
STUDIES IN PROOF THEORY

Managing Editors

C. CELLUCCI D. PRAWITZ

].-Y. GIRARD H. SCHWICHTENBERG

Advisory Editors

P. ACZEL

C. BOHM

W. BUCHHOLZ

E. ENGELER

S. FEFERMAN

CH. GOAD

W. HOWARD

G. HUET

D. LEIVANT

P. MARTIN-LOF

G. E. MINC

W. POHLERS

D. SCOTT

W. SIEG

C. SMORYNSKI

R. STATMAN

S. TAKASU

G. TAKEUTI

PER MARTIN-LOP

INTUITIONISTIC TYPE THEORY

Notes by Giovanni Sambin of a series of lectures

given in Padua, June 1980

BIBLIOPOLIS

ISBN 88-7088-105-9

© 1984 by «Bibliopolis, edizioni di filosofia e scienze»
Napoli, via Arangio Ruiz 83

All rights reserved. No part of this book may be reproduced in. any
form or by any means without permission in writing from the publIsher

Printed in Italy by «Grafitalia»
Via Censi dell'Arco, 25 - Cercola (Napoli)

CONTENTS

Introductory remarks .. .

Proposi tions and judgements 3

Explanations of the forms of judgement 7

Propositions .. 11

Rules of equality ... 14

Hypothetical judgements and substitution rules 16

Judgements with more than one assumption and contexts 19

Sets and categories ... 21

General remarks on the rules 24

Cartesian product of a family of sets 26

Defini tional equC'.li ty ... 31

Applications of the cartesian product ~ , 32

Disjoint union of a family of sets 39

Applications of the diSjoint union 42

The axiom of choice ... 50

The notion of such that ... 53

Disjoint union of two sets 55

Proposi tional equali ty .. 59

Finite sets ... 65

Consistency 69

Na tural numbers ~ .. 71

Lists ... 77

Wellorderings ... 79

Universes ... 87

Preface

These lectures were given in Padova at the Laboratorio per

Ricerche di Dinamica dei Sistemi e di Elettronica Biomedica of the

Consiglio Nazionale delle Ricerche during the month of June 1980.

I am indebted to D~. Enrico Pagello of that laboratory for the op­

portunity of so doing. The audience was made up by philosophers,

mathematicians and computer scientists. Accordingly, I tried to say

something which might be of interest to each of these three cat­

egories. Essentially the same lectures, albeit in a somewhat im­

proved and more advanced form, were given later in the same year

as part of the meeting on Konstruktive Mengenlehre und Typentheorie

which was organized in Munich by Prof. Dr. Helmut Schwichtenberg,

to whom I am indebted for the invitation, during the week 29 Sep­

tember - 3 October 1980.

The main improvement of the Munich lectures, as compared with

those given in Padova, was the adoption of a systematic higher level

(Ger. Stufe) notation which allows me to write simply

instead of

n (A,B), E(A,B), W(A,B),),,(b) ,

E(c,d), D(c,d,e), R(c,d,e), T(c,d)

(nx E A)B(x), (Lx E A)B(x), (Wx € A)B(x), (Ax)b(x),

E(c,(x,y)d(x,y», D(c,(x)d(x),(y)e(y», R(c,d,(x,y)e(x,y»,

T(c,(x,y,z)d(x,y,z» ,

respectively. Moreover, the use of higher level variables and con­

stants makes it possible to formulate the elimination and equality

rules for the cartesian product in such a way that they follow the

same pattern as the elimination and equality rules for all the other

type forming operations. In their new formulation, these rules read

n -elimination

(y(x) E. B(x) (x E A»

C E. n (A,B) dey) E. cC>"(y»

F(c,d) E. C(C)

and

11 -equali ty

(x E A) (y(x) G B(x) (x E. A»

b (x) G B (x) d (y) E C C\(y))

F(A(b) ,d) = deb) E= C(\(b»

respectively. Here y is a bound function variable, F is a new non­

canonical (eliminatory) operator by means of which the binary ap­

plication operation can be defined, putting

Ap (c ,a) == F (c , (y) y (a)) ,

and y(x) E. B(x) (x e A) is an assumption, itself hypothetical, which

has been put within parentheses to indicate that it is being dis­

charged. A program of the new form F(c,d) has value e provided c has

value A (b) and deb) has value e. This rule for evaluating F(c,d)

reduces to the lazy evaluation rule for Ap(c,a) when the above defi­

nition is being made. Choosing C(z) to be B(a), thus independent of

z, and dey) to be yea), the new elimination rule reduces to the old

one and the new equality rule to the first of the two old equality

rules. Moreover, the second of these, that is, the rule

C E D(A,B)

c O.x)Ap(c,x) E r1(A,B)

can be derived by means of the I-rules in the same way as the rule

c e L (A,B)

c (p(c),q(c») E E (A,B)

is derived by way of example on p. 62 of the main text. Conversely,

the new elimination and equality rules can be derived from the old

ones by making the definition

F(c,d) == d«x)Ap(c,x».

So, actually, they are equivalent.

It only remains for me to thank Giovanni Sambin for having

undertaken, at his own suggestion, the considerable work of writing

and typing these notes, thereby making the lectures accessible to a

wider audience.

Stockholm, January 1984,

Per Martin-Lof

- 1 -

Introductory remarks

Mathematical logic and the relation between logic and mathematics

have been interpreted in at least three different ways:

(1) mathematical logic as symbolic logic, or logic using mathe­

matical symbolism;

(2) mathematical logic as foundations (or philosophy) of mathe­

matics;

(3) mathematical logic as logic studied by mathematical methods,

as a branch of mathematics.

We shall here mainly be interested in mathematical logic in the second

sense. What ~e shall do is also mathematical logic in the first sense,

but certainly not in the third.

The principal problem that remained after ~rincipia Mathematica

was completed was, according to its authors, that of justifying the

axiom of reducibility (or, as we would now say, the impredicative com­

prehension axiom). The ramified theory of types was predicative, but

it was not sufficient for deriving even elementary parts of analysis.

So the axiom of reducibility was added on the pragmatic ground that it

was needed, although no satisfactory justification (explanation) of it

could be provided. The whole point of the ramification was then lost,

so that it might just as well be abolished. What then remained was

the simple theory of types. Its official justification (Wittgenstein,

Ramsey) rests on the interpretation of propositions as truth values

and propositional functions (of one or several variables: as truth

functions. The laws of the classical propositional logic are then

clearly valid, and so are the quantifier laws, as long as quantifica­

tion is restricted to finite domains. However, it does not seem poss­

ible to make sense of quantification over infinite domains, like the

- 2 -

this interpretation of the notions of domain of natural numbers, on

. 1 function. For this reason, among others, proposition and propositlona

what we develop here is an intuitionistic theory of types, which is

(ramified). It is free from the deficiency of also predicative or

of types, as regards the possibility of de­Russell's ramified theory

·t of mathematics, like the theory of real num­veloping elementary par s

of the Presence of the operation which allows us to form bers, because

the cartesian product of any given family of sets, in particular, the

set of all functions from one set to another.

In two areas, at least, our language seems to have advantages

over traditional foundational languages. First, Zermelo-Fraenkel set

theory cannot adequately deal with the foundational problems of cat­

egory theory, where the category of all sets, the category of all

of fun ctors from one such category to another groups, the category

etc. are considered. These problems a~e coped with by means of the

distinction between sets and categories (in the logical or philosophi­

cal sense, not in the sense of category theory) which is made in intu­

itionistic type theory. Second, present logical symbolisms are inad­

equate as programming languages, which explains why computer scien­

tists have developed their own languages (FORTRAN, ALGOL, LISP,

PASCAL, ...) and systems of proof rules (Hoare
1

, Dijkstra
2

, ...). We

have shown elsewhere 3 how the additional richness of type theory, as

compared with first order predicate logic, makes it usable as a pro­

gramming language.

1 C. A. Hoare, An axiomatic basis of computer programming, Com­
munications of the ACM, Vol. 12, 1969, pp. 576-580 and 583.

2 E. W. Dijkstra, A discipline of Programming, Prentice Hall,
Englewood Cliffs, N.J., 1976.

3 P. Martin-Lof, Constructive mathematics and computer program­
ming, Logic, Methodology and Philosophy of science.VI, Edited by
L. J. Cohen, J. Los, H. Pfeiffer and K.-P. Podewskl, North-Holland,
Amsterdam, 1982, pp. 153-175.

- 3 -

Propositions and judgements

Here the distinction between proposition (Ger. Satz) and asser­

tion or judgement (Ger. Urteil) is essential. What we combine by means

of the logical operations (1.,:J, &, v ,V , 3) and hold to be true are

propositions. When we hold a proposition to be true, we make a judge­

ment:

proposition ~jUdgement

In particular, the premisses and conclusion of a logical inference are

jUdgements.

The distinction between propositions and judgements was clear

from Frege to Principia. These notions have later been replaced by the

formalistic notions of formula and theorem (in a formal system), re­

spectively. Contrary to formulas, propositions are not defined induc­

tively. So to speak, they form an open concept. In standard textbook

presentations of first order logic, we can distinguish three quite

separate steps:

(1) inductive definition of terms and formulas,

(2) specification of axioms and rules of inference,

(3) semantical interpretation.

Formulas and deductions are given meaning only through semantiCS,

which is usually done following Tarski and assuming set theory.

What we do here is meant to be closer to ordinary mathematical

practice. We will avoid keeping form and meaning (content) apart. In­

stead we will at the same time display certain forms of judgement and

inference that are used in mathematical proofs and explain them seman­

tically. Thus we make explicit what is usually implicitly taken for

- 4 -

granted. When one treats logic as any other branch of mathematics, as

in the metamathematical tradition originated by Hilbert, such judge­

ments and inferences are only partially and formally represented in

the so-called object language, while they are implicitly used, as in

any other branch of mathematics, in the so-called metalanguage.

Our main aim is to build up a system of formal rules representing

in the best possible way informal (mathematical) reasoning. In the

usual natural deduction style, the rules given are not quite formal.

For instance, the rule

A

A v B

takes for granted that A and B are formulas, and only then does it say

that we can infer A v B to be true when A is true. If we are to give a

formal rule, we have to make this explicit, writing

A prop. B prop. A true

A v B true

or

A, B prop.

I-AVB

where we use, like Frege, the symbol I- to the left of A to signify

that A is true. In our system of rules, this will always be explicit.

A rule of inference is justified by explaining the conclusion on

the assumption that the premisses are known. Hence, before a rule of

inference can be justified, it must be explained what it is that we

must know in order to have the right to make a judgement of anyone

of the various forms that the premisses and conclusion can have.

- 5 -

We use four forms of judgement:

(1) A is a set (abbr. A set),

(2) A and B are equal sets (A = B),

(3) a is an element of the set A (a A) '" ,

(4) a and b are equal elements of the set A (a = b E A).

(If we read ~ literally as ~a~~ , then we might write A E Set,

A = BeSet, a e EI(A), a = b E EI(A), respectively.) Of course, any

use 0 small letters for el-syntactic variables could be used,· the f

ements and capital letters for sets is only for convenience. Note that,

in ordinary set theory, a e b and a = bare propositions, while they

are judgements here. A judgement Of the form A = B has no meaning un-

less we already know A and B to be sets. Likewise, a judgement of the

form a e A presupposes that A is a set, and a judgement of the form

a = b € A presupposes, first, that A lOS a set, and, second, that a and

b are elements of A.

a ml s 0 several different readings, as Each form of judgement d °t f

in the table:

A set

A is a set

A is a proposition

A is an intention

, (expectation)

A is a problem

(task)

a E A

a is an element of the set A

a is a proof (construction) of

the proposition A

a is a method of fulfilling

(realizing) the intention

(expectation) A

a is a method of solving the

problem (doing the task) A

A is nonempty

A is true

A is fulfillable

(realizable)

A is solvable

- 6 -

The second, logical interpretation is discussed toghether with rules

d was sugges ted by Heyting4 and the fourth by Kolmo­below. The thir

5 The last is very close to programming. "a is a method ... " can gorov .

be read as "a is a program ... ". Since programming languages have a

formal notation for the program a, but not for A, we complete the sen­

tence with " ... which meets the specification A". In Kolmogorov's in-

d problem refers to something to be done and the terpretation, the wor

h t do lot. The analogy between the first and the word program to ow 0

second interpretation is implicit in the Brouwer-Heyting interpret-

ation of the logical constants. It was made more explicit by Curry. and

Feys6, but only for the implicational fragment, and it was extended to

intuitionistic first order arithmetic by Howard
7

. It is the only known

" l"ntul"tl"onl"stic logic so that the axiom of choice way of interpretlng

becomes valid.

To distinguish between proofs of judgements (usually in tree-like

form) and proofs of propositions (here identified with elements, thus

to the left of E) we reserve the word construction for the latter and

use it when confusion might occur.

4 A. Heyting, Die intuitionistische Grundlegung der Mathematik,
Erkenntnis, Vol. 2, 1931, pp. 106-115.

5 A. N. Kolmogorov, Zur Deutung der intuitionistischen Logik,
Mathematische Zeitschrift, Vol. 35, 1932, pp. 58-65.

6 H. B. Curry and R. Feys, Combinatory Logic, Vol. 1, North­
-Holland, Amsterdam, 1958, pp. 312-315.

7 W. A. Howard, The formulae-as-types notion of construction, To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal­
ism, Academic Press, London, 1980, pp. 479-490.

