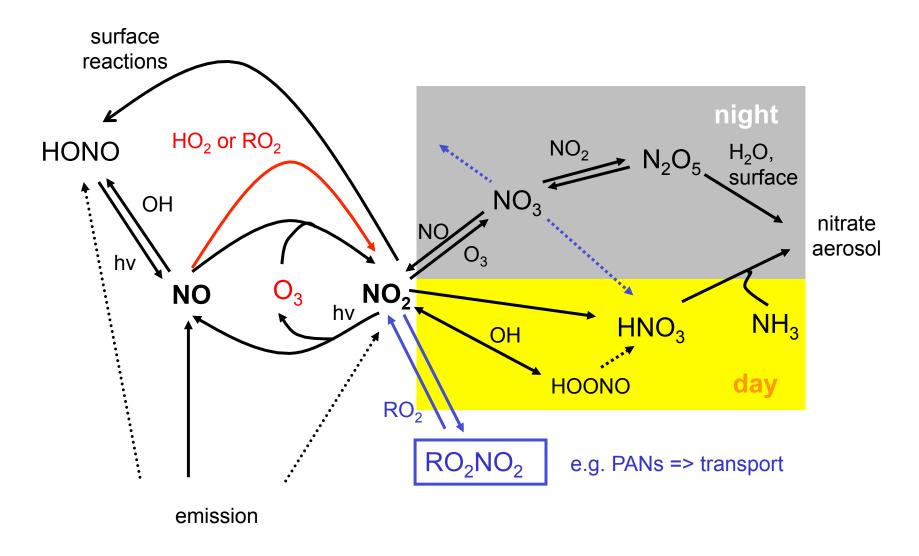
Nitrogen Oxides in the Troposphere

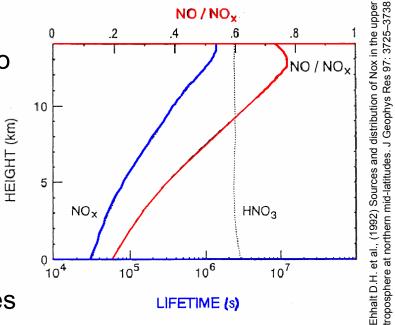
sources, distributions, impacts, and trends


Lecture at the ERCA 2010 Grenoble, January 26, 2010

Andreas Richter Institute of Environmental Physics University of Bremen Bremen, Germany (richter@iup.physik.uni-bremen.de)

Overview

- 1. What is NO_x ?
- 2. What is it doing in the troposphere?
- 3. Why should we care?
- 4. Where does it come from?
- 5. How can it be measured?
- 6. Is it changing with time?


Simplified NOx Chemistry in the Troposphere

adapted from M. Jenkin

Some facts on NO_x in the Troposphere

- NO and NO₂ are rapidly converted into each other and are therefore combined to NO_x = NO + NO₂
- the ratio [NO] / [NO_x] is about 0.2 at the surface but increases towards higher altitudes (temperature dependence of O₃ + NO reaction)
- the atmospheric lifetime of NO_x is short close to the surface (hours) and increases towards higher altitudes (days)

- lifetime is longer in winter than in summer (lower [OH])
- the short lifetime results in little transport, both vertically and horizontally, at least in the form of NO_x
 => NO_x is found close to its sources
- PAN has a long lifetime and can be transported and re-release NO_x when temperature increases

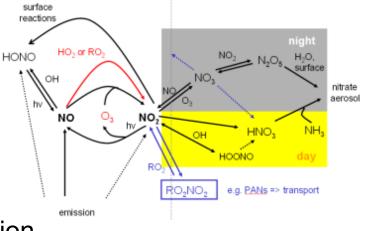
Why should we care about NOx in the Troposphere?

NOx

- is a key species in tropospheric ozone formation
- leads to formation of HNO₃ and thereby acid rain
- contributes to eutrophication
- acts as a greenhouse gas (NO₂, at least locally)
- acts indirectly on climate through ozone formation
- can contribute to aerosol formation

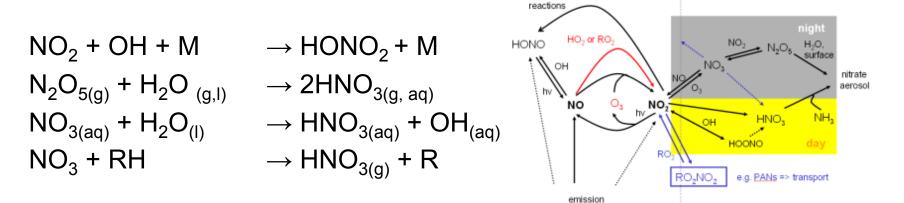
The Role of NOx in Ozone Chemistry

Background conditions


- photolysis of NO₂ is only known way to produce O₃ in the troposphere
- O₃, NO₂, and NO are in photostationary state (*Leighton relationship*):

 $[O_3][NO_2] / [NO] = J_{NO2} / k_{O3 + NO}$

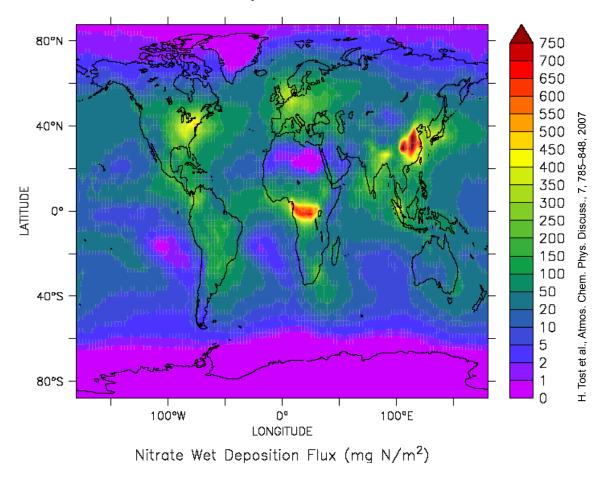
 at very low [NO] / [O₃] ratio, destruction of O₃ by HO₂ dominates over O₃ production


