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STATISTICS 

1.0 CURRENT STATUS OF STATISTICAL ANALYSES 

The statistical analyses compiled by Reinsel, Tiao, and their coworkers provide the most 
comprehensive work on trend direction. This group's efforts represent a long-term involvement 
with ozone data. Their methods have been published in peer-reviewed statistical journals 
(Reinsel and Tiao, 1987), and previous discrepancies with other approaches have been recon­
ciled (Hill et al., 1986). Stemming from this statistical work are some recent analyses concerning 
seasonal trends in total ozone for some of the stations in the Dobson network, reported in 
Chapter 4 of this report. There is a substantial amount of analysis of ozone measurements in the 
meteorological literature, such as the work by Angell and Korshover (1983b). However, because 
such studies do not adequately adjust for the short-term correlation in ozone over time, their 
results are of limited value for drawing conclusions about trends in ozone. For these reasons, this 
review will concentrate on the methods developed by Reinsel and Tiao. 

1.1 Ground-Based Total Column Ozone 

The most complete statistical analysis of ground-based ozone measurements is by Reinsel et 
al. (1987). Based on the measurements of a global network of 36 Dobson spectrophotometers, an 
average trend of -0.026 ± 0.092 percent per year1 was estimated over the period 1970-19842

. 

Perhaps the most important aspect of interpreting these results is to distinguish between the 
average trend associated with these 36locations and a global trend in total column ozone. They 
need not be the same. Although satellite data (see Section 1.3) suggest that trend analysis based 
on the Dobson network is representative of a global trend, more investigation in this area is 
needed. At present it is uncertain how to extrapolate the average trend among the Dobson 
network to a global trend for the entire atmosphere. 

In order to discuss the assumptions that lead to the average trend cited above and to compare 
this analysis with other work, it is helpful to describe the statistical model used by Reinsel and 
Tiao. This model accounts for several factors that influence trend detection: the seasonal 
behavior of ozone, the relationship of ozone with the solar activity, and short-term auto­
correlation within the ozone series. Let ¥ 1 represent the monthly average total ozone recorded 
from a particular Dobson station. This observation is assumed to have the following 
de composition: 

(1) 

In the above expression, p., represents a mean level, 8 1 is a seasonal component, X 1 is a ramp 
function modeling a linear trend in ozone beginning in 1970, Z1 is the monthly average of 10.7 em 
solar flux (or a smoothed version of it), and, finally, N 1 is a random variable representing the 
short-term variation in ozone. The parameter w represents the trend in ozone. Using this 
statistical model and some assumptions on the short-term variation, it is possible to estimate w 
and also derive a measure of the uncertainty in this estimate. 

It is well accepted that the monthly fluctuations in ozone are not independent of one another 
and tend to be positively correlated. One way of accounting for this behavior is to assume that 

1 In this appendix all ± limits correspond to 95 percent confidence intervals. 
2 This trend estimate has been updated to -0.05 ± 0.07 percent per year during the longer period of 1970-1986 for a 

network of 43 Dobson stations (Reinsel, 1988, personal communication). 
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{N1} is approximated by an autoregressive time series (see Sections 2.4, 2.5, and 3.3 for more 
detail). Another approach using spectral analysis is given by Bloomfield et al. (1983). This part of ~ 
the statistical model is necessary in order to obtain reliable measures of uncertainty for the trend 
estimate. Unfortunately, the trend estimates reported by Angell and Korshover (1983b) and 
Heath (1986) based on ordinary least-squares are of unknmvn accuracy because the standard 
errors (SE's) do not allow for autocorrelation. This issue is discussed at length in Section 2. 

The other components in this model are also related to the estimate of w. Modeling seasonality 
of the ozone measurements reduces the variance in the data and thus improves the accuracy of the 
trend estimate. The inclusion of the solar flux reduces bias in the estimate of w by distinguishing 
behavior in ozone due to solar cycle from other long-term trends. 