- 7 -

Explanations of the forms of judgement

For each one of the four forms of judgement, we now explain what

a judgement of that form means. We can explain what a judgement, say

of the first form, means by answering one of the following three ques­

tions:

What is a set?

What is it that we must know in order to have the right to judge

something to be a set?

What does a judgement of the form "A is a set" mean?

The first is the ontological (ancient Greek), the second the epis­

temological (Descartes, Kant, ...) and the third the semantical (mod­

ern) way of posing essentially the same question. At first sight, we

could assume that a set is defined by prescribing how its elements

are formed. This we do when we say that the set of natural numbers

N is defined by giving the rules:

a ~ N
o e N

a' E N

by which its elements are constructed. However, the weakness of this

d f " 't' 'I 10 e lnl lon lS c ear: 10 ,for instance, though not obtainable with

the given rules, is clearly an element of N, since we know that we

can bring it to the form a' for some a € N. We thus have to distin­

guish the elements which have a form by which we can directly see

that they are the result of one of the rules, and call them canoni­

cal, from all other elements, which we will call noncanonical.

- 8 -

But then, to be able to define when two noncanonical elements are

equal, we must also prescribe how two equal canonical elements are

formed. So:

(1) a set A is defined by prescribing how a canonical element

of A is formed as well as how two equal canonical elements of

A are formed.

This is the explanation of the meaning of a judgement of the form

A is a set. For example, to the rules for N above, we must add

a b ~ N
o o E. N and

a' =b'€. N

To take another example, A x B is defined by the rule

a E:; A b €. B .

(a,b) €. A x B

which prescribes how canonical elements are formed, and the rule

a = c €. A b = dEB

(a,b) = (c,d) E A x B

by means of which equal canonical elements are formed. There is no

limitation on the prescription defining a set, except that equality

between canonical elements must always be defined in such a way as

to be reflexive, symmetric and transitive.

Now suppose we know A and B to be sets, that is, we know how

canonical elements and equal canonical elements of A and B are formed.

Then we stipulate:

- 9 -

(2) two sets A and B are equal if

a E. A a ~ A a ~ B
(that is, and ---)

a E: B a €. B a €.. A

and

a b "'- A

a = b €. B

for arbitrary canonical elements a, b.

This is the meaning of a judgement of the form A = B.

When we explain what an element of a set A is, we must ass~me

we know that A is a set, that is, in particular, how its canonical

elements are formed. Then:

(3) an element a of a set A is a method (or program) which, when

executed, yields a canonical element of A as result.

This is the meaning of a judgement of the form a €. A. Note that here

we assume the notion of method as primitive. The rules of computation

(execution) of the present language will be such that the computation

of an element a of a set A terminates with a value b as soon as the

outermost form of b tells that it is a canonical element of A (normal

order or lazy evaluation). For instance, the computation of 2 + 2 ~ N

gives the value (2 + 1)', which is a canonical element of N since

2 + E. N.

Finally:

(4) two arbitrary elements a, b of a set A are equal if, when

executed, a and b yield equal canonical elements of A as results.

- 10 -

This is the meaning of a judgement of the form a = b E A. This defi­

nition makes good sense since it is part of the definition of a set

what it means for two canonical elements of the set to be equal.

Example. If e, f ~ A x B, then e and f are methods which yield

canonical elements (a,b), (c,d) E A x B, respectively, as results,

and e = f E A x B if (a,b) = (c,d) E A x B, which in turn holds if

a = c E A and b = d ~ B.

- 11-

Propositions

Classically, a proposition is nothing but a truth value, that

is, an element of the set of truth values, whose two elements are

the true and the false. Because of the difficulties of justifying

the rules for forming ~ropositions by means of quantification over

infinite domains, when a proposition is understood as a truth value,

this explanation is rejected by the intuitionists and replaced by

saying that

a proposition is defined by laying down what counts as a proof

of the proposition,

and that

a proposition is true if it has a proof, that is, if a proof of

. t . 8
1 can be glven

Thus, intuitionistically, truth is identified with provability, though

of course not (because of Godel's incompleteness theorem) with deriva­

bility within any particular formal system.

The explanations of the meanings of the logical operations, which

fit together with the intuitionistic conception of what a proposition

is, are given by the standard table:

8 D. Prawitz, Intuitionistic logic: a philosophical challenge,
Logic and Philosophy, Edited by G. H. von Wright, Martinus Nijhoff,

The Hague, pp. 1-10.

a proof of the proposition

A & B

A V B

A :> B

(Vx)B(x)

(3x)B(x)

- 12 -

consists of

a proof of A and a proof of B

a proof of A or a proof of B

a method which takes any proof
of A into a proof of B

a method which takes an arbitrary
individual a into a proof of B(a)

an individual a and a proof of
B(a)

the first line of which should be interpreted as saying that there

is nothing that counts as a proof ~ .

The above table can be made more explicit by saying:

a proof of the proposition

..L

A & B

A v B

A ::;, B

(Vx)B(x)

(3 x)B(x)

has the form

(a,b), where a is a proof of A
and b is a proof of B

i(a), where a is a proof of A,
or j"(b), where b is a proof of B

(Ax)b(x), where b(a) is a proof
of B provided a is a proof of A

(Ax)b(x), where b(a) is a proof
of B(a) provided a is an individual

(a,b), where a is an individual
and b is a proof of B(a)

- 13 -

As it stands, this table is not strictly correct, since it shows

proofs of canonical form only. An arbitary proof, in ana~ogy with an

arbitrary element of a set, is a method of producing a proof of ca-

nonical form.

If we take seriously the idea that a pro~osition is defined by

laying down how its canonical proofs are formed (as in the second

table above) and accept that a set is defined by prescribing how its

canonical elements are formed, then it is clear that it would only

lead to unnecessary duplication to keep the notions of proposition

and set (and the associated notions of proof of a proposition and el­

ement of a set) apart. Instead, we simply identify them, that is,

treat them as one and the same notion. This is the formulae-as-types

(propositions-as-sets) interpretation on which intuitionistic type

theory is based.

- 14 -

Rules of equality

We now begin to build up a system of rules. First, we give the

following rules of equality, which are easily explained using the

fact that they hold, by definition, for canonical elements:

Reflexivity

a E A A set

a = a E A A = A

Symmetry

a = b E A A = B

b = a G A B = A

Transitivity

a = b E A b = C E A A = B B = C

a = c E A A = C

For instance, a detailed explanation of transitivity is: a = b e A

means that a and b yield canonical elements d and e, respectively, and

that d = e E A. Similarly, if c yields f, e f E A. Since we assume

transitivity for canonical elements, we obtain d = f e A, which means

tha t a = c € A.

The meaning of A = B is that

a E A

a E B

- 15 -

and

a = b e.A

a=be.B

for a, b canonical elements of A and B. From the same for B = C, we

also obtain

a E A

a e. C

and

a = b E A

a = b E C

for a, b canonical elements, which is the meaning of A = C.

In the same evident way, the meaning of A = B justifies the

rules:

Equality of sets

a E A A = B A = B

a E B a = b E B

- 16 -

Hypothetical judgements and substitution rules

The four basic forms of judgement are generalized in order to

express also hypothetical judgements, i.e. judgements which are made

under assumptions. In this section, we treat the case of one such

assumption. So assume that A is a set. The first form of judgement

is generalized to the hypothetical form

(1) B(x) set (x ~ A)

which says that B(x) is a set under the assumption x E A, or, better,

that B(x) is a family of sets over A. A more traditional notation

is {B! A or tB : x E A} • The meaning of a judgement of the form
x x E x

(1) is that B(a) is a set whenever a is an element of A, and also

that B(a) and B(c) are equal sets whenever a and c are equal elements

of A. By virtue of this meaning, we im~ediately see that the follow­

ing substitution rules are correct:

Substitution

(x E: A) (x E. A)

a E A B(x) set a = c E. A B(x) set

B(a) set B(a) = B(c)

The notation

X E. A

B(x) set

only recalls that we make (have a proof of) the judgement that

- 17 -

a Set under the assumption x ~A, which does not mean that
B(x) is

have a derivation within any particular formal system (like
we must
the one that we are in the process of building up). When an assumption

x € A is discharged by the application of a rule, we write it inside

brackets.
The meaning of a hypothetical judgement of the form

(2) B(x) = D(x) (x E. A)

which says that B(x) and D(x) are equal families of sets over the

set A, is that B(a) and D(a) are equal sets for any element a of A

(so, in particular, B(x) and D(x) must be families of sets over A).

Therefore the rule

, Substi tu tion

(x E. A)

a E. A B(x) = D(x)

B(a) = D(a)

is correct. We can now derive the rule

(x E. A)

a c E. A B(x) = D(x)

B(a) = D(c)

from the above rules. In fact, from a = c E. A and B(x) set (x E. A),

we obtain B(a) = B(c) by the second substitution rule, and from c E. A,

which is implicit in a = c E. A, B(c) = D(c) by the third substitution

rule. So Bea) = Dec) by transitivity.

- 18 -

A hypothetical judgement of the form

(3) b(x) E B(x) (x E A)

means that we know b(a) to be an element of the set B(a) assuming we

know a to be an element of the set A, and that b(a) = b(c) E B(a)

whenever a and c are equal elements of A. In other words, b(x) is

an extensional function with domain A and range B(x) depending on

the argument x. Then the following rules are justified:

Substitution

(x € A) (x E A)

a E A b(x) €. B(x) b(x) E. B(x)

b(a) E B(a) b(a) = b(c) E B(a)

Finally, a judgement of the form

(4) b(x) = d(x) E B(x) (x €. A)

means that b(a) and d(a) are equal elements of the set B(a) for any

element a of the set A. We then have

Substitution

(x E A)

a e. A b(x) = d(x) e B(x)

b(a) = d(a) E B(a)

which is the last substitution rule.

- 19 -

Judgements with more than one assumption and contexts

We may now further generalize judgements to include hypothetical

judgements with an arbitrary number n of assumptions. We explain their

meaning by induction, that is, assuming we understand the meaning of

judgements with n-1 assumptions. So assume we know that

A 1 is a set,

A
2

(X
1

) is a family of sets over A1 ,

A
3

(x
1

,X
2

) is a family of sets with two indices x 1 € A1 and

x
2

€ A
2

(x
1
),

A (x ,..., x) is a f am i 1 Y 0 f set s wit h n - 1 in d ice s x 1 6 A 1 '
n 1 n-1

X
2

E A2 (x 1), ... , x n _ 1 E An_1(x1,···,xn_2)·

Then a judgement of the form

(1) A(x
1
,.··,x

n
) set (x

1
€ A

1
, x

2
€ A2 (x 1), ... ,

x E A (x 1 '···,x 1» n n n-

means that A(a
1

, ... ,an) is a set whenever a
1

E. A1 , a 2 E A2 (a 1), ... ,

a E A (a , ... , a 1) and that A (a 1 ' ... , a) = A (b 1 ' , b n)
n n 1 n- n

whenever a
1

= b
1

E A
1

, ... , an b
n

€ A
n

(a
1

, ... ,an _ 1). We say that

A(x
1

, ... ,x
n

) is a family of sets with n indices. The n assumptions in

a judgement of the form (1) constitute what we call the context, which

plays a role analogous to the sets of formulae r , ~ (extra formulae)

appearing in Gentzen sequents. Note also that any initial segment of a

context is always a context. Because of the meaning of a hypothetical

- 20 -

judgement of the form (1), we see that the first two rules of substi­

tution may be extended to the case of n assumptions,and we understand

these extensions to be given.

It is by now clear how to explain the meaning of the remaining

forms of hypothetical judgement:

(2) A(x 1 ,··· ,x n) = B(x 1 ,··· ,xn) (x 1 € A 1 , ••. ,

x e A (x 1 '···'x 1» n n n-
(equal families of sets with n indices),

(3) a(x
1
,.··,xn) e A(x 1 ,···,xn) (x 1 E A1 , ... ,

x e A (x 1 '···,x 1» n n n-
(function with n arguments),

(4) a(x
1

, ... ,x
n

) = b(X 1 , •.• ,x n) E A(x 1 , .•. ,xn)

(x 1 eAt' .•. , xn e An (x 1 ,···,xn_ 1»

(equal functions with n arguments),

and we assume the corresponding substitution rules to be given.

- 21 -

Sets and categories

A category is defined by explaining what an object of the cat­

egory is and when two such objects are equal. A category need not be

a set, since we can grasp what it means to be an object of a given

category even without exhaustive rules for forming its objects. For

instance, we now grasp what a set is and when two sets are equal, so

w~ have defined the category of sets (and, by the same token, the

category of propositions), but it is not a set. So far, we have de­

fined several categories:

the category of sets (or propositions),

the category of elements of a given set (or proofs of a proposi­

tion) ,

the category of families of sets B(x) (x € A) over a given set A,

the category of functions b(x) E B(x) (x € A), where A set,

B(x) set (x € A),

the category of families of sets C(x,y) (x ~ A, Y E B(x», where

A set, B(x) set (x € A),

the category of functions c(x,y) E C(x,y) (x e A, y E B(x», where

A is a set, B(x) (x E A) and C(x,y) (x e A, y e B(x» families of

sets,

etc.