Polluted conditions

- if NO is oxidized to NO₂ by HO₂ or RO₂ instead of O₃, ozone is catalytically formed by NO
- how much O_3 can be formed in the presence of NO_x is eventually limited by the amount of CO, CH_4 , and other hydrocarbons available
- at high NO_x concentrations, O₃ levels are reduced by reaction with NO and NO₂ in particular at night

NOx and acid Rain

- normal rain should have a pH of about 5, but much lower values are often observed in industrialised areas
- SO₂ emissions have been the main reason for acid rain
- as SO₂ emissions decrease, NO_x becomes relatively more important
- HNO₃ is formed through several paths and its wet and dry deposition is one of the main sinks for nitrogen oxides:


 the effects of acid rain are most pronounced on freshwater fish and forest ecology, but also on buildings

NOx and acid Rain: Example

Amount of nitrate that is deposited depends on

- NO_x emitted
- efficiency of nitrate formation
- precipitation

ECHAM5/MESSy1 model results

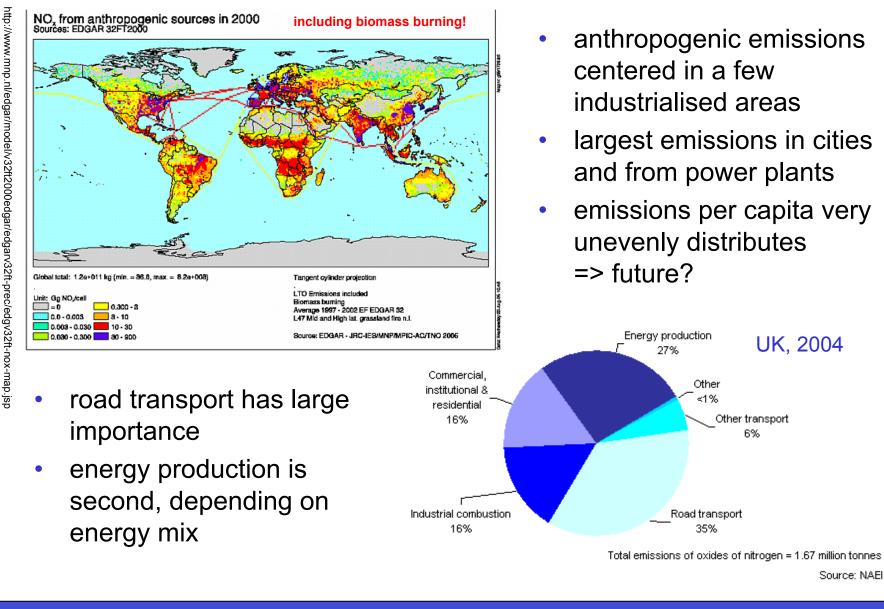
Sources of NOx in the Troposphere

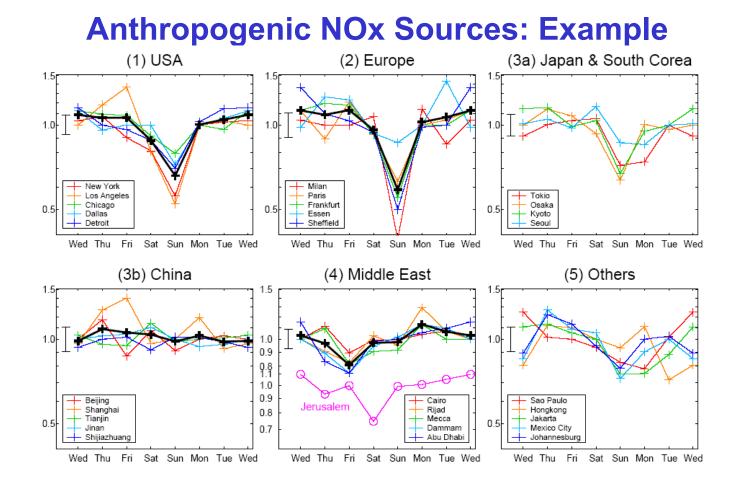
R. Delmas et al., Nutrient Cycling in Agroecosystems, 48, 51 – 60 1997

Main sources of NO_x (in Tg N / yr) are

- fossil fuel combustion
- fires
- microbial soil emissions
- lightning
- oxidation of biogenic NH₃
- aircraft
- stratosphere

22.0(15-29)6.7(3-10)5.5(3.3 - 7.7)2.0(1-4)1.0(0.5-1.5)0.5(0.5-0.6)0.5(0.4-0.6)



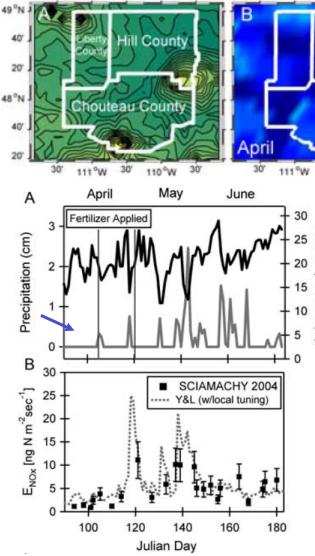


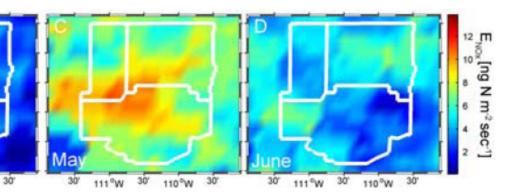
Anthropogenic NOx Sources

- Normalised tropospheric NO₂ columns retrieved from GOME satellite measurements show clear weekly cycle over industrialised areas
- anthropogenic NO_x emissions dominate