The statistical model described above is used by Reinsel and Tiao to obtain trend estimates for 
each station. Using a random effects model to describe variation between stations, these 
estimates are combined to yield an average trend for the Dobson network. In order to be able to 
interpret this estimated average trend, this random effects model will be briefly described. The 
36 stations can be divided into seven geographic regions (see Table 1, from Hill et al., 1986). Let 
w;,J denote the actual trend in total ozone for the ith station in the jth region. This trend is 
assumed to satisfy the equation 

w· · = w + a + f3· · l,j 'j l,j 

where w is the actual" global" trend in ozone, ai is a zero mean random variable that reflects the 
variability in trends between different regions, and f31.J is a zero mean random variable that 
reflects the variability of trends within a region. It should be noted that the term f3i.J not only 
represents variability due to meteorological effects but also accounts for spurious trends such as 
calibration problems for particular stations. With this decomposition, the estimated trend for a 
particular station can be expressed as 

w · = w + a + /3· · + E · ~J 'j lJ lJ 

where E;,J is the error in the trend estimate due to the variability of the ozone within a station's 
record. 

This "random effects" model can be used to derive an estimate for w that is a weighted 
average of the individual trend estimates; a standard error for this estimate can also be 
calculated. This approach for combining individual trend estimates has an advantage over a 
simple average because it adjusts for correlation among stations within the same region. The 
spatial correlation implied by this model, however, has a simple structure that may not be a good 
approximation of the ozone field. It assumes that all stations within a region are equally 
correlated while stations in different regions are independent. A more serious problem is 
interpreting the parameter w. Although Reinsel et al. (1987) refer tow as a global trend in ozone, 
this is an assumption and is not implied by the random effects model. A more precise definition 
of w is that it represents the component of trend in total ozone that is common to all the stations 
used in the analysis. 

An alternative to the time domain approach of Reinsel and Tiao can be found in Bloomfield et 
al. (1983). Rather than using a random effects model to combine estimated trends, a similar 
model is used to construct an average ozone series. The parameter w is then estimated from the 
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Fourier transform of this single series. This frequency domain analysis has the advantage that 
less need be assumed about the structure of the short- and long-term variation in ozone. One 

Table 1. Dobson Network Used in Total Ozone Trend Analysis 

Region Station Location Data Period 

North America Resolute, Canada 75°N, 95°W Jan. 1958-Dec. 1984 
Churchill, Canada 59°N, 94°W Jan. 1965-Dec. 1984 
Edmonton, Canada* 54°N, l14°W April 1958-Dec. 1984 
Goose, Canada 53°N, 60°W Jan. 1962-Dec. 1984 
Caribou, USA 47°N, 68°W Jan. 1963-Dec. 1984 
Bismarck, USA 47°N, 101°W Jan. 1963-Dec. 1984 
Toronto, Canada 44°N, 79°W Jan. 1960-Dec. 1984 
Boulder, USA 40°N, 105oW Jan. 1964-Dec. 1984 
Nashville, USA 36°N, 87°W March 1963-Dec. 1984 

Europe Aarhus, Denmark 56°N, l0°E Jan. 1958-Dec. 1984 
Lerwick, United Kingdom 60°N, loW Jan. 1969-Dec. 1984 
Bracknell, United Kingdom 51°N, loW Jan. 1969-Dec. 1984 
Potsdam, GDR 52°N, 13°E Jan. 1964-Dec. 1984 
Belsk, Poland 52°N, 21°E April 1963-Dec. 1984 
Hradec Kralove, Czechoslovakia 50°N, 16oE Aug. 1961-Dec. 1984 
Hohenpeissenberg, FRG 48°N, l1°E Jan. 1968-Dec. 1984 
Arosa, Switzerland* 47°N, l0°E Jan. 1958-Dec. 1984 
Mont Louis, France 42°N, 2oE March 1962-Dec. 1979 
Vigna di Valle, Italy 42°N, 12°E Jan. 1958-Dec. 1984 
Cagliari/Elmas, Italy 39°N, 9°E Jan. 1958-June 1984 
Lisbon, Portugal 39°N, 9°W Oct. 1967-Dec. 1984 