In addition to these, there are higher categories, like the category

of binary functions which take two sets into another set. The function

x, which takes two sets A and B into their cartesian product A x B,

- 22 -

is an example of an object of that category.

We will say object of a category but element of a set, which re-

flects the difference between categories and sets. To define a cat­

egory it is not necessary to prescribe how its objects are formed,

but just to grasp what an (arbitrary) object of the category is. Each

set determines a category, namely the category of elements of the set,

but not conversely: for instance, the category of sets and the cat­

egory of propositions are not sets, since we cannot describe how all

their elements are formed. We can now say that a judgement is a state­

ment to the effect that something is an object of a category (a G A,

A set, ...) or that two objects of a category are equal (a = b E A,

A B, •••) •

What about the word type in the logical sense given to it by

Russell with his ramified (resp. simple) theory of types? Is type syn­

onymous with category or with set? In some cases with the one, it

seems, and in other cases with the other. And it is this confusion of

two different concepts which has led to the impredicativity of the

simple theory of types. When a type is defined as the range of signi­

ficance of a propositional function, so that types are what the

quantifiers range over, then it seems that a type is the same thing

as a set. On the other hand, when one speaks about the simple types

of propositions, properties of individuals, relations between individ­

uals etc., it seems as if types and categories are the same. The im­

portant difference between the ramified types of propositions f prop­

erties, relations etc. of some finite order and the simple types of

all propositions, properties, relations etc. is precisely that the

ramified types are (or can be understood as) sets, so that it makes

sense to quantify over them, whereas the simple types are mere cat­

egories.
A For example, B is a set, the set of functions from the set A to

- 23 -

the set B (B
A

will be introduced as an abbreviation for (nx E A)B(x),

when B(x) is constantly equal to B). In particular, '0 1lA ~ 'J is a set,

but it is not the same thing as ~(A) h" h " if ,w 1C 1S only a category. The

reason that BA can be construed as at" se 1S that we take the notion

of function as primitive, instead of defining a function as a set of

ordered pairs or a binary relation satisfying the usual existence and

uniqueness conditions, which would make it a category (like ~(A»

instead of a set.

When one speaks about data types in computer sCience, one might

just as well say data sets. So here type is always synonymous with

set and not with category.

- 24 -

General remarks on the rules

We now start to give the rules for the different symbols we use.

We will follow a common pattern in giving them. For each operation

we have four rules:

set formation,

introduction,

elimination,

equality.

The formation rule says that we can form a certain set (proposition)

from certain other sets (propositions) or families of sets (proposi­

tional functions). The introduction ryles say what are the canonical

elements (and equal canonical elements) of the set, thus giving its

meaning. The elimination rule shows how we may define functions on the

set defined by the introduction rules. The equality rules relate the

introduction and elimination rules by showing how a function defined

by means of the elimination rule operates on the canonical elements

of the set which are generated by the introduction rules.

In the interpretation of sets as propositions, the formation

rules are used to form propositions, introduction and elimination

rules are like those of Gentzen9 , and the equality rules correspond

to the reduction rules of Prawitz
10

.

9 G. Gentzen, Untersuchungen uber das logische Schliessen,
Mathematische Zeitschrift, Vol. 39, 1934, pp .176-210 and 405-431.

10 D. Prawitz, Natural Deduction, A Proof-Theoretical Study,

Almqvist & Wiksell, Stockholm, 1965.

- 25 -

We remark here also that to each rule· of set formation, intro­

duction and elimination, there corresponds an equality rule, which

allows us to substitute equals for equals.

The rules should be rules of immediate inference; we cannot

further analyse them, but only explain them. However, in the end, no

explanation can substitute each individual's understanding.

- 26 -

Cartesian product of a family of sets

Given a set A and a family of sets B(x) over the set A, we can

form the product:

n -formation

(x E A) (x ~ A)

A set B(x) set A C B(x) D(x)

(nx E. A)B(x) set (Dx E A)B(x) = (nx E C)D(x)

The second rule says that from eq ual arguments we get equal values.

The same holds for all other set forming operations, and we will never

spell it out again. The conclusion of the first rule is that something

is a set. To understand which set it is, we must know how its canoni­

cal elements and its equal canonical elements are formed. This is ex-

plained by the introduction rules:

n -introduction

(x E A)

b(x) E B(x)

(Ax) b (x) E (n x ~ A) B (x)

(x E A)

b(x) = d(x) E B(x)

(A x) b (x) = (Ax) d (x) E. (n x € A) B (x)

- 27 -

Note that these rules introduce canonical elements and equal canoni­

cal elements, even if b(a) is not a canonical element of B(a) for

a E A. Also, we assume that the usual variable restriction is met,

i.e. that x does not appear free in any assumption except (those of

the form) x E A. Note that it is neccessary to understand that

b(x) E B(x) (x E A) is a function to be able to form the canonical

element (AX)b(x) E (r\x E. A)B(x) j we could say that the latter is a

name of the former. Since, in general, there are no exhaustive rules

for generating all functions from one set to another, it follows that

we cannot generate inductively all the elements of a set of the form

(nx E A)B(x) (or, in particular, of theiform BA, like NN).

We c~n now justify the second rule of set formation. So let

(Ax)b(x) be a canonical element of (n x E A)B(x). Then b(x) E B(x)

(x E A). Therefore, assuming x E C we get x E A by symmetry and equal-

ity of sets from the premiss A C, and hence b(x) E B(x). Now, from

the premiss B(x) = D(x) (x E A), again by equality of sets (which is

assumed to hold also for families of sets), we obtain b(x) E D(x),

and hence (Ax)b(x) € (nx E C)D(x) by n-introduction. The other di-

rection is similar.

A = C A = C

(x E C) C = A (x E C) C = A

X E. A X E. A

b(x) E. B(x) B(x) D(x)

b(x) E D(x)

(Ax) b (x) E (n x E C) D (x)

- 28 -

We remark that the above derivation cannot be considered as a formal

proof of the second Tl-formation rule in type theory itself since

there is no formal rule of proving an equality between two sets which

corresponds directly to the explanation of what such an equality means.

We also have to prove that

o .. x) b (x) = (Ax) d (x) E (n x E A) B (x)

(Ax) b (x) = (A x) d (x) ~ (n x E C) D (x)

under the same assumptions. So let (Ax)b(x) and (Ax)d(x) be equal

canonical elements of (flx €. A)B(x). Then b(x) = d(x) ~ B(x) (x E A),

and therefore the derivation

A = C A = C

(x E C) C = A (x E C) C = A,

X E A X E A

b(x) = d(x) E B(x) BCx) = D(x)

b(x) = d(x) E D(x)

(Ax)b(x) = (Ax)d(x) E (nx E C)D(x)

shows that (Ax)b(x) and (Ax)d(x) are equal canonical elements of

(flx EC)D(x).

n -elimination

C € (nx E A) B (x) a G A

Ap(c,a) ~ B(a)

c = d E (nx EA)B(x) a = b E A

Ap(c,a) = Ap(d,b) ~ B(a)

- 29 -

We have to explain the meaning of the new constant Ap (Ap for

APplication). Ap(c,a) is a method of obtaining a canonical element of

B(a), and we now explain how to execute it. We know that

c e (nx E A)B(x), that is, that c is a method which yields a canoni­

cal element (Ax)b(x) of (Ilx e A)B(x) as result. Now take a E A and

substitute it for x'in b(x). Then b(a) E B(a). Calculating b(a), we

obtain as result a canonical element of B(a), as required. Of course,

in this explanation, no concrete computation is carried out; it hac

the character of a thought experiment (Ger. Gedankenexperiment). We

use Ap(c,a) instead of the more common b(a) to distinguish the result

of applying the binary application function Ap to the two arguments c

and a from the result of applying b to a. Ap(c,a) corresponds to the

application operation (ca) in combinatory logic. But recall that in

co~binatory logic there are no type restrictions, since one can al­

ways form (ca), for any c and a.

n-equali ty

(x E A)

a E A b(x) e B(x)

Ap«Ax)b(x),a) = b(a) E B(a)

C 6 (nx E A)B(x)

c = (Ax) A p (c , x) e (n x (; A) B (x)

The first equality rule shows how the new function Ap operates on the

canonical elements of (nx e A)B(x). Think of (Ax)b(x) as a name of

the program b(x). Then the first rule says that applying the name of

a program to an argument yields the same result as executing the pro­

gram with that argument as input. Similarly, the second rule is needed

- 30 -

of which we know only notation, Ap(c,x), for a program
to obtain a as follows. Recall that

d rule can be explained The secon the name c.
if they yield equal canonical elements as re-two elements are equal

suIts. So suppose c yields

(x ~ A). Since (Ax)Ap(c,x)

the result (Ax)b(x), where b(x) G B(x)

. I what we want to prove is is canonlca ,

(Ax)b(x) = (Ax)Ap(c,x) ~ B(x) (x E A)

for equal elements, we need rule of ll-introduction
By the b(a) = Ap(c,a) E B(a)

() r B(x) (x E A). This means b(x) = Ap c,x -=

t th · is true, since provided a EA. Bu lS c yields (Ax)b(x) and hence

() . Ids the same value as b(a).
Ap c, a Yle A . th

t· the rules for B which lS e The rules for products con aln BA to
t B In fact, we take set of functions from the set A to the se .

depend on x. Here the concept of defi­be (nx G A)B, where B does not

nitional equality is useful.

- 31 -

Definitional equality

Definitional equality is intensional equality, or equality of

meaning (synonymy). We use the symbol == or = def. (which was firs t

introduced by Burali-Forti). Definitional equality = is a relation

between linguistic axpressions; it should not be confused with equal­

ity between objects (sets, elements of a set etc.) which we denote

by =. Definitional equality is the equivalence relation generated by

abbreviatory definitions, changes of bound variables and the principle

of substituting equals for equals. Therefore it is decidable, but not

in the sense that a == b V -, (a == b) holds, simply because a == b is

not a proposition in the sense of the present theory. Definitional

equality can be used to rewrite expressions, in which case its decid­

ability is essential in checking the formal correctness of a proof.

In fact, to check the correctness of an inference like

A true B true

A & B true

for instance, we must in particular make sure that the occurrences of

the expressions A and B above the line and the corresponding occur­

rences below are the same, that is, that they are definitionally

equal. Note that the rewriting of an expression is not counted as a

formal inference.

- 32 -

Applications of the cartesian product

First, using definitional equality, we can now define BA by

putting

BA == A-+B =: (nx E A)B,

provided B does not depend on x. We next consider the n-rules in

the interpretation of propositions as sets. If, in the first rule,

n-formation, we think of B(x) as a proposition instead of a set,

then, after the definition

(\Ix € A)B(x) == (nx E: A)B(x),

it becomes the rule

Y -formation

(x e A)

A set B(x) prop.

(V x E A)B(x) prop.

which says that universal quantif~cation forms propositions. A set

merely says that the domain over which the universal quantifier ranges

is a set and this is why we do not change it into A prop. Note that

the rule of V -formation is just an instance of n-formation. We

similarly have

- 33 -

Y -introduction

(x E A)

B(x) true

(\j X E A)B(x) true

which is obtained from the rule of TI-introduction by suppressing

the proof b(x). Namely, we write in general A true instead of a e A

for some a, when A is thought of as a proposition and we don't care

about what its proof (construction) is.

More generally, we can suppress proofs as follows. Suppose that

a(x 1,··· ,x n) E: A(x 1 ,· .. ,xm) (x 1 E A1 , ... , xm E A
m

(x 1,··· ,x
m

_
1
),

x 1 E A 1(x 1 , ... ,x), ..• , x e A (x 1 ' ..• 'x » m+ m+ m n n m

namely, suppose that Am+1 up to An and A depend only on x 1 ' ••• , x
m

•

truth of A(x
1

, •.. ,xm), it is

symbols for the elements of Am+1 , •.. ,

Then, if we are merely interested in the

inessential to write explicit

An; so we abbreviate it with

A (x 1 ' ... , x) true (x 1 E A l' ... , x e A (x 1 ' ..• , x 1) , m 'm m m-
A 1(x 1 , •.. ,x) true, ... , A (x

1
' .•• ,x) true). m+ m n m

Similarly, we write

A(x 1,···,xm) prop. (x, E A" ... , xm e Am(x 1 , ... ,xm_,),

Am+,(x 1 ,···,xm) true, •.. , An (x 1 , .•. ,xm) true)

that is, A(x" ..• ,xm) is a proposition provided x
1

e A" •.. ,

xm E: Am (x, , .•. , xm_ 1) and Am+, (x, , •.. , xm), ••. , An (x 1 ' .•. , xm)

- 34 -

are all true, as an abbreviation of

A(x
1
,.··,x

m
) prop. (x

1
E A

1
, ... , xm E A

m
(x 1 , .. ·,xm_ 1),

x 1E.A 1(x
1

, ... ,x), ... ,x € A(X 1 ,· .. ,x).
m+ m+ m n n m

Turning back to the V -rules, from the rule of n -elimina tion,

we have in particular

V -elimination

a E A (V X E A)B(x) true

B(a) true

Restoring proofs, we see that, if c is a proof of (Vx E A)B(x),

then Ap(c,a) is a proof of B(a); so a proof of (Vx E A)B(x) is

a method which takes an arbitrary element of A into a proof of B(a),

in agreement with the intuitionistic interpretation of the universal

quantifier.