Soil Sources of NOx

- NO and N₂O are emitted from microbial activities in the soil, both during nitrification (NH₄⁺ \rightarrow NO₃⁻) and denitrification (NO₃⁻ \rightarrow N₂)
- function of soil moisture and texture, inorganic nitrogen availability, the carbon to nitrogen ratio, temperature and precipitation
- typical parameterisation using T, precipitation and fertilisation
- usually observed as strong pulses after fertilisation and rain
- in ecosystems with dense vegetation cover (e.g. rain forests), part of the NO_x emitted is lost by NO₂ deposition
- NO_x soil emissions seem to be underestimated in current models
- potential for increases as use of fertilizers increases, but strong dependence on actual practices used

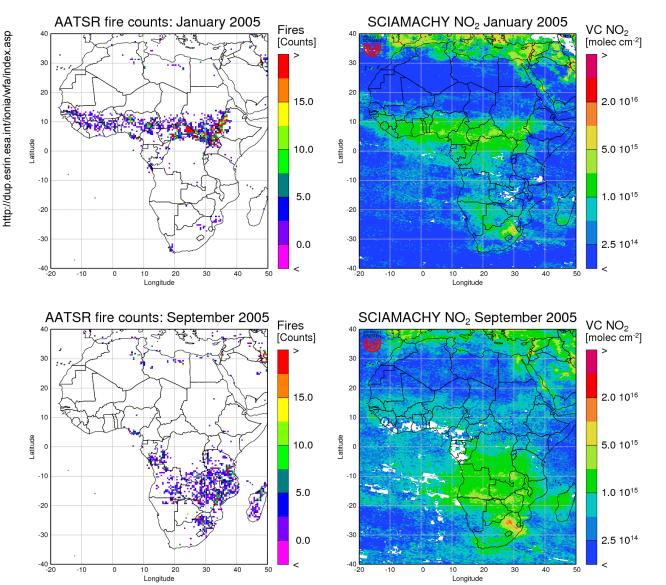

Soil Sources of NOx: Example


30"

Temperature

ô

110°W

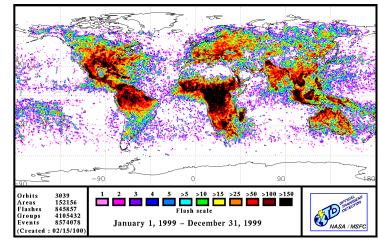

- Chouteau, Hill and Liberty Counties in North-Central Montana, USA
- harvested cropland, low population density, no large stationary NO_x sources
- NO₂ columns retrieved from SCIAMACHY satellite data are large after fertilisation and subsequent precipitation

Bertram, T. H., et al., (2005), Satellite measurements of daily variations in soil NOx emissions, Geophys. Res. Lett., 32, L24812, doi:10.1029/2005GL024640

NOx from Biomass Burning

- biomass burning is happening on large scales on a regular basis as part of
 - agricultural practices
 - wild fires
 - domestic fires
- it is a significant source of NO_x
- the amount of NO_x emitted per biomass burned varies strongly between different biomass types (savannah, tropical rain forests, boreal forests)
- large amounts of NO_x are emitted in the tropics, much less e.g. in Alaska or Siberia
- in big fires, enough heat is produced to start pyroconvection and to inject NO_x in the upper troposphere

NOx from Biomass Burning: Example


- fires detected by AATSR satellite instrument using IR signature
- NO₂ retrieved from SCIAMACHY measurements
- seasonality of fires and NO₂ is in good agreement
- biomass burning is main NO_x source

NOx from Lightning

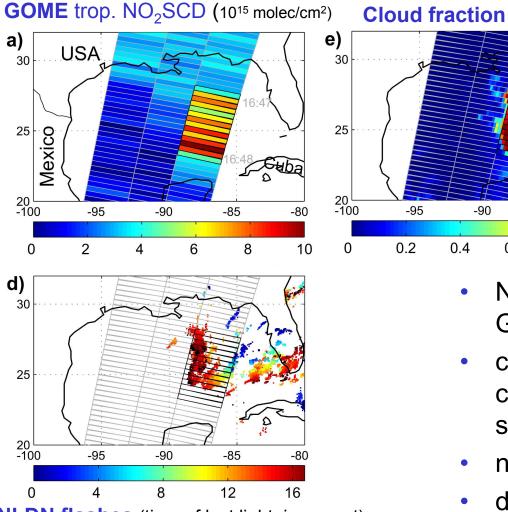
at very high temperatures (> 2000 K)

 $\begin{array}{ccc} O_2 + M & \rightarrow O + O + M \\ O + N_2 & \rightarrow NO + N \\ N + O_2 & \rightarrow NO + O \\ (Zel'dovitch \ mechanism). \end{array}$

 lightning NO_x is computed from the product of lightning dissipation energy and NO yield per Joule of discharge

- estimates have varied dramatically in the past: 1.2 Tg ... 200 Tg N / yr
- recent estimates cluster around 2..5 Tg N / yr
- estimates are based on lightning counts from space and in situ measurements of NO in individual thunderstorms
- lightning NO_x in models often parameterised by cloud height or convective precipitation
- the relevance of lightning NO_x is that it is injected in the upper troposphere, where ozone formation is very efficient

NOx from Lightning: Example


-90

0.4

0.6

-85

0.8

NLDN flashes (time of last lightning event)

NO₂ columns retrieved from GOME satellite data

-80

1

- coincident measurements of clouds, lightning and NO₂ in space and time
- no indication for pollution impact
- direct evidence without a priori assumptions

Beirle et al., Estimating the NOx produced by lightning from GOME and NLDN data: a case study in the Gulf of Mexico Atmos. Chem. Phys., 6, 1075-1089, 2006

