a universal property as in

578 Chapter 9: Advanced fibred category theory

Lemma 9.5.4. Since vertical maps in D are definable, we get an appropriate
representing morphism 9: {TTI G V (D) } -̂> Hom(X, y) , such tha t ^*(7ri) is the
best approximation of TTI in V(D). Put AQ = TTQ o 9: {TTI G V (D) } -> / , and let
Ai: Ao(X) —> Ao(y) be the unique vertical m a p (isomorphic to ^*(7ri)) in

AS(X) ^nliX)
I I

A i I TTi
Y Y

K{y) ^<{y)

where the horizontal arrows are the unique Cartesian ones over ^: {TTI G
V(D)} ^^ H o m (X , y) . This pair (Ao,Ai) satisfies the appropriate universal
property in D, making D ^ B locally small. D

E

9 .6 .11 . Corol lary . / /]rP is a small fibration, and]D '^-^ ¥. forms a definable

subfibration (I.e. both the objects and vertical arrows o / D are definable), then
B
i is also a small fibration.

Proof . Because a fibration is small if and only if it is both globally and locally
small, see Corollary 9.5.6. •

This result shows that the notion of 'definable subfibration' satisfies a rea-
sonable criterion for the concept of a 'par t ' of a fibration; namely tha t a part
of a small fibration should itself be small.

Exercises

9.6.1. Recall from Lemma 4.4.6 (i) that a cover c: I—> J is a morphism which
factors through a mono J' ^^ J only if this mono is an isomorphism.
Similarly, a family of morphisms {caila ->• J)aeA is a collective cover if
every mono J' >^ Xthrough which each Ca factors is an isomorphism.
(i) Assume a collective cover {ca: la -> J)aeA' Prove that for a definable

collection P and an object X above J

X eP <^ V a G A . < (X) G P .

(ii) Show that Lemma 9.6.4 is a consequence of this observation.
Fam(C)

9.6.2. Prove that definable subfibrations of a family fibration 4- correspond
Sets

to subcategories of C.
9.6.3. Let E be a category with puUbacks, which is fibred over a category B. Prove

that if Pi , P2 C Obj E are definable collections, then their intersection
Pi n P2 C Obj E is also definable.

Section 9.6: Definability 579

9.6.4. Call a family of PERs R = {Rt)te{i,E) over an a;-set (/,£") b o u n d e d if
there is a code e G N such that

Vz € /.Vn G E{i).ym G \R^\.m < e n.

Show that the collection of such bounded families is definable in the fibra-
UFam(PER)

tion i of PERs over cj-sets.
u;-Sets

9.6.5. Prove that subfunctors of a presheaf G: C°P -^ Sets correspond to full
/ ^

subfibrations D -̂)- J G of the Grothendieck completion 4- of G. (A sub-
functor of G may be identified with a natural transformation a:G =^ Q,
where Q: C°P —)• Sets is the subobject classifier in the topos Sets of
presheaves from Example 5.4.2.) Describe in terms of a subfunctor when
the associated full subfibration is definable.

E
9.6.6. Let -jrP be a fibration with a definable collection P C Obj El Show that

f{xeP]\

the assignment X i-> I i I extends to a functor Cart(E) —)• B"" ,̂ and

that all squares in its image are puUbacks in B.

580 Chapter 9: Advanced fibred category theory

This Page Intentionally Left Blank

Chapter 10

First order dependent type theory

In simple type theory (STT), types a.Jype are built from atomic types (con-
stants) using type constructors like —>, x or -h. The distinguishing aspect of
polymorphic type theory (PTT) is that one may additionally have type vari-
ables a : Type occurring in types and terms. This introduces an extra level of
indexing, described syntactically by an extra context. In this chapter we study
another variation on STT. In dependent type theory (DTT) , a term variable
x: a may occur in another type r (x) :Type. Typical examples are the types

n:N h Nat(n):Type and n: N h NatList(n): Type

of natural numbers from 1 to n, and of lists of natural numbers of length
n. Clearly, they contain a term variable n: N. Notice tha t such types do not
exist in simple or polymorphic type theory. We thus have examples of "types
depending on types". This is like "sets depending on sets", for example in an
/-indexed collection X = (Xi)i^j, written formally as

i: I h Xi'.Set where I -7: Se t .

Indeed, set-indexed-sets form obvious models of dependent type theory—a-s
Fam(Sets)

formalised by the family fibration 4-
Sets

Dependent types are widely used in mathematical practice. For example,
as an n-fold Cartesian product X " , where n : N is a parameter . Or in algebra
as a set (or type) of n x m matrices, say with entries from the reals. The
following is a typical example in computer science. In the description of hard-
ware, bit vectors play an important role. They are finite sequences of bits
(which can be represented as booleans true, false). In the description of digital

581

582 Chapter 10: First order dependent type theory

systems one usually deals with types of bit vectors of a specific length, for
example, as types of input or output signals. This leads to dependent types
bvec(n) = bool":Type, depending on n: N. See also [114] for more such exam-
ples in hardware. These dependent types are so common that often one is not
explicitly aware of using them. They are very convenient in expressing various
results and arguments, see also Section 10.2 below.

Dependent types were first studied systematically in the AUTOMATH project
in the late 1960s at Eindhoven University in the research group headed by
de Bruijn, see [231] for an overview. The aim of the project was to formalise
mathematical arguments and to have them checked by a computer. For exam-
ple. Landau's entire Grundlagen book was checked in this way (which brought
forward a few minor bugs). But since this project was not so well publicised
and the AUTOMATH notation was somewhat confusing and unstable, it did not
get the attention right from the beginning that it deserved.

Later in the 1970s, Martin-L6f proposed comparable calculi of dependent
types, see e.g. [213-215]. His aim was not so much mechanical checking of
mathematical arguments, but more the formulation of a foundational lan-
guage for constructive mathematics. The original calculus contained a type
of all types (Type: Type). As Girard showed in his thesis [94], this leads to
inconsistency; the result is known as Girard's paradox, see Exercise 11.5.3 in
the next chapter. Subsequently, the system was adapted, see e.g. [215, 232].
Nowadays one often uses the name "Martin-L6f type theory" for a variety of
(first order) dependent type theories. Although these theories were originally
developed for foundational reasons, they have also been used as a basis for
proof tools (like NUPRL [78], ALF [207], VERITAS [113] and also pvs [242, 241],)
which are employed for the verification of mathematical theories and of soft-
ware and hardware systems in computer science.

In the next chapter we consider two kinds of extensions of DTT: logical
extensions, leading to dependently typed predicate logic to reason about terms
and types in DTT, and type theoretic extensions, combining type dependency
and polymorphism (forming the basis of proof tools like LEGO or COQ). There
we study (higher order) dependent type theories with two syntactic categories
(or universes) like Type and Prop, or Kind and Type. In this chapter we restrict
ourselves to only a single universe Type.

Categorically, a dependent type n: N h NatList(n):Type, as described in
the beginning of this section, is understood as a family of types, indexed by
term variables n:N. Hence we could write NatList = (NatList(n))^.|yj, using
a notation as for set-indexed-sets. More categorically, such a family of types

NatList
can be described as a morphism I j: 1, such that NatList(n) appears as

fibre over n: N. This leads to the view that dependent types are objects of

Section 10.0: First order dependent type theory 583

slice categories—in the example of a slice C/N, for some category C Or, a
bit more formally, dependent types appear as objects of the total category

C"*" of a codomain fibration I . Along these lines a categorical description
of dependent type theory was first given in terms of locally Cartesian closed
categories by Seely [306]. The categorical products Yl ^nd coproducts]J of
the associated codomain fibrations correspond to the dependent products 11
and S of dependent type theory.

This all works well, but codomain fibrations 4- suffer from the same
Sub(C)

defect tha t subobject fibrations i do: there are a number of features
built-in tha t we would like to study in isolation. As we saw in Chapter 4, sub-
object fibrations always have subset types, unique existence and (very strong)
equality. Similarly in codomain fibrations, one always has dependent (strong)
coproducts and (strong) equality. Therefore we shall be working with certain
generalisations of codomain fibrations. The obvious approach (as initiated
in [329]) is to consider not all morphisms in as families of types, but only
a restricted subclass of them. These are then called "display maps" . They
form a subfibration of the codomain fibration. In terms of these display maps,
all the syntactic features can be described separately, see Section 10.3 below.
We shall pursue this approach, but use "comprehension categories", instead
of "display m a p categories". These comprehension categories are fibrations
with certain additional structure. They have been used for a general notion
of quantification in Section 9.3. They have certain technical advantages over
display m a p categories, but there is no essential difference.

(Many other categorical notions have been proposed to capture type de-
pendency: contextual categories [45, 319], categories with at tr ibutes [45] (see
also [230, 271, 72]), D-categories [74, 62], higher level indexed categories [234],
comprehensive fibrations [252]. There are no great differences between these
notions, see [157] for a comparison between some of them.)

In this chapter we introduce calculi with dependent types and describe them
categorically. The first two sections will be devoted to the (essentials of the)
syntax and use of such calculi. Subsequently in the third section we start the
categorical investigations. We first organise the syntactic material of an ar-
bitrary dependently typed calculus in a term model. This brings forward the
importance of a distinguished class of morphisms, called "display maps" or
"(dependent) projections". In the term model they will be the context projec-
tions TT: (r , â : cr) ^ r for a type T \- a: Type in context F (containing the free
term variables in a). Appropriate categorical descriptions of these projections
will be given in Section 10.4, first in terms of display m a p categories, and then
in terms of comprehension categories. Fibrations with a right adjoint to the

584 Chapter 10: First order dependent type theory

terminal object functor (like in Section 4.6 describing subset types for pre-
order fibrations) will be called fibrations with comprehension. They give rise
to impor tant examples of comprehension categories. In Section 10.5 we iden-
tify the notion of a "closed" comprehension category (CCompC). It describes
models of D T T with unit type 1, dependent product 11 and strong dependent
sum E. The last two Sections 10.5 and 10.6 contain many examples of these
CCompCs.

10A A calculus of dependent types

Our first aim is to describe the syntax of a calculus of dependent types, see
also [215, 334, 232, 137]. This is a subtle mat ter , since terms may occur in
types. Thus, types cannot be introduced separately, and a big simultaneous
recursion is required. The basic (new) type forming operations are

Ux: a. T{X) the dependent product of T{X) where x ranges over a

Yix: a. T{X) the dependent sum of T{X) where x ranges over a

EqcT(x, x') the type of cr-equality for x, x' ranging over cr.

Notice tha t term variables x,x' occur explicitly in the latter equality type
Eq^(a?,x'). The intuition is that this type is inhabited if and only if X^X'.CF
are equal. Sometimes, these equality types are called identity types. We recall
tha t the dependent product and sum of a family (X ,) , ^ / of sets are given by

ni G /.Xi = {f:i-^ U^/ ^i I Vi e L f{i) e Xi}
Ei G / . Xi - {(i, x) \i e I and x G Xi}.

This gives an intuition for these dependent product and sum: Ilx:a.T{x) is
the collection of functions / such that for each a: a one has fa:T[a/x]. And
T,x: a. T{X) is the set of pairs (a, 6) with a: a and 6: T[a/x]. Notice the substi-
tution [a/x] in type r , which is typical for D T T . As we shall see formally in
Example 10.1.2 and Exercise 10.1.1 below, dependent products 11 generalise
exponents -^ and dependent sums E generalise Cartesian products x . For
elements x^x' £ I one may think of the associated equality type as

r / /\ / {*} ii X - x'
E q . K x) = | J ^ otherwise.

The calculus we are about to set up has contexts of variable declarations

T = xi'.ai,.. .,Xn:o-n

satisfying the condition that each type crf+i is well-formed in the preceding

Section 10.1: A calculus of dependent types 585

context Xi'.ai, .. . ,Xi:ai, which we write as:

xi'.ai,. .. ^Xi'.ai h crf_j.i: Type.

As a consequence, each term variable y which is free in crf+i must already have
been declared in the part of F preceding CTJ+I: it must be one oi xi,.. .,Xi.
So in particular, cri is a closed type; it does not contain any term variables.
Thus a well-formed context is

n:N,^:NatList(n)

but
n: N, z: Matrix(n, m)

is not well-formed (since m is not declared).
Sequents have one of the following four forms.

(1) r her: Type (2) T h M:a

(3) r h M = TV: 0- (4) r h (7 = r : Type.

The first (1) of these is type formation as we have seen in other calculi. Like-
wise for inhabitation in (2) and equality (conversion) of terms in (3). Equality
of types in (4) arises because terms may occur in types and so conversions
may take place inside types. The main rule associated with equality of types
is the following

c o n v e r s i o n

r h M:cr r h cr = r : Type

r h M:T
We shall not pay much attention to this equality of types, because we take
the categorically motivated extensional view tha t types are equal if they are
inhabited by the same terms. Instead we concentrate on rules for sequents of
the form (1), (2) and (3). We let J stand for an arbitrary expression which
may occur on the right of a turnstile h.

First there are the following five basic rules of D T T .

p r o j e c t i o n s u b s t i t u t i o n

F her: Type T \-M:CT T,x:a,A\-J

T,x:a\- x:cT F, A[M/x] h J[M/x]

c o n t r a c t i o n w e a k e n i n g

T,x:a,y:(T,A\- J F her: Type F h J

T,x:a,A[x/y] h J[x/y] T,x:a h J

586 Chapter 10: First order dependent type theory

exchange

r,a::cr,t/:r,A h J

T,y:T,x:(T,A h J
(if X not free in r)

For convenience we assume a singleton (or unit) type (as in Section 2.3),
with rules

r f-M:l
^1-Type h () : l y \-M = {):!

Binary product types a x r come for free if one has sum types E, see Exam-
ple 10.1.2. And finite coproduct types (0,+) will be considered separately at
the end of this section.

Then there are the formation rules for dependent product 11, sum E and
equality Eq.

T,x:a h r: Type T^xia h r: Type

r \- Ux'.a.T-.Type T h Ex: o-. rrType

r h cr: Type

r,x:a,x':a\- Eqa{x,x'):Jype

These type constructors change the context, and will be described categor-
ically via adjunctions between fibre categories. The variable x:a becomes
bound in Ux.a.r and Ex:cr. r . Hence substitution in these types takes the
following form.

(Ux:a.T)[L/z] = Ux:a[L/z].T[L/z]

(Ex:(7.r)[L/z] = ^x:a[L/z].T[L/z]

Eq^{x, x')[L/z] = Eq^[L/z]{x[L/zlx'[L/z]).

where in the first two cases it is assumed that the variable z is different from
the (bound) variable x] otherwise the substitution has no effect. Also, x should
not be free in L.

There are associated introduction and elimination rules:

T,x:(T \- M:r T \-M.Ux.a.r T \-N:a

r h Ax: (7. M: Ux: a.r T h MN: T[N/X]

r h cr: Type F, x: cr h r: Type

F, x: (T,y:T h (x, y): Ex: cr. r

T \-p'.Type T,x:a,y:T \-Q: p

F,z:Ex:cr. r h (unpack z as {x,y) in Q): p
(weak)

Section 10.1: A calculus of dependent types 587

r h cr: Type

r , x\ cr, x'\ 0", A \- p: Type T, x\ a, A[x/x] h Q: p[x/x']
(weak)

T,x: cr, x':a, z: EqcT(x,x'), A h (Q with x' = x via z):^

These rules involve abstraction and application for dependent products II,
pairing (or packing) and unpacking for dependent sum E and a reflexiv-
ity combinator r = r<j(x) for equality, together with an associated elim-
ination rule. The variables x^y are bound in the sum elimination term
unpack z as {x,y) in Q. Substituting in these terms is done in the obvious
way. The elimination rules for sums and equality are labelled "weak", because
also "strong" versions exist; they will be described later in this section.

Notice the explicit occurrence of a parameter context A in the equality
elimination rule. It is sometimes forgotten, but plays a crucial role. (Categori-
cally, it involves a Frobenius property.) In presence of product types 11 this A
may be omitted, since the rules with A's are derivable. For sums it comes for
free, even without II's, see Exercise 10.1.8 (i). In the following such parameter
contexts are used explicitly.

10.1.1. Example . If we assume terms

F h M i o - , T\-M':(T with F h P : Eq^(M, M')

and a type

T,x:a h piType with inhabitant F h Q:p[M/x]

then we can also find an inhabitant of the type p[M'/x] in context F. This is
replacement, see also Lemma 8.1.2. One obtains such an inhabitant from the
rules

F,:r:cr h /?: Type

F, x: cr, y: plx/x'] h y: p[x'/x][x/x']

F, x:cr, x'rcr, z: Eqcr(x, x'),y: p h {y with x' = x via z): p[x^/x]

Then by substituting [M/x, M'/x\ P/z] we get,

T,y:p[M/x] h y with M' = M via P:p[M'/x]

and so we are done by further substituting [Q/y]. This yields the required
inhabitant

T \-Q with M' = M via P:p[M'/x],

and concludes the example.

588 Chapter 10: First order dependent type theory

The conversions associated with products, sums and equality are presented
below. The (/?)-conversions are the ones mentioned first, followed by the as-
sociated (?7)-con versions.

{\x:a.M)N = M[N/x]

Xx'.a.Mx = M

unpack (M, AT) as {x,y) in Q - Q[M/x,N/y]

unpack P as {x,y) \n Q[{x,y)/z] - Q[Plz\

Q with X = a: via r — Q

Q[x/x'j r/z] with x' — x y\a z == Q.

With the usual proviso that in the (7/)-conversion for products the variable x
is not allowed to occur free in M.

10.1.2. Example . For types F h cr, r: Type in the same context, with a term
variable x: a which does not occur in r, we write

d e f v-(1 <d f̂ TT

aXT = LiX'.a.T and cr ^ r = llx: cr.r.
(in which r is used as a type in context V^x:a via weakening). It is then almost
immediate that -^ satisfies all the rules which are required for exponent types,
see Section 2.3. For x we have to do some work. For a term P:a x r write

TTP = unpack P as (x^y) in x and IT'P — unpack P as {x,y) in y.

Notice that the second projection TT'P can be defined because the variable x
does not occur in r. It is easy to see that with these definitions one obtains
(/?)-conversions 7r{M, N) — M and 7r'(M, N) = N, but also the (r/)-conversion
holds:

(7rP,7r'P) = {7rz,7v'z)[P/z]

= unpack P as {x,y) in {nz,7r^z)[{x,y)/z]

= unpack P as {x,y)\n {7r{x,y),7r'{x,y))

= unpack P as {x,y) in {x,y)

1 p.
These dependent product H and sum E thus generalise the exponent —)• and
binary product x. Since we assume a unit type 1, we get the type constructors
of Alx calculi (and of Cartesian closed categories), in every context F.

Strong sums and strong equality

As already mentioned, the above elimination rules for sums and equality are
the so-called weak ones. The strong versions are obtained by allowing the

Section 10.1: A calculus of dependent types 589

type p with respect to which one eliminates, to depend on an extra variable—
of type YiX'.cr.T or Eqa(a^,x'). This leads to the following strong versions of
the elimination rules.

r , z: T.x\ a.T \- p: Type T, x: a,y:T \- Q: p[{x, y)/z]
; (strong)

T,z:Ylx:a.T h (unpack z as {x^y) in Q): p

T,x:a,x':a, z:Eqa{x,x^) h/?: Type T,x:a h Q: p[x/x^ ^r/z]

r , x: cr, x': cr, z: Eq^(a:, x') h [Q with x^ = x via z): p
(strong)

The conversions remain the same. Notice that there is no parameter context
anymore in the strong elimination rule for equality. The rule with such a con-
text is derivable, using the result below. It gives alternative formulations of
these strong rules, which are probably more familiar. But the above formu-
lations with additional free variable (the z in p) are more appropriate since
they scale up to calculi with more universes than just Type, see Section 11.4
in the next chapter.

The first point below comes from [215], and the second one from [322].

10 .1 .3 . P r o p o s i t i o n . The strong elimination rules for sum and equality can
equivalently he formulated in the following way.

(i)
r \- P:i:x:a.T T h P:T.X:CT.T

r h7rP:(7 r hTT'P:T[KP/x]

with conversions 7r(M, A)̂ = M, 7T'{M, N) - N and {TTP, TT'P) = P.

(ii)

r h P : E q , (M , M') T h P : Eq^(M, M ')

T h M = M':a T h P = r: Eq^(M, M ')

P roof , (i) Assuming the above strong sum elimination rule, we get the pro-
jection rules as in Example 10.1.2 for binary products x; the approach can
be extended to sums, since the second E-projection can be defined with the
strong elimination rule:

r , z: T>x: cr \- r[7r2:/x]: Type F, x: CT,y:T h y: T[7rz/x][{x, y)/z]

T, z:T>x:a.T h n'z = unpack z as {x,y) in y:T[7Tz/x]

In the reverse direction, one simply puts

unpack P as {x,y) \n Q — Q[KP/X, Tr'P/y].

590 Chapter 10: First order dependent type theory

(ii) Assume the strong equality elimination rule as formulated above. For
variables x^x'.a and z\ YJC{a{^^ ^') we have

X — x\xlx\ xjz\ with x' = X via z

— x'[x/x'^ r/z] with x' = x via z
^ I
— X .

and so by substituting [M/x,M'/x',P/z] we get the conversion M = M':a.
Likewise, we have

z — z[x/x'^ r/z] with x' = x via z

= r[x/x', r/z] with x' = x via z

= r.

So by substituting [M/x,M'/x',P/z], we obtain P = r:Eqa(M, M') as re-
quired.

In the reverse direction, for a term T,x:a h Q: p[x/x', r/z] we can put

r , x: cr, x': cr, z: Eq^(x, x') h {Q with x' — x via z) = Q: p

since if z: Eqa{x, x'), then x — X'.CT and z = r: Eqcr(a?, x') by the assumption.
The conversions associated for 'with = via' hold since

Q with X — X M\d^ r — {Q with x' = x via ^)[ic/a:', r/z]

= Q with x^ = X via z

by the conversions x = x' and z = r

= Q-

And similarly

Q[x/x', r/z] with x' = x via z = Q with x' — x via z

= Q. •

Equality types in dependent type theory form a non-trivial subject, because
there are many possible (combinations of) rules. We have chosen to present
the above "weak" and "strong" versions, with both (/?)- and (7/)-conversions
since these come out most naturally from a categorical perspective. The two
strong equality elimination rules obtained in the previous proposition have
some disadvantages from a type theoretic perspective, because they make
conversion between terms depend on inhabitation of types. This leads to un-
decidability of conversion, see [133, 3.2.2]. DTT with strong equality is often
called extensional DTT. Since the (77)-conversion for equality types is crucial
in proving the above result, it is often dropped. See for example [232, Chap-
ter 8] where "extensional equality" is what we call "strong equality", and

Section 10.1: A calculus of dependent types 591

"intensional equality" is "strong equality without the (7/)-conversion". See
also [139, 133, 136] for more information and results, in particular about "se-
toids", which yield a model with extensional equality inside dependent type
theory with intensional equality.

The strong equality types (with (77)-conversion) do have the following syn-
tactic advantage. Consider a type F h criType, and another type V^x.a h
r :Type parametrised by cr. If we have inhabitation of a strong equality type
Eq<7(M, M') for terms M, M': cr, then we may conclude (by the above propo-
sition) tha t the types T[MIX\ and T[M'/x] are equal. This is problematic
otherwise, see [322, 133] for detailed investigations.

10 .1 .4 . C o n v e n t i o n . Unless stated otherwise, E and Eq will refer to the
strong versions of sum and equality. These are most natural (and unproblem-
atic) from a semantic perspective, see e.g. Theorem 10.5.10 (i), where they
are linked to equalisers.

Weak and strong coproduct types -f-

The rules for finite coproduct types (0,-f) as given in Section 2.3 extend in
a straightforward way from simple type theory to dependent type theory.
They give us finite coproducts in every context F. We shall call these w e a k
c o p r o d u c t s . One can also define s t r o n g c o p r o d u c t s in D T T , analogous to
strong sum and equality. The difference between weak and strong coproducts
-h lies in their elimination rules. In the weak case there is a direct extension
of the rule used in simple type theory: for types F h cr, r:Type in the same
context, one can form the coproduct type F h cr-|-r: Type in this context, with
first and second coprojection terms F,a?:cr h KX:O--\-T and F, t/: r h K^y: a-\-T.
The weak elimination rule takes the form

F h / ? : T y p e T,x:(T\-Q:p T,y:T\-R:p
; ; (weak)

F, z: cr -f- r h unpack z as [KX in Q, K^y in R]: p

An extended rule with a parameter context is derivable from this one, see
Exercise 10.1.8 (ii) below. In the strong -[-elimination rule one allows this
type p to depend on a variable z'.a -\- r. Additionally we put in parameter
contexts, but they may be omit ted in the presence of H-types.

F, z: 0- -h r, A h p: Type

F, x\ cr, 1^[KXIZ] h Q: P[KX/Z] F , y: r, /^[K'y/z] h R: p[K'y/z]
(strong)

F, 2:: cr -f- r, A h unpack z as [KX in Q, n'y in /?]:/>

These strong coproducts are called d is jo int u n i o n types in [215] (but the
parameter context A is omit ted there). The strong coproducts are more nat-

592 Chapter 10: First order dependent type theory

ural in D T T than the weak ones. They give rise to appropriate distribution
isomorphisms, see Exercise 10.1.7 below.

We close this subsection on coproducts + with the following observation.
We have formulated the elimination rules for coproduct -h and sum E to tha t
we can form new terms by "unpacking". In D T T one can in principle also
formulate similar rules to form new types by unpacking, like in

r , ir :cr h ^iiType F, 2/: T h z/: Type

r , z: cr + r h unpack z as [KX in //, K'y in i/]: Type

Together with appropriate conversions for this newly formed type. A similar
rule may be formulated for (weak) sums. We shall not investigate the effect
of such type definition rules.

The diligent reader may have noticed tha t we did not start this section
with "dependent signatures", just like we began descriptions of simple and
polymorphic calculi with appropriate signatures. The reason is tha t signatures
for the latter two calculi have elementary algebraic descriptions. In dependent
type theory one cannot separate types and terms, and the whole calculus has
to be defined in one big recursion. Hence a signature has to be introduced at
the same t ime as the entire calculus, for example by describing some constants
in context, of the form

r h C: Type and A h F : C[M/x\

where x are the variables declared in V and M is an appropriately typed
sequence of terms.

We will gloss over these (non-trivial) mat ters . The usual way to be precise
here is to first introduce pre-contexts, pre-types and pre-terms by induction,
and then to single out from these the well-formed contexts, types and terms
using rules as above, see [45, 46, 319, 137, 271] for more details. Dependent
signatures introduce appropriate pre-types and pre-terms in this approach.

Church-Rosser and strong normalisation proofs for dependent type theory
may be found in [231, 115].

Exercises

10.1.1. Consider the set-theoretic sum and product Ez i / .X, and Hi.I.Xi as de-
scribed in the beginning of this section.
(i) Show that if the Xi do not depend on i G / , i.e. Xx = X for some set

X, then

E i : / . X , ^ / x X and Ylv.I.Xx^X^.

(ii) And if / is finite, say / = { 1 , . . . , n}, then

Ei: / . X, ^ Xi + .. + Xn and Hi: / . X, ^ Xi x • • • x Xn.

Section 10.1: A calculus of dependent types 593

10.1.2. Construct proof-terms for symmetry and transitivity of equality types.
10.1.3. Formulate explicitly how substitution distributes over the various term

forming constructs in this section.
10.1.4. Derive the "commutation conversion" for (weak) sum types:

/^[(unpack P as {x,y) in Q)lz] = unpack P as {x,y) in R[Q/z].

def

10.1.5. Show that the definition unpack P as {x,y) in Q = Q[nP/x,7r'P/y] in the
proof of Proposition 10.1.3 (i) satisfies the required conversions.

10.1.6. Call two types T h (j, r: Type in the same context isomorphic, and write
this as r h o" = T, if there are terms r,x:a \- P:r and T^yir \- Q: a with
conversions T^xia h Q[P/y] = x: cr and F, y: r h P[Q/x] = y: r . Use weak
sums to prove for types F h (J:Type, T^xia h r: Type and T^zi'Exicr.T h
p: Type that there are isomorphisms:
(i) F h Y,z: {T>x: a. r) . p = So:: cr. Ey: r. p[{x, y)/z]
(ii) Uz: (Ex: a. r) . p ^ Ux: a. Uy: r. p[{x, y)Iz].
And for F h ^:Type
(iii) F h {Ux: a.r -^ fj)^ (EJ: : a. r) -> Â .

10.1.7. (See also [73]) Prove similarly for types F h cr, r: Type and T,z:a -\- r h
p: Type that
(i) F h T,z: or -\- T. p= Ea:: cr. p[(«;a;)/2] + Ey: r. /5[(«'y)/'2r]
(ii) F \-Uz:a-{-r,p^ Ux: cr. /9[(ACX)/2] X Uy: r. p[(K'y)/^]
where + is strong coproduct and E is weak sum. (The parameter context
in the strong coproduct elimination rule is needed.)

10.1.8. (i) Prove that the following extended weak sum elimination rule with pa-
rameter context A is derivable from the rule given above (without
parameter).

F, A \- p: Type F, x: a, y: r, A \- Q: p
(weak)

F, z: TiX: cr.r, A h (unpack z as (a;, y) in Q): p

[Categorically this will mean that the Frobenius property comes for
free in a full comprehension category with coproducts, see Exer-
cise 10.5.4 (ii).]

(ii) Prove similarly that the following extended weak coproduct elimination
rule is derivable.

F , A h p : T y p e r,x:(T, A \- Q: p F, y: r, A h H: p

r,z:(T -\- T, A h unpack z as [KX in Q, n'y in R]: p

[See Exercise 10.4.8.]
10.1.9. Assume a unit type and strong sum types.

(i) Show that there is a bijective correspondence between types

xi:(T,..,,Xn:(Tn i" T: Type

in contexts of length n, and types

z: {Jlxi :cr. • • • Ea7n-i: ^n- i • (Tn) ~̂ P' Type

594 Chapter 10: First order dependent type theory

in context of length 1, where llxi'.a. • • • Ea^n-i: <Tn-i. <Tn is 1 in case

(ii) Give a similar correspondence between terms

X l : <T, . . . , Xn'. (Tn J" M: T

and

Z: (Hxi: <T. ' ' ' YiXn-V' O 'n - l - O'n) I" ^'- p .

(iii) Conclude that in the presence of a unit type and strong sum types, we
may (for convenience) assume that contexts have length one.

[Hence 1 and strong E play the same role in dependent type theory as 1
and X in simple type theory, see Exercise 2.3.3.]

10,2 Use of dependent types

This section contains some illustrations of the use of dependent type theory.
Especially it contains expositions of the propositions-as-types correspondence:
once a la Howard and once d la de Bruijn.

Our first example is intended to show the expressiveness and usefulness of
a calculus with dependent types. It is taken from [114], and mentioned also
in [165]. It involves the representation of a type date: Type whose inhabitants
describe a particular year, month and day. On first thought one may view date
as a Cartesian product N x N x N involving the type N of natural numbers,
where the first component represents the year, the second the month and the
third the day. This can obviously be done in a far more precise way, since the
number of months in a year does not exceed 12 and the number of days in a
month does not exceed 31. So a second try is N x Nat(12) x Nat(31), where for
n: N, Nat(n) is the type of natural numbers from 1 to n. This is already much
better . But not every month has 31 days; even worse, the length of the month
of February depends on the year. So the best representation gives dates as
"dependent tuples" with their type given by sums:

date = Et/: N. Em: Nat(12). Nat(length of month m in year y)

where the term length of nnonth m in year y' is defined by cases in an obvi-
ous way. A typical term of type date is (1993, (7,15)) . With this type date,
correctness of a date representation becomes a well-typedness issue.

This example illustrates an important point: using dependent types may
lead to a precise and concise typing discipline. This is convenient in various
applications.

Section 10.2: Use of dependent types 595

Proposi tions- as- types

The general idea of a propositions-as-types correspondence is that propositions
in some logical system can be seen as (or translated into) types in a type
theory, in such a way that derivable propositions give rise to inhabited types.
Sometimes, one also has that if the translated proposition is inhabited, then
the original proposition is derivable. This latter property may be seen as a
form of completeness, see e.g. [91] for details.

We have already seen that connectives T, A, D in propositional logic corre-
spond to type formers 1, x, —)• in simple type theory. Universal and existential
quantifiers V, 3 in predicate logic can be translated as polymorphic prod-
uct and sum f l ' LI ^̂ polymorphic type theory, see Section 8.1: the types in
predicate logic become kinds, and the propositions become types under this
translation. It turns out that one can translate predicate logic also into de-
pendent type theory whereby both types and propositions in predicate logic
become types in dependent type theory. Hence inside DTT the distinction be-
tween (proper) types and propositions is blurred. This has some advantages
because it yields a formal system in which one can do both type theory (in
the proper sense) and logic. This gives for example the possibility to develop
a program together with a proof that it satisfies a specification (described
by some logical formula) within the same formalism, see [232]. But blurring
the distinction between types and propositions also creates confusion. It is for
this reason that the type theories of the proof tools LEGO and COQ (which
are based on higher order dependent type theory) make a careful distinction
between propositions and types.

Once we agree to see types within DTT sometimes as proper types and
sometimes as propositions, we may view an inhabitant M:T of a type r as a
proof-term, or as a proof (of r) . The term calculus in dependent type theory
yields that

a proof P: Hx: cr. r in a product is a function P = Xx:a. Px which gives
for each element M:cr of the domain type a of quantification, a proof
PM: T[M/X] showing that the proposition r is true for this element M.

And

A proof F : Ex: cr. r in a (strong) sum is a pair P = (TTP, TT'P) consisting
of an element nP: a of the domain type of quantification together with a
proof TT'P: TITVP/X] showing that the proposition r is true for this element
TTP.

Here one sees cr as a proper type and r as a proposition. Since —)• and x are
special instances of H and S, see Example 10.1.2, we get as special cases:

A proof P : (T —>. r in an exponent is a function that transforms each proof

596 Chapter 10: First order dependent type theory

M:aoi the proposition a into a proof PM: r of the proposition r .

And

A proof P'.cr X r in a Cartesian product is a pair consisting of a proof
TTP: a of the proposition a together with a proof TT'P: r of the proposition
r .

In these last two cases one sees both a and r as propositions. Wha t we have
here may be understood as the so-called B r o u w e r - H e y t i n g - K o l m o g o r o v
interpretation of the connectives of constructive logic, see the introduction
to [335]. The proof-terms that one uses correspond to constructive reasonings.
For example, consider the proposition

3x: a. {f> Alp) D {3x: a. (p) A {3x\ a. ip).

How does one see that it holds? Assume we have bXi x\a for which both (f
and ^ hold. Then we certainly have an a:: cr for which (p holds and also there
is an x\a for which ip holds. Just take this same x twice.

In the notat ion of dependent type theory, one writes the proposition as

TiX: (7. {(f X tp) -^ {T>x: a. (p) x (Ex: a. \p).

The inhabitant of this type corresponding to the proof that we just sketched
is the term

Xz: Ex: a. {(p x ip). {{nz, 7T(7T^Z)), (TTZ, 7r'(7r'2:))).

One sees tha t a proof z:T>x:a.{(pxtp) is decomposed into an element TTZ: a
for which we have a proof TT'Z = (7r(7r'z), 7r'(7r'2:)) showing that p x tp holds of
TTZ. These components are put together again to form proofs of ^x:a.(f and
of Ex: a.tp.

(Notice tha t we can get a different proof-term if we take E as weak sum,
namely

Xz: Ex : a. ((f x tp). unpack z as (x, w) in ((x, TTW)^ (X, TT'W)).

Essentially this is the proof-term that arose when we translated the above
proposition into polymorphic type theory in Section 8.1—where we only have
weak sums.)

We do a more complicated example (taken from [215]). The Axiom of Choice
can be formulated in predicate logic and can thus be translated into dependent
type theory. It yields the type

IIx: a. Ey: r. </?(x, y) —)• E / : (fix: a. r) . E x : a. ^ (x , / x) .

We are going to prove the Axiom of Choice in D T T by deriving a term ac
which inhabits this type. Here we use the strong sum E. We shall reason

Section 10.2: Use of dependent types 597

informally: assume a variable

z: Ha:: a. Tly: r. (p{x, y).

Then for each x:a yje get
zx\ Dt/: r. (^[x, y)

so that we have first and second projections

7:[zx):(T and TT'{ZX)\I^{X,'K{ZX)).

Thus if we put / = \ x . 'K[ZX), then we get

TT'[zx):ip[x,fx).

Hence we take
ac — \z. {\x. 7:{zx), \x. 7r'{zx))

where we have omitted the types of the abstracted variables in order to in-
crease readability.

Our next example is taken from [323], again within the "types-and-
propositions-as-types" perspective. In predicate logic one formalises inferences
like the following: 'All men are mortal; Socrates is a man; hence Socrates is
morta l . ' But not everything can be formulated in predicate logic. A famous
elusive phrase is the so-called donkey sentence (due to Geach):

Every man who owns a donkey beats it.

The problem in formalising this sentence lies in ' i t ' referring back to the
donkey. One might wish to try

V(i: Donkey. Vm: Man. Owns(m, d) D Beats(m, d).

But the quantification here is over all donkeys instead of over men owning a
donkey. This problem can be solved in dependent type theory in the following
elegant way.

Urn: Man. Ux: {T>d: Donkey. Owns(m, d)). Beats(m, TTX).

Or, alternatively, as:

Ux: (Em: Man. T,d: Donkey. Owns(m, d)). Beats(7ra:r, 7T{7r^x)).

What is the (subtle) difference between these formalisations? For more infor-
mation and a discussion, see [324]. But see also Exercise 10.2.4 below.

Dependent type theory as a logical framework

In [91] a distinction is made between the propositions-as-types perspective
d la Howard and a la de Brmjn. The first is what we have considered so

598 Chapter 10: First order dependent type theory

far—above, but also in simple and polymorphic type theory. The latter a
la de Bruijn works differently: types are not used as propositions directly,
but as a means to formulate a logic. In this way one gets what is called a
logical framework: a system in which various logics and type theories can be
formulated. This was first done systematically in the AUTOMATH project, and
later further developed, for example, in the Edinburgh Logical Framework
ELF, see [115] for the basics and [89] for further details, and also in Martin-
Lof's Logical Framework, see [232, Part IV]. Logical frameworks form the
basis for proof tools like ISABELLE [250] and ALF [207].

The way dependent type theory can be used as a logical framework will be
explained by way of example. One starts by postulating a constant

f-Q:Type

which one thinks of as representing propositions; it comes with a 'lifting op-
eration' T (-)

a:Q hT(a):Type

which maps a proposition to the type of its proofs. One can then describe
implication as a constant,

a:Q,l3:Q \- a D f3:Q or as l - D : Q - ^ r 2 - ^ Q

together with two constants for introduction and elimination:

a:Q,/?:Q h ImplJntro: (T (a) -^ T(/?)) -^ T(a D/?)

a:Q,l3:Q h mpLeWm:T{a D f3) ̂ T(a) ^ T{f3).

These constants encode the introduction and elimination rules of implication.
The first implJntro transforms a function / from proofs of a to proofs of /?,
into a proof implJntro/ of a D /̂ . And if g:T{a D /?) is a proof of a D /?
and x: T{a) is a proof of a, then impLelim^ x yields a proof of /?. It is Modus
Ponens.

In order to do (single-typed) predicate logic we assume a constant

h D: Type

which serves as domain over which the term variables of the logic range. Of
course, there may be more such constants, giving rise to many-typed predicate
logic. Notice that the variables which are used for the logic that we are encod-
ing, are the variables of the framework {i.e. of the dependent type theory in
which we are working). This is convenient in implementations: the mechanism
for handling variables can be described once and for all for the framework (see
e.g. [250]).

Universal quantification is now described via a formation constant

Section 10.2: Use of dependent types 599

with introduction and elimination constants:

a:D-^Q h a\\:\nUo'.(I{x'.D.T{ax))-^T{^D{oc))

a:D^Q h aW.eWm: Ti'^o {a))-^ (Ux: D.T {a x)).

Notice that in this approach one does have a clear distinction between propo-
sitions (inhabitants of Q) and types (in the usual sense).

Similarly one describes other connectives. Also for negation one can postu-
late a constant

a : fi h double_neg: T(-n-.a) -> T{a)

where - la = a D 1. and ± : fi is a constant for falsum. This gives us classical
logic. As an example, we can now construct a proof-term

a: fi, /?: Q, z: T[-^(3 D - a) h L{z):T{a D /?).

Therefore, we will need double negation, since the corresponding entailment
->/? D -•» \- a D P does not hold constructively. We assume variables x:T{a)
and y: T{-*/3). Then we can form a term

M{x, y, z) = impLelim (impLellm z y) x: T(J_)

and also

N{x, z) = implJntro (Ay: T (- . ^) . M(x, y, 2)): T(-.-./?).

Hence we get our required proof-term

L{z) = implJntro {Xx: r (a) . double_neg N{x, z)):T{a D /?).

A categorical analysis of such logical framework encodings in terms of in-
ternal categories is presented in [87]. There, a framework A T T is presented
in which every universe U.Type of an encoded system comes with a "lift-
ing" operation tu'-U ^ Type. The associated context projection morphism
{x: U, y'-tu{x)) —> {x: U) in the category of contexts of the framework (as will
be explained in the next section) then gives rise to an internal category as in
Example 7.1.4 (ii). It captures the ([/-part of) the system tha t is encoded as
an internal category in the ambient category of the framework.

Encapsulation and specification in dependent type theory

In Section 8.2 we discussed encapsulation in polymorphic type theory via sum
types of the form:

E a i : T y p e . • • •Ean:Type. (cri ^ n) x • • • x (o"^ -^ r ^) .

Such types capture certain operations with types cr,- -^ Ti, containing type
variables a. In dependent type theory one can also use sum types for encap-

600 Chapter 10: First order dependent type theory

sulation: this typically takes the form:

A x i o m (/ i , . . . , / ^)

where the fi are operations (programs) cr, -^ TI satisfying a certain axiom
(or specification) Axlom(/):Type. Inhabitants of Axiom(/) are seen as proofs
of the axiom). For example, for a given type cr:Type, the type of monoid
structures on a is:

Mon(cr) = Em: a ^ a -^ a. Ee: cr.

(liar: cr. Eqcr(mxe,a^) x Eq(x(mea:, a:))

X (l lx , t/, z\ (J. Eq^(mx(m2/2:), ifn{mxy)z)) .

An inhabitant a: Mon(cr) can be identified with a tuple (m, (e, {p,q))) where
p proves that e:a is a neutral element for m:a -> a -^ cr, and gf proves
associativity of m.

Higher order dependent type theories (as will be discussed in the next chap-
ter) enable us to combine the encapsulation of P T T with the encapsulation
of D T T , so that , for example, we can collect all monoids as:

Ea :Type . Mon(Q;)

(This will be an inhabitant of Kind.) Also, the higher order structure can
be used for modularisation and structured specification, see [201, 202], and
also [205, 232, 217]. This use of sum types in dependent type theory also forms
the basis for program extraction (via sum projections), see [247, 249] for more
information and further references.

Exercises

10.2.1. We have constructed a proof term for the Axiom of Choice, namely

h ac: {Hx: a. Ey: r. <p(a;, y)) —)• (E / : Ylx: a. r. Ilx: a. (p{x, fx))

Show that in the reverse direction there is a 'canonical' term

h ca: (E / : Ux: cr. r. Ux: a. ip{x, fx)) -^ {Ux: a. Ey: r. ip{x^ y))

which is the inverse of ac, i.e. which satisfies ca(ac z) = z and ac(ca w) = w
(as in Exercise 10.1.6). This gives us complete distributivity, see Exer-
cise 1.9.9.

10.2.2. Give the proof of -i/3 D ->a h a D /3 in ordinary (classical) logic corre-
sponding to the proof-term L described above.

10.2.3. (i) Formulate appropriate formation, introduction and elimination con-
stants for conjunction A and for existential quantification 3D (using
dependent type theory as a logical framework).

Section 10.3: A term model 601

(ii) Give proof terms inhabiting the types

T (V D (a)) ^ T (- i 3 D (- a)) and T (- I 3 D (- C V)) - > T(Vz?(a))

where we have written -la for (the formally correct) A:r: D.-<{ax).
10.2.4. Show that the two types given above for the donkey sentence are isomorphic

(in the sense of Exercise 10.1.6).
10.2.5. Define a type Gr(<j) of group structures on a type a—in analogy with the

type Mon((7) of monoid structures, as described above. Describe a "forget-
ful" term Gr(cr) -> Mon(cr).

10,3 A term model

This section starts the categorical investigation of type dependency. It does not
yet present an abstract categorical notion of w^hat constitutes a model of type
dependency, but it contains a rather detailed investigation of the term model
construction. It will bring forward the importance of a distinguished class of
morphisms, called "display maps" (after Taylor [329, 330]) or "(dependent)
projections", in a category of contexts. In the next section we capture this
situation abstractly by the notion of "display m a p category", which forms a
particular instance of a "comprehension category".

In previous chapters we saw how one could construct certain categories
of contexts from the syntax of various logics, but also from the syntax of
simply or polymorphically typed calculi. These term model constructions are
interesting since they show us some of the underlying categorical structure.
Term models can also be formed for dependently typed calculi, but things are
slightly more complicated. First of all, since terms can occur in types, one
may have conversions between types. But then one may also have conversions
between contexts (componentwise). In a term model, one should therefore not
consider contexts F as objects, but equivalences [F] of contexts (under conver-
sion). We shall leave these square braces [—] implicit for contexts, types and
terms, and consider syntax up-to-conversion. This keeps notation manageable.
Also, we shall consider types and terms in contexts up to a-conversion. This
allows us to assume that whenever we are dealing with two (or more) contexts,
their sets of variables are disjoint.

We now consider some arbitrary, but fixed, dependently typed calculus and
form a category of contexts C from this syntactic material . This category C
has

o b j e c t s (equivalence classes of) contexts F

m o r p h i s m s F -^ A, say with A of the form (a^i: c r i , . . . , a?„: cr„) where
the variables i c i , . . . , iPj-i may occur free in the type Ci,

602 Chapter 10: First order dependent type theory

are n-tuples (M i , . . . , Mn) of (equivalence classes of) terms
Mi typed as:

r l-Mi:cTf[Mi/a?i,...,Mi_i/a?i.i].

Such a sequence of terms M: F —> A will often be called a
context morphism.

Notice the explicit substitutions in types. This is typical for DTT, as opposed
to STT and PTT. These substitutions are performed simultaneously.

For a context F = (a^i: cri , . . . , a?„: cr„), the identity map F ^ F is the n-tuple
of variables (a?i,..., x„). The composite of morphisms

(Mi , . . . ,M„) {Ni,...,Nm)
F ^ A ^ e

say with contexts and types

A = (xi:cri,...,Xn:cr„) and F h M,: cr^Mi/a^i,..., Mi_i/xi_i]

© = (yi :n , . . . ,ym:Tm) and A h NJ: Ti[Ni/yi,.,., Nj-i/yj^i],

is the m-tuple (L i , . . . , Lm)'^ F —> 0 with components

Lj = Nj[M/x\ = Nj[Mi/xi,..., M„/xn].

These are well-typed:

F h Lj:Tj[Ni/yi,..., Nj.i/yj^i][M/x] = Tj[Li/yu . • • ,L j - i /y^- i] .

By using appropriate substitution lemmas one can establish associativity of
composition. This is a non-trivial matter. Already in STT it required consider-
able work to get associativity, see the exercises of Section 2.1. Here we choose
to gloss over these details, and we refer to [332, 271] for more information.