If we now define

A ::> B _ A - B == BA _ (ITx E A)B,

where B does not depend on x, we obtain from the fl-rules the rules

for implication. From the rule of n-formation, assuming B does not

depend on x, we obtain

::> -forma tion

(A true)

A prop. B prop.

A :::> B prop.

- 35 -

which is a generalization of the usual rule of forming A ~ B, since

we may also use the assumption A true to prove B prop. This general­

ization is perhaps more evident in the Kolmogorov interpretation,

where we might be in the position to judge B to be a problem only un­

der the assumption that the problem A can be solved, which is clearly

sufficient for the problem A ::> B, that is, the problem of solving B

provided that A can be solved, to make sense. The inference rules for

-:> are:

::> -introduction

(A true)

B true

A ::> B true

which comes from the rule of n-introduction by suppressing proofs,

and

::> -elimination

A ::> B true A true

B true

which is obtained from the rule of n-elimination by the same process.

Example (the combinator I). Assume A set and x E A. Then, by

n-introduction, we obtain (AX)X E A ~ A, and therefore, for any prop­

osition A, A ~ A true. This expresses the fact that a proof of A ~ A

is the method: take the same proof (construction). We can define the

combinator I putting I = (AX)X. Note that the same I belongs to any

set of the form A ~A, since we do not have different variables for

different types.

- 36 -

Example (the combinator K). Assume A set, B(x) set (x e A) and

let x Ei A, Y E B (x). Then, by A -abstraction on y, we obtain

(AY)X E: B(x) - A, and, by A -abstraction on x,

(Ax) (AY)X e (n x e. A) (B(x) - A). We can define the combinator K

putting K == (.AX)(Ay)X. If we think of A and B as propositions, where

B does not depend on x, K appears as a proof of A ~ (B ~ A); so

A ~ (B ~ A) is true. K expresses the method: given any proof x of A,

take the function from B to A which is constantly x for any proof y

of B.
Example (the combinator S). Assume A set, B(x) set (x E A),

C(x,y) set (x e A, y e. B(x» and let x E A, f E. (nx e A)B(x) and

g e (nx e A)(ny e B(x»C(x,y). Then Ap(f,x) E B(x) and

Ap(g,x) € (ny € B(x»C(x,y) by tl-elimination. So, again by

n-elimination,

Ap(Ap(g,x) ,Ap(f,x»,€ C(x,Ap(f,x».

Now, by A -abstraction on x, we obtain

(A.x) A p (A p (g , x) ,A p (f , x» E (n x E A) C (x , A p (f , x)) ,

and, by A -abstraction on f,

(A.f)(Ax)Ap(Ap(g,x),Ap(f,x»

E (n f € (n x e A) B (x)) (n x € A) C (x, Ap (f ,x)) .

Since the set to the right does not depend on g, abstracting on g, we

obtain

(Ag)(Af)(Ax)Ap(Ap(g,x) ,Ap(f,x» E (nx E A)(ny e B(x»C(x,y)

- (n f € (n x E A) B (x)) (n x e. A) C (x, Ap (f ,x)) .

We may now put

- 37 -

S == (Ag) (Af) (Ax)Ap(Ap(g,x) ,Ap(f ,x»

which is the usual combinator S, denoted by Agfx.gx(fx) in combina­

tory logic. In this way, we have assigned a type (set) to the combi­

nator S. Now think of C(x,y) as a propositional function. Then we

have proved

(Vx e A)(Vy e B(x»C(x,y)

:::>(Vf e (nx e A)B(x»(V x e A)C(x,Ap(r,x» true

which is traditionally written

(V x e A)(Vy e B(x»C(x,y):::> (\lfe f1 Bx)(Yx e A)C(x,f(x».
xeA

If.we assume that C(x,y) does not depend on y, then

(11y E B(x))C(x,y) == B(x) -C(x) and therefore

S E (nx E A)(B(x) -C(x» - «nx E A)B(x) - (nx E A)C(x».

So, if we think of B(x) and C(X) as propositions, we have

(Vx e A)(B(x) ::> C(x» ::> ((Vx e A)B(x) :::> (Yx E A)C(X» true.

Now assume that B(x) does not depend on x and that C(x,y) does not

depend on x and y. Then we obtain

S E (A-+(B-C»-"«A-B)-(A-C»,

that is, in the logical interpretation,

(A ::> (B :::> C» ::::> « A ::> B) ::> (A :::> C» true.

This is just the secon~ axiom of the Hilbert style propositional cal­

culus. In this last ~ase, the proof above, when written in treeform,

- 38 -

becomes:

(x € A) (f € A-B) (x 6 A) (g E A -' (B - C))

Ap(f,x) E. B Ap (g, x) E. B - C

Ap(Ap(g,x),Ap(f,x» E C

(Ax)Ap(Ap(g,x),Ap(f,x» ~ A - C

(Af) (Ax) Ap (Ap (g, x) , Ap (f , x» E (A - B) -- (A - C)

(Ag) O\f) (Ax)Ap(Ap(g,x) ,Ap(f ,x» E (A - (B - C» - «A - B) -- (A - C»

- 39 -

Disjoint union of a family of sets

The second group of rules is about the disjoint union of a

family of sets.

L -forma tion

(x E A)

A set B(x) set

(E x E. A)B(x) set

A more traditional notation for (L x E. A) B (x) would be L B
xeA x

(U B or (J B). We now explain what set (L x € A)B(x) is by
x~A x xe:A x

prescribing how its canonical elements are formed. This we do with

the rule:

~ -introduction

a 6 A b E B(a)

(a,b) E (Lx € A)B(x)

We can now justify the equality rule associated with L-forma-

tion:

(x E A)

A = C B (x)' = D (x)

(L.X E A)B(x) = (Lx E C)D(x)

In fact, any canonical element of (Lx E A)B(x) is of the form (a,b)

wi th a E A and b E B (a) by L: -introduction. But then we also have

- 40 -

a E C and b E D(a) by equality of sets and substitution. Hence

(a,b) E. (Lx E C)D(x) by L-introduction. The other direction is

similar.

L -elimination

(x E A, Y € B(x»

C E (Ex E A)B(x) d(x,y) ~ C«x,y»

E(c,(x,y)d(x,y» E C(c)

where we presuppose the premiss C(z) set (z E (Lx € A)B(x», although

it is not written out explicitly. (To be precise, we should also

write out the premisses A set and B(x) set (x E A).) We explain the

rule of L-elimination by showing how the new constant E operates

on its arguments. So. assume we know the premisses. Then we execute

E(c,(x,y)d(x,y» as follows. First execute c, which yields a canonical

element of the form (a,b) with a E A and b E B(a). Now substitute a

and b for x and y, respectively, in the right premiss, obtaining

d(a,b) E C«a,b». Executing d(a,b) we obtain a canonical element e of

C«a,b». We now want to show that e is also a canonical element of

C(c). It is a general fact that, if a E A and a has value b, then

a = b € A (note, however, that thi~ does not mean that a = b € A is

necessarily formally derivable by some particular set of formal rules).

In our case, c = (a,b) E (Lx € A)B(x) and hence, by substitution,

C(c) = C«a,b». Remembering what it means for two sets to be equal,

we conclude from the fact that e is a canonical element of C«a,b»

that e is also a canonical element of C(c).

Another notation for E(c,(x,y)d(x,y» could be (Ex,y)(c,d(x,y),

but we prefer the first since it shows more clearly that x and y- be­

com~ bound only in d(x,y).

- 41 -

L.-equality

(x E A, Y E B(x»

a E A b e. B(a) d(x,y) E C«x,y»

E«a,b),(x,y)d(x,y» = d(a,b) E C«a,b»

(Here, as in L -elimination, C(z) set (z E (LX E A)B(x» is an im-

plicit premiss.) Assuming

is justified by imagining

that we know the premisses, the conclusion

E«a,b),(x,y)d(x,y» to be executed. In fact,

we first execute (a,b), which yields (a,b) itself as' result; then we

substitute a, b for x, y in d(x,y), obtaining d(a,b) E C«a,b», and

execute d(a,b) until we obtain a canonical element e E C«a,b». The

same canonical element is produced by d(a,b), and thus the conclusion

is 'correct.
A second rule of E-equality, analogous to the second rule of

n-equality, is now derivable, as we shall see later.

- 42 -

Applications of the disjoint union

As we have already done with the cartesian product, we shall

now see what are the logical interpretations of the disjoint union.

If we put

(3x E A)B(x) == (L.X E- A)B(x),

then, from the L-rules, interpreting B(x) as a propositional func­

tion over A, we obtain as particular cases:

3 -formation

(x E A)

A set B(x) prop.

(3 x E A)B(x) prop.

3-introduction

a E. A B(a) true

(3x E A)B(x) true

In accordance with the intuitionistic interpretation of the existen­

tial quantifier, the rule of E-introduction may be interpreted as

saying that a (canonical) proof of (3 x € A)B(x) is a pair (a,b),

where b is a proof of the fact that a satisfies B. Suppressing

proofs, we obtain the rule of 3-introduction, in which, however,

the first premiss a E A is usually not made explicit.

- 43 -

'3 -eiimina tion

(x E A, B(x) true)

('3 x € A)B(x) true C true

C true

Here, as usual, no assumptions, except those explicitly written out,

may depend on the variable x. The rule of ~-elimination is stronger

than the 3-elimination rule, which is obtained from it by suppressing

proofs, since we take into consideration also proofs (constructions),

which is not possible within the language of first order predicate

logic. This additional strength will be visible when treating the left

and right projections below.

The rules of disjoint union deliver also the usual rules of con­

junction and the usual properties of the cartesian product of two

sets if we define

A & B == A X B = (L.X E A) B,

where B does not depend on x. We derive here only the rules of. con­

junction.

&-formation

(A true)

A prop. B prop.

A & B prop.

This rule is an instance of L-formation and a generalization of the

usual rule of forming propositions of the form A & B, since we may

know that B is a proposition only under the assumption that A is true.

- 44 -

&-introduction

A true B true

A & B true

Restoring proofs, we see that a (canonical) proof of A & B is pair

(a,b), where a and b are given proofs of A and B respectively.

&-elimination

(A true, B true)

A & B true C true

C true

From this rule of &-elimination, we obtain the standard &-elimination

rules by choosing C to be A and B themselves:

A & B true (A true) A & B true (B true)

A true B true

Example (left projection). We define

p(c) == E(c,(x,y)x)

and call it the left projection of c since it is a method of obtain­

ing the value of the first (left) coordinate of the pair produced by

an arbitrary element c of (Lx E A)B(x). In fact, if we take the term

d(x,y) in the explanation of E-elimination to be x, then we see that

to execute p(c) we first obtain the pair (a,b) with a e A and b e B(a)

which is the value of c, and then substitute. a, b for x, y in x, ob­

taining a, which is executed to yield a canonical element of A. There-

- 45 -

fore, taking C(z) to be A and d(x,y) to be x in the rules of E-elim­

ina tion and E -equali ty, we obtain as derived rules:

Left projection

C E (L:x'E A)B(x) a E A b E. B(a)

p(c) E A p«a,b» = a e A

If we now turn to the logical interpretation, we see that

C E (3 x e A)B(x)

p(c) e A

holds, which means that from a proof of (3 x € A)B(x) we can obtain an

element of A for which the property B holds. So we have no need of the

description operator (1x)B(x) (the x such that B(x) holds) or the

choice operator (ex)B(x) (an x such that B(x) holds), since, from the

intuitionisticpoint of view, (3 x E A)B(x) is true when we have a

proof of it. The difficulty with an epsilon term (~x)B(x) is that it

is construed as a function of the property B(x) itself and not of the

proof of (3 x)B(x). This is why Hilbert had to postulate both a rule

of the form

(3 x)B(x) true

(£x)B(x) individual

a counterpart of which we have just proved, and a rule of the form

(3 x)B(x) true

B«e.x)B(x» true

- 46 -

which has a counterpart in the first of the rules of right projection

that we shall see in the next example.

Example (right projection). We define

q(c) E(c,(x,y)y).

Take d(x,y) to be y in the rule of L-elimination. From x E A,

Y E B(x) we obtain p«x,y)) = x E A by left projection, and there­

fore B(x) = B(p«x,y))). So, by the rule of equality of sets,

y €: B(p«x,y))). Now choose C(z) set (z ~ (L.X E A)B(x)) to be the

family B(p(z)) set (z E (L.X E A)B(x)). Then the rule of L. -elimin­

ation gives q(c) E B(p(c)). More formally:

(x EO. A) (y E B(x))

p«x,y)) = x EA

x = p«x,y)) ~ A

(y E B(x)) B(x) = B(p«x,y)))

C E (Lx E A)B(x) Y E B(p«x,y)))

q(c) == E(c,(x,y)y) E. B(p(c))

So we have:

Right projection

c E (Lx ~ A)B(x) a E:: A b E B(a)

q(c) ~ B(p(c)) q«a,b)) = b E B(a)

The second of these rules is derived by L -equali ty in much the same

way as the first was derived by L -elimination.

When B(x) is thought of as a propositional function, the first

rule of right projection says that, if c is a construction of

- 47 -

(3x E A)B(x), then q(c) is a construction of B(p(c)), where, by left

projection, p(c) E A. Thus, suppressing the construction in the con­

clusion, B(p(c)) is true. Note, however, that, in case B(x) depends

on x, it is impossible to suppress the construction in the premiss,

since the conclusion depends on it.