Measurements of NOx

Challenges

- high spatial and temporal variability
- what is a representative measurement location?
- vertical distribution

Techniques

- in-situ using chemiluminescence
- locally using absorption spectroscopy
- globally using remote sensing in the visible spectral range

in-situ NOx Measurements

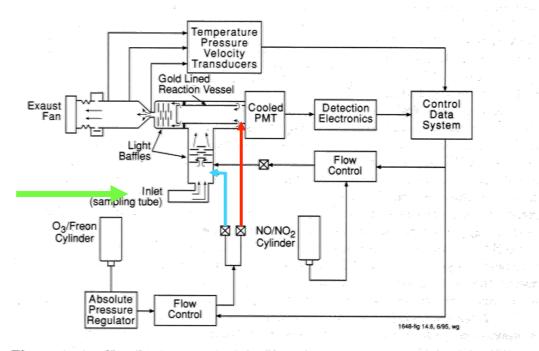


Figure 11.6. Chemiluminescent detector for NO. The sample air is mixed with ozone in the reaction vessel, and the photons from the resulting chemiluminescence are detected by the photomultiplier tube. If the ozone is added before the reaction chamber, the luminescence takes place outside the view of the PMT and gives a background level (Ridley and Howlett, 1974).

Idea:

In some exothermic reactions, part of the energy is released as photons that can be measured by a photomultiplier.

 $O_3 + NO \rightarrow NO_2^* + O_2$ $NO_2^* \rightarrow NO_2 + hv$ $NO_2^* + M \rightarrow NO_2 + M$

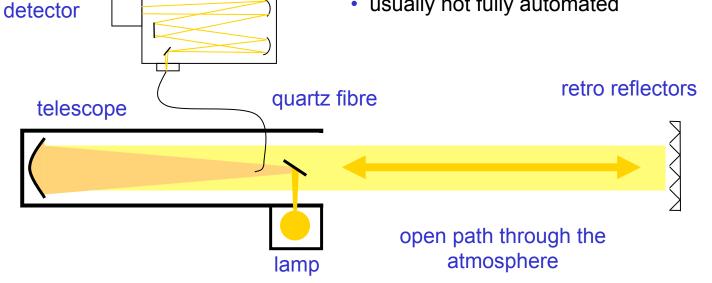
The emitted intensity depends on the effectiveness of quenching which is proportional to the pressure and the concentrations of $[O_3]$ and [NO].

If pressure and $[O_3]$ concentration are kept constant, the intensity is proportional to the concentration of the NO.

Long Path DOAS measurements

Instrument:

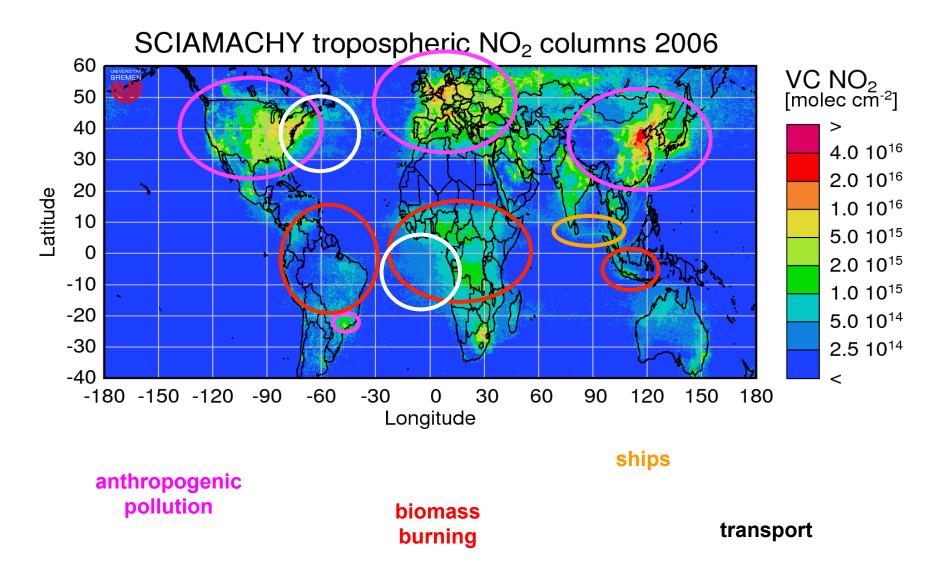
- open path Differential Optical Absorption Spectroscopy (DOAS) system using a lamp as light source
- retro reflectors for simplified set-up •
- white cells (multi reflection) for enhanced ٠ light path possible


spectrometer

advantages:


- measurements at night
- well defined light path
- extension to UV (no ozone layer in between)

disadvantages:


- relatively short light path
- need for bright lamp (+ power)
- usually not fully automated

Satellite NO₂ Measurements

Satellite NO₂ Measurements: Example

Satellite NO₂ instruments

GOME

- 07.95 06.03 (full coverage)
- 4 channels 240 790 nm
- 0.2 04 nm FWHM
- nadir viewing
- 320 x 40 km² ground pixel
- sun-synchronous orbit
- global coverage in 3 days

GOME-2

- similar to GOME
- launched 10.06
- 80 x 40 km² ground pixel
- global coverage in 1.5 days

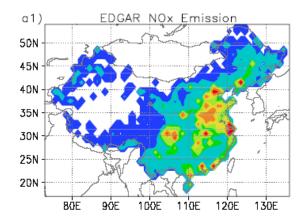
SCIAMACHY

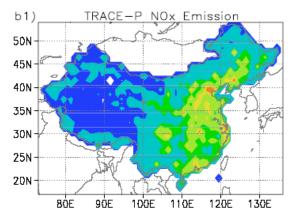
- 08.02 today
- 8 channels 240 1700 nm and 2 – 2.4 μm
- 0.2 04 nm (1.5 nm) FWHM
- nadir viewing
 + limb + solar / lunar occultation
- 60 x 30 km² typical ground pixel
- sun-synchronous orbit
- global coverage in 6 days