Remember that categories of contexts in STT and PTT always have fi-
nite products. The empty context is a terminal object, and concatenation of
contexts yields binary products. These are the basic operations for contexts,
corresponding to simple categorical structure. An important question is what
structure is induced in the above category C by these operations on contexts
in DTT. It is easy to see that the empty context again yields a terminal object.
But concatenation of contexts in DTT does not yield Cartesian products, but
rather "dependent sums". Consider the case of a context {x:a,y:T) of two
types, where crucially x may occur in r . A context morphism T -^ {x:a,y: r)
does not correspond to two morphisms T -^ {x'.a) and F —^ {y: r) , but to two
morphisms M:F -> (x:cr) and N:T -^ {y:T[M/x]). This dependent pairing
property can be described via the existence of certain puUbacks in the cat-
egory C. More precisely, puUbacks along certain "projection" maps in C, of

Section 10.3: A term model 603

the form

(r,^:/>) -̂ r
Explicitly, for F of the form {xi'.ai,..., Xn'-o-n) this map TT: (F , Z: p) -^ T is
the n-tuple (a^i,..., a:„) of variables in F. Such maps will be called display
maps, or simply projections. They are "dependent" projections, because all
the variables x\^., .,Xn declared in F may occur free in the type p that is
projected away.

It turns out that the collection of these display maps in C is closed under
pullback (see the lemma below). This gives us the abovementioned corre-
spondence between context morphisms [M,N)'.T -> [x-.a^yw) and pairs of
morphisms M: F -^ {x\ a) and A'': F -^ {y: r[M/a:]), in a situation:

(M,7V)

(F,y:r[M/x])

M

{x:a,y:T)

{x:a)

The role of Cartesian products in simple and polymorphic type theory is
taken over by (certain) pullbacks in dependent type theory.

10.3.1. Lemma. The above display maps in the category C of contexts are
stable under pullback in the following sense. For an arbitrary context mor-
phism M: F -^ A and a display map TT: (A, y: r) —> A on A, there is a display
map on F in a pullback square of the following form.

{V,z:r[M/x\) i^,y-r)

-^ A

(*)

M

Proof. Assume A is of the form {XIKTI,.. .,Xn-crn) so that the terms M,- are
typed as:

r h M,: (r , [Mi/xi , . . . , M,_i /x ,_i] .

Then we have as top morphism (r,z:T[M/x\) —>• (A,2/:r) in the above dia-

604 Chapter 10: First order dependent type theory

gram the sequence of terms

(M i , . . . , M „ , z)
(r , z: T[M/X\) ^ (A, y: r)

This certainly makes the diagram commute. If we have another context 0 and
context morphisms

0 ^ r 0 ^ (A, y: r)

with M o N = TT o L then for each i < n there is a conversion

0 h Mi[N/x] = Li:ai[Li/xi,..., L i _ i / x i _ i] .

Thus we get as unique mediating m a p 0 —^ (T, z: T[M/X\), the m + 1-tuple

(7 V i , . . . , i V ^ , L „ + i) . D

Notice tha t for this result does not require any of the type constructors 1,11,
weak E or strong E of dependent type theory—as introduced in Section 10.1.
The lemma describes some basic categorical structure induced by context
concatenation (actually extension with a single type only) and substitution.
The type constructors correspond to certain additional categorical properties
of the above class of display maps in C. This will be described next.

But first we need some notat ion. We write V for the collection of display
maps 7r:{T,x:(T) ^ F in C induced by types T h criType in context. Often
we shall write these maps simply as {T,x:a) -^ F, leaving the projection
TT implicit. By the previous lemma, these maps in V form a split fibration
over the category C of contexts. This (codomain) fibration will be written as

4; , where V~^ -̂-> C ^ is the full subcategory with display maps as objects.
This inclusion actually forms a "comprehension category" (see the description
in Theorem 9.3.4).

Notice tha t substi tution TT* along a display m a p 7r:(F,a::cr) —> F in this
fibration is weaken ing , since it moves a type F h r : Type to a bigger context
T,x:a h r : Type in the pullback square

(F, x: a, y: r) ^ (F, y: r)

(T,x:a) ^ F

The next two propositions describe the correspondence between type theo-
retical and categorical structure (for unit and dependent product and sums).

Section 10.3: A term model 605

10.3.2. Proposition. A unit type l:Type in our calculus corresponds to a

terminal object functor 1: C ^ V~^ for the associated fibration ^ of dis-
play maps. The domain functor V~^ -^ C is then right adjoint to 1.

Recall that a right adjoint to a terminal object functor was used in Sec-
tion 4.6 to describe subset types { —} for a preorder fibration. It plays a similar
role of "comprehension" here, as formalised by the notion of comprehension
category with unit in the next section.

Proof. Assume a unit type h liType with (sole) inhabitant h (): 1. Define a
functor l i C ^ P - ' by

Then for an arbitrary display map (^) on F there is precisely one mor-

(V,x:a\ (T,z:l\
phism I ^) ^ I r) ^^^^ ^' ^^^^^^y (^' 0) where v is the sequence

of variables declared in F.
/ A , y : r \

Further, for display maps I j- I there is a bijective correspondence

inX>-

F ^ (A,y:r) in C

which establishes that the domain functor dom: V~^ —>• C mapping a display

map I j - I to its domain context (A, y: r) is right adjoint to the terminal

object functor.

Conversely, assume that the fibration I comes with a (split) termi-
nal object functor 1:C —> V^. Write h l:Type for the domain of the func-
tor 1 applied to the empty context 0. Take an arbitrary closed inhabited
type, say h cro:Type with inhabitant h Mo'.ao, consider the unique mor-

/x:ao\ p / z:l\
phism (^ 1 —y (^ I in the fibre over the empty context 0, and write

0 = P[Mo/x]: 1. This is the sole inhabitant of 1: Type, since if F h A :̂ 1, then

606 Chapter 10: First order dependent type theory

we get two morphisms over T

-(T)='KT)-^(^^)=^' (v,N)

where both N and P are considered as terms in context (r,x:cro) via weak-
ening, and where v is the sequence of variables in F. These maps are equal,
because IF is terminal, and so we get a conversion F,x:cro h P = N:l.
Because x does not occur in N we obtain:

F h 0 = P[Mo/x] = N[Mo/x] = N:1. D

(In the last part of the proof we have used the assumption that our de-
pendently typed calculus is non-trivial in the sense that there is at least one
inhabited closed type.)

10.3.3. Proposition, (i) Dependent products TL in the calculus correspond

to the fibration i of display maps having products fj along display maps
7r:(F,x:(T)-^F in C

(This means: right adjoints JJ ^o weakening functors TT* together with
a Beck-Chevalley condition: for a pullback square of the form (*) in
Lemma 10.3.1 the induced canonical natural transformation is an identity—in
this split case.)

(ii) Weak dependent sums S correspond to left adjoints]J along display
maps satisfying Beck-Chevalley.

(iii) And strong dependent sums H correspond to weak dependent sums for
which the canonical map K in the diagram

(F, x: (J, y: r) >• (F, z: T,x: a. r)

(r,x:a) - r

is an isomorphism. This map K has the dependent tuple term T,x:a,y:T h
(x, y): TtX'.CT as last component.

Notice that the products and coproducts in (i) and (ii) are products and

coproducts in the fibration ^ of display maps, with respect to its own
comprehension category X>"̂ «^ C"*", as described in Definition 9.3.5. This
more abstract formulation will be used later on. Interestingly, the dependent

Section 10.3: A term model 607

product Ha:?: a. (—) and sum Ex: a. (—), being right and left adjoint to weaken-
ing TT*, fit in the same pattern as the polymorphic product Ha: A.[—) and sum
Ea: A. (—) in Chapter 8, and as universal Vx: cr. (—) and existential 3x\cr. (—)
quantification in Chapter 4.

Proof, (i) Assume dependent products 11 and define for a type F h cr: Type
quantification along a display map TT: (F, :r: cr) —> F by

fV,x:a,y\T\ j-j f V,z'I{x:a.T\

\ r i -) ^ \ r)•
Then one gets an adjoint correspondence between maps over F and over
(F,x:cr) in

V,w:p\ {v, M) / V.z'Iix'.a. T\ f T,x:a,y:T'

where n* is the "weakening" pullback functor induced by the projection
7r:(F,x:cr) -> F along which we quantify, and where v is the sequence of
variables declared in F. The bijection is obtained by sending a term T,w: p h

def

M:Ilx:a,T to T,w: p,x:o- \- M = Mx.r; and T,X:(T,W: p \- N:T with x

not occurring free in p (by weakening) to T,w:p \- N = Xx:a. N:IIX:(T.T.

The equations M — M and N — N are the (/?)- and (77)-conversions for H.
Beck-Chevalley follows from the appropriate distribution of substitution over
n's.

In the reverse direction, assume that (categorical) products f| along dis-
play maps exist, satisfying Beck-Chevalley. For a type F, x: cr h r: Type, write
Hx: cr. T for the type in context F for which

where Y\ is quantification along 7r:(F,a::cr) -> F. The adjunction (TT* H Y\)
gives a bijective correspondence between terms V^w.p h MiHxicr. r and
V,w:p^x'.a h N:T. It yields abstraction and application operations for 11
in the calculus, with an extra assumption w: p. One obtains the rules product
rules from Section 10.1 by using for p any inhabited closed type.

608 Chapter 10: First order dependent type theory

(ii) Similarly. One obtaines a coproduct functor from sum types by

m '
which captures quantification along TT: (F, x: cr) ^ F in a correspondence

F,x:(j , t / : r \ (T,z\i:x:a.T\ {v,M)

T,x:a I

fV,x:a,y\r\ {v,x,N) /T,x:a,w:p\

\ T,x:a J ^ \̂ T,x:a J ~^

between terms F, z: Da?: cr. r h M:p and F,x:cr, t / : r h N:p. The transpose
operations correspond to "packing" via tupling (—,—) and "unpacking".

(iii) An inverse morphism {T, z:T,x:a.T) —^ {T,x:(T,y:T) to the pairing mor-
phism K — [v, {x, y)) must have two terms

T, z:T,x:a.T \-ht{z):a and T, z'.J^xicr.r \-sn6{z):T[ist{z)/x],

as last two components. The fact tha t fst and snd form an inverse to K deter-
mines equations

ht{{x, y)) = X, snd((;r, y)) = y, (fst(2:), snd(2:)) = z.

Hence, if K has an inverse then we have first and second projections for S,
making this sum strong. The converse is trivial. •

As we have seen, the projections 7r:(F,a::cr) —>• F along which we quan-
tify in dependent type theory are not Cartesian projections (like in predicate
logic and in polymorphic type theory) but are more general "dependent" pro-
jections. In Exercise 10.3.3 below we mention how equality (types) in D T T
correspond (in the term model) to left adjoints to contractions functors S*
induced by "dependent" diagonals S:(T^x:a) —^ (T^x-.a^x'-.a). This follows
the abstract pat tern of equality with respect to a comprehension category
(see Definition 9.3.5), which also underlies equality (and quantification) in
predicate logic and in polymorphic type theory, via "simple" comprehension
categories. This fundamental role of comprehension categories will be further
investigated in the next two sections.

Exercises

10.3.1. Estabhsh an isomorphism in the category of contexts TT: (F , Z: 1) -^ F, where
h 1: Type is a unit type. As a result, the singleton context (2:: 1) is isomorphic
to the terminal, empty context 0.

Section 10.4- Display maps and comprehension categories 609

10.3.2. Describe explicitly so-called "mate" rules (see e.g. Lemma 4.1.8 and Exer-
cise 8.1.3) for dependent products 11 and sums E, as used implicitly in the
proofs of Proposition 10.3.3 (i) and (ii).

10.3.3. For a type T h crrType write J:(r,a::cr) —)• {r,x:a,x':a) for the context
morphism in the category C of contexts given by the sequence of terms
(y, x,a:), where y is the sequence of variables declared in context F.
(i) Verify that S is the unique mediating map for the pullback of the dis-

play map 7r:(F,a;:cr) —> F against itself. Hence this is a diagonal as
associated with the comprehension category V^ '-)• C~̂ in Defini-
tion 9.3.5 (ii).

(ii) Check that the associated pullback functor S* performs contraction.
Assume now that we have finite product types (1, x) in our calculus—the
latter for example because we have dependent sums E.
(iii) Show that weak equality types corresponds to left adjoints to these

contraction functors S* plus Beck-Cevalley, as formulated in Defini-
tion 9.3.5 (ii).

(iv) Prove that strong equality types correspond to left adjoints as in (iii),
satisfying the additional property that the canonical map H, in

(T^x'.cr) >• {r,x:(T, x'lcr, z:Fjq(j(x,x'))

{r,x: cr, x': cr)

is an isomorphism.
(Note the similarity with the formulations of 'strong equality' in Propo-
sitions 10.3.3 (iii) and 4.9.3.)

10,4 Display maps and comprehension categories

In the previous section we have defined a (term model) category of contexts
in dependent type theory, and v^e have seen how a distinguished class of
"projection" or "display" maps 7T:(T,x:a) —> F in this category allowed us
to describe the type constructors 1, H, E, Eq categorically. In this section we
shall describe the notion of a "display m a p category" following [329, 330, 148],
which captures this situation abstractly. In a next generalisation step, we shall
describe the relevant context structure in terms of comprehension categories—
which were used earlier in Section 9.3 to give a general notion of quantification.
Display map categories form instances of such comprehension categories. We
close this section with the notion of "comprehension category with unit";
essentially it is a fibration with subset types—as given by a right adjoint to

610 Chapter 10: First order dependent type theory

the terminal object functor for preordered fibrations in Section 4.6—except
that the preorderedness restriction is lifted.

10.4.1. Definition. A display map category (or a category with dis-
play maps) is a pair (B, X>) where B is a category with a terminal object 1,
and V C ArrB is a collection of morphisms in B, called display maps or

projections which is closed under pullback: for each family I y \ ^ V

and each morphism w: J —>• / in B, a pullback square

U'{ip)

exists in B, and for every such pullback square one has that w*(<̂) G T>.
We write V^ for the full subcategory of the arrow category B~̂ with display

maps as objects, and -̂ for the associated codomain fibration. The fibre
over / G B will be written as V/1 using a slice notation.

For such a display map category (B, X>) we formulate the following addi-
tional conditions.

(unit) All isomorphisms in B are in V.
(product) For each display map <̂ : X —> / , the pullback functor ip*:V/I ->

V/X has a right adjoint Y\m ^nd a Beck-Chevalley condition holds: for a
pullback square as above, the canonical natural transformation i/* f][=>
n«*((p) ^'* ^̂ ̂ ^ isomorphism.

(weak sum) For each display map <y?, the pullback functor ^* has a left
adjoint]J plus Beck-Chevalley.

(strong sum) Display maps are closed under composition. This implies
(weak sum).

(weak equality) For each display map (p:X ^ I, write S{<f) = (id,id):X
-> X X / X for the mediating diagonal of the pullback of (p against itself.
The requirement is then that each S{(p)*:V/(X Xj X) -^ V/X has a left
adjoint Eq^ ,̂ plus a Beck-Chevalley condition (see Exercise 10.4.2 below for
the details).

(strong equality) Each such diagonal S{(f) is a display map. The condition
(weak equality) can then be proved.

A display map category is called a relatively Cartesian closed category
(RCCC, for short) if it satisfies (unit), (product) and (strong sum).

Section 10.4- Display maps and comprehension categories 611

Notice that the class V in this definition is required to be closed under all
puUbacks—and not under particular chosen ones. As a result, the class V is
closed under (vertical) isomorphisms. One could have relaxed the condition so
that V is required to be closed under certain chosen pullbacks only, but these
pullbacks should then be such that they compose, in order to get appropriate
substitution properties—and afibration. But requiring particular pullbacks to
compose is not so natural, and such matters are better handled by using fibra-
tions from the start, as is done with comprehension categories. Notice by the
way that in the term model C in the previous section we do have distinguished
pullbacks, which compose, see Lemma 10.3.1. In the comprehension category
version of the term model (see below) this happens because we have a split
fibration, and this splitting induces the particular pullbacks of projections.

fT,x:a\
By closing the class of context projection maps I ^ I under vertical

isomorphisms we do get a (term model) display map category. The role of the
above conditions on display map categories can be seen in Proposition 10.3.3
and Exercise 10.3.3. Following [329, 330], display map categories with such
conditions have been used in many places, see e.g. [148, 272, 320, 185].

We notice that the strong versions of dependent sum and equality have
much easier formulations than the weak ones. This will be different for com-
prehension categories, see Definitions 10.5.1 and 10.5.2 in the next section.

Finally, we note the following similarity. The general categorical description
of simple type theories was given in Section 2.4 in terms of CT-structures. The
latter are pairs (E, T) where B is a category (of contexts) with finite products
and T C Obj B is a collection of types, considered as singleton contexts. For
dependently typed calculi, we do not use a subcollection T C Obj B of objects,
but a subcollection V C ArrB = Obj (B"^) of morphisms. More formally, we
do not use subfibrations of simple fibrations, but subfibrations of codomain
fibrations. Hence CT-structures and display map categories form similar gen-
eralisations of these type theoretic (simple and codomain) fibrations.

(Display map categories are clearly more general than CT-structures, since
every CT-structure (B, T) gives rise to an associated collection of display maps

/ / x X \
given by constant families r(X) = I j ^ 1 for / G B and X G T.)

Comprehension categories

The above notion of display map category is not entirely satisfactory, because
it does not give a central position to types, but instead to the projections
induced by types. Therefore, we shall be using certain presentations of display

612 Chapter 10: First order dependent type theory

m a p categories, called 'comprehension categories' in [155, 157]. These were
used earlier in Section 9.3 to give a general form of quantification along certain
"projection maps" . These projection maps will play the role of the display
maps above. This double role of comprehension categories—providing both
domains of quantification and context structure for type dependency—will
turn out to be very convenient (see e,g. in Definition 10.5.1 in the next section).

We consider again the syntactically constructed category C of contexts from
the previous section for explaining the intuition behind the use of comprehen-
sion categories for modelling type dependency. We already have a category
C of contexts, see the beginning of Section 10.3. But one can also form a
category T of types, as follows.

o b j e c t s types F h cr:Type in context.

m o r p h i s m s (F h crrType) -> (A h r:Type) are pairs (M,7V) with

M : F -^ A a context morphism in C and N a term

F,x:cr \- N:r[M/v\

where v is the sequence of variables declared in A.

The obvious projection functor i mapping a type F h cr: Type to its under-
lying context F is then a split fibration. Cartesian (split) morphisms are of
the form [M^x) where x is a variable. This fibration actually comes about
by applying the Grothendieck construction to the functor (C°P —> C a t which
assigns to a context F the category Tp of types and terms in context F; it
has types F h criType as objects and terms F,x:cr h N:T as morphisms
(F h cr:Type) -> (F h r :Type) .

The projection morphisms TT: (F,x:cr) -^ F in the category C of contexts
now arise in the following way. There is a functor V from the category T
of types to the arrow category C~^, which maps a type F h cr: Type to its
corresponding projection morphisms TT: (F, ar: cr) -> F in C Here one sees how
the types are taken as primitive, and the associated projections as induced by a
functor acting on types. A morphism (M, A^): (F h cr: Type) -> (A h r :Type)
in the category T of types is sent by V to the following commuting square in
the category C of contexts.

(r ,x:(T)
(M l O TT, . . . , M „ O TT, TV)

^ (A , j / : r)

(M i , . . . , M „)
- ^ A

Section 10.4'- Display maps and comprehension categories 613

The functor V:T -^ C^ that we construct in this way satisfies the following
four properties.

(1) The composite c o d o P i T -> C of P with the codomain functor
T

cod:C^ -^ C is a fibration, namely the fibration i of dependent types
over their contexts.

(2) The functor V sends Cartesian morphisms in T to pullback squares in C.
This is how the pullback squares in Lemma 10.3.1 arise.

(3) The functor V is full and faithful.
(4) The base category C has a terminal object (namely the empty context).

Points (1) and (4) are obvious. As for (2), a Cartesian morphism (M, x) in T
is sent to a pullback square (*) as described in Lemma 10.3.1. And (3) is left
as an exercise below.

We conclude that this functor V:T ^ C"*" gives a presentation of the class of
display maps TT: (F, x: cr) -> F in C, that we described directly in the previous
section. The pullbacks in Lemma 10.3.1 arise by applying V to split mor-
phisms in T. We can now see that these pullbacks compose (in C~)̂ precisely
because split morphisms compose in T. This structure in C is thus induced
by the structure in T via the functor V. Since P is a full and faithful functor,
everything that we want for these display maps (like the various conditions

in Definition 10.4.1) can be described for the fibration ^ . For convenience
. . .^

we repeat (from Theorem 9.3.4) the two conditions defining a comprehension
category.
10.4.2. Definition. A comprehension category is a functor of the form
' P i E ^ B - ' for which

(i) the composite cod o P : E -^ B"^ ^ B is a fibration;
E

(ii) if/ is a Cartesian morphism in E with respect to this fibration i , then
V{f) is a pullback square in B.

Such a comprehension category V will be called full if'P is a full and faithful
functor E —> B~^. And it is called split (or cloven) whenever the fibration
cod o "P: E ^ B is split (or cloven).

This definition captures the above points (1) and (2). Points (3) and (4) are
not part of the definition, since they are not relevant for the use of compre-
hension categories in quantification. In models of type theories however, full
and faithfulness and a terminal object in the basis will always be there.

We thus see that the above constructions yield a "term model" full compre-
hension category T -^ C"*". And for every display map category (B, P) , where
D is a class of maps in B closed under pullback, the inclusion V^ <^ B~̂ is
an instance of a full comprehension category.

614 Chapter 10: First order dependent type theory

We recall from Section 9.3 some important examples of (full) comprehension
categories.

(i) The identity functor W^ —^ B~^ for a category IB with pullbacks forms
the identity comprehension category. This example arises from the display
m a p category (IB, V) where V contains all morphisms from B.

(ii) The simple comprehension category s(IB) -^ E"^ for a category IB
with Cartesian products x . It maps an object (/, X) G s(B) to the Cartesian

IxX
projection (j 1. In this example there is no real type dependency.

(iii) The subobject comprehension category Sub(B) —> B~^ for a category
B with pullbacks. It takes a subobject to a representing arrow in B.

(iv) Recall from Definition 7.3.5 tha t a full internal category C in a base
category B has a full and faithful fibred functor Fam(C) -^ B"*" over B. Hence
C is full if and only if its externalisation is part of a full comprehension
category.

But there are many more examples, see e.g. Exercise 9.5.6.

10 .4 .3 . N o t a t i o n a n d t e r m i n o l o g y . Let 7^:E -> B~*̂ be a comprehension
category, and write p — cod o "PiE ^ B for the fibration involved. For an
object X G E in the total category, the corresponding morphism VX in B
will be called a p r o j e c t i o n or a d i sp lay m a p . We therefore often write 'KX
for VX when this functor V is understood from the context. An induced
reindexing functor TT^ = VX"" will be called a w e a k e n i n g functor .

We write { —} = dom o P : E —> B for the second functor E —>• B induced by
V—again whenever V is understood from the context. Thus for a morphism
/ : X ^ y in E we get in B a commuting diagram written as

This square is a pullback in case / is Cartesian. Besides weakening func-
tors TT ,̂ there are also c o n t r a c t i o n functors ^\ induced by the diagonal
^X' {-^} -^ { ^ x (^) } obtained in the pullback of TTX against itself (as special
case of the lemma below).

Often we use the corresponding small Roman letters p — cod o V for the
fibration involved. Thus we write q for the fibration cod o Q when Q is a
comprehension category.

Section 10.4' Display maps and comprehension categories 615

A section of a projection nx—that is a morphism s:pX - ^ {X} with TTX O
s = id—may be called a t e r m (of t y p e X).

It is worthwhile to formulate the following abstract version of Lemma 10.3.1
explicitly.

10 .4 .4 . L e m m a . Let 7^:E ^ B~*" be a comprehension category. Its projec-
tions are stable under pullback in the following sense. For each object X EE
and morphism u: I -^ pX = (cod oV){X) in M there is a projection with
codomain I and a pullback of the form:

{u{X)]

Tw*(X) J Wx

pX

Proof . Since p = cod o "piE -^ B is a fibration, we can choose a Cartesian
morphism u{X): u*{X) —>• X over u. It is mapped by V to the above pullback
square in B. •

This result allows us to describe substitution in terms. Consider a morphism
u: J -^ I in the basis B of a comprehension category 'P iE —> B"^, and a
term s: / —> {X] of type X G E / . Then we can define a term w^(s) of type
w*(X) G E j as the unique mediat ing m a p w^(s): J —^ {w*(X)} for the above
pullback, with rru*(x) ^ u'^(s) = id j and {u{X)} o 1/^(5) = s o u.

As a result of the lemma, projections of a comprehension category thus give
rise to a display map category.

10 .4 .5 . Corol lary . For a comprehension category V:]E —)• B"^, write [V] C
Arr B for the image of V closed under vertical isomorphisms. That is, [V] is
smallest class containing all projections VX and satisfying: ip = rjj in B / / and
(f E [V] implies ip ^ [V]. Then (B, [V]) is a display map category. •

And the pullback in the above lemma enables a form of dependent tupleing.

10 .4 .6 . Corol lary . For a comprehension category P i E —> B"*" we have an
isomorphism

B (/ , {X}) ^] J {s\sisatermoftypeu*(X)}. D
u:I-^pX

In type theoretic formulation, the functor {—} = dom o 'P of a compre-
hension category V sends a type F h cr: Type to the corresponding extended
context {T,x:a). It is precisely this operation which is difficult in dependent

616 Chapter 10: First order dependent type theory

type theory, since one cannot use Cartesian products F x cr as in simple of
polymorphic type theory (where one has no type dependency). A form of
disjoint union U^^p -(^[v) is needed in DTT—as in the above corollary.

Comprehension categories with unit

The following definition gives rise to an important class of examples of com-
prehension categories.

E

10.4.7. Definition (See [74, 62]). A fibration ^P with a terminal object
functor 1: B —>• E is said to admit comprehension if this functor 1 has a right
adjoint, which we commonly write as { —}:E —> B. We then have adjunctions

p H H { - } .

In this situation we get a functor E —> B^ by X i-̂ p{^x), where Sx is the
counit 1{X} —^ X of the adjunction (1 H { —}) at X. This functor is actually
a comprehension category, see below. In such a situation, we shall call this
functor a comprehension category with unit. And we shall say that p
admits full comprehension if this induced comprehension category is full
(i.e. if E —> B^ is a full and faithful functor).

A "fibration with subset types" as introduced in Definition 4.6.1 is thus sim-
ply a preorder fibration with comprehension. Many of the properties which
hold for such fibrations with subset types also hold for fibrations with com-
prehension. But there is one important exception: the fact that the induced
projections 7rx:{X} —>• pX are monos for fibrations with subset types cru-
cially depends on preorderedness, see the proof of Lemma 4.6.2 (i).

We check that the functor E —)• B~̂ as in the definition is a comprehension
category indeed. Therefore we need to show that for a Cartesian morphism
/ : X —> y in E, the naturality square

(.) ^ ^ in
TTX =P{ex) Try -piey)

pX ^pY
Pf

is a pullback in the base category B. If morphisms u: I -^ pX and v: I —^ {Y}
are given with pf o u = iry o v, then the transpose v^ = ey ^ Iv'-H —^ Y
satisfies

p{v^) — p{ey) O pl{v) — TTy O V — pf O U.

Section 10.4'- Display maps and comprehension categories 617

Since / is Cartesian, we get a unique map g:\I -> X in E over u with
f o g — v^. But then, taking the transpose g^ — {g] o rji'.I ^ {^}^ yields
the required mediating morphism:

TTx o g^ -TTX o {g] or]j = p{g) o TTU o T]I =z u o p{eii) o pl{rji) - u

and

{/} ^ g^ - {f ^ 9} <^ VI = {^''} orji = v'''' = V.

Uniqueness is left to the reader.
We recall that a terminal object functor 1 is full and faithful, because the

counit pi => id of the adjunction {p H 1) is the identity, see Lemma 1.8.8.
Therefore, the unit components / -^ {1-̂ } of the adjunction (1 H { —}) are
isomorphisms.

Notice that being a comprehension category with unit is a property of a
fibration; namely that it has a fibred terminal object and that the resulting
(terminal object) functor has a right adjoint. In contrast, an arbitrary compre-
hension category 7^:E ^ B~̂ provides the underlying fibration p = cod o V
with certain structure. Therefore we may say that a fibration 'is' a compre-
hension category with unit.

This description of comprehension via a right adjoint to the terminal ob-
ject functor is a simplification of the description originally proposed by Law-
vere [193], see also Exercise 4.6.7. A slightly different notion of comprehension
is proposed by Pavlovic [252]. See [157] for a comparison of these notions.

10.4.8. Examples, (i) For a category IB with finite products (x, 1), the sim-
ple comprehension category s(B) —)• B~̂ is a comprehension category with

s(B)

unit. The underlying simple fibration i has a terminal object functor
B —> s(B), namely / H-> (/, 1). This functor has a right adjoint, given by
(/, X) i-> / X X. The resulting projection TT^/x) (as in the above definition)
is the Cartesian projection ir: I x X -^ I.

(ii) For a category B with pullbacks, the identity functor B~̂ -^ B~*" is
a comprehension category with unit, since there are the following two basic
adjunctions

cod H H) dom

where the up-going arrow in the middle is the terminal object functor / i-̂ id/
for the underlying codomain fibration.

618 Chapter 10: First order dependent type theory

(iii) Let C be a category with terminal object 1 G C, and small hom-
Fam(C)

sets C(1,X). The family fibration i then has a terminal object functor

1: Sets -^ Fam(C) by J i-> (1)JGJ- And 1 has a right adjoint by disjoint union:

{Xi)iei^\lc{l, Xi) ={{i,x) | i G / a n d x : l - > X i } .

This will be called the family comprehension category Fam(C) —> Sets"^.
It is rarely full, see Exercise 10.4.4 (ii). Notice that the special case where
C = Sets yields the equivalence Fam(Sets) ^ Sets"*" from Proposition 1.2.2.

(iv) For a calculus of dependent types with a unit type 1: Type we form the
T

term model fibration ^ of dependent types F h cr:Type over their contexts F,
as described earlier in this section. This fibration then has a fibred terminal
object F h 1: Type in the fibre over context F. The associated functor 1: C —>• T
has a right adjoint, which maps a type F h cr: Type to the extended context
(F, x: cr). We have an adjoint correspondence

(F h l:Type) ^ (A h r:Type) in T

F ^ (A,y:r) in C

amounting to an (obvious) correspondence between

context morphisms M: F ^ A with a term F, x: 1 h N: T[M/V\

context morphisms (P, Q): F >- (A, y: r)

The functor T —)• C"̂ induced by this adjunction maps a type F h cr: Type
to the associated projection 7r:{T,x:a) —)• F. (But these projections can of
course be described directly, without using the unit type.)

(v) As already mentioned, every fibration with subset types is a compre-
hension category with unit. Notice that the latter is full if and only if the
fibration has full subset types (as defined in Section 4.6). In particular, ev-

Sub(l)

ery subobject fibration i forms a full comprehension category with unit

Sub(B) -> W^.

It is not the case that a comprehension category with a fibred terminal
object for its underlying fibration is automatically a comprehension category

Fam(Sets^)
with unit. As counter example, consider the family fibration i of set-

Sets
indexed-pointed sets. This fibration has a terminal object functor 1: Sets -^
Fam(Sets^) since the category Sets^ has a terminal object {•}—which, at

Section 10.4- Display maps and comprehension categories 619

the same time, is initial object. The fibration also carries a comprehension
category structure Fam(Sets») -> Sets"*", namely

{Xi)iei ^ I } I

In this situation we do not have that the functor {Xi)i^i i-̂ Ufe/ ^* ^̂ right
adjoint to the terminal object functor, since morphisms (l)jeJ ~^ {Xi)iei
in Fam(Sets^) correspond simply to functions J ^ I, and not to functions
J^Ui^jXi.

Fam(Sets^)
(But the fibration i has a fibred monoidal structure given point-

wise by the monoidal structure on pointed sets Sets» (with"smash" product
as tensor and 2 — {0,1} as neutral element). The comprehension functor
{Xi)i(^i H-> Wi^i ^i ^^ ̂ right adjoint, namely to the neutral element functor
2:Sets-^Fam(Sets^) .)

The inclusion Fib '—^ Cat"*" forms a comprehension category on the fi-
bration of fibrations over their base categories (see Lemma 1.7.2). The latter

does admit comprehension, given by a right adjoint (^) ""̂ Cart(E) to the
terminal object functor, but this gives a different comprehension structure.

Fam(Cat)
A similar fibration i of Cat-valued presheaves is shown not to admit

Cat ^
comprehension in [106]. (But Sets-valued presheaves do admit comprehen-
sion, see Exercise 10.5.1.)

Next we reformulate the main points of Lemma 4.6.2, adapted to the present
setting. The proofs are as in Section 4.6.

E

10.4.9. Lemma. Let ^ he a fibration with comprehension.
(i) Fix an object J G B; for maps u\ I ^ J in B and objects Y E E over

J, there is an isomorphism

E / (l / , t/*(y)) ^ B / j (w , Try).

Moreover, these isomorphisms are natural in u and Y—when both sides are
seen as functors (B / J) °P X E J =t Se ts . ;

(ii) The induced functor E —> B"^ preserves all fibred limits. It also pre-
serves products W-

As a result of (i), terms of type X G E/, which were defined as sections
of the projection nx'-i^} —)- / in Notation 10.4.3 above, can be identified
in a fibration admitting comprehension with the global sections 1(7) -^ X
in the fibre over / . This description of terms as maps in fibres is often more

620 Chapter 10: First order dependent type theory

convenient.

Proof. We only prove the last statement about preservation of products f̂ ,
say with respect to a comprehension category Q:D -> B~^. For A G O, we
have a projection QA in B, say with domain and codomain QA\ J —^ K. For
a morphism u: I —^ K we can form a pullback square

u' = QAUu)
L = domQ(u*{A)) ^ domQA = J

Q{u*{A)) QA

-^ codQ^ = K
u

The assumed right adjoint]~[A ^^ 2 ^ * ^^ ^ satisfies, by (i):

^ E/ (l / , n«*(A) ^ '*(^)) by Beck-Chevalley

- E L (Q K (A)) * (1 /) , t/'*(X))

Hence the projection TTT-T /^X in M/K behaves like a product O Q ^ I I ^ ^) ^̂ ^^^

arrow fibration on B. •

Finally we have the following alternative "representability" description of
comprehension categories with unit.

E

10.4.10. Proposition. Let ^ be a fibration with fibred terminal object.
Then p admits comprehension if and only if fibred global sections are repre-
sentable; that is, if for each X G E, say above I £M, the functor

(IB//)op ^ Sets given by (j — ^ /) I ^ Ej (l J, u*(X))

is representable.

Proof, (only if) For X G E/, the projection TTX'- {X} —^ I is a. representing
arrow, since for u: J —^ I one has B//(w,7rx) — Ej (l J , w*(X)), by (i) in the
previous result.

Section 10.4- Display maps and comprehension categories 621

(if) Choose for each object X G E a representing arrow wx and write {X}
for its domain. Then

E (I J , X) ^ H ^J{^^^ ^ * (^)) by L e m m a l . 4 . 1 0

s B(J, {X]).

So the terminal object functor 1:B -^ E has a right adjoint { — } . •

This result provides a link with local smallness for fibrations (which was
already announced as Lemma 9.5.2).

E

10 .4 .11 . Corol lary . Let ^P he a fibred CCC. Then p is a comprehension

category with unit if and only if p is locally small.

Proof. Since each fibre is a CCC, vertical morphisms X -^Y correspond to
global sections 1 ̂ (X => Y) . So the former are representable if and only if
the latter are. •

Exercises

10.4.1. Let (B, T>) be a display map category. Prove that if there is a family

(j 1 G X> which is inhabited {i.e. for which there is a map 1 -> X),

then a terminal object functor IB —>• T>~*^ is automatically left adjoint to the
domain functor X>"*'—)• B.

10.4.2. Consider a display map category (B, V) which satisfies the (strong equality)
condition in Definition 10.4.1 and in which the collection V is closed un-
der Cartesian products (in slices B / /) . Show that the associated fibration
admits equality with respect to the comprehension category V~^ M- B ^ ,
as described in Definition 9.3.5. Give an explicit formulation of the Beck-
Chevalley condition (from this definition) for equality in display map cate-
gories.

10.4.3. Verify that the term model comprehension category "P: T —> C~̂ is full.
10.4.4. (i) Show in detail that one gets a "family" comprehension category with

unit Fam(C) -^ Sets"*" in Example 10.4.8 (iii).
Fam(C)

(ii) Prove that i is a full comprehension category if and only if the

global sections functor C(l, —): C -^ Sets is full and faithful.
10.4.5. Verify that the functor r :Fam(C) -^ B~^ in Exercise 7.3.5 forms a com-

prehension category with unit. (It gives an internal version of the family
example described above.)

622 Chapter 10: First order dependent type theory

10.4.6. A category with families according to [72] (see also [137]) consists of a
category C with a terminal object together with
(a) a functor F = (Ty,Te):C°P —)• Fam(Sets); for an object / G C we

write F{I) = (Te(/,o'))^ rp .^., and for a morphism u: J -> / in C
we write F{u) as consisting of functions Ty(w):Ty(/) —>• Ty(J) and
Te(w):Te(/,(T) -> Te{J,Ty{u){<T)), for each a e Ty(/) ;

(b) for each / G C and a G Ty(/) a comprehension: an object
I ' a £ C together with a morphism P{(T): I - cr -> / and an element
Va G Te(/ • (7, Ty(p((T))(o')) such that: for each w: J -> / in C and
t G Te(J, Ty(w)((T)) there is a unique morphism (u^t): J -^ I - a with
p{cr) o {u, t) = u and Te((u, t)){V(x) = t.

Define for such a functor F a category F with
objects pairs (/, cr) with / G C and (T G Ty(/) .

morphisms (/?cr) -^ C-̂ ?'̂) ^re pairs (w,t) where w: / -> J is a
morphism in C and t is an element of Te(/ • (T, Ty(u o
P{<r))[r)).

Define a split full comprehension category F -^ C~^.
E

10.4.7. Let ^^ be a fibration with comprehension. We write r} and e for the unit
and counit of the adjunction (1 H {—}). Recall that the projection TTX is
defined as p(£x).
(i) Show that the projection TTU: {1/} —)• I is the inverse of the unit com-

ponent rfi.
(ii) For X G E above / , prove that

{!x} = r?7o;rx:{X} ^ {1/}

where \x is the unique map X -^ \I over / .
(iii) Prove that if \x''X —> 1/ is a mono in E, then the projection

TTx: {X} -> / is a mono in B.
E

10.4.8. Let -i-P be a fibration with fibred finite products and full comprehen-

sion.
(i) Prove that for X^Y^Z G E in the same fibre, say over / G B, there is

a bijective correspondence

X xY ^ Z over /

^x{y) ^^x{Z) over{X}

natural in Y,Z.
(ii) Conclude that in such a situation, fibred colimits are automatically

distributive, i.e. preserved by functors X x (—).
10.4.9. Consider two contexts F = [xi:) and A = (yi: n , . . . , ym: Trrx)

in DTT together with a context morphism 5 = (M i , . . . , Mm)'- F —>• A. It
yields a substitution functor 5*: T A —> T r in the reverse direction. Assume

Section 10.5: Closed comprehension categories 623

weak sum and weak equality types. Then one can define for a type T h
p: Type

Eqri (yi ,Mi) X ••• X Eqr^(ym,Mm) X p

which yields a type in context A.
(i) Prove that]J^ is left adjoint to 5*.
(ii) Assume dependent products fl. Show that one can also define a right

adjoint to s* by

(E q r i (y i , M i) X . . • xEcirm{ym,Mm)) "^ /O-

10.4.10. Let P : E —>• B"^ be a comprehension category. Write E^ for the full image
of P , i.e. for the category with

objec ts X G E.

m o r p h i s m s X -^ Y in E^ are morphisms VX -)• VY in B"*".
Define a full comprehension category P ^ : E^ -> B"*". (It is the full comple-
tion of V and called the 'heart of P ' by Ehrhard.)

E

10.4.11. Let ^P be a fibration with (full) comprehension and let F : A —)• B be a
functor with a right adjoint, where A is a category with puUbacks. Prove
that the fibration F*(p), obtained by change-of-base along F , also admits
(full) comprehension.
[See also Exercise 9.5.5.]

10.5 Closed comprehension categories

From a semantical perspective, the most natural combination of type construc-
tors in dependent type theory is: unit type 1, dependent product 11, and strong
sum E. In the present section we introduce a categorical structure which com-
bines these operations, and call it a "closed comprehension category". (Such a
notion has also been identified in terms of display maps as a "relatively Carte-
sian closed category", (RCCC) see [329, 148], or Definition 10.4.1.) There are
many instances of these closed comprehension categories, some of which will
be presented in this section. The next section is devoted to two domain the-
oretic examples. There are many more examples, e.g. in [148] (based on "lim
theories", forming categorical generalisations of domain theoretic examples),
in [185] (generalisations Girard 's qualitative domains) , in [132, 133] (with so-
called setoids), and in [137] (a presheaf model for proving a conservativity
result).

Wha t we have not defined yet is what it means for a comprehension cate-
gory to have (dependent) products and coproducts. We take this to mean: the

624 Chapter 10: First order dependent type theory

underlying fibration has products and coproducts with respect to the (projec-
tions of the) comprehension category itself. (Recall from Definition 9.3.5 that
one can define quantification in a fibration with respect to a comprehension
category.) Here we make convenient use of the double role of comprehension
categories: in quantification and in modelling type dependency.

10.5.1. Definition. Let P i E ^ IB"*" be a comprehension category. We say
E

that V admits products if its underlying fibration ^P —where p = cod o
V—admits products with respect to the comprehension category V:'E—^ M"^ ;
that is, if p has products n^ H Ylx ^long 'P's projections TTX = VX (plus a
Beck-Che valley condition), see Definition 9.3.5.

E

Similarly we say that V admits weak coproducts if the fibration ^ has
coproducts with respect to V\ this involves adjunctions W^ H TT^ plus Beck-
Chevalley.

^ . .
And V admits weak equality if ^^ has equality with respect to V. This

IB

involves left adjoints Eqx H S*x along its own diagonals, again with Beck-
Chevalley.

Next we should say what strong coproduct and equality are.
10.5.2. Definition. Let V:^—^ B"^ be a comprehension category.

(i) We say that V admits strong coproducts if it has coproducts as
above in such a way that the canonical maps K are isomorphisms in diagrams
of the form:

{Y)

TT

{X)

lUxW}

pX

(ii) Similarly, V admits strong equality if there are canonical isomor-
phisms:

{y}

{X}

- {Eqx(y)}

{^*x{X))

The canonical maps {Y] -> { 1 I A : (^) } ^n^ i^) -^ {EqA-(y)} in this def-
inition arise by applying the functor {—} = dom o P to the (opcartesian)

Section 10.5: Closed comprehension categories 625

composites

y Y

^*x UxiY) IJx(^) S*x^^xiY) Eqx(Y)

Finally we come to the main notion of this section.

10.5.3. Definition. A closed comprehension category (CCompC) is a
full comprehension category with unit, which admits products and strong
coproducts, and which has a terminal object in its base category. It will be
called split if all of its fibred structure is split.

The easiest model of type-indexed-types in dependent type theory uses set-
Fam(Sets)

indexed-sets, as formalised by the family fibration i . This fibration
is a (split) CCompC: it has full comprehension plus products and coproducts
along all morphisms in the base category, so certainly along projections TTX-
Explicitly, for a family X = {Xi)i^j over / and a family Y = O^a)^,^]] x

over {X} = Ui^j Xi we have the standard formulas:

YlxiY)i = {/: Xi ^ U .ex . Yn.r) I Va: € Xi.fix) e Y(i,.)}

Ux(y)i = {{x,y)\xeXie.ndyeYi}.

(Interestingly, no equality is needed to define these adjoints along dependent
projections, whereas one does need equality for adjoints to arbitrary substi-
tution functors u*, see the proof of Lemma 1.9.5. These dependent products
and coproducts are natural extensions of the simple products and coproducts
along Cartesian projections, see Lemma 1.9.2)

The above coproduct]J is strong, since there is a (canonical) isomorphism

iUxiy)} = {{i,{x,y))\i€I,xeXi^,ndyeY^i,,)]

= {{{h x), y)\iel,x € Xi and y € ^(i.x)}

= {{a, 2/) I Q € Uiei ^i ^nd y G Ya}

= {Y}-
Instead of modelling dependent types as set-indexed-sets, one can also take
objects of a category indexed by themselves, as formalised by a codomain
fibration. The latter is a (non-split) CCompC if and only if the underlying
category is locally Cartesian closed, see Theorem 10.5.5 (ii) below.

As mentioned after Lemma 10.4.9, terms of type X G E/ in a com-
E

prehension category with unit can be identified with vertical maps
B

626 Chapter 10: First order dependent type theory

1(/) -^ X. We sketch the interpretation of the introduction and elimina-
tion rules for 11 and E in a CCompC as above. For Il-introduction, assume
a term I,x:X h f:Y, given as a vertical map 7r^(l(/)) = ^{X} -> Y.
Its transpose yields the abstraction map Xx{f)''l{I) -^ YlxO^)- ^ ^ ^ ^^^
H-elimination, we assume terms ^: 1(/) —^ YlxO^) ^^^ h:l{I) —> X. Then
we get a transpose TT^(!(/)) ^ Y of / , and also a transpose h^:I -> {X}
of h across (1 H {—}). These can be combined into an application term
gh: 1(7) - {h^rn'^m) -> (/i^)*(y) = Y(h).

For sum-introduction, assume maps / : 1(7) -> X and g: 1(7) —^ (/^)*(y).
By using the unit of the adjunction (JJ;^ H TT^) at Y we get a tu-
pie term (/,ff):l(/) ^ (r) ' (y) ^ (D ' ^ ^ f U x l ^) = Uxl^ ') ; And for
(strong) E-elimination, assume an object Z E E over { I Jx(^)} ^i^h a term
7, x: X, y: Y \- h: Z{{x, y)). This h can be identified with a map h: {Y} —> {Z}
in B with TTZ o h = K: {Y} •=>• { U x l ^) } - Hence h o K~^ is a, section of TT ,̂
and thus yields a term 1 (U A ' (^)) —^ Z, as required. Further details are left
to the reader. More elaborate studies of the categorical interpretation of (first
and higher order) dependent type theory may be found in [319, 134].

Notice that we do not include equality in the definition of a CCompC. We
shall have more to say about equality towards the end of this section.

First a basic result.

10.5.4. Proposition. 7/ 'P:E -^ B"*" is a closed comprehension category,
then its underlying fibration p = cod o V:'E —^ M is Cartesian closed. The
fibred Cartesian product and exponent are given by:

XxY = Ux{^xiy)) «"rf X^Y = Ylx{^x{y))-

In particular, the underlying fibration of a CCompC is locally small, see
Corollary 10.4.11. Hence it is small if and only if it has a generic object, by
Corollary 9.5.6. See Exercise 10.6.3 for an example of a small CCompC.

Proof. In the fibre over 7 G B one has:

Ei{z, X XY) ^ B/7(7rz, TTTT *̂ (y)) by fullness

,^z, Unxi'^^xi^)'^) ^^^^^ U '^ strong

,7rz, Unx ^*X{^Y)) by Lemma 10.4.4

TTĵ , TTx X Try)

^TTz, TTx) X B / 7 (7 r z , Try)

^ E/(z, x) xE/(z, y).

Section 10.5: Closed comprehension categories 627

(Actually, it can be shown that the object X xY = Uxi'^xO^)) ^^ ^ product
without assuming that the coproduct]J is strong, see Exercise 10.5.4 (ii).)