India Srinagar, India 34°N, 74°E Feb. 1964-Nov. 1984 
Quetta, Pakistan 30°N, 67°E Jan. 1964-Dec. 1984 
New Delhi, India 29°N, 77°E Jan. 1960-Dec. 1984 
Varanasi, India 25°N, 83°E Jan. 1964-Dec. 1984 
Mount Abu, India 25°N, 73°E Nov. 1969-Feb. 1982 
Kodaikanal, India* l0°N, 77°E Jan. 1961-Dec. 1983 

Japan Sapporo 43°N, 141 OE Feb. 1958-Dec. 1984 
Tateno* 36°N, 140°E Jan. 1958-Dec. 1984 
Kagoshima 32°N, 131oE Jan. 1960-Dec. 1984 

Australia Brisbane 27°S, 153°E Jan. 1958-April 1983 
Perth 32°S, l16°E March 1969-April 1983 
Aspendale* 38°S, 145°E Jan. 1958-Dec. 1982 
Macquarie Island* 54°S, 159°E April 1963-Aug. 1981 

South America Huancayo, Peru* 12°S, 75°W March 1964-Dec. 1984 
Buenos Aires, Argentina* 35°S, 58°W Oct. 1965-Dec. 1984 

Pacific Mauna Loa, Hawaii* 20°N, 156°W Jan. 1964-Dec. 1984 

*Nine-station network used by Hill eta!. (1977). 
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disadvantage of this model, however, is that stations within a particular region are constrained 
to having the same spectrum. This assumption is also made among the regional effects. 
Although this analysis yielded a trend estimate that differed slightly from that of Reinsel and his 
coworkers, most of the discrepancy can be explained by different sensitivities to extreme ozone 
values and to the solar variable, by different lengths of data records, and by different methods for 
modeling the seasonal variance (Hill et al., 1986). 

Recent results reported in Chapter 4 suggest that the trend in ozone may depend on the 
seu.son. For Arosa and several other northern stations, the percent losses in total ozone tended to 
be greater in the winter. Thus, the estimated trend may be more sensitive to the statistical 
treatment of the seasonal component than would otherwise have been expected. Another 
implication of these results is that the sensitivity of the trend estimates may be improved by 
concentrating on the months in which a larger trend is expected. Because monthly ozone values 
are autocorrelated, the estimated trends for each month will also be correlated. This feature 
makes it difficult to interpret the 12 individual trend estimates. However, these estimated 
monthly trends can be averaged to yield an estimate of the annual trend; a standard error for this 
estimate can be computed using the dispersion matrix of the individual estimates. Some of the 
statistical issues of coping with the seasonality in ozone are discussed in Section 3. 

1.2 Ground-Based Ozone Profiles (Umkehr) 

Statistical analysis of the Umkehr data supplied by some stations in the Dobson network is 
motivated by the suggestion that the main depletion of ozone due to the release of chloro­
fluorornethanes (CFM's) will occur at altitudes between 35 to 40 km (Umkehr layers 7 and 8). 
Trend analysis that concentrates on this segment of the stratosphere may be more sensitive in 
detecting a depletion due to CFM's than an analysis based on total column ozone. In fact, Reinsel 
et al. (1987) report a statistically significant negative trend in layers 7 and 8. However, these 
results need to be qualified in two ways. First, the average trend estimate for a particular layer 
cannot be interpreted as a global trend, but rather refers to the average ozone in the layer above 
the Dobson stations taking Umkehr data. Also, Umkehr measurements are sensitive to strato­
spheric aerosols (see Chapters 3 and 5 of this report). Although Reinsel's method attempts to 
adjust for aerosols, all the bias caused by the presence of aerosols may not be removed. 