Finally, when B(x) does not depend on x, so that we may write

it simply as B, and both A and B are thought of as propositions, the

first rule of right projection reduces to

&-elimination

A & B true

B true

by suppressing the constructions in both the premiss and the conclu-

sion.

Example (axioms of conjunction). We first derive

A ~ (B ~ (A & B)) true, which is the axiom corresponding to the rule

of &-introduction. Assume A set, B(x) set (x E A) and let x E A,

Y E B(x). Then (x,y) E (Lx E A)B(x) by L::-introduction, and, by

n -introduction, (.\y)(x,y) E B(x) -- (L: x E A)B(x) (note that

(Lx E A)B(x) does not depend on y) and (Ax)()..y)(x,y)E

(nx E A)(B(x)~ (L.x E A)B(x)). The logical reading is then

(\I x E A) (B (x) ~ (3 x E A) B (x)) true,

from which, in particular, when B does not depend on x,

A ::J (B :J (A & B)) true.

We now use the left and right projections to derive A & B ~ A true

and A & B ~ B true. To obtain the first, assume z ~ (~x E A)B(x).

- 48 -

Then p(z) E A by left projection, and, by A-abstraction on z,

(Az)p(z) EO: (L.x E A)B(x) ~ A.

In particular, when B(x) does not depend on x, we obtain

A & B ::> A true.

To obtain the second, from z E (Lx E A)B(x): we have q(z) E B(p(z»

by right projection, and hence, by A-abstraction,

(AZ)q(z) E (TIz E (LX E A)B(x»B(p(z»

(note that B(p(z» depends on z). In particular~ when B(x) does not

depend on x, we obtain

A & B :::> B true.

Example (another application of the disjoint union). The rule of

L-elimination says that any function d(x,y) with arguments in A and

B(x) gives also a function (with the same values, by L -equality) with

a pair in (Lx E A)B(x) as single argument. What we now prove is an

axiom corresponding to this rule. So, assume A set, B(x) set (x E A),

C(Z) set (z E (Lx E A)B(x» and let f E (TIx E A)(TIy E B(x»C«x,y».

We want to find an element of

(nx E A)(ny E B(x»C«x,y»--(nz E (LX E A)B(x»C(z).

We define Ap(f,x,y) = Ap(Ap(f,x),y) for convenience. Then Ap(f,x,y)

is a ternary function, and Ap(f,x,y) E C«x,y» (x E A, Y E B(x». So,

assuming z E (Lx E A)B(x), by L-elimination, we obtain

E(z,(x,y)Ap(f,x,y» E C(Z) (discharging x E A and y E B(x», and, by

A-abstraction on z, we obtain the function

- 49 -

(Az) E (z , (x, y) Ap (f , x, y» E (TI z E (L x E. A) B (x)) C (z)

with argument f. So we still have the assumption

f € (nx E A)(fly E B(x»C(x,y),

which we discharge by A-abstraction, obtaining

(Af)(Az)E(z,(x,y)Ap(f,x,y»~

(nx E A)(ny E B(x»C«x,y» - (TIz E (Lx € A)B(x»C(z).

In the logical reading, we have

(Yx € A)(V'y E B(x»C«x,y» ~ (Yz € (L.x E A)B(x»C(z) true,

which reduces to the common

(V x E A) (B(x) :::> C) ::> « 3 x E A)B(x) ::> C) true

when C does not depend on z, and to

(A :::> (B :::l C» :::> « A & B) :::> C) true

when, in addition, B is independent of x.

- 50 -

The axiom of choice

We now show that, with the rules introduced so far, we can give

a proof of the axiom of choice, which in our symbolism reads:

(\Ix E A)(3 y E B{x»C(x,y)

:=:>(3f E (nX E A)B(x»(Vx E A)C(x,Ap(f,x» true.

The usual argument in intuitionlstic mathematics, based on the in­

tuitionistic interpretation of the logical constants, is roughly as

follows: to prove (V x) (:1 y)C(x,y) :::> (3 f) (V x)C(x,f(x», assume that

we have a proof of the antecedent. This means that we have a m~thod

which, applied to an arbitrary x, yields a proof of (3 y)C(x,y), that

is, a pair consisting of an element y and a proof of C(x,y). Let f

be the method which, to an arbitrarily given x, assigns the first

component of this pair. Then C(x,f(x») holds for an arbitrary x, and

hence so does the consequent. The same idea can be put into symbols,

getting a formal proof in intuitionistic type theory. Let A set,

B(x) set (x E A), C(x,y) set (x E A, Y E B(x», and assume

z E (nx Eo A)(Ly E B(x»C(x,y). If x is an arbitrary element of

A, i. e. x E. A, then, by n -elimina tion, we obtain

Ap (z ,x) E: a:: y E B (x)) C (x, y) .

We now apply left projection to obtain

p(Ap(z,x» E B(x)

and right projection to obtain

q(Ap(z,x» € C(x,p(Ap(z,x»).

By A-abstraction on x (or n-introduction), discharging x E A, we

- 51 -

have

(Ax) p (A p (z , x » E (n x E A) B (x) ,

and, by n-equality,

Ap«Ax)p(Ap(z,x»,x) = p(Ap(z,x» E B(x).
i

By substitution, we get

C(x,Ap«Ax)p(Ap(z,x»,x» = C(x,p(Ap(z,x»)

and hence, by equality of sets,

q (Ap (z ,x» E C (x, Ap ((\x) p (Ap (z ,x)) ,x))

where (~x)p(Ap(z,x» is independent of x. By abstraction on x,

(Ax) q (Ap (z ,x» E (n x E A) C (x, Ap ((Ax) p (Ap (z ,x)) ,x)) .

We now use the rule of pairing (that is, L-introduction) to get

«\X)p(Ap(z,x»,(\X)q(AP(z,x»)e

(L. f E (n x E A) B (x)) (n x E A) C (x, Ap (f ,x))

(note that, in the last step, the new variable f is introduced and

substituted for (Ax)p(Ap(z,x» in the right member). Finally, by

abstraction on z, we obtain

(A z) ((A x) p (A P (z , x)) , (A x) q (A p (z , x))) E (n x E A) (L. y E B (x)) C (x , y)

:::> (r. f E (n x E A) B (x)) (n x E A) C (x, Ap (f ,x)) •

In Zermelo-Fraenkel set theory, there is no proof of the axiom

of choice, so it must be taken as an axiom, for which, however, it

seems to be difficult to claim self-evidence. Here a detailed

- 52 -

justification of the axiom of choice has been provided in the form

of the above proof. In many sorted languages, the axiom of choice is

expressible but there is no mechanism to prove it. For instance, in

Heyting arithmetic of finite type, it must be taken as an axiom. The

need for the axiom of choice is clear when developing intuitionistic

mathematics at depth, for instance, in finding the limit of a sequence

of reals ora partial inverse of a surjective function.

- 53 -

The notion of such that

In addition to disjoint union, existential quantification,

cartesian product A X B and conjunction A & B, the operation L has

a fifth interpretation: the set of all a E A such that B(a) holds.

Let A be a set and B{x) a proposition for x E A. We want to define
i

the set of all a E A such that B(a) holds (which is usually written

tX E A: B(x)3). To have an element a E A such that B(a) holds means

to have an element a E A together with a proof of B(a), namely an

element b E B(a). So the elements of the set of all elements of A

satisfying B(x) are pairs (a,b) with b € B(a), i.e~ elements of

(L x E A)B(x). Then the 'L-rules play the role of the comprehension

axiom (or the separation principle in ZF). The information given by

b ~ B(a) is called the witnessing information by Feferman
11

. A typi­

cal application is the following.

Example (the reals as Cauchy sequences).

R == (L x E N -- Q)Cauchy(x)

is the definition of the reals as the set of sequences of rational

numbers satisfying the Cauchy condition,

Cauchy (a) = (VeE. Q) (e > 0 :::> (3 m € N) (V n EN) (I a -a I ~ e), m+n m

where a is the sequence a
O

' a
1

, •.. In this way, a real number is a

sequence of rational numbers toghether with a proof that it satisfies

the Cauchy condition. So, assuming C E R, e £ Q and d'E (e > 0) (in

11 S. Feferman, Constructive theories of functions and classes,
Logic Colloquium 78, Edited by M. Boffa, D. van Dalen and K. McAloon,
North-Holland, Amsterdam, 1979, pp. 159-224.

- 54 -

other words, d is a proof of the proposition e > 0), then, by means

of the projections, we obtain p(c) € N ~Q and q(c) E. Cauchy(p(c)).

Then

and

Ap (q (c) ,e) E (e > 0 :::> (3 mEN) (V n EN) (I a -a I :S e)
m+n m

Ap (Ap (q (c) ,e) ,d) E (3 mEN) (V n EN) (I a -a I ~ e).
m+n m

Applying left projection, we obtain the m we need, i.e.

p(Ap(Ap(q(c) ,e) ,d») EN,

and we now obtain a by applying p(c) to it,
m

Ap(p(c) ,p(Ap(Ap(q(c) ,e) ,d»)) E Q.

Only by means of the proof q(c) do we know how far to go for the

approximation desired.

- 55 -

Disjoint union of two sets

We now give the rules for the sum (disjoint union or coproduct)

of two sets.

+-formation

A set B set

A + B set

The canonical elements of A + B are formed using:

+-introduction

a '"- A b € B

i(a) E. A + B j(b) E A + B

where i and j are two new primitive constants; their use is to give

the information that an element of A + B comes from A or B, and which

of the two is the case. It goes without saying that we also have the

rules of +-introduction for equal elements:

a = c e:. A b = d 6 B

i(a) = iCc) £ A + B j(b) = jed) E. A + B

Since an arbitrary element c of A + B yields a canonical element of

the form i(a) or j(b), knowing c e A + B means that we also can de­

termine from which of the two sets A and B the element c comes.

- 56 -

+-elimination

(x E A) (y € B)

C € A + B d(x) t C(i(x» e(y) E C(j(y»

D(c,(x)d(x) ,(y)e(y» e C(C)

where the premisses A set, B set and C(z) set (z e A + B) are pre­

supposed, although not explicitly written out. We must now explain

how to execute a program of the new form D(c,(x)d(x),(y)e(y». As­

sume we know c E A + B. Then c will yield a canonical element i(a)

with a E A or j(b) with b E B. In the first case, substitute a for x

in d(x), obtaining d(a), and execute it. By the second premiss,

d(a) E C(i(a», so d(a) yields a canonical element of C(i(a». Simi­

larly, in the second case, e(y) instead of d(x) must be used to ob­

tain e(b), which produces a canonical element of C(j(b». In either

case, we obtain a canonical element of C(c), since, if c has value

i(a), then c = i(a) E A + B and hence C(c) = C(i(a», and, if c has

value j(b), then c = j(b) E A + B and hence C(c) = C(j(b». From

this explanation of the meaning of D, the equality rules:

+-equality

(x E A) (y E B)

a E A d(x) E C(i(x» e(y) E C{j(y»

D(i(a), (x)d(x), (y)e(y» = d(a) E C(i(a»

(x e A) (y E B)

b E B d(x) E. C(i(x» e(y) E C(j (y»

D{j(b),(x)d(x),(y)e(y» = e(b) E C{j(b»

- 51 -

become evident.
The disjunction of two propositions is now interpreted as the

sum of two sets. We therefore put:

A V B == A + B.

From the formation and introduction rules for +, we then obtain the

corresponding rules for V :

V -formation

A prop. B prop.

AV B prop.

V -introduction

A true B true

A v B true A V B true

Note that, if a is a proof of A, then i(a) is a (canonical) proof of

A v B, and similarly for B.

V -elimination

(A true) (B true)

A V B true C true C true

C true

follows from the rule of +-elimination by choosing a family

C = C(Z) (z E A + B) which does not depend on z and suppressing

proofs (constructions) both in the premisses, including the assump-

tions, and the conclusion.

- 58 -

Example (introductory axioms of disjunction). Assume A set,

B set and let x E A. Then i(x) € A + B by +-introduction, and hence

(Ax)i(X) E A ~A + B by A-abstraction on x. If A and B are proposi­

tions, we have A .::> A V B true. In the same way, (Ay) j (y) E B - A + B,

and hence B ~ A V B true.

Example (eliminatory axiom of disjunction). Assume" A set, B set,

C(z) set (z e: A + B) and let f ~ ([1x E A)C(i(x», g E (ny E B)C(j(y»

and z E A + B. Then, by n -elimina tion, from x E A, we have

Ap(f,x) E C(i(x», and, from y E B, we have Ap(g,y) e C(j(y». So,

using z e A + B, we can apply +-elimination to obtain

D(z,(x)Ap(f,x) ,(y)Ap(g,y» E C(z), thereby discharging x E A and

y E B. By A-abstraction on z, g, f in that order, we get

(Af) tAg) (AZ)D(z, (x)Ap(f ,x), (y)Ap(g ,y»

e(nx e A)C(i(x» -«TIy E B)C(j(y»- (nz e: A + B)C(z».

This, when C(z) is thought of as a proposition, gives

('Vx E A)C(i(x» -;::) «'Vy E B)C(j(y»::> (\lz E A + B)C(z» true.