For fibred exponents we have adjoint correspondences:

Z ^nx^x(Y) = X^Y •

The above categorical descriptions of the binary product x and the ex-
ponent ^ coincide with the syntactic definitions a x r = T,x:a.T and
a ^ T = Ux: a. r, for x not free in r, given in Example 10.1.2. By a standard
argument (as in the proof of Lemma 1.9.12) one can show that in presence
of these fibred exponents =>, the coproduct]J and equality Eq in a CCompC
automatically satisfy the Frobenius property.

Next we consider the three main (general) examples of comprehension cate-
gories. The first two involve what we have called the 'type theoretic' fibrations
and the third one the 'logic' fibration.

10.5.5. Theorem. Let A be a category with finite products and B a category
s(A) l " ^

with finite limits. The simple fibration I , the codomain fibration 4- and
Sub(l)

the subobject fibration i are all fibrations admitting full comprehension
with strong coproducts. Moreover:

s(A)

(i) i is a CCompC if and only if A is a CCC;

(ii) ^ is a CCompC if and only ifM is a LCCC;
Sub(l)

(iii) i is a CCompC if and only if it is a fibred CCC.

The three points of this result bring a number of different notions under a
single heading. In particular, points (i) and (ii) show that finite products and
exponents are related like finite limits and local exponentials (exponents in
slices).

Proof. In the previous section we have already seen that all three fibrations
admit full comprehension. The codomain and subobject fibrations have strong
sums, simply by composition. A coproduct functor U^j J^^, left adjoint to 7r| ;^,

for the simple fibration i along the projection TT/x- / x X —> / is given by

628 Chapter 10: First order dependent type theory

(/ X X, y) »-̂ (^ j ^ X y)' These coproducts are strong since

= Ix(X xY)

^ (IxX)xY

= {{IxX,Y)}.

(i) In case A is Cartesian closed we get a product functor fir/ x) ^^^ng
7T:I X X -^ I by {I X X,Y) \-^ {I,X =>Y). Then, writing the fibre s(A)/ as
the simple slice A / / , we get

= A{I xz, X =>Y)

^ A{(I xX) X Z, Y)

= A//{IXX){Z,Y)

= s(A)/xx(7r*(/,Z), (/ x X , y)) .

In the reverse direction, we have, by the previous proposition, that if the
simple comprehension category s(A) —>• A"*" is closed, then the underlying

simple fibration i is Cartesian closed. In particular, the fibre s(A)i =
A _

A/1 = A over the terminal object 1 is Cartesian closed.
(ii) By Proposition 1.9.8, since the induced comprehension category is the

identity functor B"*" —>- B"^ , which has all maps in B as projections.
(iii) The (only if)-part follows from the previous proposition. For the con-

verse, assume subobjects m:X >-^ I and n:Y >-^ X. The product subobject
riml^) ^^ ^ "^^y ^^ defined as m D (m o n), where D is the exponent in the
fibre over / . For a mono k: Z ^^ X, we get appropriate correspondences:

^ < r i m W = mD {mon)

m o m*{k) = m Ak < {mon)

m*{k) < n

The latter holds because m is monic. •

10.5.6. Term model . Assume a dependent calculus with unit type liType
and with dependent products 11 and strong sums E. In Example 10.4.8 we
described how the structure of contexts in DTT leads to a full comprehension

T

category with unit i given by types (F h a: Type) G T over their contexts
F G C Here we show that the type theoretic products II and strong sums E
make this fibration into a closed comprehension category.

Section 10.5: Closed comprehension categories 629

For a type F h cr: Type we have to produce products and strong coproducts
along the associated projection m a p TT: (F, x: cr) —> F in C. Essentially this is
already done in Proposition 10.3.3, but here we give a reformulation in terms
of comprehension categories: this means tha t these product and coproduct
functors do not act on the projections {i.e. display maps) induced by types,
but on the types themselves. Explicitly, these functors are given by

product f|: (F , x: cr h r : Type) H-> (F h Ha::: cr. r : Type)

coproduct J j : (F , ar: cr h r : Type) H-> (F h E X : cr. r : Type).

The mate correspondences for dependent product D and sum E (see Exer-
cise 10.3.2) show that these assignments yield right and left adjoints to weak-
ening TT*. The categorial requirement of strong coproducts is satisfied, since
the canonical pairing morphism

(F, x\ cr, y\ r) >• (F , z: Ex: cr. T)

is an isomorphism. Its inverse is the sequence (v.irz^n'z), which uses first
and second projections 7rz:cr and W'Z'.TITTZ/X], typical for strong sums see
Proposition 10.1.3 (i). In this way we get a term model closed comprehension
category.

One can extend this example with equality, and show that the type theoretic
formulations used in Section 10.1 lead to the appropriate categorical structure.
Assume therefore equality types Eq in the calculus. For a type F h or; Type
there is a diagonal morphism J : (F ,x :c r) —^ (F, x: cr, x': cr) in C, by (iT, x , x) ,
and an associated contraction functor S*, which maps

(F , x: cr, x': cr h r : Type) to (F , x: cr h r [x / x '] : Type).

This functor S* has a left adjoint, namely

(F,x:cr h p: Type) i-> (F , X : cr, x': a h Eqc7(x,x') x p:Type) .

The adjunction requires a bijective correspondence between terms P and Q
in

F, x: cr, x': a, z: Eq^(x, x') x p \- P:T
- (Eq-mate)

F, x: a,w: p h Q: r [x /x ']

It is given by
P H^ P[x/x',{r,w)/z]

Q ^ Q[7r'z/w] with x ' = x via TTZ.

This equality is strong in the syntactic sense if and only if it is strong in
the categorical sense (as in Definition 10.5.2). This can be seen as follows. In

630 Chapter 10: First order dependent type theory

the category C of contexts there is the canonical m a p

(r , x: a, w: p) ^ (F, x: cr, x': a, z: Eqa{x, x') x p)

An inverse of K should be a sequence p, = {M, P^Q) of terms for which there
are conversions—in context F, x: cr, x^: a, z: Eq<7(a?, x') x p—of the form:

Mi — Vi^ P = X = x', r = TTz, Q — TT'Z.

Hence the presence of such an isomorphism p leads to the strong equality
conversions as in Proposition 10.1.3 (ii). And conversely, these conversions
tell us how to define an inverse p if equality is very strong.

In the presence of fibred equalisers—or equivalently, strong equality types,
see Theorem 10.5.10 below—products f j in a CCompC can be obtained from
exponents and strong coproducts JJ, following a s tandard formula (used earlier
for LCCCs) . This is the content of the following result. We only sketch the
proof, since the details are not so interesting.

E
10.5 .7 . P r o p o s i t i o n . Let jrP a fibration with fibred finite limits, full com-
prehension, strong coproducts and a terminal object in its base category. Then
p is a fibred CCC if and only if it is a CCompC (actually a CCompC with
strong equality, by Theorem 10.5.10 below).

Proof . We shall show how to define products Y\ from exponents =>. For
objets X G E over / E B and Y E E over { X } , form H x l ^) ^^ domain of the
equaliser

A(7r')

{X ^ fst)

where f s t :] J ^ (y) -> X is the first projection, obtained as unique m a p with

{fst} = Try o K-^: { I J ^ (y) } ^ {Y] -^ {X], using fullness. D

Notice tha t the formula for the product H x l ^) ^^ ^^^^ proof is used for the
family example immediately after Definition 10.5.3, and also in the proof of
Theorem 10.5.5 (iii).

We continue with examples of CCompCs.

10 .5 .8 . P E R s a n d o m e g a - s e t s . We have mentioned set-indexed-sets as a
model of type dependency. Of course we can also take u;-set-indexed-u;-sets

Section 10.5: Closed comprehension categories 631

and PER-indexed-PERs as denotations of dependent types since the cate-
gories u;-Sets and P E R of cj-sets and PERs are locally Cartesian closed.
Interestingly, there are equivalences of fibrations

UFam(a;-Sets) a ; -Se ts^ UFam(PER) PER~^
4 - ^ 4 - and i c:i i

(jJ-SGts u;-Sets P E R P E R

(see Propositions 1.4.7 and 1.5.3) and we obtain split CCompCs on the left.
Further instances of split CCompCs are the fibrations

UFam(PER) UFam(PER) UFam(a;-Sets)

i i i
u;-Sets Eff Eff

We shall sketch some details of the first and third example.
UFam(PER)

The fibration i of PERs over u;-sets admits full comprehension,
CJ-Sets

with right adjoint to the terminal object functor given by
R = {Ri)ieii,E) ^-^ {R} = l J i € / ^ / ^ ^ ' ^'^^ ^(^'' Ni i .) = E{i) A [n]R^.

For a second collection of PERs S — {Sa)a£{R} we have product and coprod-
uct

f^^(5)i = {(Ar, /?') I Vn,̂ n'. nRin' implies k • nSi^i^[rn])^'' ^ '}

LIi?(5')i = {((n,m),(n' ,m')) I n/^fTz'and mS'(i,[n])m'}.

These are special cases of the formulas for quantification along arbitrary maps
in the proof of Lemma 1.9.6. This coproduct is strong since

{Ufl(5)} = { (i , [^]) h " € / a n d f c e | U f l (5) i | }
= {{i,[{m,n)]) I i € / , n € \Ri\ and m G [^(i,[„])]}

- {((«') N)> M) h' € / , n G \Ri\ and m G !%,[«]) 1}

= {5}.

UFam(a;-Sets)
We turn to the fibration i , as introduced in Section 6.3. The

Eff '

functor { —}:UFam(u;-Sets) -^ EfF, right adjoint to the terminal object func-
tor, is described in the first few lines of the proof of Proposition 6.3.3. For a
family of cj-sets X = (-^[i])[i]6r(/,«) over (/ ,«) and a family Y = (Ya) over
r{X} = Urji^rr/ w) ̂ [«]' ^^ have a (strong) coproduct

LJx(^)w = {{^^y)\^ ^ ^[i] and y G >̂ ([z],ar)}.

Products Yl are obtained by the previous proposition. It applies since the
UFam(C<;-Sets)

fibration I has fibred finite limits and exponents by a pointwise
Eff

construction.

632 Chapter 10: First order dependent type theory

10.5.9. Topos models. Let B be a topos. By Proposition 5.4.7 IB is locally
Cartesian closed, so the codomain fibration on B is a (non-split) CCompC
by Theorem 10.5.5 (ii). And by point (iii) in the same result, the subobject
fibration on B is a (split poset) CCompC. What we will show next is that the

:r(i)
codomain fibration on B is equivalent to a split fibration i , and that the
latter fibration is a split CCompC. In the codomain fibration one has display
indexing and substitution by pullback, whereas in the new split fibration one
has pointwise indexing and substitution by composition. The construction
comes from [154], and generalises the idea of inclusions followed by projections
as display maps, as used in [46] in a set-theoretic setting.

The total category ^(B) of our split fibration arises as follows.

objects triples (/, X, </?) where <̂ : / x X -^ Q is a map in B. For each
such object we choose a corresponding mono m<^: {<̂ } ^^
/ X X, and write ir^ = TT o m^̂ : {ip} —> / .

morphisms {I x X ^ Q) -^ {J x Y -^ Q) are morphisms iv^p —^ n^ in
B"^ . They consist of a pair of maps u: I -^ J and / : {(p} -^
{xp} w i t h TT̂ O f = U O TTip.

By construction there is a full and faithful functor ^(B) -^ B"*". Post-
composition with the codomain functor yields a fibration ^(B) —>• B, which
sends an object {I xX —> Q) to / . It is a split fibration since for such an object
(f over / and a morphism u: J —^ I one gets a reindexed object u*{(p) — (p o
u X id over J by composition. The idea is to think o f < y : ? : / x X ^ r ^ a s a
family of /-indexed sets {Xi)i^i, given as Xi = {x E: X \ (p(i, x) = t rue} . The
functor ^(B) -> B"^ given by y? H^ TTĴ is a fibred equivalence: in the reverse

/ y \
direction a family I ^^ J is sent to the characteristic map J x Y -^ Q of

the mono (^,id}:y y-^ J xY. A (split) terminal object functor 1:B -^ ^(B)
is obtained by J H^ (true o TT': J x 1 ^ fi); it is left adjoint to <̂ »-)• {(p}.

We turn to dependent coproduct and product. Assume therefore objects
(f:IxX—^Q over / and rp: {(f}xY -^ Q over {p}. We have to produce objects
LI(p(^) ^^^ 0(^1 V̂) ̂ ^^^ ^- "^^^ coproduct U x (^) ^̂ obtained as characteristic
map in

mw; m^n X id ^
{xP} > ^ {^} X Y > ^ (I xX)xY -^I x{X xY)

true ^
1> ^f i

Section 10.5: Closed comprehension categories 633

Then, by construction the projection TTTT ^.^ of this coproduct equals TT̂^ o TT^,

so that we have a strong coproduct.
For the product HC^JIV^) ^ ^ ^^^^ form the maps (p, xp, using the partial m a p

classifier in B (see Proposition 5.4.5):

m^p rn^ m^ x rjy
W) > ^ / X X {V^} > ^ {if] X Y > ^ (/ X X) X LY

J J '
Y

I 7p
Y

W} ̂ zr^ M^} W > Mi^}
'lip vip

Together with auxiliary maps

a = (TT X id, ev o TT' X id): {I x {X => A.Y)) x X —^ {I x X) x lY

f3 = A(±(7r' om^)oip)o7r: I x{X ^ ±Y) —> {X ^ 1.X)

7 = A(±(7r' om^o7r^)o^oa): I X {X => JLY) —> (X ^ IX).

Finally, one obtains the product object Hĉ lV)̂- ̂ x (X => 1.Y) ^ ^ as char-
acteristic map of the equaliser {n(n(V^)} >^ / x (X => LY) of/?, 7. It yields a
split version of the usual dependent product in LCCCs.

We conclude this section with a characterisation of strong equality in CCom-
pCs in terms of fibred equalisers. It shows that strong equality is quite natural,
from a categorical perspective.

10.5.10. Theorem, (i) A CCompC has strong equality if and only if its un-
derlying fibration has fibred equalisers.

(ii) And in this situation, the fibration is a fibred LCCC.

With this result it is easy to see that the CCompCs in Example 10.5.8 of
families of PERs and of u;-sets have strong equality, because the underlying
fibrations have fibred equalisers, obtained pointwise from equalisers in the
categories of PERs and of u;-sets.

The link between locally Cartesian closed categories and dependent type
theory with unit, product and strong sum and equality was uncovered in [306].
There, only empty contexts are used, whereas here, LCCC-structure is ob-
tained in every context (and hence in fibred form).

E

Proof, (i) Let ;;̂ ^ be a CCompC. Assume it has strong equality. For parallel
maps f,g:X =4 Y in a fibre, say over / G B, consider the mediating map
{{f}A9})'{^} -> UYO')} in B for the pullback of wy against itself. Put
Eif^g) - ({ /} , {^})*(Eqy(1)) G E{x} and Eq(/,^) = Ux ^iLg) E E/, with

634 Chapter 10: First order dependent type theory

first projection fst: U^ E{f,g) -^ X. We claim this is the equaliser of / and
^ in E/. Consider therefore the diagram

• J

{X}
{{f),{9))

{T^(y)}

{Eqy(l)}

In this situation it follows that {/} o {fst} = {g} o {fst}, and so / o fst =
g o fst. If also h: Z -^ X in Ej satisfies foh — goh — k, say, then the
maps {/i}: {Z] -^ {X] and {k}\ {Z} -> {Y} induce a unique mediating map
{Z} —-> iUx^if^d)} ^̂ ^^^ diagram, and thus a mediating map Z —^
W^ E{f,g) in E/ by fullness.

In the reverse direction we assume fibred equalisers, and write for an object
X eE, X' = 7r3^(X) G E{x} and ex:l{X} -^ X' for the vertical part of
the counit component Sx'-^i^] -^ -^- Similarly, we write X'^ — 7r^,(X')
and 6x' for the vertical part of Sx' • It is not hard to see that the transpose
{X] -^ {X'] of Ox is the diagonal 8x-

Let E{X) E E be the domain of the following equaliser in the fibre over
{X'].

E(X)
— I

> • 1{X'}

Ox'

X"

^\\\{XY) ""̂ '(̂ ^̂

With some eff'ort one can show that there is an isomorphism

{E[X)-\ - — ^ - {X}

{X'}

SO that diagonals occur as projections. Then we can define an equality functor
Eqx:E{x} ~> E{X'} by Eqx{y) = '^*x'0^) ^ ^i^)- We get the appropriate

Section 10.5: Closed comprehension categories 635

adjoint correspondences:

E q x {Y) = w*(Y)xZ ^Z

E(X) ^7r*{Y)^Z

Sx S TrE(X) >• ^iT'{Y)zi.Z

-^S'^{7r*{Y)^Z)^Y^S*^(Z)

Y ^S*^(Z)

And this equality is strong since we have isomorphisms in B / { X } :

=. TTy O Sx •

(ii) The LCCC-structure is obtained from equivalences (E /) / X ^ ^X]
for X G E/j which arise as follows. In one direction, an object Y E E | x } is
mapped to the first projection fst:]Jj^ (Y) —> X. This yields a full and faithful

f Z \
functor. In the other direction, one maps a vertical family I : j ; ^ I to the

domain D{(p) of the following equaliser.

D(^) ̂ -^ x̂(̂) d z m ^ ""̂ (̂ ^ °
Oxo\

Exercises

Fam(Sets)
10.5.1. Show that the fibration i of presheaves (see Example 1.10.3 (ii))

is a closed comprehension category with strong equcdity.
[Comprehension for this fibration is described in [193]. For every functor
F : A -)• B in the base category the reindexing functor F* hcis both a left
and a right adjoint (by left cind right Kan extension), but Beck-Che valley
does not hold in general. It does hold cJong the dependent projections and
diagonals.]

10.5.2. Describe the interpretation of the weak sum elimination rule, in a full com-
prehension category with unit and coproducts.

636 Chapter 10: First order dependent type theory

10.5.3. Assume a category C with terminal object 1 and arbitrary coproducts

(i) Show that if the global sections functor C(l, —):C —> Sets preserves
coproducts then the family comprehension category Fam(C) —^ Sets"^
has strong coproducts.

(ii) Suppose that coproducts in C are disjoint and universal. Prove that
the functor C(l, —): C —^ Sets preserves coproducts if and only if the
terminal object 1 is indecomposab le {i.e. if 1 =]J-gj Xi then l = Xi
for some i £ I).

10.5.4. Let P r E —)•]B~* be a comprehension category with unit and coproducts
{i.e. with the underlying fibration p = cod o V having P-coproducts).
(i) Show that if p admits full comprehension, then it has fibred finite

products—with X xY = I J x (^ ^ (^)) ^^ ^^ Proposition 10.5.4.
(ii) Use (i) to show that Frobenius holds automatically for]J , in case

comprehension is full.
(iii) Prove that p admits full comprehension if and only if the canonical

maps Ux(^ ' f ^^) ~^ ^ ^^^ isomorphisms. That is, if and only if the
counit components ex'-1{^} —^ X are opcartesian.

(iv) Show that the following statements are equivcdent.

(a) The coproducts JJ are strong.
(b) The functors K * : E | T T .^.^ —)• lE{y} induced by the canonical

maps K: {Y} -^ {LIx (^)) ^ ^ ^^^ ^^^ faithful.
(c) The maps IK: 1{Y} -> l { I J x (^) } ^^^ opcartesian.

10.5.5. (From [154]) For a closed comprehension category V\^ -^ B~^, form the
fibration {~}*(p) by change-of-base in:

Famp(E) ^ E

{-Yip) p

E
{ - }

(i) Prove that {—}*(p) is again a CCompC, with as projections the vertical
maps fst: Ujj^ (V') -^ X. It may be seen as a CCompC over p.

(ii) Conclude from (the proof of) Theorem 10.5.10 (ii) that the induced
functor Fam7?(E) -)- V(E) is an equivcdence if P : E ^ B"^ hcis strong
equality.

10.5.6. Consider a comprehension category 'P:E -> B"*" whose underlying fibration
has fibred coproducts +• We call these s t rong fibred c o p r o d u c t s if for
each pair of objects X^Y € E in the same fibre, the induced tuple of
reindexing fimctors

Section 10.6: Domain theoretic models of type dependency 637

is full and faithful.
(i) Investigate what this means in the term model comprehension category

(ii) Prove that for a codomciin fibration ^ the following statements

are equivalent.

(a) The category B has universal coproducts +.
B~̂

(b) The fibration ^ has fibred coproducts +.
B

(c) The identity comprehension category B~^ -^ IB"*" has strong fibred
coproducts + .

Hence fibred coproducts -h are automatically strong in a codomain
fibration.

(iii) Assume strong coproducts -(-, and give categorical proofs of the iso-
morphisms

LJx+y(^) = I J x M ' (^) + L J r K r (^)

from Exercise 10.1.7.

10.6 Domain theoretic models of type dependency

In this section we describe two domain theoretic examples of closed compre-
hension categories (forming models of D T T with 1, Y[^-nd strong] J , see the
previous section). The first example is based on directed complete partial or-
ders (dcpos), and the second one on closures (in Pa;) . In the first example, a
type-indexed-type will be a family of dcpos continuously indexed by an index
dcpo. Such a family will be understood as a functor from the index dcpo to a
category of dcpos which preserves filtered colimits^. We simply use dcpos to
construct a model, but one can also work with Scott domains, see [57, 245]
(and Exercise 10.6.2).

In the second example, a type-indexed-type will be a closure-indexed-
closure. The latter will simply be a morphism in the category of closures
from the index closure to a distinguished object fi, which may be understood
as the closure of all closure—or as the type of all types. It is a model of higher
order dependent type theory and forms a bridge between this chapter and the
next one. This model is based on [302, 15].

^ The idea of using such continuous functors, together with dependent product and co-
product as defined below, goes back to Plotkin's "Pisa Notes" (1978). Here we only put
these ideas in the present categorical framework.

638 Chapter 10: First order dependent type theory

In both these examples the detailed verifications that everything works
appropriately are quite lengthy, and for the most part left to the reader. More
information about domain theoretic models may be found in [329, 330, 148,
57, 245, 61].

We start with some order-theoretic preliminaries. Recall that a directed
complete partial order is a poset in which every directed subset has a join.
Categorically, this means that the poset, as a category, has filtered colimits.
A function between dcpos is called (Scott-)continuous if it is monotone and
preserves directed joins. This yields a category, for which we write Dcpo. It
is Cartesian closed, with singleton poset as terminal object, product of the
underlying sets with componentwise order as Cartesian product, and with
set of continuous functions with pointwise order as exponent. We shall use a
second category of dcpos, namely Dcpo^^. It has as objects dcpos, and as
morphisms f.A-^B pairs / = (/^,/^) of continuous functions f^:A —)• B
d^xid P'.B -^ A which satisfy p o ^ = id and ^ o fP < id. One calls /^ an
embedding, and /^ a projection.

Let (j): A —>̂ Dcpo^^ be a functor with a dcpo A as domain. For an in-
equality fli < 02 in A, we write the corresponding morphism (f>{ai) -^ ^(02)
in Dcpo^^ as an embedding and projection pair:

(j){ai < 02)^: 0(ai) -^ 0(^2) and (j){ai < 02)^: 0(02) -> (t>{^i)-

Such a functor (j): A —^ Dcpo^^ will be called continuous if it preserves
filtered colimits. A classical result in this area, see e.g. [3], is that continuity
of (f) amounts to the following requirement: every directed join a = Vie/ *̂ ^̂
A yields a directed join

(V ^(^' ^ ^y"" (̂̂ » ^^y] = î

in the dcpo of continuous functions (j){a) -> <^(a). We shall work as if this
condition defines continuity for (j).

10.6.1. Definition. Consider the following functor Dcpo^'^ —> Cat. Its fibre
category over A G Dcpo has

objects continuous functors (j):A^ Dcpo^^ with A as domain.

morphisms {A —> Dcpo^^) —> {A —^ Dcpo^^) are families

/ = (< / , (a) - ^ - * (a)) ^ ^ ^

of continuous functions /a, satisfying the following two

Section 10.6: Domain theoretic models of type dependency 639

requirements.

(1) If oi < 02 in A, then

<j){ai < a2Y o fa^ o (t){ai < 02)^ < fa^-

(2) li a =: Vie/ *̂" ^̂ ̂ directed join in A, then fa can be
written as a directed join:

/a = V (̂̂ *' - ^y"" •''«' "̂ (̂̂ *' - ^)^-
2 6 /

The identity on an object <f): A ^ Dcpo^^ over A E Dcpo is the collection
of identity functions on 0(a), for a E A. This is an appropriate morphism by

the continuity condition for (j). And composition of </> ̂ V̂ ^ % is given by
the collection {ga o fa)aeA- Thus we get a category (over A).

Reindexing is done by composition: for a continuous function w: J5 ̂ ^ in
Dcpo we get a substitution functor by

0 K-> 0 o ti and {fa)aeA ^ ifn{b))beB-

The resulting split fibration of continuous families of dcpos over dcpos will be
CFam(Dcpo)

written as i
Dcpo

CFam(Dcpo)

10.6.2. Lemma. The fibration i has a (split) terminal object
Dcpo

functor l :Dcpo —> CFam(Dcpo) with 1{B): B -^ Dcpo^^ sending every
element b E: B to a singleton poset. This functor 1 has a right adjoint { — } ,
which maps a continuous functor </>: A ̂ Dcpo^^ to the "Grothendieck com-
pletion"

{(j)] = {(a, x) \ a E A and x E <f>(ci)}

with order

(ai ,xi) < (02,^2) ^ ^1 < 02 in A and ({){ai < a2y{xi) < X2 in 0(02).

The resulting functor CFdiin(Dcpo) -^ Dcpo"^ mapping (f) over A to the first
CFam(Dcpo)

projection TT^J,: {(f)] —>• A is full and faithful, so that the fibration I
^ Dcpo

admits full comprehension.
Proof. It is easy to see that l :Dcpo -> CFam(Dcpo) is a terminal object
functor, so we concentrate on its right adjoint. For (f):A -^ Dcpo^^ the set
{(f)} — {{a,x) \ a E A and x G <t>(^)] is a dcpo, since for a directed collection
(a,-, Xj) in {0} one can compute the join as:

\/i{ai,Xi) = (a, \/i(f){ai < a)^(xi)), where a = y^ai.

640 Chapter 10: First order dependent type theory

The first projection function TT :̂ {0} —> A is clearly continuous. For a mor-
phism f:(j) -^ ip over A we get a function {/}'{(!>} -> {V̂ } by {a,x) \-^
(«5 fa{^))- This {/} is continuous function: for a directed collection (a,, Xi)i^j
in {0}, the join is (a, x) where a = Vie/ *̂' ^^^ ^ ~ Vie/ ^(^« ^ ^)^(^t) î̂ <̂
so we have

{f}{a,x) = (a,Mx)) y (a , V , g / M - < ar/a.(a;,)) = V ,e / i / } (« ' ' ^ ')

where the equation (*) holds because

fa{x) = \J(i>{aj < aYfa^(j){aj < ay{x)

jei iei

= \j<t>{0'i < aYfaM^i < ciy(f)(ai < ay{xi)
iei

= V(/>(ai < ayfa,(xi).

where the two joins over / can be combined into a single join, because they
are directed joins.

The resulting functor CFam(Dcpo)^ -^ Dcpo/A between fibres is ob-
viously faithful. And it is full because if we have a continuous function
u: {<{)} -> {t/j} with TT^ o u = TT ,̂ then there is a morphism f:<f)—^jp over
A with fa{x) = 7T'u{a,x). Then obviously {/} = u. We leave it to the reader
to verify that this collection / = [fa)aeA is indeed a morphism (j) ^ tp over
A. •

CFam(Dcpo)
10.6.3. Lemma. The comprehension category with unit i admits

Dcpo

strong coproducts. For a family (/>: A -^ Dcpo^^ over A, and another family
ip: {(f)} —^ Dcpo^^ over {(f)}, we get a coproduct Yl^W-^ ~^ Dcpo^^ by

a ^ {V (̂a, -) } - {{x, y)\x e 0(a) and y G i){a, x)},

ordered by

(^i^yi) < (^2,2/2) <=> xi <X2 andip{{a,xi) <(a,X2)y{yi) <y2'

Proof. For ai < 02 in ^ we have to define a pair of continuous functions

Li4v)(«i < a^r

Section 10.6: Domain theoretic models of type dependency 641

They are given by

1 1 ^ ^ (0 1 < a 2 r (x , y)

= {Hai < a2Y(x), V(ai,</'(ai < a2y(x)) < (a2,x)Y(y))

LJ^(V')(ai<a2r(x,2/)

= {<t>{ax < a2)P(x), V((ai,^) < (a2,0(ai < a2r(x))P(y)).

By some lengthy computations one verifies that these functions form an
embedding-projection pair and make a i-> LI^(V^)(a) a continuous functor.

For a continuous functor x-^ ^ Dcpo^^ over A, there is a bijective cor-
respondence between vertical morphisms:

UM) ^ X over A

xH ^ 7r*(x) over {(/>}

which is described as follows. Starting with a family / = {fa)aeA over A one
gets a family / over {<;/>} by

And in the reverse direction, starting with g — [9{a,x)){a,x)e{(l>] one takes

9a{^^y) = 9{a,x){y)'

These operations produce appropriate new families and are obviously each
others inverses. It remains to show that these coproducts are strong. But it is
not hard to see that the canonical map

W ^ {Ll0(V^)} given by ((a, x), y) ^ (a, (x, y))

is an (order) isomorphism. D

CFam(Dcpo)
10.6.4. Lemma. The comprehension category i admits products:

for families <j): A -^ Dcpo^^ and ip: {(f)} —> Dcpo^^^ there is a product family
n ^ (V ^) : ^ ^ D c p o E P ^y

a H-̂ {h: (j){a) —)• UA'tp){ci) \ h is continuous and TT o h — id},

ordered pointwise.

Proof. The action of the product n< (̂V)̂ on a morphism a\ < 02 in 4̂ is

642 Chapter 10: First order dependent type theory

given by the following embedding-projection pair.

n0W(ai<a2rw
= %ze 0(a2).(z, V^((ai,(^(ai < a s F W) < {a2,z)Y{ir'h{cl>{ai < a2K(z))))

= %xe (f>{ai).{x,i;{{ai,x) < {a2,(f>{^i < a2)Mx)K(7r'fc(0(ai < a2Y{x)))).

This functor Hd!)!"") '^ right adjoint to the weakening functor 7rJ,(—), by the
adjoint correspondence

X ^ YlcpW over A

7r^(^) ——^ 'tp over {0}

described as follows. Given a family / = {fa) over A, define fta,x){y) —
^^fa{y){x) e i)[a, x). And conversely, given a family g = {9(a,x)) over {</>} one
puts g^{y) =%x.{x,g(^a,x){y)) eUcf>W^^'>- °

By collecting the above lemmas we get the main result.
CFam(Dcpo)

10.6.5. Theorem. The fibration i of "dcpos continuously indexed
Dcpo

by dcpos" is a closed comprehension category. •

Closures indexed by closures

In the remainder of this section we sketch how the so-called closure model
from [302, 15] fits in a categorical framework of closed comprehension cate-
gories. Let (Pu;,C) be the complete lattice of subsets of the set of natural
numbers LJ (= N) . The set of (Scott-)continuous functions [Pa; —> PUJ] comes
equipped with continuous maps F: PLJ —^ [Pu —> PUJ] and G: [PLJ -^ PUJ] ->
PUJ for application and abstraction, satisfying F o G = id and G o F > id.
This makes it a (non-extensional, additive) model of the untyped A-calculus,
see [13]. As usual, we write x -yfor F{x){y) and \x ... for G{%x . . .) . Further,
we use that there is a continuous surjective pairing [—,—]: PUJ X PUJ —)• PUJ
with continuous projections TT, TT'.

A closure is an element a G PUJ satisfying a o a = a > I, where a o a =
Xx.a- {a- x) and I = Xx.x. Closures form a category Clos by the stipulating
that a morphism u:a —^ b between closures is an element u G PUJ satisfying
b o u o a = u {or equivalently, b o u = u and u o a = u). One easily verifies that
Clos is a Cartesian closed category (see [302]), with terminal object 1 = Xx.uj,
product a X b = Xx. [a • TTX, b • TT'X] and exponent a => b = Ax. b o x o a. For

Section 10.6: Domain theoretic models of type dependency 643

a G Clos we write Im(a) — {a-x \x ^ P^}] then Im(a) — {x Q. Puj \ a-x = x}
and Im(a => 6) = Clos(a, 6).

A crucial result is the existence of a closure Q with Im(Q) = Obj Clos , so
tha t a G PLO is a closure if and only iiQ-a = a (see [15, Theorem 1.12], where
this result is a t t r ibuted to Martin-L6f, Hancock and D. Scott independently).

Fam(Clos)
This gives us the possibility to define a split fibration I of 'closure-
indexed closures'. Objects of the total category Fam(Clos) are arrows X: a ->
Q. in Clos. An arrow {X: a -> Q) —> (y: 6 —> fi) is a pair {u, a) with w.a-^h
a morphism in the base category Clos and a G Pu) is an 'a-indexed family of
morphisms'. The latter means that a o a — a and a - z: X - z -^ Y • [u • z) is
a morphism in Clos (for each z G Pu)). Here we use that X • z is an element
of Im(fi) = Obj Clos. The functor Fam(Clos) -> Clos sending {X\a -^ Q)
to a is then a split fibration. It has a fibred terminal object via a functor
1: Clos -^ Fam(Clos) by

a i-> \\xy.(jj\ a ^ Q).

A right adjoint { —}: Fam(Clos) —>• Clos to 1 is described by

(X: a - ^ Q) 1-̂ \z. [a • TTZ, X • T^Z - TT'Z].

It is not hard to check that we get a fibration with full comprehension. It
further has products and strong coproducts (along the induced projections
-Kx'- {X] —>• a): for an object X:a -^Q. over a G Clos and an object Y: {X] -^
Q over {X} one defines coproduct and product objects U x (^) ' I l x l ^) ' ^ ^
Q over a by

Wxi^) =)^ZV.[X 'Z'-KV.Y -[a-Z^X -Z^TTVI-I^'v]

]\x{y) = Xzvw.Y -[a-z^X 'Z'w]'{v'{X 'Z -w)).

This yields a (split) closed comprehension category.

Exercises

10.6.1. (i) For continuous functors (t>,tp: A ^ Dcpo , show that the product and
exponent in the fibre over A, which are by Proposition 10.5.4 described
by the formulas

<t>x^ = LJ«('r;(t/')) and 4> ^ ^ = n ^ (' ^ ; (^))

are point wise the Cartesian product and exponent of Dcpo.
(ii) Check that Beck-CheVcJley holds for the dependent coproducts J7^(^)

and products]J^(t/') in Lemmas 10.6.3 cind 10.6.4.
10.6.2. A Scott-domain is a bounded complete algebraic dcpo. Write SD <—> Dcpo

for the full subcategory of Scott-domains (and Scott-continuous functions).

644 Chapter 10: First order dependent type theory

For a Scott-domain A a functor 0: 4̂ -> SD will be called continuous if
it is continuous as a family of dcpos, i.e. if it satisfies the condition men-
tioned in the beginning of this section. Such a functor <l> may be seen as
a continuous family of Scott-domains, indexed by a Scott-domain. Prove
that the CFam(—) fibration for Scott-domains also yields a closed com-
prehension category, essentially by checking that for a continuous family
(t>:A^ SD^P
(i) the Grothendieck completion {(f)} is again a Scott-domain;
(ii) the dcpo n<i.(^)(^) ^^ Lemma 10.6.4 is also a Scott-domain, for

xp: {</>} -> SD a continuous family over ^.
Fam(Clos)

10.6.3. (i) Show that the fibration i of closure-indexed-closures has a

split generic object (and thus that it is a small fibration).
(ii) Explain that, as a result of (i), one has a model in which the axiom

h Type: Type holds.
[A dependent calculus with such a type of all types is inconsistent in the
sense that every type is inhabited. This follows from Girard's paradox,
see Exercise 11.5.3.]

(iii) Show that it is a Aa;-fibration. (As such, it is described in [307].)
(iv) Consider the category Clos with objects

17o = Q

Qi — Xx. [Q • (TTIX), Q ' (7r2a;), Q • (7r2a7) o TTSX O Q • (nix)]

where we have used [-,-,-] for the 3-tuple with projections 7ri,7r2,7r3.
Show that we get an internal category (Qi —^ Qo) in Clos and that
its externaJisation is the above fibration of closure-indexed-closures.

Chapter 11

Higher order dependent type theory

In this final chapter several lines come together: the various logics and type
theories that we have so far studied in isolation, are now combined into sev-
eral powerful higher order dependent type theories. These type theories will be
introduced as suitable combinations of earlier type theories. And correspond-
ingly, their categorical semantics will be described via suitable combinations
of structures—notably fibrations and comprehension categories—that we used
earlier for the component type theories. We focus mostly on these modular as-
pects of higher order dependent type theory, and, accordingly, we leave many
of the details of the syntax implicit. On the categorical side, the double role
of comprehension categories—on the one hand as domains of quantification,
see Section 9.3, and on the other as models of dependent type theory, see
Section 10.4—is crucial in achieving this modularity.

We will consider three systems of higher order dependent type theory.

• Higher order predicate logic over dependent type theory; often, it will be
called dependent predicate logic, with DPL as abbreviation.

• Polymorphic dependent type theory (PDTT) ; this may be seen as a
propositions-as-types extension of DPL.

• Full higher order dependent type theory (FhoDTT) , which, in a more drastic
manner, is also a propositions-as-types extension of DPL.

We start this chapter with higher order dependent predicate logic (DPL).
It may be contrasted with ordinary or simple (first or higher order) predicate
logic, which is predicate logic over simple type theory (abbreviated as SPL,
see Chapter 4), and also with polymorphic predicate logic PPL (discussed in

645

646 Chapter 11: Higher order dependent type theory

Section 8.6). Characteristic for DPL is that for a type cr,

(predicates <>p[x)\ Prop

term variables x\ a may occur both in < and in

[types r(a:): Type.

We will consider the higher order version of DPL, with the axiom Prop: Type,
but of course, one may also choose to use a first order logic over dependent type
theory. This dependent predicate logic is quite natural and expressive, as will
be argued below. It forms the basis for the proof assistant PVS see [242, 241].

The other two systems PDTT and FhoDTT of higher order dependent type
theory are obtained by extending this logic over dependent type theory to a
type theory over dependent type theory, in the propositions-as-types manner,
by introducing explicit proof-objects (or terms) in type theory for derivations
in logic. Instead of 'propositions over types' as in logic we shall talk about
'types over kinds' in type theory. In this situation we assume (like in the logic)
that for a kind ^4: Kind, we may have

(types cr(a): Type

variables a: A occurring in < and in

I kinds J5(a): Kind,

so that we have both types and kinds depending on kinds. We then consider
two possible extensions: one may additionally have

(1) types depending on types: variables x:a, for cr:Type, occurring in types
r(x):Type;

(2) kinds depending on types: variables x:a^ for (7:Type, occurring in kinds
A[x):K\n6.

In the first case one gets what we call polymorphic dependen t t ype
theory (PDTT). Its basis is formed by sequents of kinds A and types a of
the form

ai\Ai, ...,an'.An \ iCi:o-i,.. .,Xm''(^m l~ cr^+i:Type

like in polymorphic type theory, with the addition that both kind and type
contexts contain dependent kinds and types: kinds A,+i may contain vari-
ables a i , . . . , af in kinds and types (TJ^\ may contain variables a i , . . . , a„
ranging over kinds (as in polymorphic 'simple' type theory), and also vari-
ables a?i,. . . , ajj ranging over types. Hence, polymorphic dependent type the-
ory adds both "kind dependency" and "type dependency" to polymorphic
simple type theory.

In the second case with kinds additionally depending on types one looses
the possibility to separate kind and type contexts, so that one gets sequents

Section 11.1: Higher order dependent type theory 647

of the form

xi\Ci,.. .,Xn'-Cn H D: Kind/Type

where Ci: Kind/Type, i.e. where Ci is either a type or a kind. This yields
systems like the Calculus of Constructions of Coquand and Huet [58]. Type
theories like in (1), which capture dependent type theory over dependent
kind theory have been proposed as HML by Moggi [230] and as the theory of
predicates by Pavlovic [252, 253]. Moggi precludes kinds depending on types in
HML, because he wishes to use HML as a rudimentary programming language
with a compile-time part of kinds which is independent of a run-time part
of types. The motivation of Pavlovic comes from logic: he thinks of types as
propositions and of kinds as sets and does not want sets to depend on proofs
[i.e. on inhabitants of propositions). Both arguments make good sense and
form the basis for sensible type theories.

In this chapter we will be increasingly blurring the distinction between type
theory and category theory, assuming tha t the reader is sufficiently prepared
by the previous chapters. Also, we shall be rather sketchy in describing par-
ticular type theories, mainly because we see them as modular composites of
other systems that we described earlier in greater detail. Here we mostly put
emphasis on the way in which these components are put together. The "de-
pendency relation" between syntactic categories (like Type and Kind) will be
of crucial importance in such combinations, see the beginning of Section 11.5.

This chapter s tar ts with an introduction to (the syntax of) dependent predi-
cate logic. This syntactical material is immediately organised in a term model.
It suggests the underlying categorical structure, which will be elaborated in
Section 11.2. The dependent version of polymorphic type theory is studied
in Section 11.3. It prompts a detailed investigation of both syntactical and
categorical aspects of different sum types and equality types. We identify
weak, strong and very strong versions of these sum and equality types, by
distinguishing between certain dependencies in the elimination rules. These
dependencies in type theory are related to indexing in category theory. They
are described systematically in the beginning of Section 11.5. The remainder
of this section is devoted to the syntax of full higher order dependent type
theory (FhoDTT) . In the subsequent Section 11.6 we describe various models
of this FhoDTT, including different PER-models . And the final Section 11.7
will elaborate on the special model consisting of PERs in the effective topos
EfF. It focuses on the (weak) completeness of the fibrations of families of
PERs and of u;-sets over EfF. The "stack completions" of these fibrations will
be identified as complete fibrations (of separated families and of separated
families orthogonal to V2 G EfF respectively).

648 Chapter 11: Higher order dependent type theory

11.1 Dependent predicate logic

In this section we will first introduce (higher order) predicate logic over de-
pendent type theory, or dependent predicate logic (DPL), for short, together
with some motivating examples (mostly involving subset and quotient types).
Then we sketch the syntax for such a logic. We put special emphasis on the
organisation of (type and proposition) contexts in this logic, since this is what
determines the underlying fibred structure. Towards the end of this section we
shall describe a term model of DPL. Its categorical structure will be further
investigated in the next section.

As already mentioned in the introduction to this chapter, the key ingredient
of dependent predicate logic is that term variables x:a in a: Type may occur
both in propositions (p{x): Prop (as in ordinary, or simple, predicate logic SPL),
and in types r(a:):Type (as in dependent type theory DTT). This means that
we have formation sequents in DPL of the form:

xi'.CTi,.. ..Xn'.cTn H Ti Type and xi'.ai,... ,Xn'.(Tn I-V?: Prop

in which the term variables x: a may occur both in r and in (p. But there are
also entailment sequents of the form:

Xi:(Ti,...,Xn:(Tn \ (fi, . , . , (frn ^ i^

expressing that the proposition ip follows from the premises (fi,.. -j^Pm, in
the (dependent) type context of term variables x: a. As before, we call (p
the proposition context. In this sequent it is understood the (fi and 'tp are
propositions in context x: a.

In the higher order version of dependent predicate logic we shall be using
an axiom h Prop: Type. As a result, we can also have proposition variables
a: Prop occurring in types and propositions—and we may also (impredica-
tively) quantify over these, like in 3a: Prop. (p{a) and Va: Prop. (p{a).

One of the key advantages of dependent (over simple) predicate logic is that
it allows us to make full use of subset types and quotient types—introduced
in simple predicate logic in the earlier sections 4.6 and 4.7. For example, in
forming (dependent!) types

p: N, n: N \- n < p: Prop

def

p:N h Nat(p) = {n: N | n < p}:Type
of natural numbers below p. Similarly, with quotients one can form the de-
pendent type (or group) Z/pZ of integers modulo p, in:

p: Z,x:Z,y:Z \- x ^p y = 3z: Z.{x - y) — z -p: Prop

p:Z \-Z/pZ = Z/^p'.Jype

Section 11.1: Dependent predicate logic 649

W h a t happens here is tha t subset types {n: N | n < p] ^> N and quotient
types Z -^ ~^lv^ ^r^ formed which depend on a term variable p. This is
because p is occurring free in the propositions which give rise to these subsets
and quotients. The natural setting for these features is a logic over dependent
types.

In such a logic one also has convenient ways of expressing results like

p\ N , / : Nat(p) -> Nat(p) | injective(/) h surjective(/)

saying (in essence) that every injective endofunction on a finite set is surjec-
tive. A similar example is the following standard result in topology.

n\ N, a: P(R'^) | compact(a) h closed(a) A bounded(a).

Another argument supporting the naturali ty of this dependent predicate
logic is tha t it actually is an expressive version of the internal language of
a topos. There are various ways to describe such a language. In most topos
theoretic texts it is presented as a higher order predicate logic over simple type
theory (see e.g, [186]). Phoa [262] describes this internal language explicitly
as a logic over dependent type theory. Of course, this extended language can
be translated back into the logic over simple type theory, but its advantage
lies in its additional flexibility and expressiveness (see the examples above).
Such dependent predicate logic also occurs in [165] and in [242, 241].

The basis for the syntax of DPL is formed by the rules for dependent type
theory in Section 10.1. So we shall use dependent product types Ux.a.r,
strong dependent sum types Ex: a. r and a unit type 1. We exclude the equality
type Eqa(iP, x')^ because equality will be dealt with at the propositional level.
There is a special type Prop: Type of propositions, such tha t propositions occur
as inhabitants of Prop. This gives us higher order logic. As already mentioned,
in DPL there are entailment sequents of the following form.

dependent type
context

Xi\ai,...,Xn'-crn I ^ i , . . . , V ^ m -̂ '0

ordinary
proposition context

We shall often abbreviate such type contexts as F = (x i : CTI, . . . , Xn'. cr„) and
proposition contexts as 0 = [<^\,.. ..(prn)- The logical rules for dependent
predicate logic (DPL) have the same form as for simple predicate logic (SPL)
in Figure 4.1 (on page 225), except tha t the type contexts F are to be un-
derstood as contexts in dependent type theory. For example, for the universal

650 Chapter 11: Higher order dependent type theory

quantifier V we have the formation rule

T,x:a h (p: Prop

r h ^x:a.(f: Prop

with introduction and elimination rules

T,x:a\e\-(p . T\-M:a T | 0 h Vx: (T. v?
{x not in 0)

T\Q [-"^xia.ip r | 0 h(p[M/x]

So the additional type dependency in DPL has no influence on the form of
the rules: we can use the same logical rules in simple and dependent predicate
logic. But notice that in DPL we cannot form

r , x: cr, A h (p: Prop

r , A h Wx:cr.(p: Prop

unless X does not occur free in A: then we can exchange x: a and A (according
to the exchange rule in dependent type theory, so that the earlier mentioned
formation rule can be used). This complication is due to the fact that in
dependent type theory the order of the variable declarations in a type context
is important—whereas in simple type theory it is not.

As already mentioned, the axiom h Prop: Type provides us with higher order
logic in which one can quantify over propositions and over predicates, like in
the (closed) propositions

Va: Prop. a D a and \/a: Prop.^p.a—^ Prop.3x:a.px.