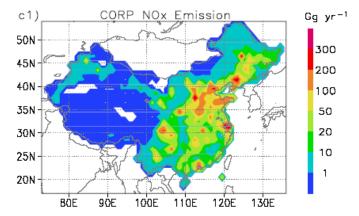
OMI

- imaging spectrometer
- launched 07.04
- 13 x 24 -120 x 24 km² ground pixel
- global coverage in 1 day

NOx Emission Estimates

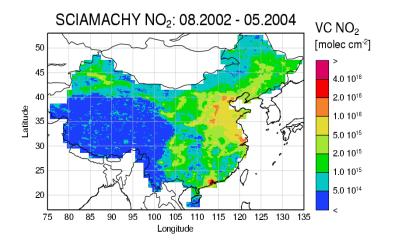

"bottom up"

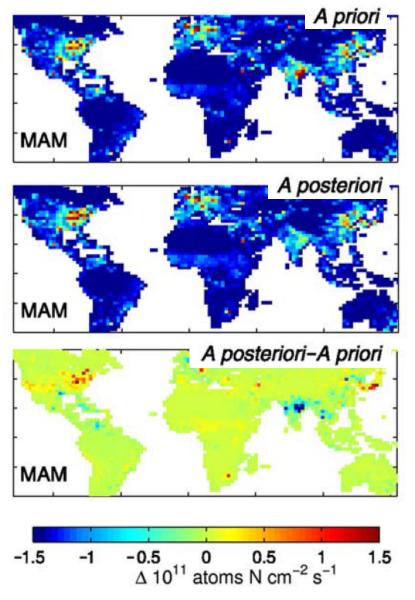

- using statistical data on activities (e.g. number and type of cars, average mileage, average fuel consumption)
- and data on emission factors (x g NO emitted per I fuel)


"top down"

- using measurements of e.g. NO₂ or other species influenced by NO_x
- applying a model to establish the connection between emissions and atmospheric concentrations (or columns)
- iterating emissions in the model to improve agreement between model prediction and measurements
- the more measurements, the better => satellite data should be optimal, but accuracy and lack of vertical resolution is a problem

Example: Bottom up Emission Estimates for China



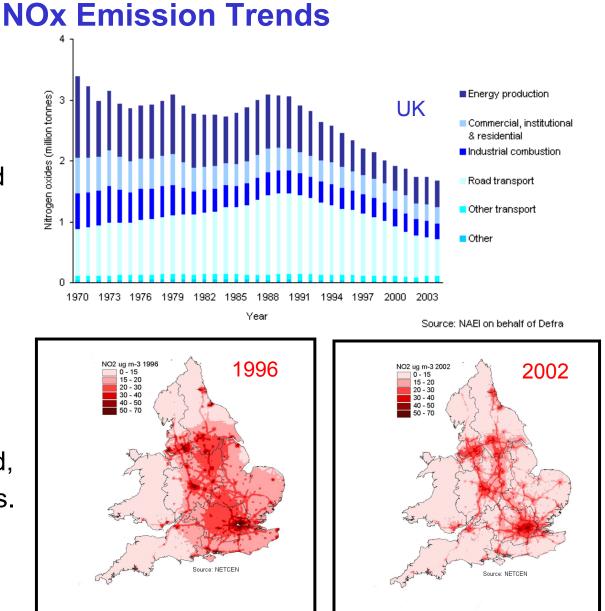

Problem:

- depending on the data source and approach used, emission inventories differ significantly
- political considerations can interfere (in both directions)
- → comparison with independent data e.g. from satellites can help

Ma, J. et al., Comparison of model-simulated tropospheric NO2 over China with GOME-satellite data, Atmospheric Environment, 40, 593-604, 2006

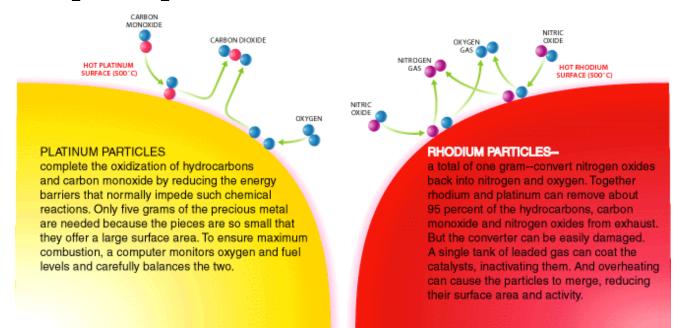
Example: Top Down Emission Estimates

Approach:


- GEOS-CHEM model
- GOME NO₂ columns
- linearized relation between NO_x emission and NO₂ column determined for each grid cell from model
- error weighted combination of a priori (GEIA) and a posteriori emissions
- improved emission inventory with reduced uncertainties

Martin, R. et al., Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns, *J. Geophys. Res.*, **108**(D17), 4537, doi:10.1029/2003JD003453, 2003.