The statistical methods applied to the Dobson profile data are similar to the analysis of the 
total column measurements; therefore, only some specific remarks will be made. To account for 
the dependence of the Umkehr measurements on aerosols, an additional variable was included 
in the model (1). This is the atmospheric transmission of solar radiation measured at Mauna Loa, 
Hawaii. Although these transmission data are specific to the integrated amount of aerosols in the 
stratosphere over Mauna Loa, it is assumed in Reinsel et al. (1987) that a smoothed and possibly 
lagged version of this series may be appropriate at other locations. One weakness in this analysis 
is that the choices for smoothing and lagging the transmission series were not based on a specific 
statistical model. Nevertheless, the estimated effects due to aerosols on the different ozone 
layers are in agreement with theoretical predictions. Available aerosol data are discussed in 
Chapter 10. Reinsel and his coworkers are currently exploring the use of lidar measurements to 
improve aerosol corrections. 

An earlier analysis of Umkehr data by Bloomfield et al. (1982) came to different conclusions 
from those of Reinsel et al. (1987). Specifically, the earlier analysis detected no significant 
negative trends. However, the earlier analysis included no attempt to correct for aerosol effects, 
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and was based on older data. Since the statistical methods used were similar to those of Reinsel et 
al. (1987) in other respects, it is to be expected that an updated analysis would give results largely 
in agreement with those of the later analysis. 

1.3 Satellite Data 

The Solar Backscatter Ultraviolet (SBUV) instrument aboard Nimbus-? provides the most 
recent and the longest record of ozone measurements from a satellite (see Chapter 5). These data 
can be used in two different ways to improve trend detection. In contrast to the Dobson network, 
the Nimbus-7 ozone data provide nearly global coverage. Thus it is fairly simple to construct 
zonal or global series as aggregations of the raw data. Another use of the satellite data is to assess 
the global representativeness of the Dobson instrument network. Both of these topics are 
considered in Reinsel et al. (1988). This work gives an estimate of- 0.35 ± 0.28 percent per year 
for the global trend in total ozone for November 1978 to September 1985, after adjusting for a drift 
in the SBUV instrument and accounting for solar activity3

. Comparing the satellite measure­
ments at the locations of the Dobson stations with the full record of measurements suggests that 
the average trend estimated for this network will be similar to a global trend. 

This work uses the same model as that given in (1). The time scale is monthly means, and Yt 
should be interpreted as some aggregation of the raw data either over blocks (10 degrees of 
latitude by 20 degrees of longitude), over zones (bands of 10 degrees latitude), or over th~ entire 
surface covered by the satellite (70°S latitude to 70°N latitude). In each of these cases, just as in the 
Dobson measurements, successive ozone values tend to be correlated. This autocorrelation must 
be taken into account to derive reliable uncertainty levels for estimated trends. One notable 
feature of this data set is its short length (7 years) relative to the Dobson data. Since this time 
series does not even span one solar cycle, the adjustment of the ozone series using a covariate for 
solar activity (such as 10.7 solar flux) is important. Reinsel et al. (1988) have included such a solar 
term in their analysis. 

Trend analysis using the SBUV data alone is difficult because of an instrument drift (dis­
cussed in Chapter 2). Reinsel et al. (1988) estimate a linear drift to be -0.39 ± 0.11 percent per 
year using the Dobson network4

. If the satellite data are adjusted by this estimated drift, then the 
standard error of the estimated trend must also reflect the uncertainty of the drift estimate. 
Reinsel et al. (1988) include the contribution of the drift uncertainty in the trend standard error, 
but their method is not entirely satisfactory. 

The representativeness of the Dobson network was evaluated by taking a weighted average 
of all blocks containing the 36 stations used in Reinsel et al. (1988). When this series was 
subtracted from the global series, no significant trend was found in these differences (- .06 ± .12 
percent per year). Although these results suggest that a trend in the Dobson network may be 
similar to a global trend, there are some problems with this comparison. The blocks are not point 
measurements of total column ozone but are themselves averages over a substantial amount of 
surface area. This may cause closer agreement with the global series than might otherwise occur 
if one used the measurements taken at specific locations. Also, in the actual Dobson analysis, 

3 This trend estimate has been updated to -0.28 ± 0.22 percent per year for the period November 1978 through 
December 1986 (Reinsel, 1988, personal communication). 