And like in higher order predicate logic over simple type theory, there is an
"extensionality of entailment" rule:

r h P, Q: (7 -> Prop T,X:(T\ 0 , Px \-Qx T,X:(T\ 0 , Qx h Px

r I 0 h P - ,_Prop Q

The main novelty in dependent predicate logic is that subset and quotient
types can be exploited in full generality. This makes DPL (instead of SPL)
the natural logic for these type constructors. They now have formation rules

r , a?: cr h (p{x): Prop F, x: c^y.a h R[x^ y): Prop

r \- {x:a\ <y9(a?)}:Type T h a/R:Type

in which we can have a proper type context F—which was required to be
empty in Section 4.6 in order to stay within simple type theory. The associated
introduction and elimination rules are formally as in Section 4.6, but one
should read the type contexts as containing dependent types.

As an example, for an integer p: Z we shall describe the quotient group
Z/pZ of integers modulo p in some detail. Here we assume that Z is the ring

Section 11.1: Dependent predicate logic 651

of integers with function symbols (0, +, —, 1, •) for addition and multiplication,
satisfying the usual equations.

One forms the quotient Z/pZ from the (equivalence) relation ^p on Z defined
as

p\ Z, x,y:Z \- X ^p y = 3z: Z.{x - y) =z z -p: Prop.

So that we can form the dependent type

p:Z H Z/pZ = Z/~p:Type.

It comes equipped with the canonical map

p:Z,x:Z (- [x]p:Z/pZ.

Now we can put

p:Z\-Op = ' [0]p:Z/pZ.

for a (new) neutral element. Inverse —p and addition -\-p operations on Z/pZ
can be defined via representatives:

p: Z, a: Z/pZ \- —pa = pick x from a in [—x]: Z/pZ
def

p: Z, a, b: Z/pZ \- a-\-p b — pick x, y from a, 6 in [x + y] : Z/pZ.
In this way the type Z/pZ of integers modulo p becomes an Abelian group.

In the remainder of this section we show how the context structure of depen-
dent predicate logic gives rise to a term model constellation of (split) fibred
categories

F T ^ C^

c '°'^
where

• C is the category of (dependent) type contexts F, as introduced in Sec-
tion 10.3.

• T is the category of dependent-types-in-context F h cr:Type, fibred over
C via (F h criType) i-)- F. This gives a closed comprehension category
T -> C"̂ , see Example 10.5.6.

• F is the category of propositions-in-dependent-type-contexts F h ^: Prop.
A morphism (F h ip: Prop) ^ (A h ^: Prop) in this category consists of a
context morphism M: F ^ A in C for which one can derive T \ (p \- 'ip{M)
in DPL. This category P is then fibred over C via (F h (f: Prop) ^ F.

We see that since both propositions and types depend on {i.e. are indexed
f T

by) types, we get two fibrations ^ and i of categories of propositions and

652 Chapter 11: Higher order dependent type theory

of types over contexts of types. These fibrations are related in the following
way.

r _
(1) The fibration i of propositions has products and coproducts with re-

spect to the comprehension category T —>• C~̂ of types (see Section 9.3 for
what this means precisely). Notice that this involves quantification along
dependent projections 'K:{V,X:(T) -> F. But the pattern is the same as in
simple predicate logic, where the fibration of propositions admits quantifi-
cation with respect to the simple comprehension category of types (with
Cartesian projections only).

r
(2) The fibration 4; of propositions has a (split) generic object (a: Prop h

a: Prop) G IP over the singleton context (a: Prop) E C And the latter is the
domain of the projection (a: Prop) —> () in C induced by the closed type
(h Prop: Type) G T.

We shall elaborate on the categorical aspects of quantification (V and 3) of
propositions over dependent types in DPL, described via quantification in
terms of comprehension categories (as mentioned in (1)). For each depen-
dent type (F h criType) G T over F G C we have a dependent projec-
tion 'K:{T,x:a) -> F. This map in the base category C induces a weaken-
ing functor 7r*:Tr —> ^{v,x:a) acting on types, and also a weakening functor
TT*: Pr ^ IP(r,a::<7) actiug on propositions. The latter will be of interest here; it
maps

(F h <̂ : Prop) ^ (F , x:a V- if: Prop)

by adding a dummy variable x: cr. In DPL (like in SPL) the rules for existential
3x: cr. (—) and universal Va:: cr. (—) quantification can be reformulated as 'mate'
rules (see Lemma 4.1.8):

F I (̂ h Vx: a.il) F I 3x: a.ip h (f

T,x:a\(p\-ip T,x:(T \ ip \-(f

where (p below the lines is really 7r*{(p). This shows that we have adjunctions

3x:(T.(-)H7r* HVx:(7.(-)

The Beck-Chevalley condition holds because substitution [L/—] of terms L in
propositions Vx: cr. ^ and Sx'.a.tp commutes appropriately with V and 3, as in

r
Section 4.1. Thus the fibration i has products and coproducts with respect
to the comprehension category T -^ C"*".

The structure of these two fibrations of types and of propositions over con-
texts will be studied more systematically in the next section.

Section 11.2: Dependent predicate logic, categorically 653

Exercises

11.1.1. (i) Consider the quotient group Z/pZ described above, and prove that
there are conversions:

p: Z, a: Z/pZ h a = pick x from a\v\[x-\- p\p : Z/pZ

p: Z, a: Z/pZ h a = pick x from a in [a: — p]p : Z/pZ.

(ii) And derive:

p: Z, a: Z/pZ | T h 3a;: Z. a = [a;]p.

11.1.2. Describe equality propositions F, a:: (T, a;': <T h X =cr :r': Prop, for T \- cr: Type
in DPL (with rules as in SPL) as equality for the (term model) fibration
^ . . .
i of propositions with respect to the comprehension category T —)• C~̂ of

types.

11.2 Dependent predicate logic^ categorically

In this section we describe a fibred categorical structure capturing dependent
predicate logic, essentially by suitably combining the components of this logic.
We then proceed to describe dependent subset types and quotient types in
this setting.

We have seen in Chapters 4 and 10 tha t

(1) Predicate logic over simple type theory (SPL) is described by a preorder
fibration

D

| .

IB

where IB is the category of type contexts (or just types, considered as sin-
gleton contexts, if we use finite products of types).

(2) Dependent type theory (DTT) is captured by a (closed) comprehension
category

V
E ^ B - ^

where B is the category of (dependent) type contexts.

Combining these we get a structure for dependent predicate logic (DPL).

654 Chapter 11: Higher order dependent type theory

It looks as follows,

V
D E ^B"^

p

where \^ is a preorder fibration and P : E -^ B~̂ is a comprehension
category. The type formers E , n , l and proposition formers 3,V, = and
T,A,± ,V, D of DPL are then incorporated by imposing the following ad-
ditional conditions on this structure:

(1) 'P is a closed comprehension category;
(2) g is a fibred bicartesian closed preorder fibration.
(3) q has P-products V, P-coproducts 3 and P-equality Eq.

For the higher order axiom h Prop: Type of DPL we further impose:
(4) for higher order: there is a closed type fi G Ei in the fibre over the

terminal object 1 G B, such that the fibration q of propositions has a generic
object T G D above {Q} = dom('PQ).

11.2.1. Definition. We shall call a structure i with E -^ B"^ as above, sat-
isfying requirements (1) - (4) a DPL-s t ruc tu re , with 'DPL' for 'dependent
predicate logic'.

IP
It may be clear that the term model of DPL consisting of a fibration i and

a comprehension category T —>• C^ as discussed at the end of the previous
section, is an instance of such a DPL-structure.

Our main examples of higher order fibrations:
Fam(A) Sub(B) U F a m (P N)

i for A a frame, 4- for B a topos, i
Sets B Sets

are in fact DPL-structures of the form,

Fam(^) Fam(Sets) - ^ Sets" ' Sub(B) ^(B) - ^ B"^

UFam(PN) Fam(Sets) - = ^ Sets

where we have chosen to present the comprehension categories in split form
:F(B)

(with i the split presentation of the codomain fibration of a topos B, see
B

Section 11.2: Dependent predicate logic, categorically 655

Example 10.5.9). These examples all arise (essentially) from the second point
in the following result.

11.2.2. Proposition. Let i he a higher order fibration.
B

(i) It forms part of a "simple" DPL-structure

(B;

1 ^ ^ c o d
1

(ii) / / the base category M is a locally Cartesian closed category and the in-
duced adjoints]J^ -\ u* -^ Yiu ^^ ^ (^^^ Example J^.S.l) satisfy Beck-Chevalley,
then we have a DPL-structure

^M-"

Proof, (i) Since the projections and diagonals of the simple comprehension
category s(]B) -^ B"^ are the Cartesian projections and diagonals, the higher
order fibration has by definition quantification with respect to this compre-
hension category. The generic object condition holds, since the fibre over 1 E B
of the simple fibration is isomorphic to B.

. p
(ii) Validity of the Beck-Chevalley condition ensures that the fibration i

IB

has products and coproducts with respect to the identity comprehension cat-
egory B-" -> B"' (see also Example 9.3.6). D

This result tells us how to obtain DPL-structures from higher order fibra-
tions. There is also a way to extract a higher order fibration from a DPL-struc-
ture, see Exercise 11.2.4 below.

In the remainder of this section we define what it means for a DPL-structure
to admit (dependent) subset and quotient types. These definitions are impor-
tant in the light of our claim that DPL is the natural logic for subset and
quotient types, where these type constructors can be used in full generality
(see the example of the quotient group Z/pZ of integers modulo p in the pre-
vious section). As examples of DPL-structures with dependent subset and
quotient types we shall only discuss term models and topos models.

11.2.3. Definition. Consider a DPL-structure

V
D E ^ B-^

^ ^ I ^ c o d

656 Chapter 11: Higher order dependent type theory

as introduced above. Then we can form the diagram

Fam'p(D) ^ D

Fam'p(g)

T

E
{-} ^ d o m o - p

where Fam'p(g) is defined as the composite Fam'p(D) -^ E ^ B. The (fibred)
terminal object functor T:E —>• Fam7>(D) is induced by the terminal object
functor T iB -^ D to g, namely as X H^ (X, T{X}). In this situation, we say
the DPL-structure has (dependent) subset types if there is a fibred right
adjoint { —} to T in the situation:

{ -}

E
T

Fam'p(D)

Fam7>(g)

Such an adjoint induces a fibred projection functor Fam7>(D) —>• V(E) over
E, like in Definition 4.6.1^where V(E) ^^ E"*" is the full subcategory of
vertical maps. We shall say that we have full dependent subset types if this
functor is full and faithful.

(In the diagrams above we use the "Fam" notation because of the analogy
with the construction in Exercise 1.9.11.)

The above right adjoint {—} has to be a fibred one over p, because the type
context r remains the same in the formation rule for dependent subset types:

F, ar: cr h (p: Prop

F h {x:cr| <^}:Type

The sequent above the line yields an object (o-, (/?) G E X i D = Fam'p(D) over
F G 1. And also {x\(T\(p] e^ has to live above F G B.

r
We briefly describe this fibred subset adjunction in the term model ^ with

V:T -^ CT̂ from the previous section. Notice that the auxiliary category
Fam'p(P)has:

objects pairs consisting of a dependent type F h cr: Type and a
predicate V^x.a h (p: Prop on a.

Section 11.2: Dependent predicate logic, categorically 657

morph i sms from (F h o": Type, F, x: cr h ^: Prop) to (A h r:Type,
A ,y : r h V-Pi'op) consist of a morphism M:F —>• A of
contexts together with a term F, x: cr h A'': r such that one
can derive

The terminal object functor T —> Famp(P) is then given by

(F h (T: Type) ^ (F , X: CT h T : Prop).

A right adjoint to this functor T in the fibre over F involves a bijective corre-
spondence between terms M and N in:

(F , x:a ^T: Prop) ^ (F , yir h ip: Prop)

(F h a: Type) - ^ (F h {y: r | ^ } : Type)

That is, in:

T,x:a\-M:T with F, x: cr | T h ^^[M/t/]

T,x:a h N:{y:T\ip}

The correspondence is given by

M h-> i(M)

TV K^ o(7V),

using the 'i' for 4n' and 'o' for 'out' as in the introduction and elimination
rules for subset types in simple predicate logic (in Section 4.6).

11.2.4. Proposi t ion . For a topos B, the associated DPL-structure

Sub(B) W^

cod

always has full dependent subset types. (For convenience we state this result
for the the non-split presentation of this model.)

658 Chapter 11: Higher order dependent type theory

Proof. Consider the situation

SubFam(B)

J T

B^

cod

-^ Su

dom

The category SubFam(B) thus has subobjects Y ^^ X —> I of families
X —> I as objects. The terminal object functor W^ -^ SubFam(B) maps

(z—^ i) \-^{z>^z—^/).
And it has a right adjoint over / , by composition:

/ i d i^ ^ if, 9)
{y ^ X - ^ l)

since in a commuting diagram:

. (pom .
(y - /)

z -
id

-^Y

— ^ X

I

the map / is determined as composite mo g.
The associated projection functor SubFam(B) —>• V(B~*') = W^~* is

{y X ')

Y^^X
\ /

I

It is obviously full and faithful. D

We turn to quotient types in DPL. Recall that for a comprehension category
P : E -> B-^ we usually write {-}: E -> B for dom o ?>. Let us write here {{-}}

Section 11.2: Dependent predicate logic, categorically 659

for cod o <J:E —> B, where S[X) is the diagonal map used in Definition 9.3.5
to define equality. Thus {{ —}} maps an object X G E to

{{X]] = {VX*{X)]

J

{X]
vx

{X]

vx
(

pX

Type theoretically, {{ —}} maps a dependent type T h (T:Type to the context
(r, x: a, x': a) that extends F with two variables of type a.

11.2.5. Definition. For a DPL-structure

E

/I cod

consider the category of relations, obtained by change-of-base in:

. RFam^(D) ^ D

RFam'p(^)

Eq

E
{{-}}zz:C0d0(J

where RFam'p(^) is the composite RFam'p(D) ^ E —)- B. The (fibred) equality
object functor Eq:E -> RFamp(D) is induced by the equality Eq in q (with
respect to V), namely as X h-> (X, Eq(l{X})). We say the DPL-structure has
(dependent) quot ient types if there is a fibred left adjoint Q to Eq in the
situation:

Q

RFam7>(D)

RFam'p(g)

Eq
E

Such an adjoint induces a "canonical quotient map" functor RFam-p(D) —>•
V(E) commuting with the domain functor dom: V(E) -^ E, as in Proposi-
tion 4.8.5. We shall say that we have full (or effective) dependent quotient

660 Chapter 11: Higher order dependent type theory

types if this functor is full and faithful, when restricted to equivalence rela-
tions.

p
In the type theoretic example with i and V:T -^ C"*" as in the previous

section, the category RFamp(P) has

objects dependent types F h cr: Type together with a relation
r , x: cr^ x': a h R[x^ x'): Prop on cr.

morphisms from (F, x: cr, ar'rcr h R[x^x')'.Prop) to (A,2/:r, y ' : r h
S{y,y'): Prop) consist of a morphism M:T —> A of con-
texts together with a term T,x:a h N:T such that one
can derive

F, x: a, x': a \ R(x, x') h S{M, N{x), N{x')).

The equality functor T —> RFam'p(F) sends a type F h r: Type to the equality
relation T,y:T,y':T \- y =7. y': Prop on r. Quotient types in dependent predi-
cate logic provide a left adjoint, since they induce a bijective correspondence
(over F) between terms N and M in

N
(F , X: cr, x': a h R{x, x'): Prop) ^ (F , y: T,y': r \- y =r y'- Prop)

(F h ^/i^:Type) - ^ (F h riType)

I.e. m
Y,x\a \- N\T with F, x\ a, x'\ c \ R{x, x') h N(x) =r N{x')

T,a:a/R h M : r

This correspondence is given by

N{x) Ĥ (pick X from a in N{x)) and M(a) H^ M[[a:]i?/a].

11.2.6. Propos i t ion . Every topos—as a DPL-structure—has full dependent
quotient types.

Proof. Let B be our topos. Consider the relevant change-of-base situation

^ Sub(IB) - RelFam(B)

B-^ —

cod
{{-}}

Section 11.2: Dependent predicate logic, categorically 661

where the functor {{ —}} maps a family X -^ / to the domain X Xj X of its
kernel pair X Xj X :=t X. An object of RelFam(IB) is then a family (p: X -^ I
together with a mono {ro,ri): R ^-^ X XjX with (p o VQ =^ (p o ri. The equality
functor B"*" -^ RelFam(B) sends a family y -> / to the (vertical) diagonal
Yy^YxjYonY-^I. For a relation {ro,ri):R >-^ X Xj X over p: X -^ I
we can form the coequaliser c: X -^ X/R in

so tha t we get a new family ^/R over / . There is then a bijective correspon-
dence (over /) :

[R^^^ X Xj X over X ^ I) ^ (y :
i^

Y XjY over Y -^ l)

{x/R /) ^
(V — /)

since there is a map f:X-^Y satisfying ip o f — (p with g: R —• Y in the
diagram below on the left, if and only if there is a map h: X/R ^ y in the
diagram on the right:

R

(^o,ri)I
^ f xi f

X XI X ^ y xjY

Y

R

ro

n

X - ^ X/R - ^ Y

Fullness is left as an exercise below. D

Exercises

11.2.1. Prove that dependent subset projections are monos, and similarly that
dependent quotient maps are epis—in analogy with Lemmas 4.6.2 (i)
and 4.8.2 (ii).

11.2.2. Consider DPL with dependent subset and quotient types. Give explicit

662 Chapter 11: Higher order dependent type theory

descriptions in the term model 4- with V:T ^ C"*" of:

(i) the subset functor Fam7:>(P) —^ T
(ii) the quotient functor RFam7?(F) -)• T
and show that these are fibred functors.

11.2.3. (i) Prove that the assignment ((/?, R) i-)- ip/R defined in the proof of Propo-
sition 11.2.6 yields a fibred functor RelFam(B) -> B"^ .
[Remember that puUback functors preserve colimits in a topos.]

(ii) Prove fullness of dependent quotient types in this situation,
(iii) Formulate a Frobenius property for dependent quotient types, and

show that it holds automatically in topos models. Explain also why.
P

11.2.4. Consider a DPL-structure x^ with "PiE -^ IB"*" as described in the be-
B

ginning of this section, and form by change-of-base:

F

{-} = dom o V

where Ei is the fibre category over the terminal object 1 G B.

(i) Show that -j- is a higher order fibration.

(ii) Check that if the DPL-structure has dependent (full) subset / quotient
F

types, then J has simple (full) subset / quotient types.
E l

11,3 Polymorphic dependent type theory

Simple type theory is a 'propositions-as-types' extension of (constructive)
propositional logic, via a Curry-Howard correspondence between inhabitation
in type theory and derivability in logic, see Section 2.3. Models of propositional
logic are Hey ting algebras, which are poset (or preorder) Cartesian closed cat-
egories (CCCs). And these CCCs are models of simple type theory. Similarly,
there are certain fibred categories for simple (higher order) predicate logic
(SPL), which are preorder versions of the fibred categories for polymorphic
type theory (PTT), see Section 8.1. The additional structure in the fibres of
polymorphic type theory corresponds to derivations in predicate logic. An ob-
vious next step is then to consider similar propositions-as-types extensions of
dependent predicate logic (DPL), as described in the previous two sections.
Then one looks for DPL-structures like in Definition 11.2.1, where the fibred
preorders for propositional logic are replaced by proper fibre categories. The
type theory obtained by extending dependent predicate logic in such a fashion

Section 11.3: Polymorphic dependent type theory 663

will be called p o l y m o r p h i c d e p e n d e n t t y p e t h e o r y (P D T T) . The system
HML of [230] and the calculus/theory of predicates of [252, 253] are of this
kind. In this section we sketch the syntax of this polymorphic dependent type
theory, and investigate its categorical semantics. Of special interest will be
the description of quantification and generic objects via change-of-base.

Actually, in moving from DPL to D P T T we do not only replace a fibred
preorder by a proper fibration, but by a comprehension category, so that we
get a dependent type theory.

The syntax of P D T T will be very much like the syntax of P T T : we replace
the logic of Prop's over Type's in SPL and DPL by a type theory with Type's
over Kind's in P T T and PDTT—so that one can really read propositions as
types in comparing logics and type theories. An additional advantage of using
different syntactic universes Type and Kind in type theory is tha t it makes it
still possible at some later stages to add an extra logical level by adding a level
of Prop's. Thus we will have kinds and types in this polymorphic dependent
type theory, written as:

h A: Kind and h (7:Type

both in appropriate contexts. In P D T T it is allowed tha t variables a: A in-
habiting kinds occur both in kinds and in types, but variables x: a inhabiting
types can only occur in types. (This restriction will disappear in Section 11.5.)
As a result, in PDTT—like in PTT—one can (still) separate contexts,

dependent kind
context

ai: Ai, ..., an: An \ Xjiai,.. .^Xm^cTm^ >" M:am+i

dependent
type context

into a kind context followed by a type context. We often write these sequents
as E] I r h M:a'm-\-i' Notice tha t in kind Ai the variables Ofi,.. . , a i _ i may
occur. And in type aj one may have free variables a i , . . . , a^, ^ i , . . . , Xj_i.

Since we have both "kind-dependency" and "type-dependency", there are
two ways of extending contexts (via comprehension):

E h 5 : Kind yields an extended kind context E,0: B

E\T \- cr:Type yields an extended type context E | T,x:cr.

And indeed, the corresponding categorical structures will involve two compre-
hension categories: one for kinds and one for types.

(One can also consider type theories with such dependency only at the level
of kinds, or only at the level of types, but we skip these intermediate versions.

664 Chapter 11: Higher order dependent type theory

They are captured by the categorical structures below in which one of the
comprehension categories is "simple", see towards the end of this section.)

The features tha t we consider for these polymorphic dependent calculi are
the following ones.

(1) Dependent product I l a : A. B and strong sum E a : A. B of kinds over kinds,
plus a singleton kind h 1: Kind.

(2) Dependent product Yix: a. r and strong sum Ex: cr. r of types over types,
together with a singleton type h l iType.

(3) Polymorphic product H a : A. a and sum E a : A.a oi types over kinds.
(4) A higher order axiom h Type: Kind together with the stipulation tha t the

types in empty context:

H I 0 h cr: Type are the terms 'E \- cr: Type

in this kind Type.

Notice that the three products and sums 11, E in (1), (2) and (3) are all
different; they describe quantification of kinds over kinds, of types over types,
and of types over kinds. In syntax it is custom to write the same symbols D, E
for these three cases, but categorically, these three forms of quantification are
captured by three completely different adjunctions.

The rules for dependent products and sums of kinds over kinds and of
types over types in (1) and (2) are as in dependent type (or kind) theory, see
Section 10.1. The rules for polymorphic quantification of types over kinds are
as in polymorphic type theory (see Section 8.1), except tha t the kind and type
contexts are now 'dependent ' . But this does not affect the form of the rules.
Wha t it means to have strong polymorphic sums E a : A.a oi types over kinds
will be explained in the next section.

We turn to a categorical description of polymorphic dependent type the-
ory (PDTT) . Recall from the previous section tha t we describe dependent
predicate logic via a "DPL-structure" of the form

V
D E ^ B ~ ^

^ ^ I ^cod

We now wish to extend the (preorder) propositional part ^ to a full type
D

theory. Not just by allowing tha t i is non-preordered (so tha t we get a

simple type theory), but we wish to allow dependent types here. Thus D must

Section 11.3: Polymorphic dependent type theory 665

be replaced by a (closed) comprehension category D —> A~̂ in a situation:

Q
D ^ ^ A"̂

jcod

/I
A E ^ B"' (*)

cod

where the structure of D —> A"*" is vertical with respect to the fibration ^ .
Type theoretically, this functor r describes the category A of kind-and-type-
contexts H | F fibred over the category IB of kind contexts S. The objects
of D are then the types-in-context S | F h cr: Type and the objects of E are
the kinds-in-context H h ^ : Kind. The two projection functors V and Q map
a kind to its associated projection between kind contexts, and a type to its
projection between type contexts. In detail:

(Hf-A:Kind) ^ ((H , a : A) - ^ S)

(H IF her: Type) S , ((H | F, :r: ̂) ^ (E | F)).

There are the following four non-trivial points to be clarified about a struc-
ture (*) as above.

(1) What does it mean that Q:D ^ A"̂ is a closed comprehension category
"over r" (i.e. that it is vertical with respect to r)?

(2) How does one capture polymorphic quantification X\OL\A.(T and Y^a.A.cT
of types over kinds in such a situation? The problem is that one cannot
simply require that q has quantification with respect to V (as described in
Section 9.3), since q and V have different base categories.

(3) What is the (categorical) role of the higher order axiom h Type: Kind?
(4) What does it mean in such a situation that polymorphic sums are strong?

An answer to this last question will be postponed until the next section—
where it will be shown in Proposition 11.4.3 that the polymorphic sums in
PDTT are automatically strong.

We shall address the questions (l)-(3).

(1) As mentioned above, from a type theoretic perspective, a Q-projection is
a context projection (S | F,a^:cr) -> (S | F) for a type S | F h cr:Type.
This projection is between different type contexts in the same kind con-
text H. That is, it may be seen as a vertical projection (F,x:(r) -> F in
the fibre of A over the kind context S G B. What we thus mean by re-

666 Chapter 11: Higher order dependent type theory

quiring that Q:D -> A~̂ is a comprehension category over r is that the
Q-projections are r-vertical. Equivalently, Q:D ^ A"*" restricts to a func-
tor Q:D —> V(A)—where V(A) -̂> A"̂ is the full subcategory of vertical
maps. This comprehension category Q is then "closed over r" if it is closed
in the usual sense (see Section 10.5).
(In case Q is a comprehension category with unit, then this verticality of the
Q-projections is equivalent to verticality of the counit of the comprehension
adjunction (1 H { —}), see Exercise 11.3.1 below.)

(2) For the polymorphic sum EaiA.cr and product Yia.A.o' of types over
kinds one additionally requires the following. Since r: A -^ B is a fibration,
one can transform the comprehension category 'PiE —)• IB^ with basis B
by change-of-base (as in Lemma 9.3.10) into a lifted comprehension cat-
egory r*('P): A Xi E —> A~̂ with basis A. Then we simply say that the

P

fibration j - ^ of types has coproducts / products with respect to this lifted
comprehension category r*{V).
We check in some detail that this captures the rules of polymorphic sum
and product in a term model:

T ^ TCr^

TC K ^ KC^

IKC

where IKC and TC are categories of kind-contexts 2 (and context mor-
phisms), and of kind-and-type-contexts S | F respectively. A morphism
(S I F) -> (S' I F') in TC consists of two sequences of context morphisms
M: S -> S' (in IKC) and N\V -^ F'(M) (in kind context S). Then K is the
category of kinds-in-context H h A: Kind fibred over their contexts, with
projection functor IK -^ KC"*" sending a kind-in-context S h A: Kind to
the projection TT: (!E,a: A) -> S in IKC. And T is the category of types-in-
kind-and-type-context S | F h cr: Type fibred over their (kind plus type)
contexts. It comes with a projection functor T -> TC^ which sends a type
IE! I F h criType to the vertical projection TT: (S | F,ar:cr) -> (S | F) in TC
over S G KC.
The lifted comprehension category TC x^^IK —> TC"*" in this situation is:

(5 | F , H h A: Kind)

/ (S , a : A | F) \

JTfJ

I, (H I T) ;

Section 11.3: Polymorphic dependent type theory 667

(See Lemma 9.3.10.) The associated weakening functor is:

T(E: I r) >- T(E:,a:A | r)

(S I r h r iType) I ^ (S , a : A | T h r : Type).

Left and right adjoints to TTJ* thus involve correspondences

S I r , z : E a : ^ . < 7 h M : r S I T h M:Iia:A.T

'E,a:A\V,x\a \- N:T E,a\A\T Y- N:T

These are given by the s tandard introduction and elimination terms for
polymorphic quantification: for S by

M{z) H^ M [(a , x)/z] and N{a, x) y-^ unpack z as (a , x) in N

and for H by
M ^ Ma and N \-^ \a\A.N.

(3) Wha t remains to be clarified is the role of the higher order axiom
h Type: Kind. In the type theory, terms H h cr:Type inhabiting this kind
Type are the same as types H | 0 h cr:Type in the empty type context,
[i.e. in the fibre of T over the terminal object I S in the fibre over S) . Wha t
one needs is a generic object for these types in empty type context.
In general, we consider the structure (*) as above, and form the fibration
l*(g) of types in empty type context by change-of-base along the terminal
object functor 1:B ^ A,

L

A . L

1*(^)

Then we can require tha t there is an object Q G E in the fibre over the
terminal object 1 G B, such tha t this fibration l*(g) has a generic object
over {fi} = dom('Pfi) E B.
The pat tern to describe generic objects in such multi-indexed structures is
thus as for quantification (in the previous point): we first make the base
categories match via change-of-base. Then we apply s tandard definitions.

11 .3 .1 . Def in i t ion . A structure (*) on page 665 (with two comprehen-
A

sion categories E —>• B~^, D —)• A"^ and a fibration i) will be called a

P D T T - s t r u c t u r e if it satisfies the requirements as explained in the above

points (1) - (3).

668 Chapter 11: Higher order dependent type theory

We leave it to the reader to describe a term model PDTT-structure in
further detail. More examples are obtained via the following auxiliary result.

E

11.3.2. Lemma. Let ^ be a fibration with fibred Cartesian products x,
and let Q:D -^ B"*" be a comprehension category. This Q can be lifted along
p so that we get the following situation.

Sp(E)

D X B E

Then:
(i) Ifp has Q-products (resp. Q-coproducts satisfying Frobenius), then the

simple fibration Sp on p has p"" [Q)-products (resp. p* {Q)-coproducts satisfying
Frobenius).

(ii) If p is the fibration underlying a comprehension category P i E -^ B"^,
Fam7>(E)

and we form the fibration \'{-)*{p) by pullback of p along { — } —

dom o "PiE —)• B (like in Exercise 10.5.5), we similarly get: if p has Q-
products/coproducts, then { —}*(p) has p*[Q)-products/coproducts.

Proof, (i) We only do the case of coproducts. Assume therefore that p has
coproducts (]J^ H TT^) along the projections TT̂ = Q(^)) satisfying Frobenius.
For objects A E O and X G E with qA — pX we get a projection map
p*{Q)[A, X) — WA{X) in E, see Lemma 9.3.10. It induces a weakening functor

s,(E)x — — - s,(E). . (X) by Y ^ ;r^(y).

Hence we have in the reverse direction Z H^ LI^l^)? with:

Sp(E);^(X)(^, (WJ(X))*(Y)) = ¥^A)(^\{X)xZ, n\{Y))

Section 11.3: Polymorphic dependent type theory 669

(ii) For ^ G P and X G E, write 7 = 1{A,X)-{T^\[X)] ^ {7r^(^)} for the
mediating isomorphism between the following two pullback diagrams—both
arising as in Lemma 10.4.4.

qA^pX

We now have a weakening functor for { —}*(p) induced by p*[Q)[A,X) be-
tween fibre categories:

Fam^(E)x = E{x} ^ ^ ^ ; (^) } = Fam7>(E);r;^(x)

namely Y M- {7r4'(X)}*(y). It has left and right adjoints by

Z ^]l.'^(A)il*{Z)) and Z ^ Y{.',(A)il*iZ))

where]J and Y\ are the assumed (Q-) coproducts and products of p. •
E

11.3.3. Proposition, (i) A higher order fibration -^P gives rise to a "sim-
ple'' PDTT-structure as on the left below,

E

(ii) / / -j^P is a fibred LCCC on a base category that is an LCCC, with
additionally a generic object and coproducts and products along arbitrary maps
in B; then we get a PDTT-structure as on the right.

Sp(E) -^ V(E) V(E) ^ V(E)

E s(B) - ^ 1 ^ E]g-f _ ^]g-f

\ \ y \ I y
p ^ y X p ^ ^ x^

B B
Proof, (i) The two simple comprehension categories s(B) -> B""̂ and
Sp(E) -^ V(E) <^ E"*" are closed because of the CCC-structure in the ba-
sis, and in the fibres. And since p admits simple quantification, the simple
fibration Sp on p admits quantification with respect to the lifted (along p)

670 Chapter 11: Higher order dependent type theory

simple comprehension category on B. This follows from (i) in the previous
lemma.

(ii) The LCCC-structure in the basis and in the fibres yields two closed
comprehension categories, and the third form of quantification results from (ii)
in the above lemma; it applies by Exercise 10.5.5 (ii). •

The first point is a (type theoretic) analogue of Proposition 11.2.2 allowing
us to transform A{x;-fibrations into "simple" PDTT-structures (Exercise 11.3.2
below presents the reverse construction). The second point applies especially

UFam(PER)
to the fibration i of PERs over cj-sets—which is a fibred LCCC by

CJ-Sets
UFam(PER)

Theorem 10.5.10. It does not apply to the fibration i of PERs over
EfT

the effective topos, since this fibration does not have coproducts and products
along all maps, see Section 11.7.

A minimal example

In the remainder of this section we shall further elaborate on the description
of Aa;-fibrations as special kind of PDTT-structures (as in (i) in the previous
result). In particular, we focus on the use of "CT-structures" to describe
models without all the type and kind formers. Recall from Section 2.4 that
simple comprehension categories of the form s(T) -> M~^, for T C Obj B
a CT-structure, can be used to describe models of simple type theory with
exponent types —)• but without assuming Cartesian product types x. Below
we shall make similar use of these CT-structures to describe an ideal model—
extending Example 2.4.9—for a version of second order polymorphic type
theory with exponent -> and polymorphic product and sum 11, E as only type
constructors. The underlying categorical structure is as for PDTT-structures,
but not all the operations are present. We present this ideal model as another
example in which quantification and a generic object are described in PDTT-
style via change-of-base.

More information on ideal models may be obtained from [206, 216, 155].
The construction below is based on [206].

11.3.4. Example. Let D be a reflexive dcpo D = [D -^ D] as in Exam-
ple 2.4.9, and write ID for the set of ideals I C D. Ordered by inclusion, this
set forms a complete lattice, because ideals are closed under arbitrary inter-

E

sections. Our aim is to construct a fibration -j^P together with two simple

Section 11.3: Polymorphic dependent type theory 671

comprehension categories:

Hm -^ v(E)

E s(l)-^]B-^

B
Sp(T)

where the fibration of types i arising from T C Obj E admits

• exponent types, in the sense that the simple comprehension category
Sp (T) -^ E~̂ has products with respect to itself.

• polymorphic products and coproducts with respect to the lifted comprehen-
sion category s(l) —> IB~ ,̂ where 1 G Obj B yields a singleton CT-structure.

• a split generic object living over 1 G B for the fibration obtained by change-
Sp(T)

of-base of i along the terminal object functor 1:B ^ E of p.
JE

In this ideal model we thus have many of the properties of a (simple) PDTT-
structure.

The base category B has:

objects natural numbers n G N.

morphisms n —^ m are m-tuples u = (wi, • . .Um) of functions Ui'.X^ —>•
ID-

In this standard construction we get 0 G B as terminal object, and n -h m G B
as Cartesian product of n ,m G B. The object 1 G B gives rise to a simple
comprehension category s(l) -^ B ^ with maps TT: n -f- 1 -^ n as projections,
see Definition 1.3.3.

E

On top of B we construct a split fibration ^ with as fibre Ê i over n G B
the category with

objects sequences (X i , . . .,Xk) of maps X^: n —> 1 in B; these are
in fact maps rz -> Ar in B.

morphisms (X i , . . . , Xk) -> (Yi , . . . , Y)̂ are ^-tuples (/ i , . . . , ft) of
continuous functions fj: D'^ —> D satisfying

V / G l B . V a r i G X i (/) . • • • Vx/, G X/,(/).

/ , (x i , . . . , ^ ,) G y j (/) .

Reindexing is done by pre-composition, and fibred finite products are obtained

672 Chapter 11: Higher order dependent type theory

by concatenation. The terminal object functor 1:IB —> E sends n G B to the
empty sequence n ^ 0 over n.

We choose the "set of types" T C Obj E to be the set of singleton sequences
X'.n -> 1 in B. Clearly it is closed under substitution, so it gives rise to a

simple fibration i over p, as in Exercise 9.4.3. By change-of-base along
the terminal object functor 1:B -^ E we single out the maps X :n —> 1, for
which the identity map 1 ^ 1 is a split generic object.

We have a simple comprehension category Sp(T) -^ E~̂ over p (see Exer-
cise 9.4.3) with projections

({Xi,...,Xk,X)

This simple fibration over p has products along these projections, since for an
object Y G Sp(T) over {Xi,..., X/j, X) we can define

Wxiym = {yeD\yxe x{i).yxe Y(I)}

over {Xi,.. .,Xk). Then one easily checks the correspondences

7r*(Z) ^ y over(Xi, . . . ,Xfc,X)

Z ^Y[x{y) over(Xi,. . . ,Xfe)

which are pointwise as in Example 2.4.9. These simple products O x l ^) ^^^"
respond to exponents X -^Y oi types.

Sp(T)

The simple fibration i over p also has polymorphic products and
coproducts with respect to the p-lifting of s(l) -> B ^ : for a projection
TT: n + 1 -^ n in B and an object {Xi,..., X^) G E over n we have a lift-
ing in E,

(Xi O TT, . . . ,X;, O TT) ^ (Xi , . . . ,X/,)

Then, for an object Y G Sp(T) over (Xi o TT, . . . , X/c o TT) G E over n -|- 1 G B,
we define

Section 11.3: Polymorphic dependent type theory 673

Then there are simply identities between:

_ g ^ f
TT*(Z) ^ Y over TT*(X) Y ^ TT*(Z) over n*{X)

, * Z over X

The product correspondence is obvious, so we check the case of coproducts.
For convenience we write boldface I for the sequence / .

/ : y — > r (Z) over ; r*(X)

^ V J , J G l S + ' . V x € X (l 5 . V j / G y (/ , J) . / (f , 2 /) € Z (/)

^ VJ € I S . Vf G X (J 5 . U j e x , >-(/ , J) C {y I / (^ , y) € Z (J) }

<> VJ £ I B . Vf € X(75 . V j e i o ^ (^ ' '^) C {y I / (^ , 2/) € Z (J) }

since {t/ | / (x , ?/) E ^ (^) } is an ideal

o yjei1>.WeX(i].^ye\/j^j^Y(i,j).fix,y)eZ(i)
<^ fU„(y)-^Z overX.

This concludes our brief investigation of polymorphic dependent type the-
ory. In the next section we will investigate strength of sums E (and of equality
Eq) in such type theories. There we will see that the weak polymorphic sums
that we have used in P D T T behave like strong ones—because of the presence
of strong sums of types over types (see Proposition 11.4.3 in part icular) .

Exercises

A

11.3.1. Consider a fibration jr'^ and a comprehension category with unit Q:D -^
A"^—given by a right adjoint { —} to the terminal object functor 1 of the
underlying fibration q = cod o Q:D -> A. Show that the following are
equivalent.
(i) The functor Q:D -> A"*" restricts to vertical maps in D -)' V(A) ^^

A ^ .
(ii) The counit of the comprehension adjunction (1 H {—}) is vertical,
(iii) The adjunction (1 H { —}) is a fibred one in a situation:

674 Chapter 11: Higher order dependent type theory

F
11.3.2. Consider a PDTT-structure (*) as on page 665, and form the fibration i

by change-of-base in:

where Ei is the fibre category over the terminal object 1 G B.
F

(i) Prove that ^ is a Au;-fibration.
^ ^ El
(ii) Check that first transforming a Au;-fibration into a simple PDTT-struc-

ture (as in Proposition 11.3.3 (i)), and then turning it back into a
Au;-fibration returns the original fibration.

11A Strong and very strong sum and equality

In the previous section we described polymorphic dependent type theory
(PDTT) in which types are indexed both by kinds and by types, and kinds
only by kinds, and in which all three forms of quantification exist: dependent
products and sums of kinds over kinds, of types over types and polymorphic
products and sums of types over kinds. Strong sums Ha.A.B of kinds over
kinds and TiXia.r of types over types are as in Section 10.1 with first and
second projections TT, TT'. Wha t was left unexplained was the precise nature of
strong versions of polymorphic sums Da : A. cr of types over kinds. It turns out
tha t in general there are two versions, which we shall call 's trong' and 'very
strong' . These will be discussed in the present section, together with similar
's trong' and 'very strong' versions of equality types. This material is based on
joint work with Streicher.

We shall thus distinguish 'weak', 's trong' and 'very strong' sums E a : A.a oi
types over kinds. The differences between these three versions involve certain
dependencies in the elimination rules (such dependencies will be described
more systematically in the next section). The formation and introduction
rules are the same in all three cases, namely:

E\- A: Kind E,a:A\- a: Type E\- M:A E\T h N: a[M/a]

E h E a : A. a: Type S | T h (M, N): E a : A. a: Type

The only requirement so far on the ambient type theory is tha t variables
a : 4̂ in kinds may occur in types cr(a): Type. The w e a k elimination rule is as

Section 11.4'- Strong and very strong sum and equality 675

follows.
E : i -p :Type E,a: A\T,x:a \- Q: p

— ; (weak)
E I T, z:T>a: A.a h (unpack z as {a,x) in Q): p

This is the elimination rule for polymorphic sums of types over kinds as used
earlier in Section 8.1 in (simple) polymorphic type theory.

Stronger versions of this rule are obtained by allowing extra freedom at the
position "/>: Type" in the first assumption of this rule. For s t r o n g sums one
allows the above type p: Type to contain a variable z of the sum type Da: A. B.
For these kind of strong sums one thus needs a type theory in which types
may depend on types, like in polymorphic dependent type theory (but not in
polymorphic simple type theory). The strong elimination rule then takes the
following form.

H I F, z: E a : A.a ^ p: Type E,a:A\T,x:a h Q: p[{a, x)/z]
— ; (strong)
E! I F, z: E a : A. cr h (unpack z as {a,x) in Q): p

In a next step, the "very strong" sums allow elimination with respect to
types p:Type as above, and additionally with respect to kinds />: Kind. And
in both cases the term variable z:Tla:A.a may occur in p. We have not
yet seen type theories where kinds may depend on (be indexed by) types,
but we shall encounter them explicitly in the next section. One of the most
important aspects of such calculi is tha t one can no longer separate kind and
type contexts: there are contexts F = [xi'.Ci, ... ,Xn'.Cn) where each d is
either a kind or a type (in the preceding context). We write this as

xiiCi, . . ., x , _ i : Ci-i h d: Kind/Type.

The v e r y s t r o n g sum elimination rule has the following form.

F, z: S x : A,a \-C: Type/Kind F, a: A,x:a \- Q: C[{a, x)/z] . ^^^^ .

F, z: E a : A.a \- (unpack z as (a , x) in Q):C ^ ^^^^^^ '

In all three cases the conversion rules are the same:

unpack (M, iV) as {a,x) \n Q = Q[M/a,N/x] (/?)

unpack P as {a,x) in Q[{a,x)/z] = Q[P/z] [r]).

These conversions are the same as for sums in polymorphic and in depen-
dent type theory (so tha t one can derive the commutat ion conversion as in
Exercise 10.1.4).

1 1 . 4 . 1 . R e m a r k . The above rules are presented for two syntactic categories
Kind and Type. But we wish to include in our expositions the possibility tha t
they coincide, i.e. tha t Kind = Type. Then there is no distinction anymore be-
tween strong and very strong sums; and these are then the same as the strong

676 Chapter 11: Higher order dependent type theory

sums we described in dependent type theory in Section 10.1. The distinction
strong/very strong is thus only of interest in situations where Kind and Type
are different syntactic universes.

In Proposition 10.1.3 (i) we saw that the strong sums (of types over types)
in dependent type theory can equivalently be described with a first and second
projection map. The same result, with the same proof, can be obtained in the
present more general setting for very strong sums.

11.4.2. Propos i t ion . The very strong sum-elimination rule can equivalently
be formulated with first and second projection rules:

r f-P:Ea:^.cT T h P:Ea:A,a

T hnP-.A r \-7r'P:a[7rP/a]

with conversions 7r(M, Â) = M, 7r'(M, N) = N and (TTP, TT'P) = P, •

We emphasise that such a result cannot be obtained for strong sums, be-
cause for the first projection nP = unpack P as {a,x) in a one needs elimi-
nation with respect to kinds.

The next result (from [166]) is somewhat surprising.

11.4.3. Propos i t ion . In the presence of strong dependent sums Ex.r.p of
types over types, polymorphic sums T,a:A.a of types over kinds are automat-
ically strong.

Proof. We shall use first and second projections TT, TT' for the dependent sums
of types over types. Assume a type and term:

S I r , z: Ea: A,a \- p: Type E,a:A\T,x:a h Q: p[{a, x)/z].

Using the "weak" unpack-terms and the projections TT, TT' we produce a
"strong" unpack-term

S I r , z: Ea: A.a \- unpack z as (a, x) \n Q : p.

as follows. Consider the combined sum-type

S | r h p ' "^^ Ez:{Ea: A.a). p: Type

together with the term

E,a:A\T,x:ahQ' =^ ((a,:r),Q):/>'.

The weak elimination rule then gives a term

S I r , z: Ea: A.a h unpack z as (a, x) in Q': /?'.

Hence we can put as our required term

unpack z as {a,x) \n Q = 7r'(unpack z as {a,x) in Q').

Section 11,4' Strong and very strong sum and equality 677

It is of type />, since

7r(unpack z as {a,x) in Q')

= unpack 7r(unpack (/?, y) as (a ,x) in Q') as {l3,y) in z

= unpack 7rQ'[f3/a,y/x] as (/?, y) in z

=: unpack (/?,?/) as (/?, y) in z

This result tells us for example that in polymorphic dependent type theory
in the previous section, the polymorphic sum Ha: A. a of types over kinds
is automatically strong. Thus we were not negligent in not mentioning the
requirement tha t polymorphic sums in P D T T are strong, because this holds
automatically. And if we wish to use a polymorphic dependent calculus with
weak sums E a : ^ . cr of types over kinds, then we are forced to use also weak
sums of types over types. (Remember tha t very strong polymorphic sums
cannot be used in P D T T because kinds do not depend on types.)

We turn to the categorical description of strong and very strong sums. We
formulate these notions first in a situation of two comprehension categories
with the same base category, where one describes dependent kinds and the
other dependent types. This will later enable us to say what strong polymor-
phic sums are in a PDTT-s t ruc ture via lifting of comprehension categories.
Recall from Definition 10.5.2 that the categorical formulation of strength for
coproducts involves canonical maps K: {¥} -^ { L J x (^) } - These will be used
again in the present situation. Briefly, coproducts are strong when these maps
are orthogonal (to the kind-projections), and very strong when they are iso-
morphisms. This orthogonality requirement comes from [148].

Q V

11 .4 .4 . D e f i n i t i o n . Take two comprehension categories D —y M~^ <— E on
the same base category B.

(i) We say tha t Q has s t r o n g "P-coproducts if, first of all, the underlying
fibration q — cod o Q : D —> B has P-coproducts in the ordinary sense; tha t
is, if for all objects X G E, the weakening functors 'P(X)* = TT^ between the
fibres of q have left adjoints] J ^ satisfying Beck-Chevalley. And second, if the
induced canonical maps K = f^{x,A)' {^} ~^ illxi^)} ^^^ orthogonal to all
Q-projections. This means: for every object B ElD and commuting rectangle
i n B ,

{A} -jUx(^)}
I w ^ \

u \ ^ "̂ \ V
Y ^ - " t

{B} ^ qB
QB^TTB

678 Chapter 11: Higher order dependent type theory

there is a unique 'diagonal-fill-in' if; making the two triangles commute: w o
K, = u and QB o w — v. (Note that { —} in this diagram is dom o Q.)

(ii) And we say that Q has very s t rong P-coproducts in case q has
"P-coproducts in such a way that all these canonical maps AC: [A] -^ {LJx(^)}
in B are isomorphisms.

Recall that the canonical map AC: {̂ 1} -^ { l Jx(^)} arises by applying { —} —
dom o Q:D —> IB to the (opcartesian) composite

Ux(^)
Further, notice that when the comprehension categories V and Q happen

to coincide [i.e. when Kind = Type), there is no difference between strong and
very strong coproducts. The inverse of /c required for the implication (strong)
=> (very strong) is obtained in the following diagram.