If, moreover, C(z) does not depend on z and A, B are propositions as

well, we have

(A :::> C) :::> « B :::> C) ::.:::> (A Y B ::;l C» true.

- 59 -

Propositional equality

We now turn to the axioms for equality. It is a tradition

(deriving its origin from Principia Mathematica) to call equality

in predicate logic identity. However, the word identity is more

properly used for defini tional equa'li ty, == or = def.' discussed

above. In fact, an equality statement, for instance, 22 = 2+2 in

arithmetic, does not mean that the two members are the same, but

merely that they have the same value. Equality in predicate logic,

however, is also different from our equality a = b E A, because the

former is a proposition, while the latter is a judgement. A form of

propositional equality is nevertheless indispensable: we want an

equality I(A,a,b), which asserts that a and b are equal elements of

t~e set A, but on which we can operate with the logical operations

(recall that e.g. the negation or quantification of a judgement does

not make sense). In a certain sense, I(A,a,b) is an internal form

of =. We then have four kinds of equality:

(1) == or =def.'

(2) A = B,

(3) a b E A,

(4) I(A,a,b).

Equality between objects is expressed in a judgement and must be de­

fined separately for each category, like the category sets, as in (2),

or the category of elements of a set, as in (3); (4) is a proposition,

whereas (1) is a mere stipulation, a relation between linguistiC

expressions. Note however that I(A,a,b) true is a judgement, which

will turn out to be equivalent to a = b E A (which is not to say

- 60 -

that it has the same sense). (1) is intensional (sameness. of mean­

ing), while (2), (3) and (4) are extensional (equality between ob­

jects). As for Frege, elements a, b may have different meanings, or

be different methods, but have the same value. For instance, we

certainly have 22 = 2+2 ~ N, but not 22 = 2+2.

I-formation

A set a € A b E. A

I(A,a,b) set

We now have to explain how to form canonical elements of I(A,a,b).

The standard way to know that I(A,a,b) is true is to have a = b e A.

Thus the introduction rule is simply: if a = b E. A, then there is a

canonical proof r of I(A,a,b). Here r does not depend on a, b or A;

it does not matter what canonical element I(A,a,b) has when a = b e A,

as long as it has one.

I-introduction

a = b € A

r E I(A,a,b)

Also, note that the rule for introducing equal elements of I(A,a,b)

is the trivial one:

a = b ~ A

r = r E I(A,a,b)

We could now adopt elimination and equality rules for I in the same

style as for [1, L: , +, namely introducing a new eliminatory operator.

- 61 -

We would then derive the following rules, which we here take instead

as primitive:

I-elimination

C € I(A ,~a , b)

a = b E A

I-equality

C € I(A,a,b)

c = r E I(A,a,b)

Finally, note that I-formation is the only rule up to now which per­

mits the formation of families of sets. If only the operations n , L
+, N

n
, N, W were allowed, we would only get constant sets.

Example (introductory axiom of identity). Assume A set and let

x € A. Then x = x € A, and, by I-introduction, r E I(A,x,x). By

abstraction on x, (Ax)r € (Yx E A)I(A,x,x). Therefore (Ax)r is a

canonical proof of the law of identity on A.

(x E A)

x = X E A

r E I(A,x,x)

(Ax) r E (V x E A) I (A, x, x)

Example (eliminatory axiom of identity). Given a set A and a

property B(x) prop. (x E A) over A, we claim that the law of equality

corresponding to Leibniz's principle of indiscernibility holds, namely

that equal elements satisfy the same properties,

- 62 -

(V x E A) (V y € A)(I (A, x, y) ::> (B (x) ::=;l B (y) » true.

To prove it, assume x E A, Y t A and z E,I(A,x,y). Then x = YEA and

hence B(x) = B(y) by substitution. So, assuming w E B(x), by equality

of sets, we obtain w E B(y). Now, by abstraction on w, z, y, x in that

order, we obtain a proof of the claim:

(z E I(A,x,y» (x E. A)

x=ye.A B(x) set

(w e. B(x» B(x) = B(y)

w e. B(y)

(Aw)w E B(x) ~ B(y)

(A z) 0. w) w E. I (A , x , y) ~ (B (x) ::> B (y))

(Ax)(AY) (Az)(AW)W € ("Ix E A)(Vy E A)(I(A,x,y):> (B(x) ~ B(y»)

The same problem (of justifying Leibniz's principle) was solved

in Principia by the use of impredicative second order quantification.

There one defines

(a = b) == (VX)(X(a)::> X(b»

from which Leibniz's principle is obvious, since it is taken to define

the meaning of identity. In the present language, quantification over

properties is not possible, and hence the meaning of identity has to

be defined in another way, without invalidating Leibniz's principle.

Example (proof of the converse of the projection laws). We can

now prove that the inference rule

C E. (L.X E A)B(x)

c = (p(c) ,q(c» E (Ex E. A)B(x)

- 63 -

is derivable. It is an analogue of the second n-equality rule, which

could also be derived, provided the l1-rules were formulated following

the same pattern as the other rules. Assume x E. A, Y e B(x). By the

projection laws, p«x,y» = x £ A and q«x,y» = y £ B(x). Then, by

L-introduction (equal elements form equal pairs),

(p«x,y»,q«x,y») = (x,y) E (Lx e. A)B(x).

By I-introduction,

r E I«LX € A)B(x),(p«x,y»,q«x,y»),\X,y».

floW take the family C(z) in the rule of I:-elimination to be

I((E x E A)B(x), (p(z) ,q(z» ,z). Then we obtain

E(c,(x,y)r) E I«LX e A)B(x),(p(c),q(c»,c)

and hence, by I-elimination, (p(c),q(c» = c e.. (Lx e. A)B(x).

(x £ A) (y £ B(x» (x E A) (y e B(x»

p«x,y» = x E: A q«x,y» = y e B(x)

(p«x,y»,q«x,y») = (x,y) Eo (LX E A)B(x)

C E (Lx £ A)B(x) r e I«LX e. A)B(x),(p«x,y»,q«x,y»),(x,y»

E(c, (x,y)r) E I((L x E A)B(x), (p(c) ,q(c» ,c)

(p(c) ,q(c» = c € (1: x e A)B(x)

This example is typical. The I-rules are used systematically to show

the uniqueness of a function, whose existence is given by an elimin­

ation rule, and whose properties are expressed by the associated

equality rules.

- 64 -

Example (properties and indexed families of elements). There

are two ways of looking at subsets of a set B:

(1) a subset of B is a propositional function (property)

C(y) (y E B);

(2) a subset of B is an indexed family of elements

b(x) E B (x E A).

Using the identity rules, we can prove the equivalence of these two

concepts. Given an indexed family as in (2), the corresponding prop­

erty is

(3 x E A)I(B,b(x) ,y) (y € B),

and, conversely, given a property as in (1), the corresponding

indexed family is

p(x) E B (x E (Ly E B)C(y».

- 65 -

Finite sets

Note that, up to now, we have no operations to build up sets

from nothing; but only operations to obtain new sets from given ones

(and from families of sets). We now introduce finite sets, which are

given outright; hence their set formation rules will have no premisses.

Actually, we have infinitely many rules, one group of rules for each

n = 0, 1,

N -formation
n

N -introduction
n

N set
n

mn E Nn
(m = 0, 1, •.• , n-1)

So we have the sets NO with no elements, N1 with the single canonical

element °1 , N2 with canonical elements 02' 12 , etc.

N -elimination
n

c E: N
n

c E C(m). (m = 0, 1, ... , n-l)
m n

R (c,cO,···,c 1) E.C(c) n n-

Here, as usual, the family of sets C(z) set (z eN) may be interpreted
n

as a property over N . Assuming we know the premisses, R is explained
n n

as follows: first execute c, whose result is m for some m between ° . n
and n-l. Select the corresponding element c of C(m) and continue by m n
executing it. The result is a canonical element d E C(c), since c has

been seen to be equal to m and c e C(m)is a premiss. R is recur-n m n n
sion over the finite set N ; it is a kind of definition by cases.

n

- 66 -

From the meaning of Rn' given by the above explanation, we have the

n rules (note that meN by N -introduction): n n n

Nn-equality

C E C (m) m n (m = 0, " ••• , n-')

R (m , cO' ... , c ,) = c € C (m) n n n- m n

(one such rule for each choice of m = 0, " ... , n-' in the conclu-

sion). An alternative approach would be to postulate the rules for n

equal to ° and' only, define N2 ~ N, + N" N3 ~ N, + N2 etc., and

then derive all other rules.

Example (about NO)' NO has no introduction rule and hence no

elements; it is thus natural to put

.L == iJ == No'
The elimination rule becomes simply:

NO-elimination

C E NO

RO(c) E C(C)

The explanation of the rule is that we understand that we shall never

get an element c € NO' so that we shall never have to execute RO(C)'

Thus the set of instructions for executing a program of the form

RO(c) is vacuous. It is similar to the programming statement abort
'2 introduced by Dijkstra .

'2 See note 2.

~i '

- 67 -

When C(z) does not depend on z, it is possible to suppress the

proof (construction) not only in the conclusion but also in the

premiss. We then arrive at the logical inference rule

.L -elimination

1- true

C true

traditionally called ex falso quodlibet. This rule is often used in

ordinary mathematics, but in the form

(B true)

A V B true .L true

A true

which is easily seen to be equivalent to the form above.

Example (about N,). We define

T == N,.

Then 0, is a (canonical) proof of·1r , since 0, e N, by N,-introduc­

tion. So ~ is true. We now want to prove that 0, is in fact the only

element of N" that is, that the rule

C €. N ,
c = ° E. N , ,

is derivable. In fact, from 0, EN" we get 0, = 0,6 N" and hence

r €. I(N"O"O,)' Now apply N,-elimination with I(N"z,O,) (z eN,)

for the family of sets C(z) (z eN,). Using the assumption c EN"

we get R,(c,r) e I(N"C,O,), and hence c = 0, EN,.

- 68 -

Conversely, by making the definition R1(c,cO) = cO' the rule of

N
1
-elimination is derivable from the rule

C E N 1

c = 01 E N1

and the rule of N1-e q uality trivializes. Thus the operation R1 can

be dispensed with.

Example (about N
2

). We make the definition

Boolean == N 2.

Boolean is the type used in programming which consists of the two

truth values true, false. So we could put true = 02 and false = 1
2

.

Then we can define if c then Co else c 1 R2 (c,cO'c 1) because, if

c is true, which means that c yields 02' then R2 (C,c O'c 1) has the

same value as cO; otherwise c yields 1~ and R2 (C,c
O

'c 1) has the same

value as c
1

.

As for N1 above, we can prove that any element of N2 is either

02 or 12 , but obviously only in the propositional form

C E N2

I(N2 ,c,02) V I(N 2 ,c,1 2) true

Example (negation). If we put

""A_ -, A == -A == A --. NO

we can easily derive all the usual rules of negation.

- 69 -

Consistency

What can.we say about the consistency of our system of rules?

We can understand consistency in two different ways:

(1) Metamathematical consistency. Then, to prove mathematically

the consistency of ~ theory T, we con~ider another theory T', which

contains codes for propositions of the original theory T and a predi­

cate Der such that Der('A') expresses the fact that the proposition

A with code 'A' is derivable in T. Then we define Cons ==
-, Der ('.L') == Der (, 1.') ::::> J.. and (try to) prove tha teons is true in

T'. This method is the only one applicable when, like Hilbert, we

give up the hope of a semantical justification of the axioms and rules

of inference; it could be followed, with success, also for intuition­

istic type theory, but, since we have been as meticulous about its

semantics as about its syntax, we have no need of it. Instead, we

convince ourselves directly of its consistency in the following simple

minded way.

(2) Simple minded consistency. This means simply that 1- cannot

be proved, or that we shall never have the right to judge JL true

(which, unlike the proposition Cons above, is not a mathematical

proposition). To convince ourselves of this, we argue as follows: if

C E 1- would hold for some element (construction) c, then c would

yteld a canonical element d E 1. ; but this is impossible since 1- has

no canonical element by definiton (recall that we definedJL == NO).

Thus JL true cannot be proved by means of a system of correct rules.

So, in case we hit upon a proof of JL true, we would know that there

must be an error somewhere in the proof; and, if a formal proof of

JL true is found, then at least one of the formal rules used in it

is not correct. Reflecting on the meaning of each of the rules of

- 70 -

intuitionistic type theory, we eventually convince ourselves that

they are correct; therefore we will never find a proof of ~ true

using them.
Finally, note that, in any case, we must rely on the simple

minded consistency of at least the theory T' in which Cons is proved

in order to obtain the simple minded consistency (which is the form

of consistency we really care about) from the metamathematical con­

sistency of the original theory T. In fact, once c € Cons for some c

is proved, one must argue as follows: if T were not consistent, we

would have a proof in T of 1- true, or a € NO for some a. By coding,

this would give 'a' ~ Der('~'); then we would obtain Ap(c,'a')€ 1- ,
i.e. that 1- true is derivable in T'. At this point, to conclude that

JL true is not provable in T, we must be convinced that 1- true is

not provable in T'.