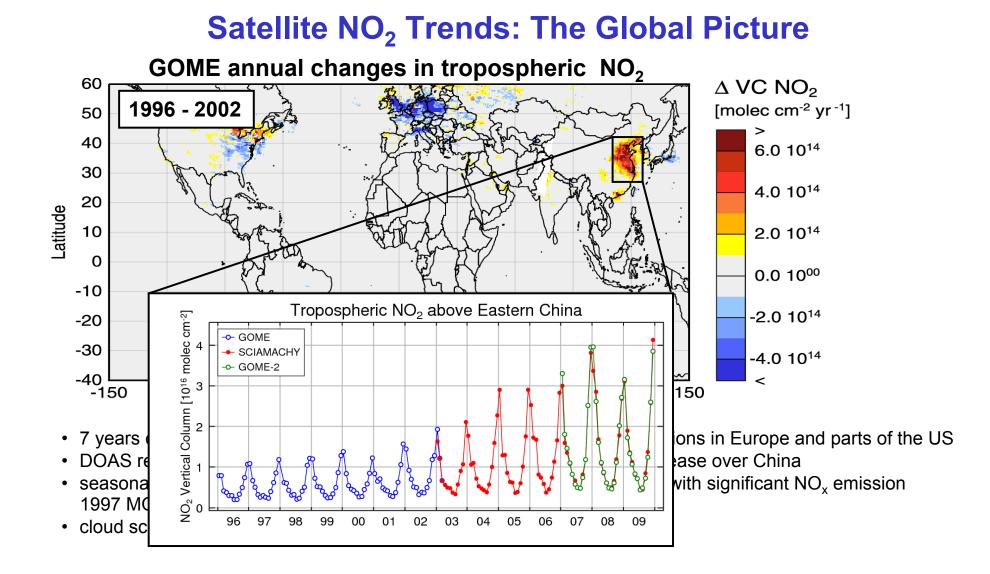
NO_x emissions in Europe, the US and Japan are decreasing:


- switch from coal and oil to natural gas
- use of catalytic converters
- "export" of heavy industry

As a result, NO_2 levels have fallen as expected, but not the ozone levels.

NOx reductions: Catalytic Converter

In principle, if fuel would be fully oxidized, cars should only emit H_2O and CO_2 . However, in practice not all hydrocarbons are oxidized and NO is formed from N_2 and O_2 .



oxidation of hydrocarbons and CO on platinum $2CO + O_2 \rightarrow 2 CO_2$ conversion of NO to N_2 and O_2 using H_2 and CO from the exhausts on rhodium: $2NO \rightarrow N_2 + O_2$

Satellite NO₂ Trends: The Global Picture

GOME annual changes in tropospheric NO₂ 60 Δ VC NO₂ A.A. 1996 - 2002 50 Column Amount normalised to 1996 1 USA 40 1.5 2 Central East Coast USA Western Europe 30 1.4 4 Poland 20 5 Japan Latitude 1.3 ٠, 6 East Central China 10 🚣 7 Hong Kong 1.2 0 1.1 -10 1.0 -20 0.9 -30 Annual GOME NO₂ 0.8 0.7 0.6 0.5 -40 -150 -120 -90 -60 -30 Lo · 7 years of GOME satellite data DOAS retrieval + CTM-stratospheric 96 97 98 99 00 01 02 • seasonal and local AMF based on 1997 MOART-2 run cloud screening

A. Richter et al., Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437 2005

A. Richter et al., Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437 2005

Satellite NO2 Trends: Caveats

What can explain the observed increase in NO₂ over China?

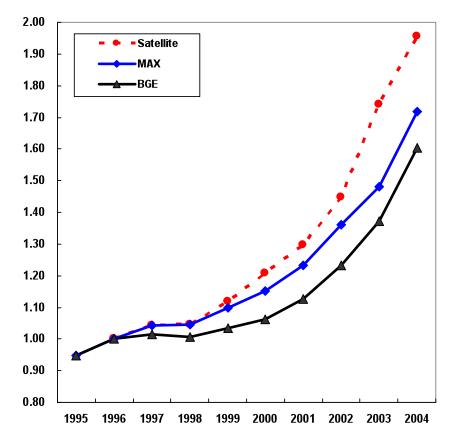
- A GOME instrument drift
 - => this should affect Japan as well but not SCIAMACHY
- A change in viewing conditions as a result of changes in cloud cover, aerosol loading or vertical transport

=> there is no indication for this from the GOME data themselves

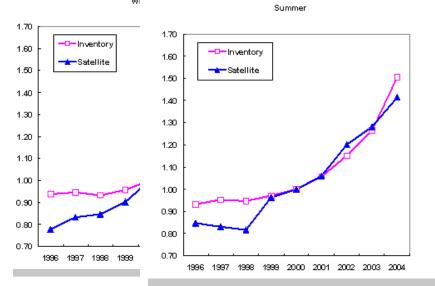
- A change in NO to NO₂ partitioning at constant NO_x levels, for example as a result of a change in O₃
- A change in NO₂ losses, for example as a result of decreased OH concentrations
- An increase in NO₂ concentrations as a result of increased NO_x emissions