{A]

{A}

{]lxiA)]

T^A
qA

By uniqueness of fill-in maps, this morphism { U x l ^)) "^ {^} ^̂ then also
right-sided inverse of K. This observation is in line with our earlier remark
that in dependent type theory there is no difference between strong and very
strong sums (of types over types).

Since projections are closed under pullback, there is the following reformu-
lation of orthogonality—which is sometimes more convenient. The proof is
easy and left to the reader.

11.4.5. Lemma. The canonical map K:{A] —>• {Ux(^)} ^^ ^^^ above defi-
nition is orthogonal to all Q-projections if and only if: for every object JB G O
over {Ux(^)} ^ ® ^^^ morphism u: {A} —> {B} in a commuting (outer)
diagram

{A} ^{UxiA)}

{B}
TTB

{UxiA)}=qB

Section 11.4'- Strong and very strong sum and equality 679

there is a unique u\ { U x (^) } —'*' {^} ^^^^ TT^ o S = id and u o K — u. •

The above description of strong and very strong coproducts applies to a
situation with two comprehension categories with the same base categories.
This will be the case in the next section, but the two comprehension cate-
gories used for PDTT-structures in the previous section have different base
categories (connected via a fibration, see the diagram below). In such a sit-
uation we can still say when coproducts are strong by suitably lifting the
comprehension category of kinds (as we did to define polymorphic quantifica-
t ion).

11 .4 .6 . Def in i t ion . Consider two comprehension categories V, Q and a fi-
bration r in the following diagram.

Q
D ^ A- '

E ^

Then we say tha t Q has s t r o n g c o p r o d u c t s with respect to V in case Q has
strong coproducts with respect to the lifted comprehension category r*{V).

All PDTT-structures have strong (polymorphic) coproducts of this kind by
virtue of Proposition 11.4.3. Below we describe the orthogonality condition
in a term model, and we leave it as an exercise to the reader to check tha t
polymorphic coproducts are strong in the ideal model from Example 11.3.4.

11.4 .7 . E x a m p l e . We elaborate the details of strong polymorphic sums
T,a:A.a in a term model of P D T T (as described in the previous section)
in relation to the above orthogonality condition. A lifted projection associ-
ated with a kind E h ^ : Kind in the category T C of type-and-kind-contexts
at S I r is:

(S , a : ^ I r) '—^ (- I r)

of variables /̂ in S and v in F. For a type E,a:A\T h cnType we assume
tha t we can form the polymorphic sum S | F h T,a: A.c.Jype. It is strong
according to Lemma 11.4.5 if for each type

S I F, z: E a : A.a \- p: Type with term E^a: A\T,x:a \- Q: p[{a, x)/z]

680 Chapter 11: Higher order dependent type theory

in a commuting (outer) diagram

(2 , a:A\V, x: a) ^ (S | T, z: E a : A. a)

(/?,(?, (a , x) ,Q)) i/^,(^,^,Q)

(H I r , z: E a : A. a, y: p) ^ (5 | T, ^: E a : A. a)
7r={^,{v,z))

there is a unique cHagonal as indicated. This means that there is a term
S I r , z: E a : ^ . or \- Q. p subject to the conversion Q[(a , x)/z] — Q. But then

Q = Q[z/z] = unpack z as {a,x) in Q[{a,x)/z] = unpack z as (a^x) in Q.

Hence we have the strong elimination rule as formulated in the beginning of
this section.

Strong and very strong equality types

In the remainder of this section we have a brief look at strong and very strong
versions of equality types. Since like sums, equality also involves left adjoints—
not to weakening functors TT* but to contraction functors S*—a similar analysis
applies.

For clarity, we are discussing "polymorphic" equality types over kinds here,
with s tandard formation and introduction rules

E h A: Kind E h A: Kind

E,a:A,0:A h E q ^ (a , ;^):Type E : , a : ^ | 0 h r ^ (a) : E q ^ (a , a)

where we usually write r for ryi(Q;) when confusion is unlikely.
One distinguishes three equality elimination rules, much like for sums: weak,

strong and very strong ones. The difference lies again in the dependencies tha t
one may have. The w e a k equality elimination rule is as follows.

H, a: A, /?: Aba: Type E,a:A\ T[a/f3] h Q: a[a/l3]
(weak)

E,a:A,l3:A\ T, ^: Eq^(a , /?) h {Q with /? = a via z):a

It is as in Section 8.1 for simple polymorphic type theory. If one uses a type
theory where types may depend on types (like in a polymorphic dependent
type theory), then the type E,a:A,P: A \ T h a.Jype in the first premise
above, is allowed to contain an additional term variable z: Eq^(a , / ?) , so tha t
one can formulate the s t r o n g elimination rule as:

E,a:A,/3:A\T,z:EqA{a,(3) ho-: Type E,a: A\T[a/l3] \-Q:a[a/f3,r/z]

E,a:A,/3:A \ T, z: Eq^(a , /?) h (Q with /? = a via z):a (strong)

Section 11.4- Strong and very strong sum and equality 681

Finally in the very strong equality elimination rule one allows elimination
not only with respect to types a as above, but also with respect to kinds.
This only makes sense in type theories where kinds may depend on types,
i.e. where kinds may contain term variables (inhabiting types). And in such
a type theory one cannot separate kind and type contexts anymore, so that
the v e r y s t r o n g elimination rule takes the following form.

r , a: A, /?: A, z: Ecu (c^, /^) ^ C: Type/Kind T,a:A\- Q: C[a/f3, r/z]
(very

T,a:A,f3:A,z:EqA{a,(3) h {Q with /? rr a via z):C strong)

In all three cases the conversions are the same, namely:

Q with a — a via r = Q (/^)

Q[a/f3, r/z] with /? = a via P = Q[P/z] (r?).

The next two results are analogues of Propositions 11.4.2 and 11.4.3 for
(strong) sums.

11.4 .8 . P r o p o s i t i o n . The very strong equality-elimination rule can equiva-
lently he formulated by the following two rules.

S h P : E q ^ (M , 7 V) H h P : E q ^ (M , 7 V)

-E^M^N'.A E h P = r :Eq^(M,7V) D

The proof of this result is the same as in dependent type theory (see Propo-
sition 10.1.3 (ii)). It tells us that equality is very strong if and only if inter-
nal equality (inhabitation of E q ^ (M , A'')) and external equality (conversion
M = N:A) are the same. In models of higher order dependent type theories
very strong polymorphic equality occurs most frequently. But the version of
polymorphic sum tha t one most often finds is the strong sum. This is because
the very strong sums lead to "Girard's paradox" in the presence of the higher
order axiom h Type: Kind, see Exercise 11.5.3 in the next section.

11.4 .9 . P r o p o s i t i o n . Consider a type theory where types depend both on
kinds and on types. In presence of strong dependent sums of types over types,
polymorphic equality Eq^(a , /?) :Type for A: Kind is automatically strong.

Proof . We proceed exactly as in the proof of Proposition 11.4.3. Assume a
type Z,a:A,P:A \ P, z: Eq^(a , /?) h cr:Type with a term E,a:A \ T[a//3] h
Q: (T[a/(3, r/z] and write

'E,a:A,(3:A\V h (J' =^ Sz : E q ^ (a , ^) . o-: Type

E,a:A\V[a/(3] h Q' ""M {r,Q): cT'[a/(3].

Then we get by weak equality elimination, the term

E.a-.A.^'.A I r , z : E q A (a , ^) h (Q with /? = a via z):a'.

682 Chapter 11: Higher order dependent type theory

The strong elimination term that we seek is now obtained via second projec-
tion:

Q with l3 = a via_ z = 7r'((5' with /? = a via z).

This term is of the required type cr, since

7r((3' with /? =: a via z)

= 7r(Q' with /? = a via z)[a//?, r/z] with /? = a via z

= 7r((r, Q[a/(3, r/z]) with a = a via r) with (3 = a \/\a z

= r with P = a y\a z

— z[a/(3, r/z] with /? = a via z

= z. D

What is still lacking is a categorical description of strong and very strong
equality. This follows the same pattern as for strong and very strong sums in
Definition 11.4.4.

11.4.10. Definition. Assume two comprehension categories D —> M~^ <—
E on the same basis.

(i) We say that Q has s t rong "P-equality if the underlying fibration
q ~ cod o Q:P -> IB has P-equality (via adjunctions Eqx H S^ plus Beck-
Chevalley, where Sx is the "P-diagonal associated with X G E) in such a way
that the induced canonical maps K = «(x,A)- {^} ~^ {Eqx(^)} are orthogo-
nal to all Q-projections. This means: for every object B £]D and commuting
rectangle in B,

{A} ^ ^{Eqx{A)}

{B} ^ qB
QB = 7rB

there is a unique diagonal making everything in sight commute.
(ii) And we say that Q has very s t rong "P-equality in case q has P-equality

in such a way that all these canonical maps {̂ 4} -^ {Eqx(74)} in B are
isomorphisms.

This description of very strong equality captures the one used earlier in
Proposition 4.9.3 in predicate logic as a special case. In Exercise 11.4.5 below
it will turn out to be sufficient to have the Q-projection of "equality at 1" iso-
morphic to a 'P-diagonal to get very strong equality (in the presence of fibred
CCC-structure). The essence of very strong equality is then that 7^-diagonals
occur as Q-projections, as in the triangle below. This is often useful, see the
examples in the subsequent Exercise 11.4.6.

Section 11.4: Strong and very strong sum and equality 683

Exercises

11.4.1. (i) Show that the elimination term unpack z as^ {a, x) \r\ Q constructed in
the proof of Proposition 11.4.3 comes with the appropriate conversions,

(ii) Do the same for the term Q with (3 = a vm z in the proof of Proposi-
tion 11.4.9.

11.4.2. Show that if a simple comprehension category s(T) —> B~^ has coproducts
with respect to a comprehension category P : E —>• IB"*", then these coprod-
ucts are automatically strong.
[The underlying reason is that in simple comprehension categories there is
no real type dependency so there is no difference between weak and strong
sums.]
Conclude that the polymorphic coproducts]J in the ideal model from
Example 11.3.4 are strong.

11.4.3. Assume in Definition 11.4.10 that the comprehension categories V and Q
are the same. Prove (categorically) that there is then no difference between
strong and very strong equality.

11.4.4. Investigate the categorical description of strong equahty in the term model
of a polymorphic dependent calculus (like for sums in Example 11.4.7).

11.4.5. Let D —y B"*" i— E be comprehension categories, v/here Q is full and has
a unit 1:B ^ D. Recall (e.g. from Section 3.4) that we are often mostly
interested in "equality at 1". This is the subject of the present exercise: we
say Q has pre-equal i ty with respect to V if for every object X G E there
is an opcartesian map X: 1{X} -> Eq(X) in D above the ('P-)diagonal Sx,
together with a Beck-Che valley condition (in the style of Exercise 9.3.6).
Assume for each X G E there is an object Eq(X) € O over {V{Xy{X)}
with a map ipx in a commuting triangle

{X} ^ {Eq(X)}

{V(xnx)}

(i) Show that if ipx is orthogonal to all Q-projections, then its transpose
1{X} —> Eq(X) is opcartesian over Sx, so that Q has strong pre-
equality.

(ii) Prove that if each ipx is an isomorphism, then Q has very strong pre-
equality.

(iii) Assume additionally that q = cod o Q is a fibred CCC. Prove that the
definition

Eqx(A) = Eq(X) X V{V(Xr{X)y{A)

yields that Q has (ordinary) very strong equahty.
11.4.6. (i) Conclude from (ii) in the previous exercise that the comprehension

categories of subobjects and of regular subobjects have very strong

684 Chapter 11: Higher order dependent type theory

pre-equality with respect to every comprehension category,
(ii) And conclude also that the comprehension category UFam(PER) —^

a;-Sets"* of PERs over a;-sets has very strong equality with respect to
UFam(u;-Sets) •% a;-Sets"^. Check that the same holds over EfF.

11.5 Full higher order dependent type theory

We come to the last type theory tha t will be discussed in this book. It is in a
sense an extension of polymorphic dependent type theory (P D T T) : it allows
kinds to "depend on" types: kinds A(x): Kind may contain a variable x: a in-
habit ing a type a: Type (which is forbidden in P D T T , see the previous section).
Since this new type theory allows all possible dependencies between Type and
Kind—in a sense to be made precise below—we shall call it full h i g h e r o r d e r
d e p e n d e n t t y p e t h e o r y , abbreviated as FhoDTT. It is based on the Calcu-
lus of Constructions of [58], and can be seen as another combination (besides
P D T T) of polymorphic and dependent type theory. Extensions of F h o D T T
have been implemented in the proof tools COQ and LEGO, see the end of this
section.

We start below by discussing some of the syntactic aspects of F h o D T T , and
devote the next section to the categorical semantics of F h o D T T . For proof
theoretic investigations we refer to [55, 92, 90, 22]. We first introduce a general
notion of "dependency" in type theory, so tha t we can clearly characterise the
type theory of F h o D T T among the many type theories that we have seen so
far. These type dependencies actually form the basis for the classification of
type theories in this book, see also [154, 163]. Basically, they determine the
(indexed) categorical structures underlying the various type theories. In the
second half of this section we describe and investigate F h o D T T in some detail.
We put particular emphasis on a reflection between types and kinds, which
results from the presence of sums E and unit types and kinds 1.

Dependencies in type theory

Remember from Section 11.3 tha t in polymorphic dependent type theory
(PDTT) there are types depending both on kinds and on types, and kinds
depending only on kinds. In the new type theory F h o D T T there are all four
(combinatorially possible) dependencies between types and kinds. These ob-
servations prompt a more detailed investigation of such dependencies.

We will formulate these dependencies abstractly. Consider therefore two
syntactic categories (or "universes", or "sorts") si ,S2 in a specific type

Section 11.5: Full higher order dependent type theory 685

theory—for example, si = Kind, S2 — Type. We then say that

52 depends on si , which will be written as S2)̂ s i ,

if there are derivable sequents

TV-A'.si and T,x\ A ^ B{x)\S2

in this type theory, with x: A (actually) occurring free in B[x). This means
that there are "s2-types" B{x):s2 containing variables x:A inhabiting an
"-Si-type" A:si. Put differently, 52 >- si means that we may have

si-indexed S2's as in the example yB{x):s2) . for A:si.

This last formulation is easiest to remember, so we repeat it explicitly.

11.5.1. Definition. In a type theory with universes si,S2 we put

S2 >• si <^ there are (well-formed) expressions A: si, B{x): S2

forming an indexed collection

where x is actually free in B. And in that case we say: S2 depends on 5i, or:
S2 is indexed by si.

For example, in polymorphic type theory PTT there are types depending
on kinds {i.e. Type >- Kind), typically in:

((^^^)-"^yP^)a:Type:Kind-

This dependency Type >- Kind is characteristic of PTT. And in dependent
type theory there are term variables occurring in types (amounting to Type y
Type), as in the example of the type NatList(n) of lists (of natural numbers)
of length n:

(NatList(n):Type)„^^-ryp^.

The dependency Type y Type is typical for DTT. Figure 11.1 gives an overview
of the dependencies that we have seen so far.

The first three type theories STT, PTT and DTT in this table can be seen as
basic building blocks. The last two PDTT and FhoDTT are combinations. As
is apparent in this table, the additional dependence in FhoDTT with respect
to PDTT is the dependence of kinds on types. Under a propositions-as-types
reading this becomes the dependence of types (or sets) on propositions. One
can think of examples here—e.g. the set steps(p) of derivation steps in a proof
p: a of proposition a—but the naturality of this dependency is debatable (see
also [230, 252, 253] for further discussion).

686 Chapter 11: Higher order dependent type theory

name

Simple
Type Theory

Dependent
Type Theory

Polymorphic
Type Theory

Polymorphic Dependent
Type Theory

Full higher order
Dependent

Type Theory

abbreviation

STT

DTT

P T T

PDTT

FhoDTT

universes

Type

Type

Type, Kind

Type, Kind

Type, Kind

dependencies

—

Type >- Type

Type >• Kind

Type >- Kind
Type >- Type Kind >̂ Kind

Type >- Kind Kind >- Type
Type y Type Kind y Kind

Fig. 11.1. Dependencies in various type theories

Taking dependencies as a starting point in the classification of type theories
comes from [154, 163]. There, a collection of universes carrying a transitive
relation >- of dependency is called a se t t ing. The setting of a type theory
determines the basic categorical structure of the type theory: 52 >- si means
that 52 is fibred over si, since the S2-types may be indexed by 5i-terms, as
in i^B{x)\S2)^.j^.^ . This correspondence between dependency in type theories
and indexing in category theory is the basis for all the categorical structures
that we describe.

The view taken in this book is that a logic is always a logic over some type
theory. We have explicitly studied predicate logic over STT in chapter 4, over
PTT in Section 8.6 and also over DTT in Section 11.1. One can go a step
further and consider logics over PDTT and over FhoDTT. Categorically this
involves putting a suitable (preorder) fibration on top of a PDTT-/FhoDTT-
structure. The above table can thus be extended with various logics. They can
be described with an additional sort Prop, with typical dependency Prop >-
Type. It arises from predicates ^{x): Prop which are indexed by types <j:Type,
as in:

(^(^)-P^°P).:.:Type-

Section 11.5: Full higher order dependent type theory 687

We conclude this excursion on dependencies with a review of the differ-
ent settings in which the various sum and equality types (weak, strong, very
strong) from the previous section are described. In a type theory with two
sorts s\, S2 with dependency S2 >- si it makes sense to consider products,
sums and equality "52 over si" , with the following formation rules.

V^C:si V,x:C^D:s2 T h C: 5i V,x:C\-D:s2

r hIix:C.D:s2 r \-T.x:C.D:s2

r l-C:5i

r , X, x\ C h Eqc(^, x): S2

Sometimes we refer to these as (si, S2)-products/sums/equality, when we wish
to explicitly mention the relevant sorts.

The setting in which it makes sense to consider weak/strong/very strong
(si, S2) sum or equality types is summarised in the following table.

(51, S2)-sum/equality weak strong very strong

required
dependency

S2 y si
S2 y si

S2 y S2

S2 y Si

S2 y S2

Si y 52

It can be explained as follows. The weak elimination rule for (si,S2)-sums
is:

T \- B:s2 T,x:C,y:D ^ Q: B

T,z:'^x:C.D h Q: B

In the strong elimination rule one allows the variable z: Ex: C. D, inhabiting
the sum TiX.C.D of sort 52, to occur free in B\S2- This requires "s2-type
dependency" S2)- 52. In the very strong rule one additionally allows B to be
of sort si. Since B may contain a variable y: D, where D is of sort 52, this
requires the dependency si y S2. The same analysis applies to equality types.

We see that the language of dependencies makes it easier to explain the
differences between the various forms of sum and equality types. Also, in
combination with Figure 11.1, it is now easy to see in which type theories
it makes sense to consider, for example, strong (Kind,Type)-sums. Similarly,
this language can be used in the description of constants, see [163] for more
details.

688 Chapter 11: Higher order dependent type theory

Syntactical aspects of full higher order dependent type theory

In the remainder of this section we concentrate on a single type theory, namely
on full higher order dependent type theory (FhoDTT). The starting point
in the description of FhoDTT is the stipulation that there are two sorts
Type, Kind and all (four) dependencies Type >- Kind, Kind y Type, Type y Type
and Kind y Kind between them. As a result, one cannot separate kind and
type contexts, like in polymorphic dependent type theory: since variables in-
habiting types may occur in kinds and variables inhabiting kinds may occur
in types, a context is a sequence of variable declarations for types and for
kinds. There are then sequents of the form

xi'.Ci,.. .^Xn'.Cn f-D:Type/Kind

where xi'.Ci,..., Xj-.d h d-j-i: Type/Kind for each i < n. The type and kind
forming operations that we use in FhoDTT are

higher order axiom h Type: Kind

units for type and kind h I T : Type and h IK' Kind

with (sole) inhabitants h QT- I T and h QK'- ^K

products UxiC.D for C, D: Type/Kind,

strong sums T,x:C.D for C: Kind, D: Type,

very strong sums Tix: C. D for C: Type, D: Type; C: Type, D: Kind;

C: Kind, D: Kind.

So formally we have four different products and four different sums: types over
types (Type, Type), kinds over types (Type, Kind), kinds over kinds (Kind, Kind)
and types over kinds (Kind,Type). The first three sums are very strong, and
the last one is only strong. (Recall, that there is actually no difference between
strong and very strong for (Type,Type)-sums and (Kind, Kind-sums.)

In principle, these (Kind,Type)-sums can be very strong as well (since we
have the dependency Kind y Type in FhoDTT needed for the very strong
elimination rule to make sense). But having very strong (Kind,Type)-sums
has some detrimental effects. We will see below (in Corollary 11.5.4) that it
results in an equivalence of types and kinds. This effectively gives us a type
theory with a type of all types (Type: Type), and in such a type theory every
type is inhabited. The result is known as "Girard's paradox". The original
source is [95]; but many variations exist, see e.g. [54, 272, 153, 141] (and
Exercise 11.5.3 below). The fact that all types are inhabited does not trivialise
the type theory, but it makes it unusable in a propositions-as-types scenario,
because it then means that each proposition has a proof.

It makes sense to consider "weak FhoDTT" with weak (Kind,Type)-sums,

Section 11.5: Full higher order dependent type theory 689

instead of strong ones, as required above. Proposition 11.4.3 then forces the
(Type, Type)-sums to be weak as well. Extensional PERs (ExPERs) over a;-sets
in Example 11.6.7 in the next section form a model of weak FhoDTT (but
not of ordinary FhoDTT).

We shall see that the sums (and units) in FhoDTT give rise to a "reflection"
Type <^ Kind between types and kinds. In order to make this categorically
precise we have to use a term model of FhoDTT, consisting of two fibrations
of types and of kinds, both over the same base category of (type and kind)
contexts. This base category C consists of contexts F = (xi: C i , . . . , Xn'-Cn) in
FhoDTT—with C,:Type or CiiKind—and context morphisms (sequences of
terms) between them. A category T of types over C has types-in-context F h
a: Type as objects over F G C A morphism (F h a\ Type) ^ (A h r: Type)
in T consists of a context morphism M: F -^ A in C together with a term
V.x.cr h N:T[M). There is a (full split) comprehension category T —)• C~̂
mapping a type F h cr: Type to the associated projection 7r:(F,x:cT) —> F.
Similarly there is a category K of kinds-in-context F h ^ : Kind as objects
over F G C. And the (full split) comprehension category K —>• C~̂ sends a
kind V \- A\ Kind to its context projection TT: (F,a: A) —^ F. This leads to a
situation:

T ' K- ^ ^

It will turn out that the very strong (Type, Kind)-sums and the (weak)
(Kind, Type)-sums of (weak) FhoDTT yield a fibred reflection T ^ IK between
types and kinds. This is the content of the next two propositions.

11.5.2. Proposition, (i) In the presence of a unit kind l/^-iKind and weak
(Type, Kind)-5wm5 one can define a fibred functor X\T -^ K from types to
kinds by

(F h(T:Type)H^(F h Ear: cr. 1/^: Kind).

(ii) / / (Type, Kind)-5wm5 are very strong, then this functor X:T —^ K is
full and faithful and commutes up-to-isomorphism with the type- and kind-
projection functors:

Proof, (i) Notice that for a (vertical) morphism T.x.a h M:T from (F h

690 Chapter 11: Higher order dependent type theory

a: Type) to (F h r: Type) in T we can define X(M) as the term

r , z: TiX: a. IK H unpack z as {x, w) in {M{x),w): T>y: r. 1^.

(ii) If our (Type, Kind)-sums are very strong, then the canonical map

(r, x: a) > (r, z: Ex: a. IK)

is invertible with as inverse {v, TTZ). One now easily concludes that X: T —)• IK
is full and faithful:

Tr((T, r) ^ C / r (7 r „ TT.) ^ C/r(7rj(,), 7rj(,)) ^ Kr(x(cr), X(r)) ,

using that the comprehension categories of types and of kinds are full. D

The reverse of (ii) also holds (under an extra assumption), see Exer-
cise 11.5.1 below.

11.5.3. Proposition. In the presence of very strong (Type, K\ndi)-sums and
weak (Kind,Type) sums there is a fibred reflection

T C

where X is the full and faithful functor resulting from (ii) in the previous
proposition, and its left adjoint TZ is obtained from (i).

Proof. What we need for F h A: Kind and F h cr: Type is an adjointness
correspondence between terms M and N in

F , z :Ea :A . lT V- M{z):a

V,a\A f- N\T.X\(T.\K

It is given by

M ^ M(a) = (M[(a , ()T)A] , (M

N !->• N[z) — unpack z as (a,x} in 7rN{a).

Section 11.5: Full higher order dependent type theory 691

Then: ^
M{z) = unpack z as {a, x) \n M[{a, {)T)/Z]

= unpack z as {a,x) in M[{a,x)/z]

= M.

N{a) = (unpack (a, ()T) as {a,x) in 7rA^(a), ()/^)

= {7rN{a),{)K)

= (7riV(a),7r'7V(a))

= iV(a). D

11.5.4. Corollary. In FhoDTT with very strong (Kind, Type) sums there is
an equivalence T c::^K of types of kinds.

Proof. With very strong (Kind,Type)-sums the left adjoint 1Z:K ^T in the
previous proposition is also full and faithful, so that we get an equivalence
T - ^ K, as stated. D

Polymorphic dependent type theory FhoDTT as sketched in this section
was first formulated by Coquand and Huet [58] as the Calculus of Construc-
tions, see also [14]. It was introduced as an expressive combination of poly-
morphic and dependent type theory. Actual representation and verification
in the Calculus of Constructions turned out to be problematic (notably be-
cause of problems with inductively defined types, see [321]). This gave rise to
two extensions, with additional universes for separating logic from data. Both
these extensions have been implemented in proof tools.

(i) The Calculus of Inductive Definitions [59, 248] forms the basis for the
proof tool COQ [20]. The emphasis in the use of COQ lies on program ab-
straction, via a duplication of the structure of the Calculus of Constructions
(separating programming and logic). There is a facility for extracting exe-
cutable ML programs from suitable terms, see [249, 31]. (See also [276] for a
comparably duplicated version of second order polymorphic type theory, for
similar purposes.)

(ii) The Extended Calculus of Constructions (ECC) adds to the Calculus of
Constructions an infinite hierarchy of kinds (Kindj),- î̂ with inclusions Type C
Kindo C Kindi C • • •, see [201, 202]. There is an uj-set based semantics, using
an infinite sequence of inaccessible cardinals to interpret the Kind,, see [200].
This hierarchy of kinds facilitates the formalisation of abstract mathematics.
The LEGO system is a proof-assist ant based on ECC, extended with inductive
types, see [203].

692 Chapter 11: Higher order dependent type theory

Exercises

11.5.1. Assume that the (Type, Kind)-sums in Proposition 11.5.2 (i) are strong.
Show then that if the induced functor X: T -)• K is full and fciithful, then
the (Type, Kincl)-sums are very strong.

11.5.2. Consider the full and faithful functor J : T —)• K from types to kinds, arising
from very strong (Type, Kind)-sums in Proposition 11.5.2 (ii). Prove that
one has strong (Type, Type)-sums if and only if "J preserves sums", in the
sense that for T \- cr: Type and T^x.a h r: Type the canoniccil term P in:

r , z: Ea:I{a).I{T)[77a/x] h P : I(Ea;: a, r)

is invertible.
11.5.3. We sketch a version of Girard's paradox in FhoDTT with very strong

(Kind,Type)-sums, mimicking Mirimanoff's paradox (see [153] for details)
about the non-existence of a set Q of well-founded sets (problem: is Q itself
well-founded?). Type theoretically, one tcikes Q to be

Q = Ea:Type. E <:a -^ a -^ Type. WF(a, <) ,

where WF(a, <) is the type

lip: a —)• Type. (TiX.a.px x Hx.a. \px -^ Ey:a . {py x y < x)]) -> ± .

where _L = (Ha: Type, a) : Type. The inhabitants of Q are thus triples
(cr, (<a,9a)) consisting of a type a with an ordering < Q , and a proof-term
Qa witnessing that <a on a is well-founded. The next step is to define an or-
dering <a on Q. Informally, one says that (a, (<«, ga)) is below {/3, (</3, ^/3))
if there is an order preserving function ct -> /9, which stays below a certain
point in /3.

<n = Xu:Q.\v:Q.Ef:a -^ f3.Ez:f3.

unpack u,v as {(a, {<a,ga)), (/3, (</3,g/3)),) in

[Hxia. Uy: a.x <a y -^ foo </3 fy) x [llx: a. fx <i3 z).

(i) Check that in order to define u <ci v: Type for u, v: Q we need
sum-elimination with respect to Type: Kind—and thus very strong
(Kind, Type)-sums.

(ii) Construct:

(1) a proof-term gn:WF(Q,<Q);
(2) a proof-term r: Q <n fi, where Q = (Q, (KCI^QCI))' ^ ;
(3) a proof-term s: 1. inhabiting falsum^ using (1) and (2).

1L6 Full higher order dependent type theory, categorically

In this section we describe appropriate fibred categories for full higher or-
der dependent type theory (FhoDTT) , and consider some examples. First of

Section 11.6: Full higher order dependent type theory, categorically 693

all, we present two 'degenerate' examples: one—resulting from an arbitrary
topos—in which the fibration of types is a poset. Then there are no terms
(or proof-objects) between types, and the model is 'logical' instead of 'type
theoretic', in the sense that provability is modelled, and not proofs (under
a propositions-as-types reading). The other degenerate example involves the
fibration of closure-indexed-closures, as described at the end of Section 10.6.
It is a model for the axiom h Type: Type, and so we can turn it into a model
of polymorphic dependent type theory with Type = Kind. In this situation,
Girard's paradox (Exercise 11.5.3) applies, so that every type is inhabitated.
This can also be seen as a form of (logical) degeneracy.

Next we present three realisability examples, involving PERs over a;-Sets,
PERs over EfF, and 'extensional PERs' over ct;-Sets. The latter is a model
of weak-FhoDTT, in which the types are closed under weak dependent sums
E, but not under strong ones, see [320]. We conclude with some generalities
about "FhoDTT-structures".

As we already emphasised in the previous section, the main difference be-
tween full higher order dependent type theory (FhoDTT) and polymorphic
dependent type theory (PDTT) is that in FhoDTT kinds may depend on
types (i.e. Kind >- Type, in the notation from the previous section). As a re-
sult, one cannot separate kind- and type-contexts in FhoDTT, like in PDTT.
This has consequences for the corresponding categorical structure: one does
not have two base categories of contexts like in PDTT (namely B and A in
the diagram (*) on page 665), but a single base category of (kind- and type-)
contexts (like in the base category C in the term model described before
Proposition 11.5.2 in the previous section). Moreover, there will be a (fibred)
reflection Type t^ Kind between types and kinds resulting from the sums in
FhoDTT (see Proposition 11.5.3). Thus we shall combine a comprehension
category E —>- W^ for kinds with a reflection D (t:̂ E of types in kinds, like in:

The functor D f~ E from kinds to types is the left adjoint to the inclusion,
as in Proposition 11.5.3. Actually taking this reflection E ±:; D as primitive
greatly simplifies matters, since it induces much of the structure on types (see
Lemma 9.3.9, Exercise 9.3.9 and the table below).

694 Chapter 11: Higher order dependent type theory

1 1 . 6 . 1 . Def in i t ion . A structure

is called a w e a k F h o D T T - s t r u c t u r e if

• ' P i E ^ B"^ is a closed comprehension category (of kinds);
• q = cod o "P o X is a fibration (of types), and D ^ E is a fibred reflection;
• there is an object fi G E over the terminal object 1 G B, such that the

fibration q has a generic object over {Q} — AOWLP{Q) G B .

In such a situation the composite Q — VX:'D -> B"^ is a comprehension
category, which, by the reflection, has a unit 7^1: B ^ P—where 1:B —)• E
is the unit of P . Further, the required four forms of coproduct—kinds/types
over kinds/types—exist in such a structure, according to the following table.

coproducts

(very) strong (Kind, Kind)

strong (Type, Kind)

weak (Kind,Type)

weak (Type, Type)

1 are present because

P is a CCompC

Q-projections are "P-projections

of the reflection D <t̂ E

of the reflection and because
1 Q-projections are 7^-project ions

A similar table applies to products Yl instead of coproducts] J . The last two
coproducts (of types over kinds and over types) need not be strong, as will be
shown in Example 11.6.7 below. Therefore we have the following addition.

11 .6 .2 . Def in i t ion . A (strong) F h o D T T - s t r u c t u r e is a weak FhoDTT-
structure as above where the comprehension category Q = P Z i D -^ B"^ of
types is closed.

(This amounts to the requirement tha t Q has strong Q-coproducts, or,
equivalently by Proposition 11.4.3, tha t Q has strong P-coproducts.)

Since the situation with strong sums is most common, we often omit 's trong'
and just say 'FhoDTT-s t ructure ' for 'strong FhoDTT-structure ' . Also, we

Section 11.6: Full higher order dependent type theory, categorically 695

shall call a (weak or strong) FhoDTT-structure split if all of its structure is
split. Below we follow our usual preference for presenting examples in split
form.

11.6.3. Example (Toposes). Let B be a topos. Then B is a regular category,
so that there is a fibred reflection Sub(B) t^ B~^, as in Theorem 4.4.4. The
reflector B~̂ —> Sub(B) sends an arbitrary morphism to its monic part, us-
ing the epi-mono factorisation in a topos. And since monos are closed under
composition, Sub(B) —>• B~̂ is a closed comprehension category. We thus get
a FhoDTT-structure of the form:

Sub(B)

Recall from Example 10.5.9 that the codomain fibration ^ of a topos
:F(I)

B is equivalent to the split fibration i of families / x X ^ Q in B (with
reindexing given by composition, instead of by pullback). We may thus present
the above structure also in split form as

Sub(B) c ^ ^ (B)

These structures are degenerate models of FhoDTT, since the subobject fv-
Sub(B)

bration i for types is a poset. Thus all structure of terms between types
is destroyed.

11.6.4. Example (Closures). Recall from the last part of Section 10.6 the
Fam(Clos)

closed comprehension category 4- of closure-indexed-closures. It ad-
Clos

mits a type of all types (i.e. Type:Type): there is the universal closure
Q G Clos with the set of closures as image. Formally, the family id^: ^̂ -> ^

Fam(Clos)
over fi is split generic object for i : for every family X:a -^ fi in

Clos

Fam(Clos) over a E Clos there is a unique map a —"*• ft in the base category
Clos, namely X itself, which yields X — X*(idn). And we can see ft as the
domain of a family ft: 1 -> ft in Fam(Clos) over the terminal object 1 G Clos,

696 Chapter 11: Higher order dependent type theory

so that {Q} ^ Q. All told, we have a FhoDTT-structure

Fam(Clos) = = Fam(Clos) ^ Clos"^

Clos

in which the fibrations of types and of kinds are the same: this is a degenerate
model with Type = Kind.

We turn our attention to realisability models of FhoDTT. We discuss suc-
cessively: PERs over a;-Sets, PERs over EfF and ExPERs over u;-Sets. The
first two of these examples are obtained by combining various results on PERs
from previous sections.

11.6.5. Example (PERs over a;-Sets). To start with, recall from Exam-
ple 1.8.7 (ii) that the reflection P E R ^ u;-Sets lifts to a fibred reflec-
tion UFam(PER) ± ; UFam(a;-Sets) over u;-Sets. This gives us a FhoDTT-
structure

UFam(PER) c ^ UFam(u;-Sets) >^ u;-Sets

c<;-Sets

in which kinds are u;-set-indexed families of cj-sets, and types are u;-set indexed
families of PERs. Since the fibration of PERs over u;-sets (on the left) is the
externalisation of the internal category P E R in cj-Sets, it has a split generic
object, given by the set of PERs, considered as object P E R Q in cj-Sets.
And this object comes from a family over 1 in UFam(cc;-Sets). Finally, in
Example 10.5.8 we saw that UFam(PER) —> a;-Sets~^ is a closed comprehen-
sion category. In particular, there are strong (Type,Type)-sums in the above
FhoDTT-structure.

11.6.6. Example (PERs over EfF). The reflection PER t^ cj-Sets that we
used in the previous example, also lifts to a reflection over the eff'ective topos
EfF, see Proposition 6.3.2 (iii). Hence we get a similar FhoDTT-structure over
EfF. ^

UFam(PER) c ^ UFam(cj-Sets) ^ EfT^

EfF

Section 11.6: Full higher order dependent type theory, categorically 697

11.6.7. Example (ExPERs over u;-Sets). This example involves the (reflec-
tive) subcategory ExPER t:^ PER of so-called 'extensional PERs', intro-
duced in [81]. Streicher [320] shows that in this "submodel" example one does
not have strong (Type, Type)-sums: it is a weak FhoDTT-structure.

We start with some preliminary definitions and results on extensional PERs.
The definition of extensionality for PERs makes crucial use of the special PER
Nx_ (but see Exercise 11.6.1 below for an alternative definition):

NL = {(n,n') | n . O : : ^ n ' . 0 } .

where ĉ means that either both sides are undefined, or both sides are defined
and are equal. It is clear that N]_ is a PER. Its quotient set N/A/^i is the union
{[Kx. t]} U {[Kx. n\\ne N}; it can be identified with the set J_N = 1 -h N of
natural numbers with additional bottom element.

We now define a PER R to be extensional if the canonical map

R ^ A l̂̂ -̂ ^ mapping x i—> %a: N^. Ci[x)

is a regular mono in cj-Sets. (Recall from Lemma 5.3.8 (i) that regular sub-
objects in a;-Sets correspond to subsets of the carrier sets, with inherited
existence predicate.) It follows that if i? G PER is extensional, then two ele-
ments X, y G N/i^ are equal if and only if a{x) — a[y) for each a\ R—^ N±_ in
cj-Sets. It is easy to see that Nj_ itself is extensional.

We write ExPER -̂> PER for the full subcategory of extensional PERs.
It is easy to construct a left adjoint to this inclusion: for an arbitrary PER S

take the regular image in u;-Sets of the canonical map S —> Nj_ -^ as

7/5 regular mono 5.
S ^ 5' > ^ N[^^^

Then, by the equivalence between (i) and (ii) in Exercise 11.6.1, S' is an
ExPER. And every map f:S -^ i^ to an ExPER R, factors uniquely as
/ : 5 ' —• R with f o rjs = f using the diagonal-fill-in:

S ^ S'

/ I reg. mono I'

reg. mono x reg. mono

698 Chapter 11: Higher order dependent type theory

The ExPER model of polymorphic dependent type theory is easy to
describe. The reflection ExPER ±^ PER lifts to a fibred reflection
UFam(ExPER) <^ UFam(PER) over u;-Sets. We thus get a weak FhoDTT-
structure

UFam(ExPER) c ^ UFam(PER) ^ a;-Sets-

cod
a;-Sets

since the fibred reflection transports all the required structure from the closed
comprehension category of PERs over u;-sets, to the fibration of ExPERs over
cj-sets. In particular, this fibration of ExPERs is a fibred CCC, and so the
category ExPER (the fibre over 1 G u;-Sets) is a CCC.

In this example we have kinds as families of PERs over u;-sets. But since
there is also a fibred reflection UFam(PER) t ^ UFam(a;-Sets) over a;-Sets,
we have by composition of fibred reflections, another example

UFam(ExPER) c ^ UFam(a;-Sets) ^ cj-Sets"

cod
a;-Sets

in which we have kinds as c<;-set indexed families of Cc;-sets.
We now come to Streicher's counter example, showing that in this last situ-

ation one does not have strong (Type, Type)-coproducts [i.e. sums). Consider
therefore the exponent ExPER N^, where N is the PER of natural numbers.
Over this object, define the family 5/ G E x P E R given for / G N^ by

r TVx ifVx./(x) = l
•̂ ~ [N X N else.

where N x N is the terminal ExPER with singleton quotient set {N}. We
describe the coproduct of ExPERs over an ExPER as an a;-set:

= {{%x. 1, z) I ̂ G 1 + N} U {(/, N) I / : N -^ N part, rec, / ^ %x. 1}

see Exercise 11.6.2. The carrier set of X can also be split into a union

X ^ Xi U X2

of sets of partial recursive functions:

Xi = {^:N-^N partial recursive I Vx GN.5f(:rH-1) = 1}

X2 = {̂ fiN —̂ N partial recursive | ^(0) t and

3x en. (g{x -\-1) ^ 1 ov g(x -{-1) t)}-

Section 11.6: Full higher order dependent type theory, categorically 699

The value at 0 of f̂ G Xi is thus used to give the value in the fibre Sf over
the function f{x) = g{x-\-l). In the second case this value at 0 must be fixed,
and divergence is chosen. The existence predicate E on this coproduct X is:

e e E(g) <^ e • 0 ^ ^(0) and Vx G N. e • (ar + 1) 2:̂ g{x + 1) = 1,

for g e Xi;

e e E{g) ^ Vx E N. e • (x + 1) ~ ^(x + 1),

for g e X2.

The outcome e • 0 at 0 of a realiser e E: E{g) for g E X2 is irrelevant since any
two realisers of g (differing solely at 0) will be identified when X is considered
as a PER. Thus, any code n G N for a partial recursive function is a realiser
for some function hn in X, namely for

i fVx.e.(x + l) = 1
/̂ n = <(. . . f t i f y - 0 ^^^^^^.^^

Notice that if ni and 712 are codes for the same partial recursive function,
then they realise the same function in X.

UFam(ExPER)
If the fibration i of ExPERs over u;-sets has strong coproducts,

CJ-Sets
then by Exercise 11.5.2 this coproduct u;-set (X, E) must be an ExPER. This
requires for gi,g2 G X that gi = g2 if (^{gi) = ct{g2) for all morphisms
a: X —^ N± in u;-Sets. It turns out that this property fails, by the fact that the
effective operations are continuous. This is the Myhill-Shepherdson Theorem
from recursion theory, see e.g. [236, II.4].

Consider the following two functions in X.

gi{x) = 1 and g2(x) = < ^
t if X =: 0

else.

Then both gi and ^2 are in Xi, but obviously gi / ^2- We show that a{gi) =
a{g2) for each a: X -^ N_i in Cc;-Sets. This means that X is not (isomorphic
to) an ExPER.

Assume a: X —^ Nj_ in c«;-Sets is given, say tracked by rf G N. Let < be a
primitive recursive function—obtained via the s-m-n Theorem—such that for
each n,x G N,

<Pt{n)(x) = d'n'0.

We can now define an effective operation F by

700 Chapter 11: Higher order dependent type theory

since t is "extensional":

(fm — V̂n2 =^ ^ij ^̂ 2 are codes of the same function in X

^ d • niN±d 712

^ rf- ni • 0 :^ c? • 722 • 0

Assume now a{gi) ^ a{g2) and thus ^(^fi) 7̂ F{g2), say F{gi){k) ^
F{g2){k). Without loss of generality, assume that F{gi){k) is defined, and
has value £. By the Myhill-Shepherdson Theorem all effective operations are
continuous, so there is a finite approximation hi C gi with F(h){k) = £ for
all h D hi. We distinguish two cases:

• If hi{0) tj then also hi C g2, so that F(g2){k) = I, This is impossible.
• If /ii(0) I, one must have /ii(0) = 1. We take another finite function /i2,

which acts like hi, except on 0, where it is undefined. Any two realisers m,-
for hi (with z = 1,2), are codes for the same function in X2, so drrii C:̂ c/m2.
But then F(hi) — F(h2), and since /i2 approximates 2̂? we must have
F{g2){k) = ^ by monotonicity of F. Hence also this second case leads to a
contradiction.

Thus we have shown that the coproduct X of ExPERs over an ExPER is
not an ExPER. We may conclude that these ExPERs form a weak FhoDTT-
structure.

11.6.8. Remark. Recall from Lemma 9.3.9 that products Yl and coproducts
]J are "transported along a reflector". This ExPER example shows that strong
coproducts are not transported: there is a fibred reflection UFam(ExPER) ±1;
UFam(a;-Sets) and the fibration of u;-Sets has strong coproducts, but the
fibration of ExPERs does not.

These are the examples of FhoDTT-structures that we describe here. We
should also mention the model (without sums) of Lamarche [185], which is
an adaptation of the ^coherent domain' model of polymorphic type theory
from [96]. Also there are the examples of Hyland and Pitts [148] involving
particular kinds of Grothendieck toposes, namely ^algebraic' toposes (presheaf
toposes on small categories with finite limits) and 'algebraic-localic' toposes
(presheaf toposes on meet semi-lattices). The first of these examples is de-
generate in the sense that it is a model with Type =: Kind—and thus with
Type: Type, using that there is an algebraic topos ^encoding' all algebraic
toposes. And in the second case one uses algebraic localic toposes for types,
and algebraic toposes for kinds. One then still has a kind of all kinds. Varia-
tions of the above model of PERs over a;-sets are used in [320, 321] for various

Section 11.6: Full higher order dependent type theory, categorically 701

independence results in FhoDTT. See also [312] for similar use of models based
on combinatory algebras.

We conclude this section with some general points worth noticing about
FhoDTT-structures.

11.6.9. Theorem. Let B T=± E -^ M-^ be a weak FhoDTT-structures, as in
Definition 11.6.1. Write Q — VX:B -^ W^ for the comprehension category of
types, and q — cod o Q:D ^ B for the associated fibration. Then

(i) q is a fibred CCC, and thus a locally small fibration;
(ii) q is a 'full" small fibration: it is the externalisation of a full internal

category C in B; fullness is automatic because Q is a full and faithful (fibred)
functor Fam(C) = D -^ B" ' .

Proof, (i) Cartesian closure follows as in Proposition 10.5.4, except that we
have to remember that also the weak (Type, Type)-sums yield fibred Cartesian
products, see Exercise 10.5.4 (i).

Since gf is a thus a fibred CCC with comprehension, it is locally small by
Corollary 10.4.11.

(ii) Let ^ G O be the generic object of q over Co = {^} G B. We then get
an internal category C = Full(t/) in B, as in Theorem 9.5.5, with a full and
faithful fibred functor Full(t/) -^ D, provided the relevant pullbacks exist in
the base category B to form the objects of composable tuples and triples. And
this functor Full(t/') ^ D is an equivalence like in Corollary 9.5.6 because q
has a generic object.

The existence of the relevant pullbacks follows because one can always form
pullbacks along the V- and Q-projections. For example, the Cartesian product
Co X Co E B is formed as the puUback

Co X Co ^ Co

J TT

Co ^ 1

VQ

so that the Cartesian projections TT and TT' are P-projections. The pair
(5o, 5i): Ci —)• Co X Co of domain and codomain maps of C is then the Q-pro-
jection

Q(7r*(C/)^7r'* ([/)).

This can be seen by combining the description of (5o,5i) in the proof of
Theorem 9.5.5 with the description of representing arrows via exponents =>
underlying Corollary 10.4.11. Since 5o = TT o (5o, 5i) is a composite of P - and

702 Chapter 11: Higher order dependent type theory

Q-projections, the pullback u*{do) exists in B for any map u: I -^ Co- This
allows us to form the pullbacks C2 and C3 in B of composable tuples and
triples (as in Definition 7.1.1). •

This result emphasises the role of internal categories in (weak) FhoDTT-
structures. In the special case where the fibration of kinds is a codomain
fibration, the reflector from kinds to types makes this internal category com-
plete. In eff'ect, completeness is equivalent to existence of such a reflector. This
result, due to [143, 76], will be presented next. It gives a particularly easy de-
scription of certain models of FhoDTT, like the PER and ExPER models over
u;-sets. Such a structure is sometimes studied as a type theoretic generalisa-
tion of a topos, in which the (internal) preorder structure of the object Q of
propositions in a topos is replaced by a proper internal category of types, see
e.g. [76, 255].