- 71 -

Natural numbers

So far, w~ have no means of constructing an infinite set. We

now introduce the simplest one, namely the set of natural numbers,

by the rules:

N-formation

N set

N-introduction

a E. N

o E N
a' e N

Note that, as is the case with any other introduction rule, a' E N

is always canonical, whatever element a is. Thus a E. N means that

a has value either 0 or a;, where a 1 has value either 0 or a2, etc.,

until, eventually, we reach an element a which has value O. n

N-elimination

(x E N, y E C(x»

c '" N d e C(O) e(x,y) E C(x')

R(c,d,(x,y)e(x,y» E C(c)

where t(z) set (z eN). R(c,d,(x,y)e(x,y» is explained as follows:

first execute c, getting a canonical element of N, which is either

o or a' for some a ~ N. In the first case, continue by executing d,

which yields a canonical element f E C(O); but, since c = 0 EN in

this case, f is also a canonical element of C(c) = C(O). In the

second case, substitute a for x and R(a,d,(x,y)e(x,y» (namely, the

- 72 -

preceding value) for y in e(x,y) so as to get e(a,R(a,d,(x,y)e(x,y»).

Executing it, we get a canonical f which, by the right premiss, is in

C(a') (and hence in C(c) since c = a' EN) under the assumption

R(a,d,(x,y)e(x,y» E C(a). If a has value 0, then R(a,d,(x,y)e(x,y»

is in C(a) by the first case. Otherwise, continue as in the second

case, until we eventually reach the value 0. This explanation of the

elimination rule also makes the equality rules

N-equality

(x E A, Y E C(x»

d E C(O) e(x,y) E C(x')

R(O,d,(x,y)e(x,y» = d E C(O)

(x E N, y E C(x»

a E N d e C(O) e(x,y) E C(x')

R(a' ,d,(x,y)e(x,y» = e(a,R(a,d,(x,y)e(x,y») e C(a')

evident. Thinking of C(z) (z E N) as a propositional function (prop­

erty) and suppressing the proofs (constructions) in the second and

third premisses and in the conclusion of the rule of N-elimination,

we arrive at

Mathematical induction

(x E N, C(x) true)

C E N C(O) true C(x') true

C(c) true

If we explicitly write out the proof (construction) of C(c), we see

that it is obtained by recursion. So recursion and induction turn

- 73 -

out to be the same concept when propositions are interpreted as sets.

Example (the predecessor function). We put

pd(a) == R(a,O,(x,y)x).

This definition is justified by computing R(a,O,(x,y)x): if a yields

0, then pd(a) also yields 0, and, if a yields b', then pd(a) yields

the same value as R(b' ,O,(x,y)x), which, in turn, yields the same

value as b. So we have pd(O) = ° and pd(a') = a, which is the usual

definition, but here these equalities are not definitional. More

precisely, we have

a E N

pd(a) E N

which is an instance of N-elimination, and

~ pd (0) = ° EN,

l pd (a') = a EN,

which we obtain by N-equality.

Using pd, we can derive the third Peano axiom

a' = b' E. N

a = beN

Indeed, from a' = b' € N, we obtain pd(a') = pd(b') E N which, to­

gether with pd(a') = a e Nand pd(b') = bEN, yields a = b € N by

symmetry and transitivity. We can also obtain it in the usual form

(V x,y)(x' = y'::::> x = y), that is, in the present symbolism,

(V x € N) (V yEN) (I (N ,x' ,y') ::> I (N ,x, y» true.

- 74 -

In fact, assume x eN, yeN and z E I(N,x',y'). By I-elimination,

x' = y' e N; hence x = YEN, from which r e I(N,x,y) by I-intro­

duction. Then, by A -abstraction, we obtain that (Ax)(AY) (Az) r is a

proof (construction) of the claim.

Example (addition). We define

a + b == R(b,a, (x,y)y').

The meaning of a + b is to perform b times the successor operation

on a. Then one easily derives the rules:

a E N bEN

a + b E: N

a E N a E N beN

a+O=aEN a+b' =(a+b)'EN

from which we can also derive the corresponding axioms of first

order arithmetic, like in the preceding example. Note again that the

equality here is not definitional.

Example (multiplication). We define

a . b == R(b,O'(f'y)(y + a».
I

Usual properties of the product a . b can then easily be

Example (the bounded ~-operator). We want to solve

derived.

the problem:
given a boolean function f on na tural numbers, i. e. fEN -+ N 2' find

argument, under the bound a e N, for which the value of f is the least

true. The solution will be a function f(x,f) EN (x EN, f E N-+N
2

)
satisfying:

- 75 -

the least b~ a such that Ap(f,b) = 02 e N2 ,

if such b exists,

t(a,f)

a, otherwise.

Such a function will be obtained by solving the recursion equations:

~jJ-(0,f) = OEN

ljl(a"f) = R2(AP(f,0)'0'f(a,'f)') E N,

where f == (AX)Ap(f,x') is f shifted one step to the left, i.e.

Ap(f,x) = Ap(f,x') E N2 (x EN). In fact, in case the bound is zero,

f(O,f) = ° E N, irrespective of what function f is. When the bound has

suc~essor form, f(a' ,f) = tea,!)' e N, provided that f(O) = false ~

12 E N
2

; otherwise, rea' ,f) = ° E N. Therefore to compute f(a,f), we

can shift f until the bound is 0, but checking each time if the value

at ° is true = 02 or false = 12 . Even if it admits of a primitive

recursive solution, the problem is most easily solved through higher

types, as we shall now see in detail. We want to find a function

rex) E (N ~ N
2

) ~ N (x E: N) such that

\ r (0) = 0, f) ° E (N ~ N 2) -+ N",

If'(a') = (:Af)R
2

(AP(f,0),0,AP(r(a),[)') E (N ~N2)~ N,

so that we can define the function r(a,f) we are looking for by

putting f(a,f) = AP(r(a),f). The requirements on f(a) may be sat­

isfied through an ordinary primitive recursion, but on a higher type;

this task is fulfilled by the rule of N-elimination. We obtain

rea) == R(a,(Af)0,(X,y)(Af)R
2

(AP(f,0),0,AP(y,[)'» ~

under the premisses a E Nand fEN ~ N2 , and hence

(N-N)--N
2

- 76 -

r-(x,f) E N (x E N, f E N-N
2

).

Written out in tree form the above proof of r(a,f) e N looks as

follows:

° e; N

(f E N -N2) ° E N

(f e N -N
2

)

(y E (N ~ N2) - N) fEN -+ N2

Ap(y,f) E N

Ap(f,O) E. N2 ° E N Ap(y,f), e N

R2(Ap(f ,0) ,0 ,Ap(y ,f)') E N

a E N O,f)O E (N~N2)-N ().f)R
2

(AP(f,0),0,AP(Y,f)') E (N-+N
2

)-+N

j-I-(a) == R(a, ().f)o, (x ,y)(Af)R2(AP(f ,0) ,0 ,Ap(y ,f)' » e (N - N
2

) - N fEN - N2

",(a,f) == Ap(p.(a) ,f) E N

Observe how the evaluation of f(a,f) = Ap(~(a),f)
AP(R(a,(Af)O,(x,y)O.f)R 2 (Ap(f,0) ,0,Ap(y,f)'» ,f) proceeds. First, a

is evaluated. If the value of a is 0, the value of ~(a,f) equals the

value of Ap«Af)O,f), which is 0. If, on the other hand, the value

of a is b', the value of f(a,f) equals the value of

Ap «Af) R 2 (A~ u'd, ° , f(b ,f) ,) ,f) ,

which, in turn, equals the value of

R2 (Ap (f ,0) ,0 , f(b ,f) ,) .

Next, Ap(f,O) is evaluated. If the value of Ap(f,O) is true = 02'

then the value of f(a,f) is 0. If, on the other hand, the value of

Ap(f,O) is false ~ '2' then the value of ~(a,f) equals the value

of f(b,f),.

<'

- 77 -

Lists

We can follow the same pattern used to define natural numbers

to introduce other inductively defined sets. We see here the example

of lists.

List-formation

A set

List(A) set

where the intuitive explanation is: List(A) is the set of lists of

elements of the set A (finite sequences of elements of A).

List-introduction

a E. A b e List(A)
nil E List(A)

(a.b) E List(A)

where we may also use the notation () == nil.

List-elimination

(x E A, Y 6 List(A), z E G(y»

C E List(A) d € G(niI) e(x,y,z) E G«x.y»

listrec(c,d,(x,y,z)e(x,y,z» E G(c)

where G(z) (z E List(A» is a family of sets. The instructions to exe­

cute listrec are: first execute c, which yields either nil, in which

case continue by executing d and obtain f E G(nil) = G(c), or (a.b)

with a E A and b E List(A); in this case, execute

e(a,b,listrec(b,d,(x,y,z)e(x,y,z») which yields a canonical element

- 78 -

f E C«a.b» = C(c). If we put g(c) = listrec(c,d,(x,y,z)e(x,y,z»,

then f is the value of e(a,b,g(b».

List-equality

(x E A, y E List(A), z E C(y»

d E C(nil) e(x,y,z) E C«x.y»

listrec(nil,d,(x,y,z)e(x,y,z» d € C(nil)

(x E A, Y E List(A), ze C(y»

a E A b E List(A) d E C(nil) e(x,y,z) E C«x.y»

listrec«a.b),d,(x,y,z)e(x,y,z»

= e(a,b,listrec(b,d,(x,y,z)e(x,y,z») E C«a.b»

Similar rules could be given for finite trees and other induc­

tively defined concepts.

- 79 -

Wellorderings

The concept of wellordering and the principle of transfinite

induction were first introduced by Cantor. Once they had been for­

mulated in ZF, however, they lost their original computational con­

tent. We can construct ordinals intuitionistically as wellfounded

trees, which means that they are no longer totally ordered.

W-formation

(x ~ A)

A set B(x) set

(Wx E A)B(x) set

What does it mean for c to be an element of (Wx E A)B(x)? It means

that, when calculated, c yields a value of the form sup(a,b) for

some a and b, where a e A and b is a function such that, for any

choice of an element v E B(a), b applied to v yields a value

sup(a"b,), where a, e A and b, is a function such that, for any

choice of v, in B(a,), b, applied to v, has a value sup(a2 ,b2), etc.,

until in any case (i.e. however the successive choices are made) we

eventually reach a bottom element of the form sup(a ,b), where B(a) n n n
is empty, so that no choice of an element in B(a) is possible. The n

following picture, in which we loosely write b(v) for Ap(b,v),' can

help (look at it from bottom to top):

- 80 -

b2 (v2) = sup (a
3

,b
3

)

= sup (a
2

,b
2

)

= sup (a
1

,b
1

)

c = sup(a,b)

By the preceding explanation, the following rule for introducing ca-

nonical elements is justified:

W-introduction

a E A b € B (a) -+ (Wx E A) B (x)

sup(a,b) E (Wx E A)B(x)

Think of sup(a,b) as the supremum (least ordinal greater than all) of

the ordinals bey), where v ranges over B(a).

We might also have a bottom clause, 0 E (Wx E A)B(x) for in­

stance, but we obtain 0 by taking one set in B(x) set (x E A) to be

the empty set: if aO E A and B(aO) = NO' then RO(y) € (Wx E A)B(x)

(y ~ B(ao » so that sup(ao,(AY)Ro(y» E (WX E A)B(x) is a bottom el­
ement.

From the explanation of what an element of (Wx E A)B(x) is, we

see the correctness of the elimination rule, which is at the same

time transfinite induction and transfinite recursion. The appropriate

principle of transfinite induction is: if the property

C(w) (w E (Wx E A)B(x» is inductive (i.e. if it holds for all pre­

decessors Ap(b,v) E (Wx E A)B(x) (v E B(a» of an element sup(a,b),

- 81 -

then it holds for sup(a,b) itself), then C(c) holds for an arbitrary

element c E (Wx E A)B(x). A bit more formally,

(\I x E A) (Y y E B (x) ~ (Wx E A) B (x))

C E (Wx E A)B(x) «\Iv E B(x»C(Ap(y,v»:::> C(sup(x,y») true

C(c) true

Now we resolve this, obtaining the W-elimination rule. One of the

premisses is that C(sup(x,y» is true, provided that x E A,

y E B(x) --'" (Wx E A)B(x) and (Yv E B(x»C(Ap(y,v» is true. Letting

d(x,y,z) be the function which gives the proof of C(sup(x,y» in

terms of x E A, y E B(x) ~ (Wx E A)B(x) and the proof z of

("Iv EB(x»C(Ap(y,v», we arrive at the rule

W-elimination

(x €oA, Y e B(x)-+(Wx EA)B(x), z E (TIv EB(x»C(Ap(y,v»)

C E (Wx E A)B(x) d(x,y,z) E C(sup(x,y»

T(c,(x,y,z)d(x,y,z» E C(c)

where T(c,(x,y,z)d(X,y,z» is executed as follows. First execute c,

which yields sup(a,b), where a e A and b E B(a)~ (Wx E A)B(x). Select

the components a and b and substitute them for x and y in d, obtaining

d(a,b,z). We must now substitute for z the whole sequence of previous

function values. This sequence is (AV)T(Ap(b,v),(x,y,z)d(X,y,z», be­

cause Ap(b,v) € (Wx E A)B(x) (v E B(a» is the function which enumer­

ates the subtrees (predecessors) of sup(a,b). Then

d(a,b,(Av)T(Ap(b,v) ,(x,y,z)d(x,y,z») yields a canonical element

e E C(c) as value under the assumption that

T(Ap(b,v),(x,y,z)d(x,y,z» E C(Ap(b,v» (v E B(a».