4 This drift estimate has been updated to -.40 ± 0.11 percent per year for the period November 1978 through 
December 1986 (Reinsel, 1988, personal communication). 
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individual trends are estimated for each station and then combined. This differs from first 
forming an average series from the blocks and then estimating the average trend from this single 
series. 

2.0 TEMPORAL AND SPATIAL CORRELATION 

An important contribution of statistical methods to problems such as estimation of trends in 
ozone data is attaching an appropriate measure of uncertainty to any trend estimate. In this 
section we shall review the calculation of such measures and discuss their validity. 

2.1 Least-Squares Estimates 

The calculation of the least-squares slope of a set of data is the most familiar example of trend 
estimation. Suppose that the data are y 1 , y2 , • .. , Yw Then the least-squares estimate of slope is 

where 

n 

'L (t- t) (yt- y) 
w= ~t-=~1~-----------­n 

'L rt- ()2 
t= 1 

n 

t = (n + 1)/2 and y = (lin) L Yt· 
t= 1 

The full equation of the fitted line is 

y=y+w(t-tJ. 

(2) 

The residuals are the vertical distances from the data points (t,y1) to the line, and are given by 

rt = Yt - Yt = Yt- {y + w (t- t) }. 

The residual sum of squares is just n 

L r~, 
t= 1 

and the residual mean square is this divided by the degrees of freedom (n- 2), 

n 
s2 = __ l __ L r~. 

n-2 t= 1 

The standard error of the slope estimate w (as it is usually calculated) is 

s 
SE(w) = ""' ~ ' 

v 'L (t- ()2 
t= 1 

(3) 

and it is common for the estimated slope to be reported as "w ± SE( w)" or, for reasons 
described in the next section, as uw ± 2 SE( w)". But what meaning can be attached to such a 
report? 
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2.2 Interpretation of Standard Error 

We can give a firm interpretation to a standard error such asSE( w) only by reference to some 
model for the randomness in the data. The simplest such model is 

Yt = f.L + w (t - t) + Et, (4) 

where {EI>E2, •. . ,En} are random errors, independently drawn from a Gaussian distribution with 
mean value 0 and variance a 2 . The constants JL, w, and a are the (statistical) parameters of the 
model, andy, w, and s are estimates of these parameters. The implication of such a model is that 
the observed set of data {yl>y2 , .. . ,yn} is only one out of an infinitely large set of possible data 
sequences, each with different values of theE's. The observed data are a sample (of size 1) from the 
population of possible sequences. 

Since each possible sequence gives rise to a different value of w, the model implies a 
distribution for w, called its sampling distribution. The variance of this distribution is 

a2 
var( w) = -----c:n::------- (5) 

L 
t= 1 

and, consequently, the standard error calculated in (3) can be regarded as an estimate of the 
square root of this variance. 

It follows that for an appropriate constant t·;~ 2 , the range of values 

has a 95 percent chance of containing the "true" slope value, w, or, in a certain sense, 

(6) 

Since the tabulated values fort·;~ 2 are all at least 1. 96, and for n > 60 are at most 2, the interval 
is often approximated by 

w ± 2SE(w). 

Thus, "2a" limits can be interpreted as giving an approximate 95 percent confidence interval. 

2.3 Limitations of the Model 

Evidently the credibility of the standard error (3) depends on the credibility of the model (4), 
in light of the data. It is often clear by cursory inspection that the Gaussian distribution is not a 
good model for the distribution of the errors E1• The Gaussian distribution is symmetric about its 
center and has relatively short tails, behavioral aspects that are often not shared by real data. 
However, it is known that the confidence interval statement (6) is not drastically affected by such 
deviations from the model (the effects of such deviations in the simpler case of estimating a mean 
are discussed by Benjamini, 1983). 