11.6.10. Theorem. LetM be a locally Cartesian closed category, containing a
full internal category C, with full and faithful fibred functor 1: Fam(C) -> B"^ .
Then: X has a fibred left adjoint if and only if C is a small complete category
in B and X is continuous.

Under these equivalent conditions there is a weak FhoDTT-structure of the
following form.

Fam(C) c_2.

Since the codomain fibration of an LCCC is complete, the existence of a
reflection obviously makes the internal category complete, so the interesting
part of the statement concerns the construction of the reflector, assuming
completeness. This may be done (like in [143]) via an application of a (fi-
bred) adjoint functor theorem (see [47, 246]). But with the products JJ one
can define a coproduct, like in Exercise 8.1.5, yielding a weak left adjoint.
What remains to be done then, is to make this into a real adjoint via a stan-
dard construction with equalisers (as used for example in the proof of [187,
V, 6, Theorem 1] to turn a weak initial object into a real initial object).
See [254] for a general analysis of the adjoint functor theorem in terms of such
definable coproducts.

We shall present this construction in a type theoretic formulation, using
some ad hoc notation for the inclusion X of types into kinds, and for equalisers
of (parallel) terms between types. The inclusion X yields for a type F h
a: Type a kind F h X{a): Kind in the same context. By fullness it comes with

Section 11.6: Full higher order dependent type theory, categorically 703

introduction and elimination rules:

r h M:a r \- N:I{T)

r \-\{M):I{a) r \-O{N):T

with 'i' and 'o' for 'in' and 'out'. The associated conversions are simply

o(i(M)) = M and i(o(7V)) = N.

For types F h cr, r: Type in the same context, and "parallel" terms T,x:a h
Mi,M2'T we shall use an "equaliser type" F h E(Mi, M2): Type, together
with a term F, z: E(Mi, M2) H CMI.MS- ^ satisfying

F,2: :E(Mi,M2) f- Mi[eMi,M2/^] = A^2[eMi.M2/^]-^•

Further, we translate the familiar universal property of equalisers into this
type theoretic language as follows. For each term F,A h A îcr satisfying
F, A h Mi[N/x] = M2[N/x]:a, there is a unique term F, A h iV: E(Mi, M2)
satisfying F, A h eM,,M2[N/^] - ^'^'

Proof. For a kind T \- A: Kind we construct a type F h lZ{A):Type^ such
that for a type F h aiType we get a bijective correspondence between terms
M and Â in:

T,a:A h M:2(cr)
— f *)

F,x:7^(A) h iV:(7
yielding the required adjunction IZ -\ X. We construct 1Z{A) by first con-
structing a weak left adjoint 7Zyv{A), together with two equaliser types. We
put

F f- 7^w(A) =^ n^ : Type. {Ua: A. f3)-^ f3 : Type

F h P =^ Aa: A. \(3: Type. A :̂ (Ha: yl. /?). ̂ • a : Da: A. n^[A)

F, / : 7ew(A) -> 7^w(^) H P ' "i^ Aa: A.f {P-a): Yia: A. ny,{A).

By weakening we can also put P in the same context as P ' , so that we can
form their equaliser; for convenience we use the following abbreviations.

def

T \- E — E[P, P'): Type with canonical term:
dpf

T,z:E \- e ~ ep^p> : 7^w(v4) -> 7^w(^) satisfying:

F,z :£ ' h P = A a : y l . e (P a) : na :^ .7ew(^) .

We also consider the following two terms with the intended reflector 'R{A) as

704 Chapter 11: Higher order dependent type theory

their equaliser.

r , y: n^{A) h Q =^ XziE.y.E-^ Tly^iA)

T,y:ny,(A) h Q' =^ \z:E.e • y: E-^ Tly,{A)
def

r h lt{A) — E{Q,Q'): Type with canonical term:
def

V^x:lZ{A) \- c — eq^Q' : 7^w(^) satisfying:

^,ar:7^(A) h Az:£;.c= XziE.ec: E ^ny,(A).

Notice that in this situation we have a conversion

T,a:A\-Q[{P-a)/y] = Xz.E.Pa
= Xz:E.e'{P a)

= Q'[{P^a)/y]:E^n^{A)

so that we get a unique term

T,a:A l-P:7^(A) with T,a:A h c[P/x] = P • a:7^w(A).

We claim that there is then a correspondence (*) as in the beginning of
the proof: given terms T,a:A h M:X{cr) and T,x:lZ(A) \- N:a we define as
transposes:

r , x:n{A) h M^ 1̂ ^ c . ̂ • (Aa: A. o(M)) : a

T,a:A\- 7V̂ =^ \{N['P/X]) : l{a).

Then it is easy to see that

M^^ = \{c['P/x]'a'{Xa:A.o{M)))

= \{P 'a-a'{Xa:A.o{M)))

= \{{Xa:A.o{M))'a)

= i(o(M))

= M.

It is more complicated to show A^̂ ^ = N. We form the equaliser

T \- D = E{N, A/^^^): Type with canonical term:

T,w: D \- d = ejv.iv^^ • T^{A) satisfying:

T,w:D \- N[d/x] = N''^[d/x].

Now it is easy to show that N'^^lP/x] = N[P/x], so that there is a unique
term _ _

r ,a:v4 h P : J 9 with T,a:A \-dlP/w] = T: n{A).

Section 11.6: Full higher order dependent type theory, categorically 705

We abbreviate

r h L =^ \y: lly,[A).c[d/x][{y • D • (Aa: A. T))/w]: 7^w(^) -> 7ew(A)

and check that

P'[Llf] = Xa:A.L(P'a)

= Xa: A. c[d/x][{P a-D- (Aa: A. V))/w]

= Aa: ^4. c[d/x][P/w] by definition of P

rr Xa-.A.ciP/x]

= Xa.A.Pa

= P

= P[L/fl

We thus get a unique term T hT:E with T h e[L/z] = L:n^{A) -^ Hy^iA),
because e is the equaliser term of P, P\ For d' = d[{c • Z) • {Xa: A. P))/w] we
have _

c[d'/x] = c[d/x][(c'D'{Xa:A.P))/w]

= L'C

= e[L/z]-c

= (Az:E'.e-c) • L

= (Az:E.c) -L

== c.

Hence there are two terms T,x:lZ{A) h x,d':lZ(A) with c[d^/x] = c[x/x]. By
uniqueness—with respect to the equaliser ^{A)—they must be equal: d' = x.
But then we can finally conclude that A'' = N^^ since

TV = N[d'/x]

= N[d/x][{c-D-{Xa:Ay))/w]

= N''''[d/x][{c- D • {Xa:A,f))/w]

= N'^'^ld/x]
- N""^. D

We have described some of the essential aspects of categorical structures
for full higher order dependent type theory. In the next, final section we shall
further investigate one particular example of such a structure, namely PERs
over Eff from Example 11.6.6.

706 Chapter 11: Higher order dependent type theory

Exercises

11.6.1. Prove that for a PER R the following statements are equivalent:

(i) R is extensional: the Ccinonical map R -^ (Ni.)^^^-^^) is a regular
mono in a;-Sets;

(ii) there is an u;-set A = (A,E) with a regular mono R -̂> {N±.)'^ in
a;-Sets;

(iii) R is extensional in the sense of [81]: there is a "base" B C N such that
for all n G \R\ and m € N

nRm ^ n,m are "co-extensioncJ mod B"

^ yk e B.n k c::^ m- k.

11.6.2. Recall Exercise 1.2.10 and check that the homset of maps N -^ Nj_ in
a;-Sets can be identified with the set of partial recursive functions N —̂ N.

T

11.6.3. Show that one can obtain a Acj-fibration r from a FhoDTT-structure D <=̂

E -^ B"^, by forming the fibration r via change-of-base in:

¥

J I
q = cod o "P o J

{ —} = dom 0 V

(Where Ei is the fibre over the terminal object 1 G IB.)

11.6.4. (i) Show that every FhoDTT-structure D i=̂ E —> B~^ can be transformed
into a PDTT-structure, by taking

FamQ(D)

where FamQ(D) is the "lifted" closed comprehension category over
q = cod 0 Q, obtained as in Exercise 10.5.5 from Q = VX.
[Hint. Remember Lemma 11.3.2 (ii).]

(ii) Show that turning a FhoDTT-structure first into a PDTT-structure
(as above) and then into a Aa;-fibration (as in Exercise 11.3.2) yields
the same result as turning the FhoDTT-structure directly into a
Aa;-fibration (as in the previous exercise).

[In [166] one can find how a Aa;-fibration can be turned into a FhoDTT-
structure. The construction is based on an idea from [230], and is rather
complicated; therefore it will not be reproduced here.]

Section 11.7: Completeness of the category of PERs in the effective topos 707

11.7 Completeness of the category of PERs in the effective topos

In this final section we shall have a closer look at the sense in which the
internal category of PERs in the effective topos EfF is complete. It turns
out not to be complete in the usual sense (see Definition 1.9.11) since the
Beck-Chevalley condition does not hold for the product functors YIF^ right
adjoint to reindexing F* along an arbitrary map F in EfF. A (non-trivial)
counterexample may be found in [150, Proposition 7.5]. It forms the starting
point for further investigations, leading to the characterisation that PERs in
Eff are "weakly" complete. In this section we sketch some of the basic results
in this direction: we assemble material from [143, 150, 41] to show that the
fibrations of PERs and of cj-sets over EfF are "weakly complete", by describing
their "stack completions" as the complete fibrations respectively of separated
families, and of separated families which are orthogonal to V2 G EfF. The
idea to describe the (weak) completeness of PERs via orthogonality is due to
Freyd, see also Remark 8.3.6 (i) (b).

From a type theoretic perspective, this failure of Beck-Chevalley means
that PERs in EfF do not form a FhoDTT-structure like in Theorem 11.6.10
(a complete internal category in an LCCC). Hence we do not get a model
of full higher order dependent type theory (FhoDTT) with types as families
of PERs and kinds as families of objects of EfF, both indexed over EfF. But
PERs in EfF are complete enough to form a model of FhoDTT with kinds
interpreted as (families of) cj-sets (as we have seen in Example 11.6.6). Then
one only requires adjoints to certain weakening functors, induced by (gener-
alised) projections given by kinds. Hence PERs in EfF can be used to give a
model of FhoDTT.

The investigations below involve 'stacks'. These can be understood as gen-
eralisations of sheaves, which may have arbitrary categories as fibres, and
not just discrete categories, i.e. sets. Thus stacks generalise sheaves like in-
dexed categories generalise presheaves. In most general form, a stack consists
of a "continuously" indexed category, over a base category equipped with a
Grothendieck topology. See [100] or [168] for more information and references.
Here we only need stacks with respect to the regular epi topology, as in Exam-
ple 5.6.3 (ii). (Recall that in a topos every epi is regular, see Corollary 5.5.5.)
Moreover, we restrict ourselves to full subfibrations of a codomain fibration

I for B a topos. Such a full subfibration can be identified with a collection
V C ArrIB of "display maps" of B, which is closed under pullback: if a family
(p is in T>, then each pullback u*{(p) of (p is again in V. As before, we write

^"^
i for the associated fibration of families in V.

708 Chapter 11: Higher order dependent type theory

11.7.1. Definition. Consider a full subfibration ^ of the codomain fi-
B

bration ^ of a topos B, given by a collection of display maps V C Arr B.
IB

(i) This subfibration is called a stack (with respect to the regular epi
topology on B) if for each pullback square

u

with u: J -^ I 3i (regular) epi, one has

(ii) The stack completion of the subfibration induced by V is given by

the collection V of display maps containing those families I ^^ 1 for which

there is an epi u: J -^ I in M with u*((p) G T>.

11.7.2. Definition (See [39, 150]). A full subfibration ^ ^f i is

called weakly complete if its stack completion I is a complete fibration.

The difference between weak completeness and ordinary completeness is
that in the weak case it is true in the internal language that limits exist,
whereas for ordinary completeness these limits are given to us by external
functors. It is like for ordinary categories where one may have binary products
X given 'weakly' as

for every pair X, Y of objects there is a product diagram X <^ X xY —^Y

and 'ordinarily' as

there is a right adjoint x to the diagonal functor.

One needs the Axiom of Choice in the meta-theory to establish the equiva-
lence of these two descriptions. But within the universe given by a (subobject
fibration of a) topos, this axiom may fail.

We can be more explicit if the display maps in V come from an internal
category C == (Ci —^ Co) in B. For objects X^Y: I zit Co over / , existence of

Section 11.7: Completeness of the category of PERs in the effective topos 709

their Cartesian product in the internal language is

r S{i) = 3P: Co. BTT: P -^ X,-. BTT': P -^ Yi.T[i, P, TT, TT')

\/i:LS[i) where < with

[T(i , P, TT, TT') = '%• A- P ^ 1̂ - is a product diagram"

If Vi: / . 5(2) holds we get a situation

T
V

/ X (Co X Ci X Ci)

- ^ 5
Y

-^ I

where T ^> 5 -̂> / is the image factorisation of the composite T >-^ I x (Co x
Ci X Ci) -^ / . We thus get an epi e : T -^ / such tha t e*(X) and e* (Y) have a
(canonically given) product. This is in essence what is expressed by the above
definition of weak completeness.

UFam(a;-Sets)
Our first aim is to show tha t the fibration i of a;-Sets over

Eff . ,
EfF is weakly complete, by showing that its stack completion is the fibration
FSep(Eff)

i of separated families for the double negation nucleus on EfF. The lat-
Eff

ter is always a stack, which is complete as a fibration. This can be established
in greater generality.

11 .7 .3 . L e m m a . LetM be a topos. A full suhfihration

is definable is a stack.
FSepj

As a result, for a nucleus j in B the fibrations i

families of separated objects and sheaves are stacks.

of i which
1

FSh:
and of

Proof. Assume a pullback square

in which u is an epi and V̂ is in P . Since V is definable, there is a mono
m.I' >-^ I with < '̂ — m*{(p) G V. By the universal property of <p' we get a

710 Chapter 11: Higher order dependent type theory

unique map v: J ^ V such that

y

1 1
Y

- -^ X' ^ X

9'
>
J

' >
^

t
is

Y ^ X

i,
\
J

f ^
^

(
J ^ Jf > ^ / J ^ J

V m u

This makes m an epi, and hence an isomorphism. Thus <̂ is in P .
The second part of the lemma follows because the fibrations of families

of separated objects and of families of sheaves are definable, see Proposi-
tion 9.6.9. •

FSepj(B)

11.7.4. Lemma. A fibration i of y separated families in a toposM, is
always complete.

Proof. It is easy to see that separated families are closed under finite limits.
Closure under products]~J follows from Exercise 5.7.6 (ii). •

Before we can analyse the situation in EfF, we need the following result; it
says that every object in EfF has a separated cover.

11.7.5. Lemma. For every object (/ ,«) G EfF there is an uj-set {I\ E) G
cj-Sets with an epi {!' ,E) -^ (/ ,«) in EfF.

ProoF. Take
/ ' = {(i, n) I i G / and n G E[i) - \i ^ i\}

with existence predicate E{i,n) = {rz}, and thus as equality

,,. . ../ /., (in) if i = i 'and n
\M^(^,n)\=^l otherwise.

There is then an epi P: (/', E) -» (/, «) with P(i, n, i') - \i ^^'\^ {n}. D

Notice that taking such separated covers is not functorial.
UFam(u;-Sets)

11.7.6. Theorem. The fibration i considered as a full subfibra-
Eff

Eff"^
tion of the codomain fibration I (via Proposition 6.3.4), has the fibration
FSep(Eff)

4- of double negation separated families as its stack completion. Hence
families of uj-sets over Fiff form a weakly complete fibration.

ProoF. Every (/, «)-indexed family (X[,], E[i])[i]^r{i «) of cj-sets yields a sep-

arated family I . ^ x I as in Proposition 6.3.4. And since separated fam-

Section 11.7: Completeness of the category of PERs in the effective topos 711

ilies form a stack, they also contain the stack completion of such families

Conversely, assume I ^^ I is a separated family. There is by the pre-

vious lemma an cj-set (/', E) together with an epi P: (/', E) -^ (/, «) . Taking

the puUback along P yields another separated family, call it ip', over an a;-set.
UFam(C<;-3ets)

By Proposition 6.3.3, this family (f' corresponds to a family in 4-
Eff

Hence the original family (p is in the stack completion of this fibration. •
UFam(PER)

We turn to the completeness of the fibration i of families of PERs
. . . Eff

over EfF. To make things easier we first investigate the non-fibred situation.
Below, a special role is played by the two-element set 2 = {0,1} G Sets and
by its image V2 G EfF. We shall be especially interested in objects in Eff
'orthogonal' to V2 (and in families of these).
11.7.7. Definition. Let A he a, fixed object in an arbitrary Cartesian closed
category B. One calls an object X G B or thogonal to A if every map A -^ X
is constant. More precisely, if the canonical map X ^ {A => X)—obtained as
exponential transpose of the projection X x A -^ X—is an isomorphism.

X\ (X This concept extends to families: (| 1 is orthogonal to A G B if (| 1 is

orthogonal to /*(^) = 1 | ^ 1 in the slice category B / / .

Orthogonality is related to uniformity: recall that an object U is uniform
with respect to Â if every total relation R C U x N is constant: for some
n: N, R{u, n) for all u:U. Such an object U is then clearly orthogonal to A .̂

The next result relates objects orthogonal to V2 and modest sets (or PERs)
in EfF. It shows a certain formal resemblance with connectivity in topological
spaces. We refer to the discussion in Remark 8.3.6 for the reason why this
result yields suflBcient completeness for polymorphic (simple and dependent)
type theories. Instead of V2 one can also use the subobject classifier fi G EfF,
see [150, Proposition 6.1].

11.7.8. Proposition (Freyd). Consider an uj-set {I,E) G EfF. Then {I,E)
IS a modest set if and only if it is orthogonal to V2 G EfF.

ProoF. Suppose {I,E) is modest and let / : V2 -^ {^,E) be tracked by e.
Write 2*0 = /(O) and ii = / (I) . Since 0 G N = £'v2(0) 0 £'v2(l), we get
e 'Q E Ej{io) n Ej{ii). Thus io = ii and / is constant.

712 Chapter 11: Higher order dependent type theory

Conversely, assume {I^E) is orthogonal to V2, and let io,ii G / be given
with n E Ei{iQ)nEi{ii). There is then a morphism / : V2 -> (/, E) by /(O) -
2*0 and / (I) = z'l, which is tracked by Xx. n. But since / must be constant, we
get io = ii. D

We would like to extend this result to families of PERs. But first we state
the completeness of a full subfibration of orthogonal families.

11.7.9. Lemma. Let M be a topos with a nucleus j and a fixed object A G
IB. We write Orth(A) <^ B"*" for the full subcategory of families that are
orthogonal to A and SepOrthj(74) <^ Orth(A) for the full subcategory of j -
separated orthogonal families.

(i) The codomain functors Orth(74) —)• B and SepOrthj(74) —)• B are fibra-
tzons.

Orth(A) SepOrthj(^)
(ii) These fibrations i and i are complete.
(iii) And they are both definable—and hence stacks by Lemma 11.7.3.

Often, the subscript j in SepOrthj(A) will be ommitted if the nucleus j is
clear from the context.

Proof, (i) For a family I |*^ I orthogonal to ^ G B and a morphism u: J —^

/ , the pullback u*((p) is again orthogonal to A, since: if (p =. I* (A) => (p then

w*(v?) ̂ u*{r{A) ^ ^) ^ u*r{A) => u*{<f) ^ r(A) => w*(^)
making u*{(p) orthogonal to J* {A) in

Since separated families are closed under pullback, the codomain functor
SepOrthj(A) —> B is also a fibration.

(ii) By Lemma 11.7.4 it suffices to prove that the fibration of orthogonal
families is complete. Fibrewise (finite) completeness is easy: a map / : I* (A) -^

<p — lirrii ipi is determined by the composites /* (̂ 4) —> (p - ^ (pi, which must
be constant.

So what remains is closure under products f]^ . Assume u: I -^ J m M
/ X \

and a family I j ^ J. Maps J* {A) -^ Hul^)
in B / / then correspond by

transposition to maps r{A) ^ u*J*[A) -^ v̂ in B / / , which are constant.
Hence the former are constant.

(iii) For a family (p in B / / , write (p for the canonical map (p —>• (/* [A) =>• (p)
and form the mono {^ G viso} ^> / , using that (vertical) isomorphisms are
definable—since the codomain fibration on B is locally small, see Lemma 9.6.7.
For a morphism w: J -> / we get: w*(<̂) is orthogonal to A if and only u

Section 11.7: Completeness of the category of PERs in the effective topos 713

factors through {(f £ viso} y-^ I. This shows that orthogonality is definable.
The families which are both orthogonal and separated are then also definable,
see Exercise 9.6.3. D

UFam(PER)
11 .7 .10 . T h e o r e m . The fibration I considered as a full subfibra-

Eff
Eff"^ SepOrth(V2)

tion of the codomain fibration J has the fibration i of sepa-
Eff Eff

rated families that are orthogonal to V2 E EfF as its stack completion. Hence
families of PERs over EfF form a weakly complete fibration.
Proof . In essence we reproduce the argument underlying Proposition 11.7.8
for families of PERs . In one direction, an (/ , «)- indexed family R =

/({m,^)\
(i^[i], £^[,])[j]^r(/,«) of PERs gives rise to a separated family I /r f I via

Proposition 6.3.4 with

{R} = {(i, [n]) \ i e l with E{i) ^ 0 and [n] G N / % }

and

\ii, M) - a', [n'])\ = {1 '̂" "̂1 ^ f"̂ 2 ™ . "̂' "̂ t̂ "̂'
This family is then orthogonal to V2: consider a morphism F in a commuting
triangle

(/ , «) X V2 ^ {{R},^)

There are then codes a,b,c,d,e G N such tha t for each i G / with n G E{i)
we have

a n E F (i , 0 , i o , [no]) n F (i , l , i i , [n i])

for certain io, ii G / and [no] G N/Z^fij, [ni] G N/R[i^]

b-n e F (f o , [n o]) n F (i i , [n i]) .

This yields a first projection p(6 • n) G E{io) H F(2i) , so tha t [io] = [ii], and
a second projection p ' (6 • n) G [no] fl [ni], so tha t noii[io]ni. We also have

b-n e 7r/?(io,[no],io) n7 rH(n , [n i] , i i)

c - n G [TTRO F){i,0,io)n{7rRoF){i,l,ii)

d • n G |i « io| n |i « i i |

e -n G |(io,no) « (n , n i) | .

714 Chapter 11: Higher order dependent type theory

This shows that F is constant.

Conversely, assume fj ^ I ^̂ ^ separated family orthogonal to V2.

There is by Lemma 11.7.5 an a;-set (/', E) together with an epi P\ (/', E) -^

(/ , «) . Taking the pullback along P yields a family I . / ^ . I which is sep-
\\^ ^E) J

arated and orthogonal to V2 over an cj-set. By Proposition 6.3.3, this family
ip corresponds to a family of a;-sets (y(j^„), £'(,• ,^)), indexed by (i, n) G / ' (as
described in the proof of Lemma 11.7.5). Thus for each (z, n) G / ' we have an
(outer) pullback square

(y(i,„),^(,-„)) ^ {Y,E) ^ (X,«)

{i,n)

J

{r,E) — ^ { L ,

f

showing that (YJf „), £'(j^„)) is orthogonal to V2. But since we already know
that it is separated, it is a modest set by Proposition 11.7.8 (and hence comes
from a PER). Hence ip is isomorphic to a family of PERs over (/', E). Thus

UFam(PER)
the family (p that we started from is in the stack completion of i

Eff ^

In conclusion, there is a diagram of categories and functors over Eff,

SepOrth(V2)

.JET
UFam(PER) FSep(Eff) C ^ Eff^

UFam(u;-Sets)

where 'sc' stands for 'stack completion'.

Exercises

11.7.1. Let X> be a collection of display maps (closed under pullback) in a topos B,
with V as its stack completion. Show that for u: / —)• J in B the pullback
functor u*:M/J -^ B/ / restricts to u*:V/J -^ V/L

Completeness of the category of PERs in the effective topos 715

11.7.2. Let B be a topos with nucleus j and object A £ M. Prove that the fibra-
tions associated with the following collections of morphisms in B are closed
comprehension categories,
(i) Separated families,
(ii) Families of sheaves,
(iii) Families orthogonal to A.
(iv) Separated families orthogonal to A.
[Essentially, one only needs to show that these collections are closed under
composition.]

716 Higher order dependent type theory

This Page Intentionally Left Blank

References

[l] M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Comp. Sci. Springer,
1996.

[2] M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism. Theor.
Comp. Sci., 121:9-58, 1993.

[3] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, Dov M. Gabbai, and
T.S.E. Maibaum, editors. Handbook of Logic in Computer Science, volume 3, pages
1-168. Oxford Univ. Press, 1994.

[4] Th. Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD
thesis, Univ. Edinburgh, 1993. Techn. rep. LFCS-93-279.

[5] Th. Altenkirch, M. Hofmann, and Th. Streicher. Categorical reconstruction of a re-
duction free normalization proof. In D.H. Pitt , D.E. Rydeheard, and P.T. Johnstone,
editors. Category Theory and Computer Science, number 953 in Lect. Notes Comp.
Sci., pages 182-199. Springer, BerHn, 1995.

[6] M.A. Arbib and E.G. Manes. Parametrized data types do not need highly constrained
parameters. Inf. & Contr., 52:139-158, 1982.

[7] A. Asperti. Categorical Topics in Computer Science. PhD thesis, Univ. Pisa, 1985.
Techn. Rep. 7/90.

[8] A. Asperti and S. Martini. Categorical models of polymorphism. Inf. & Comp.,
99:1-79, 1992.

[9] K. Baclawski, D. Simovici, and W. White. A categorical approach to database se-
mantics. Math. Struct, in Comp. Sci., 4:147-183, 1994.

[10] E.S. Bainbridge. A unified minimal realization theory with duality. PhD thesis, Univ.
Michigan, Ann Arbor, 1972. Techn. rep. 140, Dep. of Comp. and Comm. Sci.

[11] E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial polymorphism.
Theor. Comp. Sci., 70(l):35-64, 1990. Corrigendum in Theor. Comp. Sci. 71(3):431,
1990.

[12] R. Banach. Term graph rewriting and garbage collection using opfibrations. Theor.
Comp. Sci., 131(l):29-94, 1994.

[13] H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-Holland,
Amsterdam, 2"*^ rev. edition, 1984.

717

718 References

[14] H.P. Barendregt. Lambda calculi with types. In S. Abramsky, Dov M. Gabbai, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
117-309. Oxford Univ. Press, 1992.

[15] H.P. Barendregt and A. Rezus. Semantics for classical AUTOMATH and related
systems. Inf & Contr,, 59:127-147, 1983.

[16] M. Barr. Fixed points in cartesian closed categories. Theor. Comp. Sci., 70:65-72,
1990.

[17] M. Barr, P.A. Grillet, and D.H. van Osdol. Exact Categories and Categories of
Sheaves. Number 236 in Lect. Notes Math. Springer, Berlin, 1971.

[18] M. Barr and Ch. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985.
[19] M. Barr and Ch. Wells. Category Theory for Computing Science. Prentice Hall, 1990.
[20] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-Chr. Filliatre, E. Gimenez, H. Her-

belin, G. Huet, C. Muiioz, C. Murthy, C. Parent, C. Paulin-Mohring, A. SaVbi, and
B. Werner. The Coq Proof Assistant User's Guide Version 6.1. Technical Report 203,
INRIA Rocquencourt, France, May 1997.

[21] G. Barthe. Extensions of pure type systems. In M. Dezani-Ciancaglini and G. Plotkin,
editors. Typed Lambda Calculi and Applications, number 902 in Lect. Notes Comp.
Sci., pages 16-31. Springer, Berlin, 1995.

[22] G. Barthe. The relevance of proof-irrelevance. In K. Larsen, S. Skyum, and
G. Winskel, editors. International Colloquium on Automata, Languages and Pro-
gramming, number 1443 in Lect. Notes Comp. Sci., pages 755-768. Springer, Berlin,
1998.

[23] M.J. Beeson. Foundations of Constructive Mathem,atics. Springer, Berlin, 1985.
[24] J.L. Bell. Toposes and Local Set Theories. An Introduction. Number 14 in Logic

Guides. Oxford Science Publ., 1984.
[25] G. Belle and E. Moggi. Typed intermediate languages for shape analysis. In Ph.

de Groote and J.R. Hindley, editors. Typed Lambda Calculi and Applications, number
1210 in Lect. Notes Comp. Sci., pages 11-29. Springer, Berlin, 1997.

[26] R. Belluci, M. Abadi, and P.-L. Curien. A model for formal parametric polymorphism:
Per interpretation for system V. In M. Dezani-Ciancaglini and G. Plotkin, editors.
Typed Lambda Calculi and Applications, number 902 in Lect. Notes Comp. Sci., pages
32-46. Springer, Berlin, 1995.

[27] J. Benabou. Fibrations petites et localement petites. C. R. Acad. Sc. Paris,
281:A897-A900, 1975.

[28] J. Benabou. Theories relatives a un corpus. C. R. Acad. Sc. Paris, 281:A831-A834,
1975.

[29] J. Benabou. Fibered categories and the foundations of naive category theory. Journ.
Symb. Logic, 50(l):10-37, 1985.

[30] J. Benabou and J. Roubaud., Monades et descente. C. R. Acad. Sc. Paris, 270:A96-
A98, 1970.

[31] S. Berardi. An application of PER models to program extraction. Math. Struct, in
Comp. Sci., pages 309-331, 1993.

[32] I. Bethke. Notes on Partial Combinatory Algebras. PhD thesis, Univ. Amsterdam,
1988.

[33] L. Birkedal, A. Carboni, G. Rosolini, and D.S. Scott. Type theory via exact categories.
extended abstract. In Logic in Computer Science, pages 188-198. IEEE, Computer
Science Press, 1998.

[34] G. Birkhoff and J.D. Lipson. Heterogenuous algebras. Journ. Combinatorial Theory,
8:115-133, 1970.

References 719

[35] C. Bohm and A. Berarducci. Automatic synthesis of typed A-programs on term
algebras. Theor. Comp. Set., 39:135-154, 1985.

[36] F . Borceux. Handbook of Categorical Algebra, volume 50, 51 and 52 of Encyclopedia
of Mathematics. Cambridge Univ. Press, 1994.

[37] V. Breazu-Tannen and Th. Coquand. Extensional models for polymorphism. Theor.
Comp. Sci., 59:85-114, 1988.

[38] K.B. Bruce, A.R. Meyer, and J.C. Mitchell. The semantics of second-order lambda
calculus. Inf & Comp., 85:76-134, 1990.

[39] M. Bunge and R. Pare. Stacks and equivalence of indexed categories. Cah. de Top.
et Geom. Diff., XX:404-436, 1979.

[40] R. Burstall and J. McKinna. Deliverables: an approach to program development in
the calculus of constructions. In G. Huet and G. Plotkin, editors. Logical Frameworks,
pages 113-121. Cambridge Univ. Press, 1991.

[41] A. Carboni, P.J. Freyd, and A. Scedrov. A categorical approach to realizability and
polymorphic types. In M. Main, A. Melton, M. Mislove, and D. Schmidt, editors.
Mathematical Foundations of Programming Language Semantics, number 298 in Lect.
Notes Comp. Sci., pages 23-42. Springer, Berlin, 1988.

[42] A. Carboni, S. Lack, and R.F.C. Walters. Introduction to extensive and distributive
categories. Journ. Pure & AppL Algebra, 84(2):145-158, 1993.

[43] L. Cardelli and G. Longo. A semantic basis for Quest. Journ. Funct. Progr., 1:417-
458, 1991.

[44] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymor-
phism. ACM Comp. Surv., 4:471-522, 1985.

[45] J. Cartmell. Generalized algebraic theories and contextual categories. PhD thesis,
Univ. Oxford, 1978.

[46] J. Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure &
Appl. Logic, 32:209-243, 1986.

[47] J. Celeyrette. Categories internes et fibrations. PhD thesis, Univ. Paris-Nord, 1975.
[48] M. Cerioli and J. Meseguer. May I borrow your logic? (transporting logical structures

along maps). Theor. Comp. Sci., 173:311-347,1997.
[49] A. Church. A formulation of the simple theory of types. Journ. Sym.b. Logic, 5:56-68,

1940.
[50] J.R.B. Cockett. List-arithmetic distributive categories: locoi. Journ. Pure & Appl.

Algebra, 66:1-29, 1990.
[51] J.R.B. Cockett. Introduction to distributive categories. Math. Struct, in Comp. Sci.,

3:277-307, 1993.
[52] J.R.B. Cockett and D. Spencer. Strong categorical datatypes I. In R.A.G. Seely,

editor, Category Theory 1991, number 13 in CMS Conference Proceedings, pages
141-169, 1992.

[53] J.R.B. Cockett and D. Spencer. Strong categorical datatypes II: A term logic for
categorical programming. Theor. Comp. Sci., 139:69-113, 1995.

[54] Th. Coquand. An analysis of Girard's paradox. In Logic in Computer Science, pages
227-236. IEEE, Computer Science Press, 1986.

[55] Th. Coquand. Metamathematical investigations of a calculus of constructions. In
P. Odifreddi, editor. Logic and computer science, pages 91-122. Academic Press,
London, 1990. The APIC series, vol. 31.

[56] Th. Coquand and Th. Ehrhard. An equational presentation of higher order logic. In
D.H. Pit t , A. Poigne, and D.E. Rydeheard, editors. Category and Computer Science,
number 283 in Lect. Notes Comp. Sci., pages 40-56. Springer, Berlin, 1987.

720 References

[57] Th. Coquand, C. Gunter, and G. Winskel. Domain theoretic models of polymorphism.
Inf, & Comp., 81:123-167, 1989.

[58] Th. Coquand and G. Huet. The calculus of constructions. Inf. & Comp., 76(2/3):95-
120, 1988.

[59] Th. Coquand and Ch. Paulin. Inductively defined types. In P. Martin-L6f and
G. Mints, editors, COLOG 88 International conference on computer logic, number
417 in Lect. Notes Comp. Sci., pages 50-66. Springer, Berlin, 1988.

[60] R.L. Crole. Programming metalogics with a fixpoint type. PhD thesis, Univ. Cam-
bridge, 1992. Comp. Lab. Techn. Rep. 247.

[61] R.L. Crole. Categories for Types. Cambridge Mathematical Textbooks. Cambridge
Univ. Press, 1993.

[62] P.-L. Curien. Alpha-conversion, conditions on variables and categorical logic. Studia
Logica, XLVIII 3:319-360, 1989.

[63] P.-L. Curien. Categorical Comhinators, Sequantial Algorithms and Functional Pro-
grannming. Progress in Theor. Comp. Sci. Birkhauser, Boston, 1993.

[64] P.-L. Curien and R. di Cosmo. A confluent reduction for the lambda-calculus with
surjective pairing and terminal object. Journ. Funct. Progr., 6(2):299-327, 1996.

[65] H.B. Curry and R. Keys. Combinatory Logic. North-Holland, Amsterdam, 1958.
[66] N.J. Cutland. Computability. Cambridge Univ. Press, 1980.
[67] D. van Dalen. Logic and structure. Springer, Berlin, 2"*^ edition, 1983.
[68] L. Damas and R. Milner. Principal type-schemes for functional programs. In Princi-

ples of Programming Languages. ACM Press, 1982.
[69] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Math. Textbooks.

Cambridge Univ. Press, 1990.
[70] P. Dybjer. Inductive sets and families in Martin-L6f's type theory and their set-

theoretic semantics. In G. Huet and G. Plotkin, editors. Logical Frameworks, pages
280-306. Cambridge Univ. Press, 1991.

[71] P. Dybjer. Inductive families. Formal Aspects of Comp., 6:440-465, 1994.
[72] P. Dybjer. Internal type theory. In S. Berardi and M. Coppo, editors, Types for Proofs

and Programs, number 1158 in Lect. Notes Comp. Sci., pages 120-134. Springer,
Berlin, 1996.

[73] P. Dybjer. Representing inductively defined sets by wellorderings in Martin-Lof's
type theory. Theor. Comp. Sci., 179:329-335, 1997.

[74] Th. Ehrhard. A categorical semantics of constructions. In Logic in Computer Science,
pages 264-273. IEEE, Computer Science Press, 1988.

[75] Th. Ehrhard. line semantique categorique des types dependants: Application au
Calcul des Constructions. PhD thesis, Universite Paris VII, 1988.

[76] Th. Ehrhard. Dictoses. In D.H. Pitt , A. Poigne, and D.E. Rydeheard, editors, Cat-
egory Theory and Computer Science, number 389 in Lect. Notes Comp. Sci., pages
213-223. Springer, Berlin, 1989.

[77] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I: Equations and
Initial Semantics. Number 6 in EATCS Monographs. Springer, Berlin, 1985.

[78] R.L. Constable et al. Implementing Mathematics with the Nuprl Proof Development
System. Prentice Hall, 1986.

[79] M.P. Fiore. A coinduction principle for recursive data types based on bisimulation.
Inf. & Comp., 127(2):186-198, 1996.

[80] M.P. Fourman and D.S. Scott. Sheaves and logic. In M.P. Fourman and C.J. Mul-
vey D.S. Scott, editors. Applications of Sheaves, number 753 in Lect. Notes Math.,
pages 302-401. Springer, Berlin, 1979.

References 721

[81] P. Freyd, Ph. Mulry, G. Rosolini, and D. Scott. Extensional PERs. Inj. & Comp.,
98(2):211-227, 1992.

[82] P.J. Freyd, editor. Abelian Categories: An Introduction to the Theory of Functors.
Harper and Row, New York, 1964.

[83] P.J. Freyd. Aspects of topoi. BulL Austr. Math. Soc, 7:1-76 and 467-480, 1972.
[84] P.J. Freyd. Structural polymorphism. Theor. Comp. Sci., 115:107-129, 1993.
[85] P.J. Freyd and A. Scedrov. Categories, Allegories. Number 39 in Math. Library.

North-Holland, Amsterdam, 1990.
[86] Y. Fu. Topics in Type Theory. PhD thesis, Univ. Manchester, 1992. Techn. rep.

92-11-1.
[87] Y. Fu. Categorical properties of logical frameworks. Math. Struct, in Comp. Sci.,

7:1-47, 1997.
[88] J.R. Funk. Descent for Cocomplete Categories. PhD thesis, McGill Univ. Montreal,

1990.
[89] Ph. Gardner. Representing Logics in Type Theory. PhD thesis, Univ. Edinburgh,

1992. Tech. Rep. 93-92.
[90] J.H. Geuvers. The Church-Rosser property for /3?7-reduction in typed lambda calculi.

In Logic in Computer Science, pages 453-460. IEEE, Computer Science Press, 1992.
[91] J.H. Geuvers. Logics and Type Systems. PhD thesis, Univ. Nijmegen, 1993.
[92] J.H. Geuvers and M.-J. Nederhof. A modular proof of strong normalization for the

calculus of constructions. Journ. Funct. Progr., 1(2):155-189, 1991.
[93] S. Ghilardi and G.C. Meloni. Modal and tense predicate logic: models in presheaves

and categorical conceptualization. In F. Borceux, editor, Categorical Algebra and its
Applications, number 1348 in Lect. Notes Math., pages 130-142. Springer, Berlin,
1988.

[94] J.-Y. Girard. Une extension de I'interpretation de Godel a I'analyse et son appli-
cation a I'elimination des coupures dans I'analyse et la theorie des types. In J.E.
Fenstad, editor. Proceedings of the 2nd Scandinavian Logic Symposium, pages 63-92,
Amsterdam, 1971. North-Holland.

[95] J.-Y. Girard. Interpretation fonctionelle et elimination des coupures dans Varith-
metique d'ordre superieur. PhD thesis, Universite Paris VII, 1972.

[96] J.-Y. Girard. The system F of variable types, 15 years later. Theor. Comp. Sci.,
45:159-192, 1986.

[97] J.-Y. Girard. Linear logic. Theor. Comp. Sci., 50:1-102, 1987.
[98] J.-Y. Girard. Proofs and types. Number 7 in Tracts in Theor. Comp. Sci. Cambridge

Univ. Press, 1989.
[99] J.-Y. Girard, A. Scedrov, and P.J. Scott. Normal forms and cut-free proofs as nat-

ural transformations. In Y.N. Moschovakis, editor, Logic from Computer Science,
number 21 in Math. Sci. Research Inst. Publ., pages 217-241. Springer, 1992.

[100] J. Giraud. Cohomologie non abelienne. Springer, Berlin, 1971.
[101] J.A. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to the spec-

ification, correctness and implementation of abstract data types. In R. Yeh, editor.
Current Trends in Programm,ing Methodology, pages 80-149. Prentice Hall, 1978.

[102] R. Goldblatt. Topoi. The Categorial Analysis of Logic. North-Holland, Amsterdam,
2"^ rev. edition, 1984.

[103] R. Goldblatt. Mathematics of Modality. CSLI Lecture Notes 43, Stanford, 1993.
[104] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A theorem proing environ-

ment for higher order logic. Cambridge Univ. Press, 1993.
[105] J.W. Gray. Fibred and cofibred categories. In Proc. Conf. on Categorical Algebra.

722 References

LaJolla 1965, pages 21-83. Springer, Berlin, 1966.
106] J.W. Gray. The categorical comprehension scheme. In P. Hilton, editor. Category

Theory, Homology Theory and their Applications III, number 99 in Lect. Notes Math.,
pages 242-312. Springer, Berlin, 1969.

107] A. Grothendieck. Categories fibrees et descente (Expose VI). In A. Grothendieck,
editor, Revetement Etales et Groupe Fondamental (SGA 1), number 224 in Lect.
Notes Math., pages 145-194. Springer, Berlin, 1970.

108] C.A. Gunter. Semantics of Programm,ing Languages. Structures and Techniques. The
MIT Press, Cambridge, MA, 1992.

109] C.A. Gunter and J.C. Mitchell, editors. Theoretical Aspects of Object-Oriented Pro-
gramming. Types, Semantics and Language Design. The MIT Press, Cambridge, MA,
1994.

llOl T. Hagino. A categorical programming language. PhD thesis, Univ. Edinburgh, 1987.
Techn. Rep. 87/38.

I l l] T. Hagino. A typed lambda calculus with categorical type constructors. In D.H. Pit t ,
A Poigne, and D.E. Rydeheard, editors, Category and Computer Science, number
283 in Lect. Notes Comp. Sci., pages 140-157. Springer, Berlin, 1987.

112] T. Hagino. Codatatypes in ML. Journ. Symb. Computation, 8:629-650,1989.
113] K. Hanna, N. Daeche, and G. Howells. Implementation of the Veritas design logic.

In V. Stavridou, T.F. Melham, and R.T. Boute, editors. Theorem Provers in Circuit
Design, IFIP Transactions A, pages 77-94. North Holland, 1992.

114] K. Hanna, N. Daeche, and M. Longley. Specification and verification using dependent
types. In Trans, on Softw. Eng. 9, number 16, pages 949-964, 1990.

115] R. Harper, F. Honsell, and G.D. Plotkin. A framework for defining logics. Journ.
ACM, 40(1):143-184, 1992.

116] M. Hasegawa. Decomposing typed lambda calculus into a couple of categorical pro-
gramming languages. In D.H. Pitt , D.E. Rydeheard, and P.T. Johnstone, editors,
Category Theory and Computer Science, number 953 in Lect. Notes Comp. Sci.,
pages 200-219. Springer, Berlin, 1995.

117] R. Hasegawa. Parametricity of extensionally collapsed models of polymorphism and
their categorical properties. In T. Ito and A.R. Meyer, editors, Theoretical Aspects of
Computer Software, number 526 in Lect. Notes Comp. Sci., pages 495-512. Springer,
Berlin, 1991.

118] R. Hasegawa. Categorical data types in parametric polymorphism. Math. Struct, in
Comp. Sci., 4:71-109, 1994.

119] S. Hayashi. Adjunction of semifunctors: categorical structures in nonextensional
lambda calculus. Theor. Comp. 5ci., 41:95-104, 1985.

120] S. Hayashi. Logic of refinement types. In H. Barendregt and T. Nipkow, editors.
Types for Proofs and Programs, number 806 in Lect. Notes Comp. Sci., pages 108-
126. Springer, Berlin, 1994.

121] L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras. North-Holland, Amsterdam,
1971/1985. 2 volumes.

122] U. Hensel. Proof Principles for Categorical Datatypes. PhD thesis, Univ. of Dresden,
Germany, 1998.

123] U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in object-
oriented languages: Logical models and tools. In Ch. Hankin, editor, European Sym-
posium, on Programming, number 1381 in Lect. Notes Comp. Sci., pages 105-121.
Springer, Berlin, 1998.

[124] U. Hensel and B. Jacobs. Proof principles for datatypes with iterated recursion. In

References 723

E. Moggi and G, Rosolini, editors, Category Theory and Computer Science, number
1290 in Lect. Notes Comp. Sci., pages 220-241. Springer, Berlin, 1997.

[125] C. Hermida. Fibrations, Logical Predicates and Indeterminates. PhD thesis, Univ.
Edinburgh, 1993. Techn. rep. LFCS-93-277. Also available as Aarhus Univ. DAIMI
Techn. rep. PB-462.

[126] C. Hermida. On fibred adjunctions and completeness for fibred categories. In H. Ehrig
and F. Orejas, editors. Recent Trends in Data Type Specification, number 785 in Lect.
Notes Comp. Sci., pages 235-251. Springer, Berlin, 1994.

[127] C. Hermida. Some properties of Fib as a fibred 2-category. Journ. Pure & AppL
Algebra, 1998, to appear.

[128] C. Hermida and B. Jacobs. An algebraic view of structural induction. In L. Pacholski
and J. Tiuryn, editors, Computer Science Logic 1994, number 933 in Lect. Notes
Comp. Sci., pages 412-426. Springer, Berlin, 1995.

[129] C. Hermida and B. Jacobs. Fibrations with indeterminates: Contextual and functional
completeness for polymorphic lambda calculi. Math. Struct, in Comp. Sci., 5:501-
531, 1995.

[130] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational
setting. Inf. & Comp., 1998, to appear.

[131] C. Hermida and J. Power. Fibrational control structures. In I. Lee and S.A. Molka,
editors, Concur^95: Concurrency Theory, number 962 in Lect. Notes Comp. Sci.,
pages 117-129. Springer, Berlin, 1995.

[132] M. Hofmann. Elimination of extensionality and quotient types in Martin-L6f type
theory. In H. Barendregt and T. Nipkow, editors. Types for Proofs and Programs,
number 806 in Lect. Notes Comp. Sci., pages 166-190. Springer, Berlin, 1994.

[133] M. Hofmann. Extensional concepts in intensional type theory. PhD thesis, Univ.
Edinburgh, 1995. Techn. rep. LFCS-95-327.

[134] M. Hofmann. On the interpretation of type theory in locally cartesian closed cate-
gories. In L. Pacholski and J. Tiuryn, editors. Computer Science Logic 1994, number
933 in Lect. Notes Comp. Sci., pages 427-441. Springer, Berlin, 1995.

[135] M. Hofmann. A simple model for quotient types. In M. Dezani-Ciancaglini and
G. Plotkin, editors. Typed Lambda Calculi and Applications, number 902 in Lect.
Notes Comp. Sci., pages 216-234. Springer, Berlin, 1995.

[136] M. Hofmann. Conservativity of equality reflection over intensional type theory. In
S. Berardi and M. Coppo, editors. Types for Proofs and Programs, number 1158 in
Lect. Notes Comp. Sci., pages 153-164. Springer, Berlin, 1996.

[137] M. Hofmann. Syntax and semantics of dependent types. In P. Dybjer and A. Pit ts ,
editors. Semantics of Logics of Computation, pages 79-130. Cambridge Univ. Press,
1997.