Satellite NO₂ Trends over large cities

	Center Coordinates Grid Cell (lat./lon.)	Mean Concentration NO ₂ in 1996 [10 ¹⁵ molec/cm ²]	Linear Trend in NO ₂ [10 ¹⁵ molec/cm ² /a]	Annual Growth Rate (%, Reference Year 1996)
		Biggest Megacities		
Tokyo	35.5°/139.5°	10.9	-0.23 ± 0.19	-2.1 ± 2
Mexico City	19.5°/-99.5°	7.5	0.13 ± 0.05	1.7 ± 1
Seoul	37.5°/126.5°	10.4	0.13 ± 0.13	1.3 ± 1
New York	40.5°/-74.5°	12.9	-0.03 ± 0.17	-0.3 ± 1
Sao Paulo	-23.5°/-46.5°	4.9	0.11 ± 0.11	2.2 ± 2
Bombay	18.5°/72.5°	2.3	0.07 ± 0.03	3.0 ± 1
Delhi	28.5°/77.5°	4.1	0.30 ± 0.06	7.4 ± 1
Shanghai	30.5°/121.5°	5.2	1.5 ± 0.24	29 ± 5
Los Angeles	34.5°/118.5°	11.0	-0.10 ± 0.11	-0.9 ± 1
Osaka	34.5°/135.5°	9.0	0.00 ± 0.11	0.0 ± 1
Jakarta	-6.5°/106.5°	3.7	-0.03 ± 0.04	-0.7 ± 1
Calcutta	22.5°/88.5°	2.6	0.06 ± 0.03	2.2 ± 1
Cairo	30.5°/31.5°	4.0	0.05 ± 0.04	1.3 ± 1
Manila	14.5°/120.5°	2.6	-0.14 ± 0.04	-5.6 ± 1
Karachi	24.5°/67.5°	1.7	0.02 ± 0.02	1.4 ± 1
Moscow	55.5°/37.5°	6.9	0.14 ± 0.27	2.1 ± 4
Buenos Aires	-34.5°/-58.5°	3.3	-0.08 ± 0.06	-2.5 ± 2
Dacca	23.5°/90.5°	2.3	0.03 ± 0.02	1.4 ± 1
Rio de Janeiro	-22.5°/-43.5°	3.8	-0.06 ± 0.07	-1.6 ± 2
Beijing	39.5°/116.5°	11.1	1.2 ± 0.29	11 ± 3
London	51.5°/-0.5°	8.2	0.06 ± 0.17	0.7 ± 2
Tehran	35.5°/51.5°	4.1	0.26 ± 0.05	6.5 ± 1
		Other interesting cities		
Novosibirsk	55.5°/83.5°	1.3	0.13±0.03	11±3
Omsk	54.5°/73.5°	0.84	0.08±0.04	9.9±4
Ruhr (Cologne)	50.5°/6.5°	11.0	-0.40 ± 0.12	-3.6 ± 1

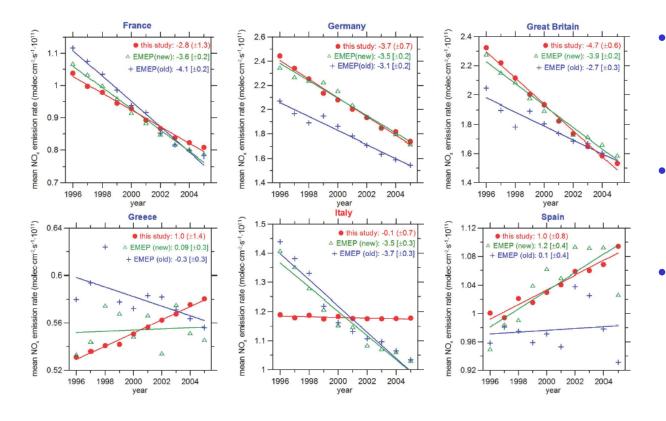

Table 1. The Observed Trend for Several Cities in the Period 1996-2006^a

^aThe 22 biggest megacities are ordered by population number.


van der A, R. J.et al. (2008), Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space, *J. Geophys. Res.*, 113, D04302, doi: 10.1029/2007JD009021.

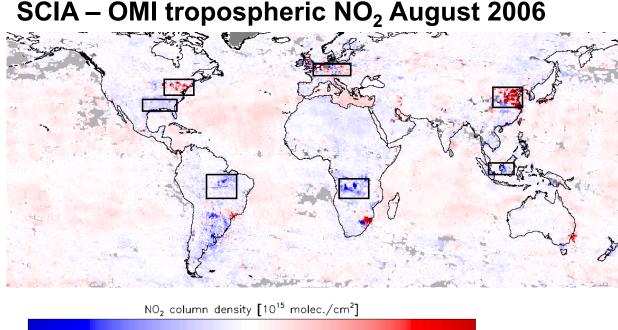
NO₂ Trends: Comparison with bottom up estimates

How do the satellite derived trends compare to bottom up estimates?


Q. Zhang et al., NOx emission trends for China, 1995–2004: The view from the ground and the view from space, J. Geophys. Res., 112, D22306, doi: 10.1029/2007JD008684., 2007

- the latest bottom-up inventories agree qualitatively with satellite data
- summer values agree even quantitatively
- satellite problems in winter?
- strong seasonality in emissions?

NO₂ Trends above Europe


How do the satellite derived trends compare to bottom up estimates?

- GOME and SCIAMACHY data over Europe + CHIMERE
- Comparison to two versions of EMEP emissions
 - Excellent agreement in some regions, disagreement in others

Konovalov, I.et al., Satellite measurement based estimates of decadal changes in European nitrogen oxides emissions, Atmos. Chem. Phys., **8**, 2623-2641, 2008

Diurnal variation of NOx emissions

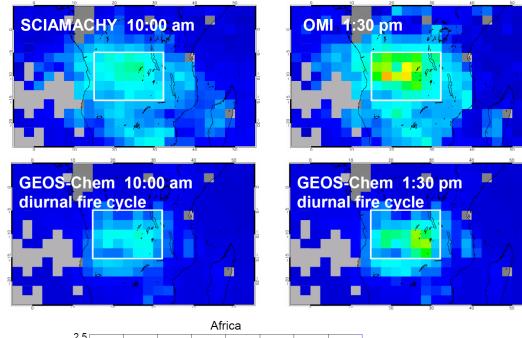
SCIAMACHY:

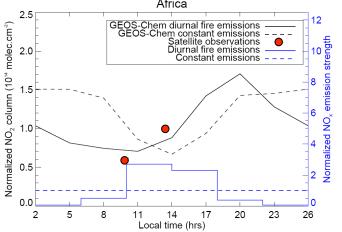
morning orbit (10:00 LT)