- 82 -

If we write f(c) = T(c,(x,y,z)d(x,y,z», then, when c yields

sup(a,b), f(c) yields the same value as d(a,b,(Av)f(Ap(b,v»). This

explanation also shows that the rule

W-equality

(x E A, y E B(x) -+ (Wx e A)B(x), z e (nv € B(x»C(Ap(y, v»)

a E A b E B(a) ~ (Wx € A)B(x) d(x,y,z) E C(sup(x,y»

T(sup(a,b),(x,y,~)d(x,y,z»

= d(a,b,(Av)T(Ap(b,v),(x,y,Z)d(x,y,z») e C(sup(a,b»

is correct.

Example (the first number class). Having access to the W-oper­

ation and a family of sets B(x) (x E N
2

) such that B(02) = NO and

B('2) = N" we may define the first number class as (Wx E N
2

)B(x)

instead of taking it as primitive.

Example (the second number class). We give here the rules for a

simple set of ordinals, namely the set C1 of all ordinals of the sec­

ond number class, and show how they are obtained as instances of the

general rules for wellorderings.

C'-forma tion

" set

Cantor generated the second number class from the initial ordinal 0

by applying the following two principles:

(') given 0< E. CJ, form the successor 0<' e cr ;

(2) given a sequence of ordinals 0(0' 0(" cx
2

: ••• in 0, form the

least ordinal in 0 greater than each element of the sequence.

- 83 -

We can give pictures:

(1) if

8
is in d, then we can build the successor ex' :

cr
(2) if

(5)00)
is a sequence of ordinals in d, then we can build the supremum

sup(CX'):
n n

So d will be inductively defined by the three rules:

C; -introduction

o e "

ae~

a' e G

b 6N-.C;

sup(b) 6: d

- 84 -

Transfinite induction over 0 is evident, and it is given by

C E C C(O)

(x E C , C(x) true)

true C(x') true

C(c) true

(z E. N -- 0 , (\I n € N) C (Ap (z , n» true)

C(sup(z» true

where C (z) (z E Cl) is a property over (5. Wri ting it wi th proofs,
we obtain

o -elimination

C E CJ d E C(O)

(x E CJ, Y E C(X»

e(x,y) E C(x')

(z E. N - 0, W E (n n EN) C (Ap (z , n))

f(z,w) E C(sup(z»

T(c,d,(x,y)e(x,y),(z,W)f(z,w» E C(c)

where the transfinite recursion operator T is executed as follows.

First, execute c. We distinguish the three possible cases:

if we get 0 E. C , the value of T(C,d,(x,y)e(x,y),(z,W)f(z,w»
is the value of dEC (0) ;

if we get a', then the value is the value of

e(a,T(a,d,(x,y)e(x,y),(Z,W)f(z,w»);

if we get sup(b), we continue by executing

f(b,(AX)T(Ap(b,x) ,d,(x,y)e(x,y),(z,w)f(z,w»).

In any case, we obtain a canonical element of C(c) as result.

It is now immediate to check that we can obtain all C-rules

(including O-equality, which has not been spelled out) as instances
of the W-rules if we put

- 85 -

C1 == (Wx E N
3

)B(x),

where B(x) (x E N
3

) is a family of sets such that B(03) = NO'

B(1
3

) = N1 and B(2
3

) = N. Such a family can be constructed by means

of the universe rules.

Example (initial elements of wellorderings). We want to show

that, if at least one index set is empty, then the wellordering

(Wx E A)B(x) is nonempty. Recall that we want to do it intuition­

istically, and recall that A true is equivalent to A nonempty, so

that ~A true is equivalent to A empty. So our claim is:

(3 x E A) ...,B(x)-+ (Wx E A)B(x) true.

To see this, assume x E A, Y E, B(x) and v E B(x). Then

Ap(y,v) E NO = -L and hence RO(Ap(y,v» E (Wx E A)B(x), applying

the rule of NO-elimination. We now abstract on v to get

(AV)RO(AP(Y,V» E B(x) ---. (Wx E A)B(x) and, by W-introducti?n,

sUP(X,(AV)RO(AP(y,v») E (Wx E A)B(x). Assuming z E (Lx E A)-.B(x),

by L -elimination, we have

E(Z,(x,Y)SUp(X,(~V)RO(AP(Y'V»» E (Wx e A)B(x),

from which, by A-abstraction on z,

(AZ)E(Z,(x,y)Sup(X,(AV)RO(Ap(y,v»» E (Lx E A),B(x)~ (Wx e A)B(x).

We now want to show a converse. However, note that we cannot

have (Wx E A)B(x)-(3x E A)-,B(x) true, because of the intuition­

istic meaning of the existential quantifier. But we do have:

(Wx E A)B(x)-. -,(Yx E A)B(x) true.

Assume x E A, Y E B(x) -'>(Wx E A)B(x) and z EB(x) ~NO. Note that

- 86 -

B(x) - NO == (nv E B(x»C(Ap(y,v» for C(w) == NO' so that we can

apply the rule of W-elimination. Assuming f E (nx E A)B(x), we have

Ap(f,x) E B(x), and hence also Ap(z,Ap(f,x» € No. Ap(z,Ap(f,x)

takes the role of d(x,y,z) in the rule of W-elimination. So, if we

assume w E (Wx E A)B(x), we obtain T(w,(x,y,z)Ap(z,Ap(f,x») E NO.

Abstracting on f, we have

O,f)T(w,(x,y,z)Ap(z,Ap(f,x») E -.(Yx E A)B(x),

and, abstracting on w, we have

(AW)(Af)T(w,(x,y,z)Ap(z,Ap(f,x») E (Wx E A)B(x)- --("Ix E A)B(x).

- 87 -

Universes

So far, we only have a structure of finite types, because we

can only iterate the given set forming operations starting from

I(A,a,b), NO' N
1

, ... and N a finite number of times~ To strengthen

the language, we can add transfinite types, which in our language

are obtained by introducing universes. Recall that there can be no

set of all sets, because we are not able to exhibit once and for all

all possible set forming operations. (The set of all sets would have

to be defined by prescribing how to form its canonical elements, i.e.

sets. But this is impossible, since we can always perfectly well de­

scribe new sets, for instance, the set of all sets itself.) However,

we need sets of sets, for instance, in category theory. The idea is

to define a universe as the least set closed under certain specified

s~t forming operations. The operations we have been using so far are:

(x e. A) (x E: A)

A set B(x) set A set B(x) set A set B set

(n x E A) B (x) set' (Lx EA)B(x) set A + B set

(x E A)

A set b, c E A A set B(x) set

N 1 set ... N set NO set (Wx E A)B(x) set
I(A,b,c) set

There are two possible ways of building a universe, i.e. to obtain

closure under possibly transfinite iterations of such operations.

Formulation a la Russell. Consider n, L , ... both as set

forming operations and as operations to form canonical elements of

- 88 -

the set U, the universe. This is like in ramified type theory.

Formulation a la Tarski. So called because of the similarity

between the family T(x)(x ~ U) below and Tarski's truth definition.

We use new symbols, mirroring (reflecting) n, L , ... , to build the

canonical elements of U. Then U consists of indices of sets (like in

recursion theory). So we will have the rules:

U-formation

a E U
U set

T(a) set

U and T(x)(x E U) are defined by a simultaneous transfinite induction,

which, as usual, can be read off the following introduction rules:

U-introduction

(x E T(a» (x ET(a»

a E U b(x) E U a E U b(x) E U

n (a, (x)b(x» E U T(rr (a,(x)b(x») = (nx E T(a»T(b(x»

(x E T(a» (x eT(a»

a E U b(x) E U a E U b(x) E: U

cr(a,(x)b(x» E U T(a(a,(x)b(x») = (Lx € T(a»T(b(x»

a € U b E U a E U b E U

a + b E U T(a + b) = T(a) + T(b)

- 89 -

a E U b E T(a) C E T(a) a E U b E T(a) C E T(a)

i(a,b,c) E U T(i(a,b,c» = I(T(a),b,c)

no E U n
1

E U· T(no) = NO T(n
1
)=N

1

n € U T(n) = N

(x E T(a» (x ET(a»

a E U b(x) E U a E U b(x) E U

w(a,(x)b(x» e U T(w(a,(x)b(x») = (Wx E T(a»T(b(x»

We could at this point iterate the process, obtaining a second uni­

verse U' with the two new introduction rules:

u .E U' T'(u) = U

a E U a E: U

tea) E U' T'(t(a» = T(a)

then a third universe U", and so on.

In the formulation a la Russell, T disappears and we only use

capital letters. So the above rules are turned into:

U-formation

A E U

U set
A set

- 90 -

U-introduction

(x € A) (x E A)

A E U B(x) E U A E U B(x) E U

(nx E A)B(x) E U (LX E A)B(x) E U

A € U B E U A E U b, c E A

A + B E U I(A,b,c) E U

NO e U N, E U N E U

(x E A)

A E U B(x) E U

(WX e A)B(x) E U

However, U itself is not an elemnt of U. In fact, the axiom U e U

leads to a contradiction (Girard's paradox'3). We say that a set A is

small, or a U-set, if it has a code a E U, that is, if there is an

element a € U such that T(a) = A. More generally, a family

A(x" ... ,xn) (x, E A" ... , xn € An(x" .•. ,xn_,» is saidJto be small

provided A(x" ... ,x n) = T(a(x" ..• ,xn » (x, e A" ••. ,

X E A (x" •.• ,x ,» for some indexing function a(x" ... ,x) E U n n n- n ,
(x, E A" ••• , xn E An(x" ••. ,xn_,». So the category of small sets

is closed under the operations E , n , etc. U is a perfectly good set,

'3 J. Y. Girard, Interpretation fonctionnelle et elimination des
Coupures de l'arithmetique d'ordre superieur, These, Universite Paris
VII, '972.

- 9' -

but it is not small. Using U, we can form transfinite types (using a

recuriion with value in U, for instance).

The set V (Wx E U)T(x) (or, in the formulation a la Russell,

simply (WX E U)X) has been used by Aczel'4 to give meaning to a con­

structive version of Zermelo-Fraenkel set theory via intuitionistic

type theory.

Example (fourth Peano axiom). We now want to prove the fourth

Peano axiom, which is the only one not trivially derivable from our

rules. So the claim is:

(\Ix EN) -.I(N,O,x') true.

We use U-rules in the proof; it is probably not possible to prove it

otherwise. From N set, 0 E N, x EN we have x' e Nand I(N,O,x') set.

Now assume y € I(N,O,x'). Then, by I-elimination, 0 = x' E N. By U-in­

troduction, nO E U and n, e U. Then we define f(a) = R(a,nO,(x,y)n,),

so that f(O) = nO e U and feat) = n, E U provided that a e N. From

° = x' e N, we get, by the equality part of the N-elimination rule,

R(O,no,(x,y)n,) = R(x' ,nO,(x,y)n,) e U. But R(O,nO,(x,y)n,) = nO E U

and R(x',nO,(x,y)n,) = n, € U by the rule of N-equality. So, by symme­

try and transitivity, nO = n, e U. By the (implicitly given) equality

part of the U-formation rule, T(nO) = T(n,). Hence~ from T(nO) = NO

and T(n,) = N" NO = N,. Since 0, EN" we also have 0, e NO· So

O.y)O, E I(N,O,x') ---+NO and (AX)(AY)O, E (\Ix EN) -.I(N,O,x').

We r~mark that, while it is obvious (by reflecting on its mean­

ing) that ° = a' E N is not provable, a proof of --'I(N,O,a') true

seems to involve treating sets as elements in order to define a pro-

positional function which is 1- on ° and T on a'.

'4 P. Aczel, The type theoretic interpretation of constructive
·set theory, Logic Colloquium 77, Edited by A. Macintyre, L. Pacholski
and J. Paris, North-Holland, Amsterdam, '978, pp. 55-66.

	P-M-L_(1-31).pdf
	P-M-L_1.pdf
	File0001.PDF
	File0002.PDF
	File0005.PDF
	File0006.PDF
	File0008.PDF
	File0009.PDF
	File0010.PDF
	File0011.PDF
	File0012.PDF
	File0013.PDF
	File0014.PDF

	P-M-L_2.pdf
	file0003.PDF
	file0004.PDF
	file0007.PDF
	file0015.PDF
	file0016.PDF
	file0017.PDF
	file0018.PDF
	file0019.PDF
	file0020.PDF

	P-M-L_(32-91).pdf
	M-L0001.PDF
	M-L0002.PDF
	M-L0003.PDF
	M-L0004.PDF
	M-L0005.PDF
	M-L0006.PDF
	M-L0007.PDF
	M-L0008.PDF
	M-L0009.PDF
	M-L0010.PDF
	M-L0011.PDF
	M-L0012.PDF
	M-L0013.PDF
	M-L0014.PDF
	M-L0015.PDF
	M-L0016.PDF
	M-L0017.PDF
	M-L0018.PDF
	M-L0019.PDF
	M-L0020.PDF
	M-L0021.PDF
	M-L0022.PDF
	M-L0023.PDF
	M-L0024.PDF
	M-L0025.PDF
	M-L0026.PDF
	M-L0027.PDF
	M-L0028.PDF
	M-L0029.PDF
	M-L0030.PDF