[138] M. Hofmann and B.C. Pierce. A unifying type-theoretic framework for objects. Journ.
Funct. Progr., 5(4):593-635, 1995.

[139] M. Hofmann and Th. Streicher. A groupoid model refutes uniqueness of identity
proofs. In Logic in Computer Science, pages 208-212. IEEE, Computer Science Press,
1994.

[140] W.A. Howard. The formulae-as-types notion of construction. In J.R. Hindley and
J.P. Seldin, editors, To H.B Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 479-490. Academic Press, New York and London, 1980.

[141] A.J.C. Hurkens. A simplification of Girard's paradox. In M. Dezani-Ciancaglini and
G. Plotkin, editors, Typed Lambda Calculi and Applications, number 902 in Lect.
Notes Comp. Sci., pages 266-278. Springer, Berlin, 1995.

724 References

[142] J.M.E. Hyland. The effective topos. In A.S. Troelstra and D. van Dalen, editors, The
L.E.J. Brouwer centenary symposium, pages 165-216. North-Holland, Amsterdam,
1982.

[143] J.M.E. Hyland. A small complete category. Ann. Pure & Appl. Logic, 40:135-165,
1988.

[144] J.M.E. Hyland. First steps in synthetic domain theory. In A. Carboni, M.C. Pedicchio,
and G. Rosolini, editors, Como Conference on Category Theory, number 1488 in Lect.
Notes Math., pages 131-156. Springer, Berlin, 1991.

[145] J.M.E. Hyland, P.T. Johnstone, and A.M. Pi t ts . Tripos theory. Math. Proc. Cam-
bridge Phil. Soc, 88:205-232, 1980.

[146] J.M.E. Hyland and E. Moggi. The 5-replete construction. In D.H. Pit t , D.E. Ryde-
heard, and P.T. Johnstone, editors. Category Theory and Computer Science, number
953 in Lect. Notes Comp. Sci., pages 96-116. Springer, Berlin, 1995.

[147] J.M.E. Hyland and C.-H.L. Ong. Modified realizability toposes and strong normal-
ization proofs. In M. Bezem and J.F. Groote, editors. Typed Lambda Calculi and
Applications, number 664 in Lect. Notes Comp. Sci., pages 179-194. Springer, Berlin,
1993.

[148] J .M.E. Hyland and A.M. Pit ts . The theory of constructions: categorical semantics and
topos-theoretic models. In J. Gray and A. Scedrov, editors, Categories in Computer
Science and Logic, number 92 in AMS Contemp. Math., pages 137-199, Providence,
1989.

[149] J.M.E. Hyland, E.P. Robinson, and G. Rosolini. Algebraic types in PER models. In
M. Main, A. Melton, M; Mislove, and D. Schmidt, editors. Mathematical Foundations
of Programm,ing Language Semantics, number 442 in Lect. Notes Comp. Sci., pages
333-350. Springer, Berlin, 1990.

[150] J.M.E. Hyland, E.P. Robinson, and G. Rosolini. The discrete objects in the effective
topos. Proc. London Math. Soc, 60:1-36, 1990.

[151] A. Islam and W. Phoa. Categorical models of relational databases I: fibrational
formulation, schema integration. In M. Hagiya and J.C. Mitchell, editors, Theoretical
Aspects of Computer Science, number 789 in Lect. Notes Comp. Sci., pages 618-641.
Springer, Berlin, 1994.

[152] J.A Goguen and R. Burstall. Institutions: Abstract model theory for specification
and programming. Journ. ACM, 39(1):95-146, 1992.

[153] B. Jacobs. The inconsistency of higher order extensions of Martin-L6f's type theory.
Journ. Phil. Logic, 18:399-422, 1989.

[154] B. Jacobs. Categorical Type Theory. PhD thesis, Univ. Nijmegen, 1991.
[155] B. Jacobs. Semantics of the second order lambda calculus. Math. Struct, in Comp.

Sci., l(3):327-360, 1991.
[156] B. Jacobs. Simply typed and untyped lambda calculus revisited. In M.P. Fourman,

P.T. Johnstone, and A.M. Pit ts , editors. Applications of Categories in Computer
Science, number 177 in LMS, pages 119-142. Cambridge Univ. Press, 1992.

[157] B. Jacobs. Comprehension categories and the semantics of type dependency. Theor.
Comp. Sci., 107:169-207, 1993.

[158] B. Jacobs. Semantics of lambda-I and of other substructure lambda calculi. In
M. Bezem and J.F. Groote, editors, Typed Lambda Calculi and Applications, number
664 in Lect. Notes Comp. Sci., pages 195-208. Springer, Berlin, 1993.

[159] B. Jacobs. Mongruences and cofree coalgebras. In V.S. Alagar and M. Nivat, editors.
Algebraic Methodology and Software Technology, number 936 in Lect. Notes Comp.
Sci., pages 245-260. Springer, Berlin, 1995.

References 725

[160] B. Jacobs. Parameters and parametrization in specification using distributive cate-
gories. Fund. Informaticae, 24(3):209-250, 1995.

[161] B. Jacobs. Subtypes and bounded quantification from a fibred perspective. In
S. Brookes, M. Main, A. Melton, and M. Mislove, editors. Mathematical Founda-
tions of Program Semantics, number 1 in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 1995.

[162] B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones,
C. Lengauer, and H.-J. Schek, editors. Object-Orientation with Parallelism and Per-
sistence, pages 83-103. Kluwer Acad. Publ., 1996.

[163] B. Jacobs. On cubism. Journ. Fund. Progr., 6:379-391, 1996.
[164] B. Jacobs. Invariants, bisimulations and the correctness of coalgebraic refinements.

In M. Johnson, editor, Algebraic Methodology and Software Technology, number 1349
in Lect. Notes Comp. Sci., pages 276-291. Springer, Berlin, 1997.

[165] B. Jacobs and T. Melham. Translating dependent type theory into higher order
logic. In M. Bezem and J.F. Groote, editors. Typed Lambda Calculi and Applications,
number 664 in Lect. Notes Comp. Sci., pages 209-229. Springer, Berlin, 1993.

[166] B. Jacobs, E. Moggi, and Th. Streicher. Relating models of impredicative type theo-
ries. In D.H. Pit t et al., editor, Category and Computer Science, number 530 in Lect.
Notes Comp. Sci., pages 197-218. Springer, Berlin, 1991.

[167] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62:222-259, 1997.

[168] G. Janelidze and W. Tholen. Facets of descent, I. Appl. Categorical Struct., 2:245-
281, 1994.

[169] P.T. Johnstone. Topos Theory. Academic Press, London, 1977.
[170] P.T. Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced Mathe-

matics. Cambridge Univ. Press, 1982.
[171] P.T. Johnstone. Fibrations and partial products in a 2-category. Appl. Categorical

Struct., 1:141-179, 1993.
[172] P.T. Johnstone. Cartesian monads on a topos. Journ. Pure & Appl. Algebra, 116:199-

220, 1997.
[173] P.T. Johnstone and R. Pare, editors. Indexed Categories and their Applications.

Number 661 in Lect. Notes Math. Springer, Berlin, 1978.
[174] A. Joyal and M. Tierney. An extension of the Galois theory of Grothendieck. Memoirs

of the AMS, 51(309-4), 1984.
[175] S. Kasangian, G.M. Kelly, and F. Rossi. Cofibrations and the realization of non-

deterministic automata. Cah. de Top. et Geom. Diff., XXIV:23-46, 1983.
[176] G.M. Kelly and R. Street. Review of the elements of 2-categories. In G.M. Kelly,

editor, Proc. Sydney Category Theory Seminar 1972/1973, number 420 in Lect. Notes
Math., pages 75-103. Springer, Berlin, 1974.

[177] R.E. Kent. The metric closure powerspace construction. In M. Main, A. Melton,
M. Mislove, and D. Schmidt, editors, Mathematical Foundations of Progranfiming
Language Semantics, number 442 in Lect. Notes Comp. Sci., pages 173-199. Springer,
Berlin, 1990.

[178] S.C. Kleene. On the interpretation of intuitionistic number theory. Journ. Symb.
Logic, 10:109-124, 1945.

[179] A. Kock. Algebras for the partial map classifier monad. In A. Carboni, M.C. Pedic-
chio, and G. Rosolini, editors, Como Conference on Category Theory, number 1488
in Lect. Notes Math., pages 262-278. Springer, Berlin, 1991.

[180] A. Kock. Monads for which structures are adjoint to units. Journ. Pure & Appl.

726 References

Algebra, 104:41-59, 1995.
[181] K. Koymans. Models of the Lambda Calculus. PhD thesis, Univ. Utrecht, 1984. Also

available as: CWI Tracts 9, Amsterdam.
[182] S.A. Kripke. Semantical analysis of intuitionistic logic. In J. Crossley and M.A.E.

Dummett , editors, Formal Systems and Recursive Functions, pages 92-130, Amster-
dam, 1965. North-Holland.

[183] Y. Lafont. Logiques, Categories et Machines. PhD thesis, Univ. Paris VII, 1988.
[184] Y. Lafont and Th. Streicher. Game semantics for linear logic. In Logic in Computer

Science, pages 43-50. IEEE, Computer Science Press, 1991.
[185] F. Lamarche. Modelling Polymorphism with Categories. PhD thesis, McGill Univ.,

Montreal, 1991.
[186] J. Lambek and P.J. Scott. Introduction to higher order Categorical Logic. Number 7

in Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press, 1986.
[187] S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 1971.
[188] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. A First Introduction

to Topos Theory. Springer, New York, 1992.
[189] S. Mac Lane and R. Pare. Coherence for bicategories and indexed categories. Journ.

Pure & AppL Algebra, 37:59-80, 1985.
[190] S. Lang. Algebra. Addison Wesley, 2"^ rev. edition, 1984.
[191] F.W. Lawvere. Functorial semantics. Proc. Nat. Acad. Sci. USA, 50:869-872, 1963.
[192] F.W. Lawvere. Ajointness in foundations. Dialectica, 23:281-296, 1969.
[193] F.W. Lawvere. Equality in hyperdoctrines and comprehension scheme as an adjoint

functor. In A. Heller, editor, Applications of Categorical Algebra, pages 1-14, Provi-
dence, 1970. AMS.

[194] F.W. Lawvere. Metric spaces, generalized logic, and closed categories. Seminario
Matematico e Fisico. Rendiconti di Milano, 43:135-166, 1973.

[195] F. Leclerc and Ch. Paulin-Mohring. Programming with streams in Coq. A case study:
the sieve of Eratosthenes. In H. Barendregt and T. Nipkow, editors, Types for Proofs
and Programs, number806 in Lect. Notes Comp. Sci., pages 191-212. Springer, Berlin,
1994.

[196] D. Leivant. Reasoning about functional programs and complexity classes associated
with type discipline. In Found. Comp. Sci., pages 460-469. IEEE, 1983.

[197] R. Loader. Equational theories for inductive types. Ann. Pure & Appl. Logic, 84:175-
217, 1997.

[198] J.R. Longley. Realizability Toposes and Language Semantics. PhD thesis, Edinburgh
Univ., 1994.

[199] G. Longo and E. Moggi. Constructive natural deduction and its 'u;-set' interpretation.
Math. Struct, in Comp. Sci., l(2):215-254, 1991.

[200] Z. Luo. ECC the Extended Calculus of Constructions. In Logic in Computer Science,
pages 386-395. IEEE, Computer Science Press, 1989.

[201] Z. Luo. Program specification and data refinement in type theory. Math. Struct, in
Comp. Sci., 3(3):333-363, 1993.

[202] Z. Luo. Computation and Reasoning. A Type Theory for Computer Science. Claren-
don Press, Oxford, 1994.

[203] Z. Luo and R. Pollack. LEGO proof development system: User's manual. Techn. rep.
LFCS-92-211, Univ. Edinburgh, 1992.

[204] Q. Ma and J. Reynolds. Types, abstraction, and parametric polymorphism. Part 2. In
M. Mislove S. Brookes, M. Main and D. Schmidt, editors. Mathematical Foundations
of Program Semantics, number 598 in Lect. Notes Comp. Sci., pages 1-40. Springer,

References 727

Berlin, 1992.
[205] D.B. MacQueen. Using dependent types to express modular structure. In Principles

of Programming Languages, pages 277-286. ACM Press, 1986.
[206] D.B. MacQueen, R. Sethi, and G. Plotkin. An ideal model for recursive types. Inf.

& Contr., 71:95-130, 1986.
[207] L. Magnusson and B. Nordstrom. The ALF proof editor and its proof engine. In

H. Barendregt and T. Nipkow, editors. Types for Proofs and Programs, number 806
in Lect. Notes Comp. Sci., pages 213-237. Springer, Berlin, 1994.

[208] M. Makkai. Duality and definability in first order logic. Memoirs of the AMS,
105(Number 503(4)), 1993.

[209] M. Makkai. The fibrational formulation of intuitionistic predicate logic I: completeness
according to Godel, Kripke, and Lauchli. Part 1. Notre Dame Journ. Formal Log.,
34(3):334-377, 1993.

[210] M. Makkai. The fibrational formulation of intuitionistic predicate logic I: completeness
according to Godel, Kripke, and Lauchli. Part 2. Notre Dame Journ. Formal Log.,
34(4):471-499, 1993.

[211] M. Makkai and G.E. Reyes. First Order Categorical Logic. Number 611 in Lect.
Notes Math. Springer, Berlin, 1977.

[212] E.G. Manes. Algebraic Theories. Springer, Berlin, 1974.
[213] P. Martin-Lof. An intuitionistic theory of types: predicative part . In H.E. Rose

and J.C. Shepherson, editors. Logic Colloquium '73, pages 73-118, Amsterdam, 1975.
North-Holland.

[214] P. Martin-Lof. Constructive mathematics and computer programming. In L.C. Co-
hen, J. Los, , H. Pfeiffer, and K.P. Podewski, editors. Logic, Methodology and the
Philosophy of Science VI, pages 153-179. North Holland, 1982.

[215] P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
[216] S. Martini. An interval model for second order lambda calculus. In D.H. Pit t ,

A. Poigne, and D. Rydeheard, editors. Category Theory and Computer Science, num-
ber 283 in Lect. Notes Comp. Sci., pages 219-237. Springer, Berlin, 1987.

[217] J.H. McKinna. Deliverables: a Categorical Approach to Program Development in
Type Theory. PhD thesis, Univ. Edinburgh, 1992. Techn. rep. LFCS-92-247.

[218] C. McLarty. Elementary Categories, Elementary Toposes. Number 21 in Logic
Guides. Oxford Science Publ., 1992.

[219] N.P. Mendler, P. Panangaden, P.J. Scott, and R.A.G. Seely. A logical view of con-
current constraint programming. Nordic Journ. Comput., 2:181-220, 1995.

[220] J. Meseguer. Relating models of polymorphism. In Principles of Programnning Lan-
guages, pages 228-241. ACM Press, 1989.

[221] A.R. Meyer. What is a model of the lambda calculus? Inf. & Contr., 52:87-122,
1982.

[222] R. Milner. A theory of type polymorphism in programming. Journ. Comp. Softw.
Syst., 17:348-375, 1978.

[223] R. Milner and M. Tofte. Commentary on Standard ML. The MIT Press, Cambridge,
MA, 1990.

[224] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press,
Cambridge, MA, 1991.

[225] J.C. Mitchell. A type-inference approach ro reduction properties and semantics of
polymorphic expressions (summary). In ACM Conf. on LISP and Funct. Progr.,
pages 308-319. ACM Press, 1986.

[226] J.C. Mitchell and E. Moggi. Kripke style models for typed lambda calculus. Ann.

728 References

Pure & Appl. Logic, 51(l/2):99-124, 1991.
[227] J.C. Mitchell and G.D. Plotkin. Abstract types have existential type. ACM Trans,

on Progr. Lang, and Systems, 10(3):470-502, 1988.
[228] John C. Mitchell. Foundations of Programming Languages. The MIT Press, Cam-

bridge, MA, 1996.
[229] J.L. Moens. Caracterisation des topos de faisceaux sur un site interne a un topos.

PhD thesis, Univ. Cath. de Louvain-la-Neuve, 1982.
[230] E. Moggi. A category-theoretic account of program modules. Math. Struct, in Comp.

Sci., 1(1):103-139, 1991.
[231] R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected papers on Au-

tomath, Amsterdam, 1994. North-Holland.
[232] B. Nordstrom, K. Peterson, and J.M. Smith. Programming in Martin-Lof's Type

Theory: an introduction. Number 7 in Logic Guides. Oxford Science Publ., 1990.
[233] A. Obtulowicz. Functorial semantics of type-free X-prj calculus. In Karpinsky, editor,

Fundamentals of Computation Theory, number 56 in Lect. Notes Comp. Sci., pages
302-307. Springer, Berlin, 1977.

[234] A. Obtulowicz. Categorical and algebraic aspects of Martin-L6f type theory. Studia
Logica, XLVIII 3:299-317, 1989.

[235] A. Obtulowicz and A. Wiweger. Categorical, functorial and algebraic aspects of the
type-free lambda calculus. In Univ. Algebra and Appl., number 9 in Banach Center
Publ., pages 399-422, Warsaw, 1982.

[236] P. Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam, 1989.
[237] P.W. O'Hearn and R.D. Tennent. Relational parametricity and local variables (pre-

liminary report). In Principles of Programming Languages, pages 171-184. ACM
Press, 1992.

[238] C.-H.L. Ong and E. Ritter. A generic strong normalization argument: application
to the calculus of constructions. In E. Borger, Y. Gurevich, and K. Meinke, editors.
Computer Science Logic 1993, number 832 in Lect. Notes Comp. Sci., pages 261-279.
Springer, Berlin, 1994.

[239] J. van Oosten. Exercises in Realizability. PhD thesis, Univ. Amsterdam, 1991.
[240] J. van Oosten. Axiomatizing higher order Kleene realizability. Ann. Pure & Appl.

Logic, 70:87-111, 1994.
[241] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining speci-

fication, proof checking, and model checking. In R. Alur and T.A. Henzinger, editors.
Computer Aided Verification, number 1102 in Lect. Notes Comp. Sci., pages 411-414.
Springer, Berlin, 1996.

[242] S. Owre, J.M. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Trans, on Softw.
Eng., 21(2):107-125, 1995.

[243] V.C.V de Paiva. The dialectica categories. In J. Gray and A. Scedrov, editors.
Categories in Computer Science and Logic, number 92 in AMS Contemp. Math.,
pages 47-62, Providence, 1989.

[244] V.C.V. de Paiva. A dialectica-like model of linear logic. In D.H. Pi t t , A. Poigne,
and D.E. Rydeheard, editors. Category Theory and Computer Science, number 389
in Lect. Notes Comp. Sci., pages 341-356. Springer, Berlin, 1989.

[245] E. Palmgren and V. Stoltenberg-Hansen. Domain interpretations of Martin-Lof's
partial type theory. Ann. Pure & Appl. Logic, 48:135-196, 1990.

[246] R. Pare and D. Schumacher. Abstract families and the adjoint functor theorems.
In P.T. Johnstone and R. Pare, editors. Indexed Categories and their Applications,

References 729

number 661 in Lect. Notes Math., pages 1-125. Springer, Berlin, 1978.
[247] Ch. Paulin-Mohring. Extraction des Programmes dans le Calcul des Constructions.

PhD thesis, Universite Paris VII, 1989.
[248] Ch. PauHn-Mohring. Inductive definitions in the system Coq. Rules and properties. In

M. Bezem and J.F. Groote, editors. Typed Lambda Calculi and Applications, number
664 in Lect. Notes Comp. Sci., pages 328-345. Springer, Berlin, 1993.

[249] Ch. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq.
Journ. Symb. Computation, 5-6:607-640, 1993.

[250] L.C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in Lect. Notes
Comp. Sci. Springer, Berlin, 1994.

[251] L.C. Paulson. ML for the Working Computer Scientist. Cambridge Univ. Press, 2^
rev. edition, 1996.

[252] D. Pavlovic. Predicates and Fibrations. PhD thesis, Univ. Utrecht, 1990.
[253] D. Pavlovic. Constructions and predicates. In D.H. Pit t et al., editor, Category and

Computer Science, number 530 in Lect. Notes Comp. Sci., pages 173-196. Springer,
Berlin, 1991.

[254] D. Pavlovic. A logical view of the adjoint functor theorem. In R.A.G. Seely, editor.
Category Theory 1991, number 13 in CMS Conference Proceedings, pages 361-366,
1992.

[255] D. Pavlovic. On completeness and cocompleteness in and around small categories.
Ann. Pure & Appl. Logic, 74:121-152, 1995.

[256] D. Pavlovic. Maps II: chasing proofs in the Lambek-Lawvere logic. Journ. of the
IGPL, 4(2):159-194, 1996.

[257] J. Penon. Algebre de categories — categories localement internes. C. R. Acad. Sc.
Paris, 278:A1577-A1580, 1974.

[258] W.K.-S. Phoa. Relative computability in the effective topos. Math. Proc. Cambridge
Phil. Soc, 106:419-422, 1989.

[259] W.K.-S. Phoa. Effective domains and intrinsic structure. In Logic in Computer
Science, pages 366-377. IEEE, Computer Science Press, 1990.

[260] W.K.-S. Phoa. Domain Theory in Realizability Toposes. PhD thesis, Univ. Cam-
bridge, 1991. Extended version is available as Edinburgh Techn. Rep. CST-82-91.

[261] W.K.-S. Phoa. Building domains from graph models. Math. Struct, in Comp. Sci.,
2:277-299, 1992.

[262] W.K.-S. Phoa. An introduction to fibrations, topos theory, the effective topos and
modest sets. Technical Report LFCS-92-208, Edinburgh Univ., 1992.

[263] W.K.-S. Phoa. Using fibrations to understand subtypes. In M.P. Fourman, P.T.
Johnstone, and A.M. Pitts, editors, Applications of Categories in Computer Science,
number 177 in LMS, pages 239-257. Cambridge Univ. Press, 1992.

[264] W.K.-S. Phoa. From term models to domains. Inf & Comp., 109:211-255, 1994.
[265] W.K.-S. Phoa and M. Fourman. A proposed semantics for pure ML. In W. Kuich,

editor. International Colloquium on Automata, Languages and Programming, number
623 in Lect. Notes Comp. Sci., pages 533-544. Springer, Berlin, 1992.

[266] B.C. Pierce and D.N. Turner. Simple type theoretic foundation for object-oriented
programming. Journ. Funct. Progr., 4(2):207-247, 1994.

[267] A.M. Pit ts . The Theory of Triposes. PhD thesis, Univ. Cambridge, 1981.
[268] A.M Pit ts . Polymorphism is set theoretic, constructively. In D.H. Pit t , A. Poigne,

and D.E. Rydeheard, editors. Category and Connputer Science, number 283 in Lect.
Notes Comp. Sci., pages 12-39. Springer, Berlin, 1987.

[269] A.M. Pi t ts . Non-trivial power types can't be subtypes of polymorphic types. In Logic

730 References

in Computer Science, pages 6-13. IEEE, Computer Science Press, 1989.
[270] A.M. Pit ts . A co-induction principle for recursively defined domains. Theor. Comp.

Sci., 124(2):195-219, 1994.
[271] A.M. Pi t ts . Categorical logic. In S. Abramsky, Dov M. Gabbai, and T.S.E. Maibaum,

editors. Handbook of Logic in Computer Science, volume 6. Oxford Univ. Press, to
appear.

[272] A.M. Pi t ts and P. Taylor. A note on Russell's paradox in locally cartesian closed
categories. Studia Logica, XLVIII 3:377-387, 1989.

[273] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In M. Bezem and
J.F. Groote, editors. Typed Lambda Calculi and Applications, number 664 in Lect.
Notes Comp. Sci., pages 361-375. Springer, Berlin, 1993.

[274] G.D. Plotkin. Set-theoretical and other elementary models of the A-calculus. Theor.
Comp. Sci., 121:351-409, 1993.

[275] A. Poigne. On specifications, theories, and models with higher types. Inf. & Comp.,
68:1-46, 1986.

[276] E. Poll. A Programming Logic based on Type Theory. PhD thesis, Techn. Univ.
Eindhoven, 1994.

[277] E. Poll, C. Hemerik, and H.M.M. Ten Eikelder. CPO-models for second order lambda
calculus with recursive types and subtyping. Inf. Theor. et AppL, 27(3):221-260,
1993.

[278] A.J. Power. An abstract formulation for rewriting systems. In D.H. Pit t , A. Poigne,
and D.E. Rydeheard, editors. Category Theory and Computer Science, number 389
in Lect. Notes Comp. Sci., pages 300-312. Springer, Berlin, 1989.

[279] J. Power and H. Thielecke. Environments, continuation semantics and indexed cate-
gories. In M. Abadi and T. Ito, editors, Theoretical Aspects of Computer Software,
number 1281 in Lect. Notes Comp. Sci., pages 391-414. Springer, Berlin, 1997.

[280] D. Prawitz. Natural Deduction. Almqvist and Wiksell, Uppsala, 1965.
[281] H. Rasiowa and R. Sikorsky. The Mathematics of Metam,athematics. PWN, Warsaw,

1963.
[282] H. Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras.

Number 2 in Monographs in Comp. Sci. Oxford Univ. Press, 1987.
[283] H. Reichel. An approach to object semantics based on terminal co-algebras. Math.

Struct, in Comp. Sci., 5:129-152, 1995.
[284] G.R. Reyes. From sheaves to logic. In A. Daigneault, editor. Studies in Algebraic

Logic, number 9 in MAA Studies in Math., pages 143-204, 1974.
[285] J.C. Reynolds. Towards a theory of type structure. In Programming Symposium,

number 19 in Lect. Notes Comp. Sci., pages 408-425. Springer, Berlin, 1974.
[286] J.C. Reynolds. Types, abstraction and parametric polymorphism. In R.E. A. Mason,

editor. Information Processing 83, pages 513-523. IFIP, Elsevier Sci. Publ. (North-
Holland), 1983.

[287] J.C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn, D.B. MacQueen, and
G.D. Plotkin, editors. Semantics of Data Types, number 173 in Lect. Notes Comp.
Sci., pages 145-156. Springer, Berlin, 1984.

[288] J.C. Reynolds and G.D. Plotkin. On functors expressible in the polymorphic typed
lambda calculus. Inf. & Comp., 105:1-29, 1993.

[289] E. Ritter. Categorical abstract machines for higher order typed lambda calculi. PhD
thesis, Univ. Cambridge, 1993. Comp. Lab. Techn. Rep. 297.

[290] E. Ritter. Categorical abstract machines for higher-order lambda calculi. Theor.
Comp. Sci., 136(1):125-162, 1994.

References 731

[291] E.P. Robinson. Parametricity as isomorphism. Theor. Comp. Sci,, 136:163-181,1994.
[292] E.P. Robinson and G. Rosolini. Colimit completions and the effective topos. Journ.

Symb. Logic, 55:678-699, 1990.
[293] E.P. Robinson and G. RosoHni. Reflexive graphs and parametric polymorphism. In

Logic in Computer Science, pages 364-371. IEEE, Computer Science Press, 1994.
[294] H. Rogers. Theory of Recursive Functions and Effecitve Computability. MIT Press,

Cambridge, MA, 1967.
[295] R. Rosebrugh and R.J. Wood. Relational databases and indexed categories. In R.A.G.

Seely, editor. Category Theory 1991, number 13 in CMS Conference Proceedings,
pages 391-407, 1992.

[296] G. Rosolini. Continuity and effectiveness in topoi. PhD thesis, Univ. Oxford, 1986.
[297] G. Rosolini. About modest sets. Int. Journ. Found. Comp. Sci., 1:341-353, 1990.
[298] J. Rutten and D. Turi. On the foundations of final semantics: non-standard sets, met-

ric spaces and partial orders. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg,
editors. Semantics: Foundations and Applications, number 666 in Lect. Notes Comp.
Sci., pages 477-530. Springer, Berlin, 1993.

[299] J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concurrency.
In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, A Decade of Con-
currency, number 803 in Lect. Notes Comp. Sci., pages 530-582. Springer, Berlin,
1994.

[300] A. Scedrov. A guide to polymorphic types. In P. Odifreddi, editor. Logic and computer
science, pages 387-420. Academic Press, London, 1990. The APIC series, vol. 31.

[301] D.S. Scott. Continuous lattices. In F.W. Lawvere, editor, Toposes, Algebraic Ge-
ometry and Logic, number 274 in Lect. Notes Math., pages 97-136. Springer, Berlin,
1972.

[302] D.S. Scott. Data types as lattices. SIAM Journ. Comput., 3:523-587, 1976.
[303] D.S. Scott. Lambda calculus: some models some philosophy. In J. Barwise, H.J.

Keisler, and K. Kunen, editors. The Kleene Symposium, pages 223-266, Amsterdam,
1980. North-Holland.

[304] D.S. Scott. Relating theories of the A-calculus. In J.R. Hindley and J.P. Seldin, editors.
To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,,
pages 403-450, New York and London, 1980. Academic Press.

[305] R.A.G Seely. Hyperdoctrines, natural deduction and the Beck condition. Zeits. Math.
Log. Grundl. Math., 29:33-48, 1983.

[306] R.A.G. Seely. Locally cartesian closed categories and type theories. Math. Proc.
Cambridge Phil. Soc, 95:33-48, 1984.

[307] R.A.G. Seely. Categorical semantics for higher order polymorphic lambda calculus.
Journ. Symb. Logic, 52:969-989, 1987.

[308] R.A.G. Seely. Modelling computations—a 2-categorical approach. In Logic in Com-
puter Science, pages 65-71. IEEE, Computer Science Press, 1987.

[309] M.B. Smyth and G.D. Plotkin. The category theoretic solution of recursive domain
equations. SIAM Journ. Comput., 11:761-783,1982.

[310] E.W. Stark. Dataflow networks are fibrations. In D.H. Pit t et al., editor. Category and
Computer Science, number 530 in Lect. Notes Comp. Sci., pages 261-281. Springer,
Berlin, 1991.

[311] R. Statman. Logical relations and the typed lambda calculus. Inf. & Contr., 65:85-97,
1985.

[312] M. Stefanova and H. Geuvers. A simple model construction for the calculus of con-
structions. In S. Berardi and M. Coppo, editors. Types for Proofs and Programs,

732 References

number 1158 in Lect. Notes Comp. Sci., pages 249-264. Springer, Berlin, 1996.
[313] C. Stirling. Modal and temporal logics. In S. Abramsky, Dov M. Gabbai, and T.S.E.

Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages 477-563.
Oxford Univ. Press, 1992.

[314] R. Street. The formal theory of monads. Journ. Pure & AppL Algebra, 2:149-169,
1972.

[315] R. Street. Fibrations and Yoneda's lemma in a 2-category. In G.M. Kelly, editor,
Proc, Sydney Category Theory Seminar 1972/1973, number 420 in Lect. Notes Math.,
pages 104-133. Springer, Berlin, 1974.

[316] R. Street. Cosmoi of internal categories. Trans. Am. Math. Soc, 258(2):271-317,
1980.

[317] R. Street. Fibrations in bicategories. Cah. de Top. et Geom. Diff., XXI-2:111-160,
1980.

[318] Th. Streicher. Correctness and Completeness of a Categorical Semantics of the Cal-
culus of Constructions. PhD thesis, Univ. Passau, 1989. Techn. Rep. MIP - 8913.

[319] Th. Streicher. Semantics of Type Theory. Correctness, Completeness and Indepen-
dence results. Progress in Theor. Comp. Sci. Birkhauser, Boston, 1991.

[320] Th. Streicher. Dependence and independence results for (impredicative) calculi of
dependent types. Math. Struct, in Comp. Sci., 2(l):29-54, 1992.

[321] Th. Streicher. Independence of the induction principle and the axiom of choice in the
pure calculus of constructions. Theor. Comp. Sci., 103(l):395-408, 1992.

[322] Th. Streicher. Investigations into intensional type theory. Habil. Thesis, Ludwig
Maximilian Univ. Miinchen, 1993.

[323] G. Sundholm. Proof theory and meaning. In D. Gabbay and F. Guenthner, editors.
Handbook of Philosophical Logic, volume 3, pages 471-506, Dordrecht, 1984. Reidel.

[324] G. Sundholm. Constructive generalized quantifiers. Synthese, 79:1-12, 1989.
[325] W.W. Tait. A realizability interpretation of the theory of species. In Logic Collo-

quium. Symposium on Logic held at Boston 1972 - 1973, number 453 in Lect. Notes
Math., pages 240-251. Springer, BerHn, 1975.

[326] I. Takeuti. An axiomatic system of parametricity. In Ph. de Groote and J.R. Hindley,
editors. Typed Lambda Calculi and Applications, number 1210 in Lect. Notes Comp.
Sci., pages 354-372. Springer, Berlin, 1997.

[327] A. Tarlecki, R.M. Burstall, and J.A. Goguen. Some fundamental algebraic tools for
the semantics of computation: Part 3. Indexed categories. Theor. Comp. 5cz., 91:239-
264, 1991.

[328] A. Tarski. Der Aussagenkalkiil und die Topologie. Fundam. Math., 31:103—134,1938.
[329] P. Taylor. Internal completeness of categories of domains. In D.H. Pit t , S. Abramsky,

A. Poigne, and D.E. Rydeheard, editors, Category Theory and Computer Program-
ming, number 240 in Lect. Notes Comp. Sci., pages 449-465. Springer, Berlin, 1985.

[330] P. Taylor. Recursive domains, indexed category theory and polymorphism. PhD
thesis, Univ. Cambridge, 1986.

[331] P. Taylor. The fixed point property in synthetic domain theory. In Logic in Computer
Science, pages 152-371. IEEE, Computer Science Press, 1991.

[332] P. Taylor. Practical Foundations. Cambridge Univ. Press, 1998, to appear.
[333] A.S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and

Analysis. Number 344 in Lect. Notes Math. Springer, Berlin, 1973.
[334] A.S. Troelstra. On the syntax of Martin-Lofs type theories. Theor. Comp. Sci.,

51:1-26, 1987.
[335] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics. An Introduction.

References 733

North-Holland, Amsterdam, 1988. 2 volumes.
[336] D. Cubric. On the semantics of the universal quantifier. Ann. Pure & AppL Logic,

87:209-239, 1997.
[337] B. Veit. A proof of the associated sheaf theorem by means of categorical logic. Journ.

Symh. Logic, 46:45-55, 1981.
[338] S. Vickers. Topology Via Logic. Number 5 in Tracts in Theor. Comp. Sci. Cambridge

Univ. Press, 1989.
[339] F.-J. de Vries. Type Theoretical Topics in Topos Theory. PhD thesis, Univ. Utrecht,

1989.
[340] Ph. Wadler. Theorems for free! In Fund. Progr. & Comp. Architecture, pages 347-

359. ACM Press, 1989.
[341] R.F.C. Walters. Categories and Computer Science. Carslaw Publications, Sydney,

1991. Also available as: Cambridge Computer Science Text 28, 1992.
[342] R.F.C. Walters. An imperative language based on distributive categories. Math.

Struct, in Comp. Sci., 2:249-256, 1992.
[343] W. Wechler. Universal Algebra for Computer Scientists. Number 25 in EATCS

Monographs. Springer, Berlin, 1992.
[344] G. Winskel. A compositional proof system on a category of labelled transition systems.

Inf & Comp., 87:2-57, 1990.
[345] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, Dov M. Gabbai,

and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 4,
pages 1-148. Oxford Univ. Press, 1995.

[346] G.C. Wraith. A note on categorical datatypes. In D.H. Pit t , A. Poigne, and D.E.
Rydeheard, editors. Category Theory and Computer Science, number 389 in Lect.
Notes Comp. Sci., pages 118-127. Springer, Berlin, 1989.

734 References

This Page Intentionally Left Blank

Notation Index

(—)^ (transposition), xiv
(—)^ (transposition), xiv
(A' 4- L) (comma category of functors

K,L), 55
(/ 4- g) (commaobject of l-cells f,g), 547
0 (empty type), 140
0 (initial object), xiv
1 (singleton type), 138
1 (terminal object), xiii
: (in Mia; inhabitation in type theory),

1
: (in fiX^Y in category theory), xiii
=cr (prepositional equality on type a),

177
Co (object of objects of an internal cate-

gory), 408
Ci (object of morphisms of an internal

category), 408
E (existence predicate of an u/-set), 33
E (existence predicate of an object of

Set(p)), 375
FQ (object part of an internal functor F) ,

415
Fi (morphism part of an internal functor

F) , 4 1 5
Hj (restriction of a fibred functor H to

the fibre over /) , 74
I/R (quotient of an object / by a relation

Ron I), 292
) (opslice category of IB over /) , 30

7*(j) (induced nucleus in the slice cat-
egory over / , of a topos with
nucleus j) , 359

I*(p) (localisation of a fibration p at 7),
100

r (in /*:IB-> B / /) , 41
7* (i n 7 * : I B - > B / 7) , 41
MN (application term for exponent

types), 134
MN (application term for dependent

product types), 586
M[N/x] (substitution of TV for x in M) ,

XV, 66
M[I\/x\ (simultaneous substitution of Is

for £ in M) , 66
Mr (application term for second order

product types), 447
F(7) (power object Q^ in a topos), 341
F(7) (powerset of a set 7), 12

F:(7) (j-power object fi/ in a topos with

nucleus j) , 362
T / 7 (functor T acting on simple slice cat-

egory over 7), 164
T* (free monoid, or Kleene star, on a set

T) , 65
X -\- Y (coproduct of objects X and Y),

xiv
X E C (X IS Sin object of C), xiii

X —¥ Y (map / from X to Y), xiii
X X Y (Cartesian product of objects X

735

736 Notation Index

and Y), xiii
[^]R (introduction term for quotient

types), 283
[f,g] (binary cotuple of maps / , g), xiv
Alg(T) (category of algebras of a functor

T) , 161
A l g (E , n) (category of (E, n)-algebras),

236
A l g S p e c (category of algebraic equa-

tional specifications), 182
B i C C C (category of bicartesian closed

categories), 147
C C C (category of Cartesian closed cat-

egories), 147
CFam(Dcpo) (category of dcpo-indexed-

dcpos), 639
C - M o d e l (category of categorical mod-

els of signatures), 133
Ci(T,) (classifying category of a signature

E), 124
Ci(E,A) (classifying category of an al-

gebraic specification (E , ^)) ,
185

C^l(E) (Al-classifying category of a sig-
nature E), 135

C^l(x,+)(^) ('^(x,+)(^)"^l^ssifying cate-
gory of a signature E), 143

C^lx(E) (Al x-classifying category of a
signature E), 139

CoAlg (T) (category of co-algebras of a
functor T) , 161

Efr (effective topos), 376
Eq(ix, v) (equaliser map of w, v), 184
Eq(u, v) (predicate of equality of u, v in

a fibration), 191
E q S p e c (category of equational specifi-

cations), 182
Eq^(cr, r) (equality type for kind A

in higher order polymorphic
type theory), 450

E>q(T(x,x') (equality type for type a in
dependent type theory), 586

F P C a t (category of categories with fi-
nite products), 126

Fam(Sets) (category of set-indexed sets),
15

Fam(Clos) (category of closure-indexed
closures), 643

Fam(C) (category of B-indexed families
in internal category C) , 422

Fam((C) (category of category-indexed
families in a category C), 512

Fam((C) (category of set-indexed families
in an (ordinary) category C),
31

Fam(p) (family fibration of a fibration p),
106

Fib(]B) (category of fibrations with basis
B), 72

F i b (category of fibrations), 72, 73
Fibgpij^(IB) (category of split fibrations

with basis B), 72
Fibgpij^ (category of split fibrations),

72, 73
FoSpec (category of first order specifi-

cations), 227
r (7 ,w) (set of global elements of an ob-

ject (/ , «) in Eff), 385
F (global sections functor Eff —>- Se ts) ,

385
r (global sections functor C -)• Se ts) , 57
HoSign (category of higher order signa-

tures), 313
ICa t (B) (category of indexed categories

overB), 111
I C a t (category of indexed categories),

110
A (abstraction for Kleene application),

xvii
A (abstraction in a CCC), xiv
N / K (quotient of a PER R), 35
Q-set (category of Heyting valued sets,

for a CHA fi), 376
Q (codomain of a subobject classifier in

a topos), 335
Hj (codomain of the j-closed subobject

classifier, in a topos with nu-
cleus j) , 356

P E R (category of PERs), 36
n(p) (collection of predicates of a fibra-

tion p), 249
=» (2-cell), xiii
=>> (exponent), xiii
S-Model(E) (category of set-theoretic

models of a signature E), 126
S-Model (category of set-theoretic mod-

Notation Index 737

els of signatures), 68
S-Modelg'p (category of set-theoretic

models of single-typed signa-
tures), 70

S e t s (category of sets), 11
Sets* (category of pointed sets), 39
S i g n P r e d (category of signatures with

predicates), 222
Sign (category of (many-typed) signa-

tures), 65
S igngT (category of single-typed signa-

tures), 70
Th{Ti,l-C) (equational logic theory with

signature (^,n)), 182
UFam(PN) (total category of the realis-

ability fibration), 241
UFam(PER) (category of uniform Eff-

indexed families of PERs), 394
UFam(PER) (category of uniform cj-set-

indexed families of PERs), 53
UFam(PER) (category of uniform PER-

indexed families of PERs), 57
UFam(u;-Sets) (category of uniform EfF-

indexed families of u;-sets),
394

UFam(u;-Sets) (category of uniform ui-
set-indexed families of c^-sets),
51

Homj(X,Y) (hom-objectin the base cat-
egory of a locally small fibra-
tion), 559

!=ii (abstract equality predicate), 374

\J (directed join), xvii
• (derivabihty), 122, 173, 224
CL (category of complete lattices), 300
Clos (category of closures), 642
C (category of /-indexed objects and

maps in an internal category
C) , 421

D c p o (category of dcpos), xvii
D c p o ^ ^ (category of dcpos with embed-

ding-pro jection pairs as mor-
phisms), 638

Di s t rS ign (category of distributive sig-
natures), 144

EqFib (category of Eq-fibrations), 209
E x P E R (category of extensionalPERs),

697

Fa (fibred sheafification functor), 364
F i n S e t s (category of finite sets), 57
F s (fibred separated reflection functor),

364
M S (category of metric spaces), 279
P P E R (category of PERs and paramet-

ric maps), 477
P o S e t s (category of posets), xvi
Pred (category of predicates on sets), 11
REL (category of sets and relations),

205
Rel (category of relations over sets), 14
a (/) (sheafification of an object /) , 363
ca t (IB) (category of internal categories in

B), 415
j (nucleus in a topos), 354
p , p ' (recursive projections), xvii
r (left adjoint cj-Sets —y P E R to inclu-

sion), 37
s (/) (separated reflection of an object /) ,

363
t r u e (subobject classifier in a topos), 335
LI (lift of an object / in a topos), 341
L (bottom element), xvi
J_ (falsum), 223
unpack P as [nx In Q^n'y In R] (cotuple

term for coproduct types), 141
IB/7 (slice category of IB over /) , 28
IB / / (simple slice of IB over /) , 41
IB"*" (category of arrows in IB), 28
B ^ (category of pointed families in B),

38
C(X, Y) (maps in C from X to K), xiii
C(S) (category of types and terms in

kind context S) , 457
E ^ (category of internal diagrams of

type C in a fibration with to-
tal category E) , 435

(total category of an opposite
fibration with total category
E) , 113

E / (fibre category over an object / in
a fibration with total category
E) , 26

%,(X,Y) (homset of maps X -)• K in E
over ti), 26

• (Kleene application), xvii
• (application for terms), xv

738 Notation Index

U (coproduct), 94, 97
-> (cover), 260
H (adjunction), xiv
—» (epic map), xiii
= (syntactic equality), xv
7} (unit of an adjunction), xiv
3! (unique choice), 304
3 (existential quantification), 223
V (universal quantification), 223
N with /3 = a via z (elimination term for

polymorphic equality types),
450

Q with x' = X via z (elimination term
for dependent equality types),
587

E (existence predicate on the quotient of
a PER) , 36

£j (membership predicate at / in a
topos), 341

Gcr (membership of type a, in higher or-
der logic), 316

K.M (first coprojection term for coprod-
uct types), 141

K (first coprojection of a (binary) coprod-
uct), xiv

K'N (second coprojection term for co-
product types), 141

K' (second coprojection of a (binary) co-
product), xiv

Al(I]) (simply typed A-calculus with —>̂-
types on a signature E), 134

Al (X,+) (S) (simply typed A-calculus with
1, X, —>-,0,-j—types on a signa-
ture E), 140

Alx(E) (simply typed A-calculus with
1,X,—>-types on a signature
E), 138

A2 (second order polymorphic type the-
ory), 441, 446

A2= (second order polymorphic type the-
ory with equality types), 450

A (abstraction operation in (typed) A-
calculus), XV

A (abstraction operation in a A-category),
155

Au; (higher order polymorphic type the-
ory), 442, 448

Au;= (higher order polymorphic type the-
ory with equality types), 450

A-> (first order polymorphic type the-
ory), 441, 446

A—>•= (first order polymorphic type the-
ory with equality types), 450

Aa: Type. M (abstraction term for second
order product types), 446

Xv: a. M (abstraction term for exponent
types), 134

Xx: a. M (abstraction term for dependent
product types), 586

DC (logical equivalence), 226
[[-Jp (interpretation function based on

valuation p), 67
f:X -^Y (map / from X to Y), xiii
^ (meta lambda abstraction), xv
;—>• (monic map), xiii
V (codiagonal [id, id] for a coproduct -}-),

xiv
V (inclusion functor Se t s -> EfT), 385
V (inclusion functor Se t s —> u;-Sets), 34
-• (negation), 223
-»-• (double negation nucleus), 354

i (codomain fibration associated

with a display map category
(]B,P)),610

u(X) (chosen Cartesian map over u at
^) , 4 7

W (lifting of natural transformation <j),

_ '̂ '̂
m: X '—> I (closure of m: X >—> / in a

topos with a nucleus), 355
do (domain map of an internal category),

408
di (codomain map of an internal cate-

gory), 408
TTP (first projection term for Cartesian

product types), 139
Tv'P (second projection term for Carte-

sian product types), 139
TT' (second projection of a (binary) Carte-

sian product), xiii
TT (first projection of a (binary) Cartesian

product), xiii
TT (projection in a comprehension cate-

gory), 614
TT (subset projection), 274
TTo (canonical projection for a hom-object

in the base category of a lo-

Notation Index 739

cally small fibration), 559
TTi (map "of arrows" for a hom-object, in

the total category of a locally
small fibration), 559

pick X from a in AT (elimination term for
quotient types), 283

Yl (product), 94, 97
Ha: A. a (higher order polymorphic prod-

uct type), 448
I la : Type, a (second order product type),

446
Tlx'.a.T (dependent product type), 586
Prop (type of propositions), 313

^ (in X 4^ y) , xiii
^ (i n f:X - ^ y) , xiii
—>• (in a —> r) , xv
—̂ (partial map), 342
^ (parallel maps), xiii
Cart(IE) (category with Cartesian maps

in the total category E of a
fibration), 30

ClSubj(/) (poset of j-closed subobjects
of an object /) , 356

ClSubj(IB) (category of j-closed subob-
jects in a category IB), 356

Del(]B) (category of deliverables in IB),
556

ERel(]B) (category of equivalence rela-
tions in IB), 45

ERel(]E) (category of equivalence rela-
tions in the total category E
of a preorder fibration), 296

FRelP(p) (category of predicates and
functional relations in a fibra-
tion p), 265

FRel(p) (category of types and func-
tional relations in a fibration
p), 254

FSepj(IB) (category of j-separated fami-
lies i n B) , 364

FShj (IB) (category of families of j-sheaves
i n B) , 364

FV(M) (set of free variables in a term
M) , 66

FamSub(B) (category of subobjects on
families in B), 552

FinFam(C) (category of families in C in-
dexed by finite sets), 57

Full(l/) (internal category in the base
category of a locally small fi-
bration, induced by an object
U in the total category), 563