OMI:

noon orbit (13:30 LT)

expected changes in

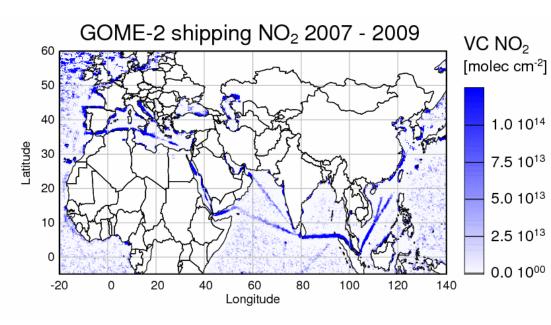

- photochemistry
 => less NO₂ around
 noon
- emissions


 depends on sources
- => SCIAMACHY 10-40% higher than OMI for most anthropogenic source regions
- => SCIAMACHY lower than OMI for biomass burning regions

3

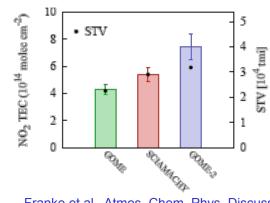
F. Boersma et al., Intercomparison of SCIAMACHY and OMI tropospheric columns: observing the diurnal evolution of chemistry and emissions from space *J. Geophys. Res., 113*, D16S26, doi:10.1029/2007JD008816

Diurnal variation of NOx emissions



Comparison with **GEOS**-**Chem**:

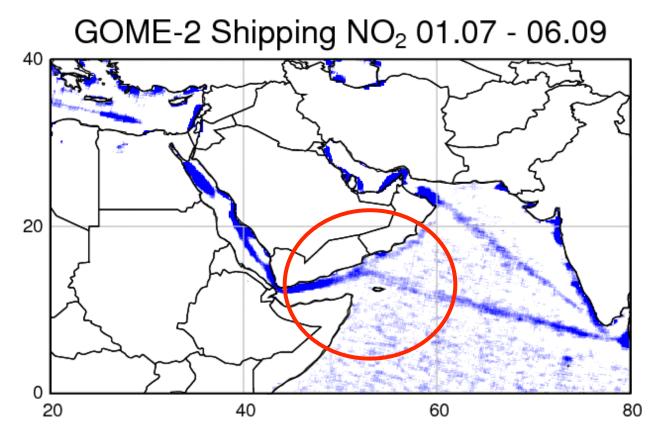
- diurnal variation over biomass burning not correct
- diurnal emission profile needs to be taken into account
- better agreement is achieved
- but: it's only two points...


F. Boersma et al., Intercomparison of SCIAMACHY and OMI tropospheric columns: observing the diurnal evolution of chemistry and emissions from space *J. Geophys. Res., 113*, D16S26, doi: 10.1029/2007JD008816

NOx Emissions from Shipping

Ship emissions:

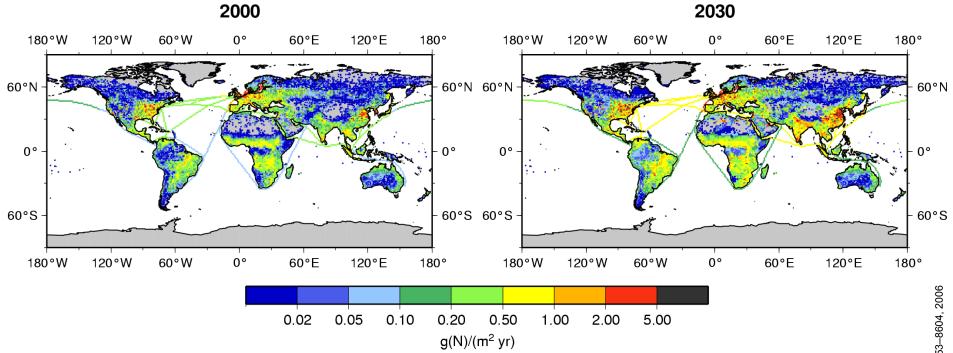
- large source of NO_x, SO_x and aerosols
 - relevant input into marine boundary layer
- well defined NO₂ patterns in Red Sea and Indian Ocean in GOME-2 data
- consistent with pattern of shipping


Franke et al., Atmos. Chem. Phys. Discuss., 8, 15997–16025, 2008

With estimate of NO_2 lifetime, NO_x emissions can be estimated => agreement within error bars.

But: error bars still large (mainly from lifetime)

A. Richter et al., Satellite Measurements of NO2 from International Shipping Emissions, *Geophys. Res. Lett.*, **31**, L23110, doi:10.1029/2004GL020822, 2004


Temporal change in shipping NOx

- Pattern of ship emissions in the vicinity of Yemen changed since 2007
- Probably in response to pirate attacks

NOx Emission Trends: predictions

- more or less constant in industrialised areas
- increases in developing countries
- large increases in Asia
- large increases from shipping

Are Emissions changing from NO to NO₂?

Conventional Wisdom:

- all NO_x is emitted as NO
- rapid conversion to NO₂ via reaction with O₃

Recent Developments:

- measurements hint at up to 20% of NO₂ emissions
- oxidizing particulate traps in diesel engines oxidize NO
- this is going to increase!

Effects:

- change in NO₂ concentrations in rural areas
- effect on top-down emission estimates
- shift in NO_x / NO_y chemistry

Summary

- NO_x (NO + NO₂) in the troposphere is relevant for ozone chemistry, acid deposition
- NO_x emissions are both natural (soils, lightning, fires) and anthropogenic (fossil fuels, fires), the latter dominating
- NO_x can be measured in-situ, NO₂ also by spectroscopic methods both locally and from satellite
- satellite measurements provide interesting insights in many aspects of NO_x emissions and chemistry
- NO_x emissions are changing with decreasing values in the already industrialised countries (improved technology, fuel changes) and increasing values in the industrialising countries (intensified used of fossil fuels)
- technological changes can have unexpected results on NO_x emissions (e.g. diesel engines, soot filters)

=> we are not going to run out of interesting NO_x topics anytime soon!