A more serious problem is that the model (4) states that the data are independent of each other, 
and hence uncorrelated. In many sets of real data, however, especially those collected sequentially 
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in time (time series data), cursory inspection reveals serial (or temporal) correlation in the data. 
Unfortunately, the effect of correlations among the data, including serial correlation, is generally 
to invalidate any confidence interpretation of the conventional standard error formula (3). 

How is correlation visible? Positive correlation among consecutive observations means that a 
value higher than expected (that is, one with a positive error t:) is likely to be followed by another 
observation with a positive t:. Such persistence of deviations above or below what is expected is 
characteristic of many real series, including ozone data and most of the related meteorological 
data. Figure 1 shows annual mean ozone levels at Arosa, Switzerland, 1933 to 1982, from Birrer 
(1975) and Dutsch (1984b). Also shown is the (least-squares) regression line for the data, with 
equation 

y = 336.4 - 0.1648 (year- 1957.5). 

The occurrence of several values in a row above or below the regression line is evidence of 
positive serial correlation, though it is less strong in this series than in many. Figure 2 shows the 
same data with least-squares lines fitted through data for several successive 10-year periods. This 
is essentially the same as the analysis of Bishop and Hill (1982). The coefficients of the lines are 
given in Table 2. The average of the nine SE's is 0.819, whereas the standard deviation of the 
calculated trends is 1.199. Thus the calculated trends show 46 percent more variation than their 
standard errors suggest they should. For series with stronger correlation between consecutive 
values, such as monthly station data and regional or global average series, the actual variability 
can exceed the estimated standard error by much more than in this case. 

Where does this leave us? The standard formula (3) is, in general, meaningful only in the 
context of the model (4), but this model is untenable for most of the data we need to analyze for 
trend. Evidently we need a more tenable model, and a new formula for standard error that has 
the desired confidence interpretation (6) in the context of that model. 

We shall see that other models may suggest other formulas for slope estimates, as well as for 
their standard errors. In general, these other slope estimates differ little from the ordinary 
least-squares estimates (2), and, in fact, (2) is asymptotically efficient in the presence of 
stationary autocorrelated noise (Grenander, 1954). Thus, the problem lies mainly in obtaining 
valid standard errors, not in calculating the slope estimate itself. 

Table 2. Coefficients of least-squares lines 

Start year End year Centercepta Slope SE (slope) 

1933 1942 340.633 1.526 1.276 
1938 1947 338.458 -0.678 1.397 
1943 1952 335.892 1.753 0.676 
1948 1957 337.450 0.224 0.799 
1953 1962 339.600 0.490 0.747 
1958 1967 337.976 -1.915 0.754 
1963 1972 335.576 0.643 0.727 
1968 1977 334.392 -1.166 0.578 
1973 1982 330.375 0.044 0.440 

a The centercept of the line is its height at the midpoint of the interval to which it is fit. 
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Figure 1: Annual mean ozone levels at A rosa, Switzerland, 1983-1982. (Unweighted averages of monthly 
means, with missing months replaced by least-squares estimates.) 
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Figure 2: Arosa data with least-squares fitted lines. 
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2.4 An Elementary Model for Temporal Correlation 

Models for serially correlated data have been discussed extensively in the statistical literature 
(see, for example, Box and Jenkins, 1976). One of the simplest is the (first-order) autoregressive 
model 

71 t = cP'T/t- 1 + Et, I ¢1 < 1' (7) 
i: 

where the E's are, as in (4), independent from mean 0 and variance a 2. If we introduce the 
backshzft operator B, defined by 

and more generally 

the model (7) may be written 

whence 

and 

For this model, the serial covariances (or autocovariances) are 

a2¢1hl 
Yh = COV(TJt,'T/t-h) = 1 _ cP2 ,-x<h<'X! 

and the serial correlations are 

(8) 

Since ¢can be arbitrarily close to 1, this model can display correlations that are also close to 1, 
and that die away very slowly as the time separation h increases. 