Full]g(a) (full internal category in B as-
sociated with a map a), 412

Im(ii) (image (object) of u), 257
Ker(u) (kernel of a map n, in a fibration),

291
Mono(B) (category of monos in B), 43
Orth(yl) (category of families orthogonal

to an object A), 712
Orth j (^) (category of j-separated fam-

ilies orthogonal to an object
A), 712

PER (set of PERs), 35
P F a m (P E R) (category of PER-indexed

parametric families of PERs),
478

Per(B) (category of partial equivalence
relations in B), 45

Pred(T) (lifting of a polynomial functor
T from types to predicates),
527

RegSub(B) (category of regular subob-
jects in B), 46

Rel(B) (category of relations in B), 44
Rel(E) (category of relations in the total

category E of a fibration), 291
Rel(p) (category of types and relations in

a fibration p), 253
SPred(p) (category of strict predicates on

types with equality, in a fibra-
tion p), 379

Sep;(B) (category of j-separated objects
in B), 360

Set(p) (category of sets with equality
predicate in a fibration p), 374

Shj(B) (category of j-sheaves in B), 360
Sign(B) (signature of a category B), 129
Split(IE) (category with maps from a

splitting in the total category
E of a fibration), 92

Sub(7) (poset of subobjects of an object
/) , 4 3

Sub(B) (category of subobjects in a cat-
egory B), 43

S(E) (total category of a simple fibration

740 Notation Index

in F ib , on fibration with total
category E) , 555

Termsr(X) (set of terms of type r with
free variables in X), 66

VSuhj(X) (collection of vertical subob-
jects of X over / in a fibra-
tion), 351

V(IE) (category of vertical maps in the
total category E of a fibra-
tion), 549

app (evaluation map in a A-category),
155

char(77i) (characteristic map of a mono m
in a topos), 335

domj (domain fibration at /) , 30
ev (evaluation map in a CCC), xiv
m(it) (monic part of u), 257
so(IB) (total category of the simple opfi-

bration on IB), 511
st (strength natural transformation), 163
s(T) (total category of a simple fibration

for a CT-structure with T as
collection of types), 42

s(IB) (total category of simple fibration
o n B) , 40

Sp(E) (total category of the simple fibra-
tion over the fibration p), 488

i(M) (introduction term for subset type),
272

o(N) (elimination term for subset type),
272

Tj^ (reflexivity term for equality on a kind
A in polymorphic type the-
ory), 450

Tcr (reflexivity term for equality on a type
<7 in dependent type theory),
587

{x:a \ (p} (subset type), 272
a -\- T (coproduct type), 140
a/R (quotient type), 283
a[—/X] (functor associated with Hagino

type <T(X), via substitution
for type variable X), 457

a -^ T (exponent type), 134
a X T (product type), 138
:^ (Kleene equality), xvii
C:^ (equivalence of categories), xiv
>- (dependency relation), 685

Ea : A. a (higher order polymorphic sum
type), 448

Ea:Type.<7 (second order polymorphic
sum type), 446

Ea;: a. r (dependent sum type), 586
D (implication), 223
9x (canonical map for an object X wrt. a

definable collection), 570
T (top element), xvi
T (truth), 223
(—, —) (recursive tupling), xvii
{M,N) (tuple term for Cartesian prod-

uct types), 139
(a) (functor associated with lifting of

natural transformation a), 77
{T,M) (tuple term for second order sum

types), 446
(fid) (binary tuple of maps / , g), xiii
(x^y) (tuple term for dependent sum

types), 586
0 (empty tuple term for singleton type),

139
Type (kind of types, in polymorphic type

theory), 446
7 (discrete internal category on an object

/) , 410
unpack z as {a^x) in N (elimination term

for second order sum types),
447

unpack z as {x,y) in Q (elimination term
for dependent sum types), 586

€ (counit of an adjunction), xiv
c/pn (nth partial recursive function), xvii
h (logical entailment), 2, 121
V (disjunction), 223
V (join, least upper bound), xvi
u;-Sets (category of u;-sets), 33
A (conjunction), 223

A (meet, greatest lower bound), xvi

C (category S e t s ^ of presheaves on
Q , 340

{ —} (domain functor of a comprehension
category), 539

{ —} (subset type functor in a fibration),
274

{X E P} (extension-object for an object
X wrt. a definable collection
P) , 570

Notation Index 741

{ }j (j-singleton map, in a topos with nu-
cleus j) , 356

{} (empty cotuple term for empty type),
141

IIPII (fibration of objects, for a split fibra-
tion p), 93

Cfi (in Cfiil —^ I/R', canonical quotient
map), 292

i (map of identities of an internal cate-
gory), 408

p /Eq (quotient of an Eq-fibration p by
internal equality), 214

p~^(I) (fibre category of p over /) , 26
p°P (opposite of a fibration p), 113
u* (substitution functor along u, in a fi-

bration), 47
u* (substitution functor along u, in an

indexed category), 50
U] (extension functor along u, in an opfi-

bration), 511
>l(IB) (collection of algebraic equations

in a category IB), 187

A{p) (collection of axioms of a fibration
p), 250

V/I (full subcategory of the slice IB/7 of
display maps with codomain
7, in a display map category
(B,2))) ,610

T(M) (category of families in a topos B),
632

'H(p) (collection of equations that hold in
an Eq-fibration p), 212

£(E, •) (total category of the fibration
of contexts of a logic with sig-
nature (S , n)) , 174

£ (S , 1-C) (total category of the classifying
Eq-fibration of (E,?/)) , 194

A^ \= A (validity in A4 of equations in
A), 183

\R\ (domain of a PER R), 35
I (separation of contexts), xv, 171
IS I (set of types of a signature E), 64
|p| (fibration of objects, for a fibration p),

30

742 Notation Index

This Page Intentionally Left Blank

Subject Index

Above, 26, 28
Abstraction condition, 479
Action

- of an internal diagram, 431, 564
monoid - , 7 0

Adjunction, xiv
- in Fib, 93
- in Fib(B), 84
fibred - , 83

split - , 84
internal - , 418
map of - s , 89

pseudo - , 91
semi- - , 157, 454

Admissible subset
- of a complete lattice, 300
- of a directed complete partial or-

der, 203
ALF, 582,598
Algebra, 7

- of a functor, 161
- of a monad, 80, 433
- of a signature, 66
- of a signature with predicates, 235
Boolean - , xvi, 167, 242
cylindric - , 242
Heyting - , xvi
partial - , 132, 189

Almost
- epic, 358

- equivalence relation, 384, 390
- monic, 358

Ambient category, 409
Arrow

- category, 28
- fibration

- in Fib, 555
- in Fib(B), 551

- object
- in Fib, 553
- in Fib(B), 549

AUTOMATH, 582, 598
Axiom of Choice, 47, 50, 106, 708

- in a fibration, 271
- in a regular category, 271
- in dependent type theory, 596,

600
countable - , 405

Axiom rule, 172

BA, see Boolean algebra
Balanced category, 345
Beck-Chevalley condition, 86, 88, 94, 97,

191
Bicartesian closed category, 143
BiCCC, see Bicartesian closed category
Bidense morphism, 358, 365
Bifibration, 511, 512, 521
Bisimulation, 532
Boolean algebra, xvi, 167, 242
Bounded

743

744 Subject Index

- family of finite sets, 572
- family of partial equivalence rela-

tions, 579
Brouwer-Heyting-Kolmogorov interpreta-

tion, 137, 596

Calculus
A — , XV

Al- -, 134
Alx- -, 138
Al(^,+)--, 140
A2- -, 446
Ao;- -, 448
A^--, 446

- of constructions, 647, 684
extended - , 691

- of inductive definitions, 691
- of predicates, 663

Canonical quotient map, 292
Carrier

- of a CO-algebra
- of a functor, 161

- of an algebra
- of a functor, 161
- of a signature, 66

Cartesian
- closed

- category, xii
- f i b ra t ion ,81 , 426
- internal category, 419
locally - , 39, 81, 343, 564, 583,

627, 702
relatively - , 610, 623

- functor, 74
- lifting, 27
- morphism, 27

weak - , 30
- product, xiii

- in a fibration (in Fib), 93, 471,
520

- in a fibration (in Fib(IB)), 520
- type, 138
internal - , 418, 429

Category
A- - , 155

non-extensional-, 157
Al- - , 149, 566
- (fibred) over, 27
- with families, 622

ambient - , 409
arrow - , 28
base - , 26
classifying -

Al- - , 135
Alx- - , 139
- of a signature, 124
- of an algebraic specification,

185
coherent - , 266
c o m m a - , 55, 57, 79, 515, 548
complete - , 102
comprehension - , 539, 583, 613

- over a fibration, 666
- with unit, 616
closed - , 625, 715
family- , 618,635, 636
full - , 613
identity - , 614, 627, 637
regular subobject - , 683
simple - , 614, 627
subobject - , 614, 683

D- - , 274
display map - , 610
distributive - , 63, 323, 522
Eilenberg-Moore - , 46

fibred - , 80
exact - , 297
extensive - , 62
fibre - , 26
fibred - , 27
indexed - , 50

opposite - , 112
split - , 51

internal - , 7, 10, 408
Cartesian closed - , 419, 426
discrete- , 411, 429, 434
finite-, 411
full - , 412, 423, 424, 429, 470,

490, 492, 564, 614, 701, 702
full - in a fibration, 563
indiscrete - , 421
preorder - , 414

KleisH - , 46, 80, 117, 130, 205, 494
fibred - , 80, 494

locally small - , xiii, 4, 428, 558
logical - , 266
opposite - , xiii
opslice - , 30, 292, 511, 518

Subject Index 745

s imple - , 512, 518
receiving - , 119
regular - , 257
slice - , 19, 28

s imple - , 19, 41, 165
small - , xiii, 410, 423, 430
total - , 26
well-powered - , 351

Cauchy reals, 290
CCC, see Cartesian closed category
CCompC, see Closed comprehension cat-

egory
CHA, see Complete Heyting algebra
Change-of-base, 56

- functor, 48
- situation, 57

Characteristic morphism, 15, 335
CHARITY, 163, 457
Church numeral, 456, 459
Church's Thesis, 402
Church-Rosser property, 7

- for dependent type theory, 592
- for polymorphic type theory, 442
- for simple type theory, 134

Classical logic, xvi, 224, 270, 337, 358,
365

Classifying
- Eq-fibration, 201
- category

Al- - , 135
Alx- - , 139
- of a signature, 124
- of an algebraic specification,

185
- fibration

- in polymorphic type theory,
482

- in predicate logic, 234, 278,
299, 323

- morphism, 335
Cleavage, 49
Closed

j - - , for a nucleus j , 355
-.-.- - , in Eff, 389
- comprehension category, 625, 715
- in a topological space, 209
- in the Scott topology, 153
down - , 204

Closure, 355, 642

fibration of - s , 643, 695
internal category of - s , 644

Cloven
- fibration, 49
- opfibration, 511

Co-algebra, 7
- of a comonad, 433
- of a functor, 161

Co-induction, 526
- assumption, as co-algebra, 532
- proof principle, in a fibration, 532

Cocomplete fibration, 101
Code, 33
Codiagonal, xiv
Codomain fibration, 28, 193, 431, 439,

551, 560,617, 627
Coequaliser in a fibration, 303
Cofibration, 510
Coherence conditions, 50
Coherent

- category, 266
- fibration, 233, 234, 239, 241, 266
- logic, 227
- specification, 227

Comma
- category, 55, 57, 79, 515, 548
- fibration

- in F ib , 553
- in Fib(B) , 549

- object, 547
- in F ib , 552
- i n Fib(IB), 549

Commutation conversion
- for coproduct types, 141
- for quotient types, 289
- for sum types, 454
- for weak dependent sum types,

593
Comonad, 46, 168, 433, 494, 535

fibred - , 494
weakening and contraction - , 536

Complete
- Heyting algebra, xvi, 239, 269,

331, 376
- category, 102

small - , 439, 467
- distributivity, 105
- fibration, 101

small - , 439

746 Subject Index

- lattice, xvi, 300
Completeness

- of algebraic equational logic, in a
category, 186

- of equational logic, in a fibration,
208

- of predicate logic, in a fibration,
249

Comprehension, 13, 274
- category, 539, 583, 613

- from a full internal category,
614

- lifted along a fibration, 544
- over a fibration, 666
- with unit, 616
closed - , 625, 715
family - , 618, 635, 636
full - , 613
hom-set - , 566
identity - , 614, 627, 637
regular subobject - , 683
simple - , 614, 627
subobject - , 614, 683

- in a fibration, 616
Congruence, 533
Conjunction, 223
Connective, 223
Conservative functor, 265
Constructive logic, xvi, 237
Constructor, 160, 162, 456
Context, 2, 121

- rules, 171
kind - , 445
proposit ion-, 171, 172, 224
t y p e - , 171, 224, 445

Contraction, 24, 175, 176
- functor, 176, 190

- wrt. a comprehension category,
614

- wrt. a weakening and contrac-
tion comonad, 538

- rule
- for propositions, 172
- for types, 172
- in dependent type theory, 585
- in simple type theory, 122

Conversion, 135, 177
- rule in dependent type theory, 585

- rule in higher order type theory,
448

Coproduct, xiv
- in a comprehension category

strong - , 624
weak - , 624

- in a fibration, 97
- in F ib , 521
- in Fib(B) , 521

- type, 140
- in polymorphic type theory,

457
definable - , 453, 483
disjoint - , 526
strong - , 591
universal - , 526
weak - , 591

- with simple parameters, 158
- wrt. a comprehension category,

540
strong - , 677
very strong - , 678

- wrt. a weakening and contraction
comonad, 537

disjoint - , 59
- in a fibration, 533

dis t r ibut ive- , 63, 90, 158
- and Frobenius, 105

simple T- - , in a fibration, 149, 541
simple -

- in a fibration, 94, 427, 541
- in an internal category, 419,

427
universal - , 58, 266, 637

- in a fibration, 533
Coprojection

- morphism, xiv
- term, 141

COQ, 582, 595, 684, 691
Cotuple, xiv
Cover, 260, 350, 355

collective - , 578
Freyd - , 57

CT-structure, 42, 153, 494, 541, 611, 670
fibred - , 557

Cut rule, 172
Cylindric algebra, 242
Cylindrification operation, 242

Subject Index 747

D-category, 274
Data type, 7, 162, 456

proof principles for -s , 526, 532, 533
dcpo, see Directed complete partial order
Decidable

- partial equivalence relation, 572
family of - s over Se t s , 572
family of - s over u;-Sets, 573

- proposition, 401
Definability

- of equality, 574
- of functors, 573
- of isomorphisms, 574
- of vertical morphisms, 574

Definable
- Cartesian product type

- in polymorphic type theory,
453, 483

- collection, 569, 709
- coproduct type

- in polymorphic type theory,
453, 483

- subfibration, 574
- sum type

- in polymorphic type theory,
453, 459

Deliverable, 526, 556
Dense

j - - , for a nucleus j , 355
-.-.- - , in Efr, 389
- image, 359
- partial map, 360

Dependency, 7, 684
Dependent

- parameters, 165
- predicate logic, 3, 645, 648
- type theory, 3, 581, 584

Derivability, 122
- in predicate logic, 224

Descent theory, 9, 412, 431, 514
Destructor, 160, 456
Diagonal, xiii

- element, 242
parametrised - , xiii, 130, 190

Diagram
in ternal - , 431, 564

parametrised - , 434
Dialectica category, 117, 518
Dinatural transformation, 484, 485

Directed
- complete partial order, xvi, 128,

153, 203, 637
continuously indexed - , 637
reflexive-, 153, 156, 670

- subset, xvii
Disjoint

- coproduct
- in a fibration, 533
- type, 526

- union type, 591
Disjunction, 223
Display

- indexing, 21, 29, 32, 51, 58, 59,
107, 109

- map, 583, 603, 708
- category, 610
- in a comprehension category,

614
Distributive

- category, 63, 323, 522
fibred - , 522

- coproduct, 63, 90, 105, 158
- lattice, 167, 233

Distributivity
complete - , 106, 600

Domain
- fibration, 30, 325, 429
- opfibration, 511

Domain theoretic model
- of polymorphic type theory, 482
- of simple type theory, 153
- of the untyped A-calculus, 156

Donkey sentence, 597, 601
Double negation

- nucleus, 354
- in Eff, 389

- rule, XV
DPL, see Dependent predicate logic
DPL-structure, 654
DTT, see Dependent type theory

ECC, see Calculus of constructions, ex-
tended

Effective
- object, 388
- operation, 699
- quotient type, 284
- topos, 376, 383

748 Subject Index

Eilenberg-Moore category, 46
fibred - , 80

ELF, 598
Embedding between dcpos, 638
Encapsulation, 460
Epi, xiii

regular - , 261, 350, 355
split - , 264

Eq-fibration, 201
classifying - , 201

Equaliser
- in a fibration, 282
internal - , 4 1 9

Equality
- combinators, 196
- functor, 291
- in a comprehension category

strong - , 624, 633
weak - , 624

- in a fibration, 190
- type

dependent - , 586
polymorphic - , 449
strong - , 589, 590, 680
very strong - , 681
weak - , 588, 680

- wrt. a comprehension category,
540

strong - , 682
very strong - , 682

- wrt. a weakening and contraction
comonad, 538

componentwise - , 525
externa l - , 177, 192, 226, 227
intensional - , 591
internal - , 177, 192, 226, 227
Lawvere rule for -

- in equational logic, 179, 195
- in predicate logic, 229

Lawvere rule with Frobenius for -
- in equational logic, 181, 195
- in predicate logic, 232

Leibniz - , 315, 454
pointwise - , 525
propositional - , 177, 226
simple -

- in a fibration, 541
very strong - , 371, 410

Equation, 178

algebraic - , 178
non-conditional - , 178

Exact category, 297
Exchange rule

- for propositions, 172
- for types, 172
- in dependent type theory, 586
- in simple type theory, 122

Excluded middle, 226, 232
Existence predicate, 33, 375
Existential quantification, 223
Exponent

- object, xiii
- of a fibration with a category, 92,

573
- of fibrations, 117
- type, XV
fibred - , 92
internal - , 419, 429

Extension, 511, 513, 514
- functor, 510
Kan - , 513, 635

Extensional
- dependent type theory, 590
- entailment

- in higher order logic, 315, 452,
650

- rule, 314
- logic, 177, 192
- partial equivalence relation, 697
- propositional equality, 285
- relation, 375

Extensive
- category, 62
- fibration, 534

Extent of a predicate, 274
External

- equality, 177, 192
- existence, 255

Externalisation, 421, 422, 425, 465, 486,
560

Extremal morphism, 260

Factorisation
- in higher order logic, 319
- system, 260, 359
- via quotients, in a fibration, 302
- via subsets, in a fibration, 281
image - , 257

Subject Index 749

Falsum, 223
Family

- comprehension category
- over Ca t , 635
- over Sets , 618, 636

- fibration
- of a fibration, 106
- over Ca t , 108, 635
- over Se t s , 32, 95, 98, 105, 108,

194, 201, 239, 278, 299, 322,
331, 353, 360, 376, 571, 618,
625

- of sets, 20
- of sheaves, 364, 709
category with -ies, 622
constant - , 22
separated - , 364, 577, 709

FhoDTT, see Full higher order depen-
dent type theory

FhoDTT-structure, 694
weak - , 694

Fibration, 4, 27
A2- - , 473

relationally parametric - , 501
A2=- - , 473
Au;- - , 473, 644, 706
Au;=- - , 473
A ^ - - , 473
\^=- - , 473
- in a 2-category

- following Johnstone, 78
- following Street, 56, 548

- of contexts in logic, 174
- of monos, 43
- of objects, 30, 326

split - , 93, 325
- of relations in a fibration, 291, 524
- over a fibration, 61

- in Fib, 505, 554
- i n Fib(B), 550

- with comprehension, 616
- with subset types, 274, 618
arrow -

- in Fib, 555
-inFib(IB), 551

classifying -
- in polymorphic type theory,

482

- in predicate logic, 234, 278,
299, 323

cloven - , 49
cocomplete- , 101
codomain - , 28, 193, 431, 439, 551,

560, 617, 627
coherent - , 233, 234, 239, 241, 266
complete - , 101

small - , 439
domain - , 30, 325, 429
Eq- - , 201

classifying - , 201
exponent -

- with a category, 92
- with another fibration, 117

extensive - , 534
family -

- of a fibration, 106
- over Cat, 108, 635
- over Se t s , 32, 95, 98, 105, 108,

194, 201, 239, 278, 299, 322,
331, 353, 360, 376, 571, 618,
625

fibre - , 551, 555
first order- , 233, 236, 238, 239, 241,

267, 270
geometric - , 568
higher order - , 330
locally small - , 559, 575, 577, 621,

626, 701
morphism of - s , 73
opposite - , 113
polymorphic - , 471
poset - , 55
realisability-, 241, 245, 331, 376
regular - , 233, 234, 246, 374
representable-, 116, 325
s imple- , 41, 439, 627

- over a fibration, 487, 488, 551,
555

small - , 423, 438, 564, 578
split - , 50
sub - , 574, 583

definable - , 574
subobject - , 43, 193, 201, 202, 266,

267, 278, 297, 307, 334, 409,
429, 627

regular - , 309
type theoretic - , 44, 611, 627

750 Subject Index

well-powered - , 351
Fibre, 26

- fibration, 551, 555
Fibred

- CT-structure, 557
- Yoneda Lemma, 323
- category, 27
- comonad, 494
- functor, 73, 74
- global section, 619, 620
- locally Cartesian closed category,

633, 669
- monad, 79, 359
- preorder, 174, 201
- reflection, 543, 546
- sheafification, 366
- span,514
- strong coproduct, 636
- structure, 80

Fibrewise
- fibration, 550
- structure, 80
- topos, 568

Final, see Terminal
First order

- fibration, 233, 236, 238, 239, 241,
267, 270

- predicate logic, 221
Formation rule

- for propositions
- in equational logic, 177
- in predicate logic, 223

- for types
- in dependent type theory, 586
- in polymorphic type theory,

446
- in simple type theory, 134

Frame, xvi, 239, 269, 282, 331, 360, 376
Freyd cover, 57
Frobenius property, xv, 103

- and distributive coproducts, 105
- for coproducts, 102, 105

- wrt. a weakening and contrac-
tion comonad, 538

- for equality, 191, 199
- wrt. a weakening and contrac-

tion comonad, 538
- for quotients

- in a fibration, 295

- in type theory, 290
for simple coproducts, 102

Full
- higher order dependent type the-

ory, 3, 645, 684, 688
weak - , 688

- internal (sub)category, 412, 423,
424, 429, 470, 490, 492, 564,
614, 701, 702

- quotient type, 284
- subset type, 273

Functor
- over IB, 74
conservative - , 265
fibred - , 74
internal - , 4 1 5
polynomial- , 161, 527
representable-, 351
split - , 74
strong - , 163

Functorial semantics, 7, 517
- for equational logic

- in a fibration, 211
- for polymorphic type theory, 472,

482
- for predicate logic, 248
- for simple type theory

- in a category, 126, 148
- in a fibration, 150

Generic
- model

- of a signature, 128
- of a specification in predicate

logic, 249
- of an equational specification,

186,208
- object, 326, 564, 577

split - , 322, 422
strong - , 326
weak - , 325

Geometric
- fibration, 568
- logic, 364
- morphism, 364, 365, 386, 568

Girard's paradox, 582, 644, 681, 688, 692
Global

- element, 39, 385
- functor, 385

Subject Index 751

- section, 39
- functor, 57, 430, 621, 636
fibred - , 619, 620

- smallness, 577
Grothendieck

- completion, 107
- construction, 29, 107, 111

generalised-, 517
- topology, 355, 361, 707
- topos, 365, 700

Group, 31, 131, 161, 320, 601
Abelian - , 286, 651
internal - , 408

- in a fibration, 208
quotient - , 286, 650
topological - , 408
torsion free - , 178

Groupoid, 30
internal - , 412, 414

HA, see Heyting Algebra
Hagino

- signature, 145, 456, 527
- type, 145, 457

Heyting algebra, xvi
complete - , xvi, 239, 269, 331, 376

Higher order
- fibration, 330, 357, 365
- logic, 314, 650
- signature, 313
full - dependent type theory, 3, 645,

684, 688
weak - , 688

HML, 647, 663
HOL, 311

Ideal
- in a dcpo, 153, 670
- in a ring, 232, 311

Identity
- comprehension category, 627, 637
- extension condition, 477
- rule, 172
- type, 584

Image, 257
- factorisation, 257
stable - , 257

Implication, 223
Impredicativity, 442

Indecomposable object, 636
Indeterminate, 114, 555
Indexed category, 50

opposite - , 1 1 2
split - , 51

Induction, 526
- assumption, as algebra, 527
- proof principle

- in a fibration, 528
- in terms of relations, 533

Inequality, 13, 18
Inhabitation, 121
Initial

- algebra, 162
- with simple parameters, 164,

168
construction o f - s , 167
inductive - , 528, 529, 532

- object, xiv
strict - , 59, 63, 266

Institution, 133, 517
Intensional equality, 591
Internal

- Cartesian
- closed category, 419, 426
- product, 418, 429

- adjunction, 418
- category, 7, 10, 408

discrete- , 411, 429, 434
finite-, 411
full - , 412, 423, 424, 429, 470,

490, 492, 564, 614, 701, 702
full - in a fibration, 563
indiscrete - , 421
preorder - , 414

- diagram, 431, 564
parametrised - , 434

- equaliser, 419
- equality, 177, 192
- existence, 255, 420
- exponent, 419, 429
- functor, 415

- category, 417
- group, 184, 408

- in a fibration, 208
- groupoid, 412, 414
- injectivity, 254
- language, 5, 8, 188, 251, 374, 409

- of a topos, 649

752 Subject Index

- logic, 192, 251
- monoid, 439
- natural transformation, 415
- simple coproduct, 419
- simple product, 419, 430
- surjectivity, 254
- terminal object, 418, 420, 430

Internalisation, 428, 485
Intrinsic property, 54, 109
Intuitionism, 400
Invariant, 527
Inverse image functor, 48
ISABELLE, 311, 442, 598

Kind
- context, 445
- in full higher order dependent

type theory, 688
- in polymorphic dependent type

theory, 663
- in polymorphic type theory, 444

Kleene
- Normal Form Theorem, 401
- application, xvii, 332, 334

- in EfF, 400
- equality, xvii
- realisability, 240
- star, 65

Kleisli category, 46, 80, 117, 130, 205, 494
fibred - , 80

Kripke model, 236
KZ-doctrine, 40

Lattice, xvi
complete - , xvi, 300

internally - , 352
distributive - , 167, 233

Lawvere-Tierney topology, 354
LCCC, see Locally Cartesian closed cat-

egory
LEGO, 582, 595, 684, 691
Leibniz equality, 315, 454
Lift object, 341
Lindenbaum algebra, 125, 154
Local

- exponential, 82
- ring, 232

Locale, xvi, 239, 516
Localisation, 100

Locally
- Cartesian closed category, 39, 81,

343, 560, 564, 583, 627, 702
fibred - , 90, 633, 669

- small
- category, xiii, 428, 558
- fibration, 559, 575, 577, 621,

626, 701
Logical

- category, 266
- framework, 7, 597

- and internal categories, 7, 599
Edinburgh - , 598
Martin-L6f-, 598

- morphism, 339
- predicate, 518
- relation, 505, 518, 519

Logos, 267
pre—, 266

Markov's Principle, 401
Martin-L6f type theory, 582
Mate rule

- for equality
- in equational logic, 179, 181
- in predicate logic, 229

- for existential quantification, in
predicate logic, 230, 234, 247

- for product types, in polymorphic
type theory, 453

- for sum types, in polymorphic
type theory, 453

- for universal quantification, in
predicate logic, 230, 235

Membership, 316
- predicate, 341
- relation, 346

Metric
- predicate, 279, 329
- space, 279, 329

ML, 442, 455, 691
-style polymorphism, 455

Model
A l - - , 150
- of a signature, 66, 128
- of a signature with predicates

- in a fibration, 246
set-theoretic - , 235

- of a specification

Subject Index 753

- in equational logic, 210
- in predicate logic, 249

generic - , 128
- of an equational specification,

186, 208
Modest

- object in EfF, 388
- set, 39, 388

Modification, 111
Module, 514
Monad, 117, 130, 205, 352, 433

fibred - , 79, 359
strong - , 168

Mono, xiii
fibration of - s , 43
regular - , 345
vertical - , 351

Monoid, 70, 461, 600, 601
commutative - , 286
free - , 65
internal - , 439

Monoidal structure, 86, 619
Monotone function, xvi
Multifunction, 205
Myhill-Shepherdson Theorem, 699

Natural numbers object, 159
- in EfF, 399, 402
- in PER, 39
- in cj-Sets, 39
- with simple parameters, 159
fibred - , 160
weak - , 456

Natural transformation, xiii
fibred - , 76
internal - , 4 1 5
vertical - , 76

Negation, 223, 224
- in a topos, 354

Negative occurrence, 463
NNO, see Natural numbers object
Nucleus

- in a topos, 354
- on a fibration, 359
- on a frame, 360
double negation - , 354, 358

- in Eff, 389
NUPRL, 582

Omega set, 33, 336
fibration of -s

- over EfF, 394, 631, 696, 710
- over cj-Sets, 51, 631, 696

On-the-nose, 73
Opcartesian morphism, 292, 510

- and coproducts, 545
- and equality, 546

Opfibration, 252, 511
cloven - , 511
simple - , 511
split - , 511

Opposite
- category, xiii
- fibration, 113
- indexed category, 112

Opreindexing, 511
Opslice (category), 30, 292, 511, 518

s imple- , 512, 518
Orthogonality

- to a collection of morphisms, 260,
677, 682

- to an object, 469, 711
Overloading, 71

Parameter
dependent - s , 165
simple - s , 157

Parametricity
- and (di)naturality conditions, 484
- and definable (co)products, 483
- and weakly intial algebras / ter-

minal co-algebras, 483
- in the sense of Reynolds, 443, 477,

500
- in the sense of Strachey, 442, 477
relational - , 501

Parametrised
- diagonal, xiii, 130, 190
- internal diagram, 434

Partial
- combinatory algebra, 332
- function, 341
- map, 342

- classifier, 342, 633
dense - , 360
extension of - , 360

Partial equivalence relation, 35, 268, 270,
329, 337, 394, 402

754 Subject Index

category of - s , 36
- with parametric maps, 477

decidable - , 572
extensional - , 697
fibration of - s

- over Eff, 394, 425, 476, 631,
684, 696,713

- over PER, 631
- o v e r Se t s , 475, 561,572
- over P P E R , 479
- over u;-Sets, 53, 98, 424, 475,

572, 631,670, 684,696
internal category of - s

- in Eff, 412, 428
- i n Se t s , 411
- i n u;-Sets, 411, 427, 439

PC A, see Partial combinatory algebra
PDTT, see Polymorphic dependent type

theory
PDTT-structure, 667, 706
PER, see Partial equivalence relation
Pointed

- family, 38
- set, 39, 132, 188, 313, 341

Pointwise
- equality, 525
- indexing, 20, 29, 32, 58, 59, 107,

109
Polymorphic

- dependent type theory, 3, 645, 663
- fibration, 471
- predicate logic, 3, 495, 545, 552
- signature, 449, 464, 472
- type theory, 3, 441

first order - , 441, 446
higher order - , 442, 448
logic over - , 495
second order - , 441, 446

Poset, xvi
Positive occurrence, 463
Power

- object, 341, 346
non-empty - , 353

- type, 316
PPL, see Polymorphic predicate logic
Pre-equality, 683
Preorder, xvi

fibred - , 43, 174, 201
Presheaf, 157, 432, 514, 619, 635

- topos, 157, 340, 428, 485
Product

- in a comprehension category, 624
- in a fibration, 97
- type

dependent - , 586
higher order - , 448
second order - , 446

- wrt. a comprehension category,
540

- wrt. a weakening and contraction
comonad, 537

simple T- - , in a fibration, 148, 541
simple -

- in a fibration, 94, 427, 437, 541
- in an internal category, 419,

427
internal - , 430

Profunctor, 514
Projection

- between dcpos, 638
- in a comprehension category, 614
- morphism, xiii
- rule in dependent type theory, 585
- term, 139
d e p e n d e n t - , 6 0 3
subset - , 274

Proposition
- as object, 138
- as type, 136, 137, 451

- a la Howard, 597
- a la de Bruijn, 597

- context, 171, 172, 224
Pseudo

- functor, 50
- map of adjunctions, 91

PTT, see Polymorphic type theory
Pullback

- functor, 48
- lemma, 30

PVS, 311, 582, 646

QUEST, 442
Quotient type, 14

- in a DPL-structure, 659
- in a fibration, 292

effective - , 295, 296
full - , 295, 296

- in dependent predicate logic, 650

Subject Index 755

- in simple predicate logic, 283
effective - , 284
full - , 284

r.e., see Recursive enumerability
RCCC, see Relatively Cartesian closed

category
Realisability

- fibration, 241, 245, 331, 376
- interpretation, 240
- topos, 383, 456
- tripos, 334
Kleene - , 240

higher order - , 373
Lifschitz' - , 334
modified - , 334, 443

Recursive
- enumerability, 241, 329
- function

partial - , xvii
- mathematics, 400
- subset, 329

Reductio ad absurdum, 224, 232
Reflection, 542, 546

- between types and kinds, 690
fibred - , 543, 546
separated - , 363, 387

Reflexive
- closure, 289
- coequaliser, 421
- congruence relation, 533
- dcpo, 153, 156, 670
- graph,501
- object, 156

- in a presheaf topos, 157
- relation, 44

category of - s , 303
Reflexivity

- combinator, 196
- rule in equational logic, 179

Regular
- category, 257, 297
- e p i , 261, 350, 355

- topology, 707
- fibration, 233, 234, 246, 374
- logic, 227
- mono, 46, 345
- specification, 227
- subobject, 46

- classifier, 336
- in a category of sheaves, 365
- of a PER, 270, 337, 499
- of a family of PERs, 499, 552
- of a metric space, 330
- of an a;-set, 336, 496, 697

Reindexing, 48
- functor, 48

Relabelling functor, 48
Relation, 205

- classifier, 346
- in a fibration, 253, 291, 524
equivalence - , 45

almost - , 384, 390
effective - , 297
partial - , 45

extensional - , 375
functional - , 368

- in a fibration, 254, 265
induction in terms of - s , 533
logical -, 505, 518, 519
reflexive - , 44, 303

least - , 303
single-valued-, 254, 304, 368, 375
strict - , 375
symmetric - , 44
total - , 254, 368, 375
transitive - , 44

Relatively Cartesian closed category, 610,
623

Replacement
- combinator, 197

- in dependent type theory, 587
- in polymorphic type theory,

450
- rule

- in equational logic, 179
- in predicate logic, 225

Representable
- fibration, 116, 325
- functor, 351
- presheaf, 116, 157

Ring, 311, 650
local - , 232
module over a - , 514

Saturated subset, 270, 329
Scone, 57, 524
Scott

7 5 6 Subject Index

- closed, 106, 153
- continuous, xvii
- domain, 482, 643
- topology, 153

Separated
- family, 364, 577, 709

-1- . - - , in Eff, 396, 709
- object, 360, 363, 371

-.-.- - , in Eff, 390
- reflection, 363, 387
canonically - , 388

Setoid, 591,623
Setting, 686
Sheaf, 360, 363, 371, 707

-1- . - - , in Eff, 390
- on a site, 361, 383
canonically a - , 388
family of-ves, 364, 577, 709

Sheafification, 363
fibred - , 366

Sieve, 340, 355
Signature, 64, 460

- with predicates, 222
fibration of - , 222

distr ibutive- , 144
fibration o f - s , 65, 104, 526
Hag ino- , 145, 456, 527
heterogeneous - , 64
higher order -, 313

fibration of - s , 313
homogeneous - , 64
many-sorted - , 64
many-typed - , 64
polymorphic- , 449, 464, 472
single-sorted - , 64
single-typed - , 64, 70
underlying - , 129

Simple
- T-coproduct, 149
- T-product, 148
- comprehension category, 614, 627
- coproduct

- in a fibration, 94, 427
- in an internal category, 419,

427
- equality, 190
-f ibrat ion, 41, 439, 627

- in F ib , 555
- in Fib(B) , 551

- over a fibration, 487, 488, 551,
555

- limits of type C, 436
- opfibration, 511
- opslice category, 512
- parameters, 157
- predicate logic, 3, 495
- product

- in a fibration, 94, 427, 437
- in an internal category, 419,

427,430
- slice category, 19, 41, 165
- type theory, 3, 119

Simplicial object, 412
Single-valued relation, 254, 304, 368, 375
Singleton

j - - , 356, 363
- map, 341
- predicate, 317
- type, 138, 586

Site, 355
Slice (category), 19, 28

simple - , 165
Small

- category, xiii, 410, 423, 430
- complete category, 439, 467, 702
- complete fibration, 439
- fibration, 423, 438, 564, 578
- limit, in a fibration, 436

Sort, 1, 64
Soundness

- of a rule, 185
- of algebraic equational logic

- in a category, 185
- of equational logic

- in a fibration, 208
- of predicate logic

- in a fibration, 249
Span,342, 561

fibred - , 133, 189, 514
Specification, 170

algebraic- , 178, 513, 517
equational - , 178
first order - , 227
higher order - , 315

SPL, see Simple predicate logic
Split

- epi, 264
- fibration, 50, 324

Subject Index 757

- fibred adjunction, 84
- functor, 74
- generic object, 322, 422
- indexed category, 51
- opfibration, 511

Splitting, 50
Stack, 708

- completion, 708
- of families of u;-sets over Eff,

710
- of families of PERs over Eff,

713
Strength, 163
Strengthening rule in logic, 173, 230
Strict

- initial object, 59, 63, 266
- predicate, 379
- relation, 375

Strong
- coproduct

- in a comprehension category,
624

- wrt. a comprehension category,
677

fibred - , 636
- coproduct type

- in dependent type theory, 591

- equality
- in a comprehension category,

624, 633
- wrt. a comprehension category,

682
- equality type, 680

- in dependent type theory, 589,
590

- functor, 163
- generic object, 326
- monad, 168
- normalisation, 7, 334

- for dependent type theory, 592
- for polymorphic type theory,

442
- for simple type theory, 134

- sum type, 675
- in dependent type theory, 589

STT, see Simple type theory
Subfibration, 574, 583

definable - , 574
Subfunctor, 579

Subobject, 19
- classifier, 335
- comprehension category, 614, 627,

683
- fibration, 43, 193, 201, 202, 266,

267, 278, 297, 307, 334, 409,
429, 627

- in a category of sheaves, 365
- on a family, 552
closed - , 355
dense - , 355
regular -

- comprehension category, 683
- fibration, 309

vertical - , 351
Subquotient, 39

separated - , in Eff, 403
Subset

- term, 316
- type

- in a DPL-structure, 656
- in a fibration, 274, 570
- in dependent predicate logic,

650
- in simple predicate logic, 272
full - in a fibration, 274, 410
full - in simple predicate logic,

273
Substitution, 48

- combinator, 197
- functor, 12, 48
- in category theory, 23
- in type theory, xv, 123
- lemma, 126
- rule

- in dependent type theory, 585
- in equational logic, 179
- in logic, 172
- in simple type theory, 123, 125

simultaneous-, 66, 125
Subtyping, 495, 506
Sum type

definable - , 453, 459
dependent - , 586
higher order - , 448
second order - , 446
strong - , 675

- in dependent type theory, 589
very strong - , 675

758 Subject Index

weak - , 674
- in dependent type theory, 588

Symmetry
- combinator, 196

- in polymorphic type theory,
450

- rule in equational logic, 179

Term
- as in universal algebra, 66
- in a comprehension category, 615
- model, 7

- of a dependent type theory, 601
- of a logic over polymorphic

type theory, 497
- of a polymorphic type theory,

471, 481
- of a signature, 69
- of a simple type theory, 124
- of dependent predicate logic,

651,656
- of dependent type theory, 628
- of full higher order dependent

type theory, 689
- of polymorphic dependent type

theory, 666
- of the untyped A-calculus, 156

Terminal
- co-algebra

- with simple parameters, 168
co-inductive - , 532
construction of - s , 167

- object, xiii
fibred - , 85
indecomposable - , 636
internal - , 418, 420, 430

Tertium non datur, 226, 232
Theory, 170

- in equational logic, 181
- of predicates, 647, 663
first order - , 227

Topological
- group, 408
- space, 209, 239, 265, 408,516

Hausdorff - , 209
- system, 516

Topology
Grothendieck - , 355
Lawvere-Tierney - , 354

regular epi - , 355, 707
sup - , 355, 383

Topos, 334, 429
- as a DPL-structure, 654
- as a FhoDTT-structure, 695
- as a closed comprehension cate-

gory, 632
- of sheaves, 365
effective - , 376, 383
elementary - , 339
fibrewise - , 568
Grothendieck - , 365, 700
presheaf-, 157, 340, 428, 485
realisability - , 383

Total
- category, 26

Cartesian product in - , 520
coproduct in - , 521, 567
exponent in - , 523
structure in - , 487

- relation, 254, 368, 375
Track, 33

uniform - , 52, 54, 394
Transition system, 513, 526
Transitivity

- combinator, 197
- in polymorphic type theory,

450
- rule in equational logic, 179

Tripos, 332, 374, 377
realisability - , 334

Truth, 223
Tuple

- morphism, xiii
- term, 139

Type, 1
(co-)inductively defined - , 145

- in second order polymorphic
type theory, 456

- context, 171, 224, 445
- scheme, 455
abstract - , 4 6 1
atomic - , 134
basic - , 134
Cartesian product - , 138

definable - , 453, 483
coproduct - , 140

definable - , 453, 483
disjoint - , 526

Subject Index 759

distributive - , 142
in polymorphic type theory, 457
strong - , 591
universal - , 526
weak - , 591

d a t a - , 7, 162, 456
proof principles for - s , 526, 532,

533
disjoint union - , 591
empty - , 141
equality -

dependen t - ,586
strong - , 589, 590, 680
very strong - , 681
weak - , 588, 680

exponent - , xv
Hagino - , 145, 457
identity - , 584
power - , 316
product -

dependen t - ,586
higher order - , 448
second order - , 446

quotient - , 283
- in dependent predicate logic,

650
- in simple predicate logic, 283

singleton - , 138, 586
subset -

- in dependent predicate logic,
650

- in simple predicate logic, 272
sum -

definable - , 453, 459
dependen t - , 586
higher order - , 448
second order - , 446
strong - , 589, 675
very strong - , 675
weak - , 588, 674

unit - , 138, 586

Uniformity Principle, 402
Unique choice, 304, 371, 391
Universal

- colimits in a topos, 349
- coproduct, 58, 90, 266, 637

- in a fibration, 533
- type, 526

- quantification, 223

Validity
- of a conditional equation

- in a category, 184
- in a fibration, 202

- of a predicate, 247
- of a sequent, 247
- of an algebraic equation, 183

Valuation, 67
VERITAS, 582
Vertical

- mono, 351
- morphism, 26
- subobject, 351

Very strong
- coproduct

- wrt. a comprehension category,
678

- equality, 209, 306, 362, 371, 410
- wrt. a comprehension category,

682
- equality type, 681
- sum type, 675

Weak
- FhoDTT-structure, 694
- completeness, for a fibration, 708
- coproduct type, in dependent

type theory, 591
- coproduct, in a comprehension

category, 624
- equality type, 680

- in dependent type theory, 588
- equality, in a comprehension cat-

egory, 624
- full higher order dependent type

theory, 688
- generic object, 325
- initial algebra, 457, 458
- natural numbers object, 456
- sum type, 674

- in dependent type theory, 588
- terminal co-algebra, 457, 458

Weakening, 24, 175, 230, 604
- functor, 176

- wrt, a comprehension category,
614

760 Subject Index

- wrt. a weakening and contrac- Well-powered
tion comonad, 537 - category, 351

- rule - fibration, 351
- for propositions, 172
- for types, 172 Yoneda
- in dependent type theory, 585 - Lemma
- in simple type theory, 122 fibred - , 323

notation for - , 1 7 6 - functor, 428
fibred - , 440

	Cover
	Title page
	Preface
	Contents
	Preliminaries
	0 Prospectus
	0.1 Logic, type theory, and fibred category theory
	0.2 The logic and type theory of sets

	1 Introduction to fibred category theory
	1.1 Fibrations
	1.2 Some concrete examples: sets, ω-sets and PERs
	1.3 Some general examples
	1.4 Cloven and split fibrations
	1.5 Change-of-base and composition for fibrations
	1.6 Fibrations of signatures
	1.7 Categories of fibrations
	1.8 Fibrewise structure and fibred adjunctions
	1.9 Fibred products and coproducts
	1.10 Indexed categories

	2 Simple type theory
	2.1 The basic calculus of types and terms
	2.2 Functorial semantics
	2.3 Exponents, products and coproducts
	2.4 Semantics of simple type theories
	2.5 Semantics of the untyped lambda calculus as a corollary
	2.6 Simple parameters

	3 Equational Logic
	3.1 Logics
	3.2 Specifications and theories in equational logic
	3.3 Algebraic specifications
	3.4 Fibred equality
	3.5 Fibrations for equational logic
	3.6 Fibred functorial semantics

	4 First order predicate logic
	4.1 Signatures, connectives and quantifiers
	4.2 Fibrations for first order predicate logic
	4.3 Functorial interpretation and internal language
	4.4 Subobject fibrations I: regular categories
	4.5 Subobject fibrations II: coherent categories and logoses
	4.6 Subset types
	4.7 Quotient types
	4.8 Quotient types, categorically
	4.9 A logical characterisation of subobject fibrations

	5 Higher order predicate logic
	5.1 Higher order signatures
	5.2 Generic objects
	5.3 Fibrations for higher order logic
	5.4 Elementary toposes
	5.5 Colimits, powerobjects and well-poweredness in a topos
	5.6 Nuclei in a topos
	5.7 Separated objects and sheaves in a topos
	5.8 A logical description of separated objects and sheaves

	6 The effective topos
	6.1 Constructing a topos from a higher order fibration
	6.2 The effective topos and its subcategories of sets, ω-sets, and PERs
	6.3 Families of PERs and ω-sets over the effective topos
	6.4 Natural numbers in the effective topos and some associated principles

	7 Internal category theory
	7.1 Definition and examples of internal categories
	7.2 Internal functors and natural transformations
	7.3 Externalisation
	7.4 Internal diagrams and completeness

	8 Polymorphic type theory
	8.1 Syntax
	8.2 Use of polymorphic type theory
	8.3 Naive set theoretic semantics
	8.4 Fibrations for polymorphic type theory
	8.5 Small polymorphic fibrations
	8.6 Logic over polymorphic type theory

	9 Advanced fibred category theory
	9.1 Opfibrations and fibred spans
	9.2 Logical predicates and relations
	9.3 Quantification
	9.4 Category theory over a fibration
	9.5 Locally small fibrations
	9.6 Definability

	10 First order dependent type theory
	10.1 A calculus of dependent types
	10.2 Use of dependent types
	10.3 A term model
	10.4 Display maps and comprehension categories
	10.5 Closed comprehension categories
	10.6 Domain theoretic models of type dependency

	11 Higher order dependent type theory
	11.1 Dependent predicate logic
	11.2 Dependent predicate logic, categorically
	11.3 Polymorphic dependent type theory
	11.4 Strong and very strong sum and equality
	11.5 Full higher order dependent type theory
	11.6 Full higher order dependent type theory, categorically
	11.7 Completeness of the category of PERs in the effective topos

	References
	Notation Index
	Subject Index