Now suppose that we wish to estimate a trend in the presence of correlated errors with the 
structure (7). That is, suppose that we wish to estimate w in the equation 

Yt = J.1. + w (t - t) + 'Tit, 

where {'Tit} satisfies (7). If we know the value of¢, the simplest solution is to construct a new set of 
data 
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= {J.L + w(t- t) + 7] 1} - 1>{~-L + w(t- 1 - t) + 7]1-d 

= (1 - rp)(J.L + w/2) + w(1 - rj>)(t- t- 112) + 1Jt - 1>1Jt-l 

= (1 - rp)(J.L + w/2) + w(l - rp)(t - t- 112) + €1, 

for t = 2, .. . ,n. If we write 

xt* = (1 - rp) (t - t- 112) 

and 

J.L* = (1 - rf>)J.L + (1 - rp) w/2, 

then the modified data satisfy 

STATISTICS 

which is in the same form as the original equation (4), with errors €1 that are now uncorrelated. It is 
therefore legitimate to estimate w by least-squares, and to report its standard error as in equation 
(3). The resulting estimate is 

n 

L xt*(yt*- y*) 
Warl = -'t_=-=-2 ____ _ 

n 

L x/2 
1=2 

with standard error 

where 
n 

2 __ 1_"'r *- -*- , *J2 
Sarl - -3 .L.J Yt Y WarlXt · 

n t=2 

It may be shown that if n is large and 11>1 is not close to 1, the new slope estimate warl is very 
close to the estimate w of equation (2). However, the new standard error may be quite different 
from the earlier version, and is typically larger. In fact, we can show that if n is large and 11>1 is not 
close to 1, then the (valid) standard error of war! is larger than the (invalid) standard error of the 
least-squares estimate w by the factor 

Vn + rJ>)ICl - ¢). 

For the Arosa annual average data, the estimated value of 1> is around 0.25, which would 
make this factor approximately 1.29. Since we observed 46 percent more variation among the 
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slopes than was suggested by the least-squares standard error, rather than 29 percent, there is 
even more variability among the calculated trends than is predicted by the model (7). 

Reinsel et al. (1987) found the month-to-month correlation for SBUV total ozone column data 
averaged from 70°S to 70oN to be around 0.84, which would make this factor 3.39. Thus, for 
ozone data averaged over a large region, in this case most of the globe, the effect of ignoring serial 
correlation can be a reported standard error of less than a third of its true value. Reinsel et al. 
(1988) give several illustrations of the difference between the valid and invalid standard errors. 

In practice, of course, we will not know the value of¢, but it may be estimated from residuals 
and, provided the series length is adequate, used essentially as if it were known. An iterative 
procedure in which ¢and ware updated alternately was suggested by Cochrane and Orcutt 
(1949), and has been shown to yield maximum conditional likelihood estimates (Sargan, 1964). 
The procedure is discussed by Shumway (1988, Section 3.5). 

2.5 More General Temporal Models 

Equation (7) is often not the appropriate model for a given set of data; in practice, serial 
correlations may not show the simple exponential decay of equation (8). However, it is the 
simplest of a family of models (the ARMA family) that can be used in this way to model serial 
correlation and to provide valid standard errors for parameter estimates. The ARMA model of 
order (p,q) has the form 

p q 

7Jt = 2: ¢r7Jt-r + 2: ()sEt-s· 
r~l s=O 

In terms of the backshift operator, this may be written 

()(B) 
7Jt = qy(B) Et 

where the polynomials qy(z) and ()(z) are defined by 
p q 

qy(z) = 1 - L ¢rzr, ()(z) = L () 8 Z8
• 

r=l s=O 

The constraint J ¢/ < 1 in the first-order model is generalized to the requirements 

qy(z) i= 0 for /z/ ::;: 1, ()(z) i= 0 for /zl < 1. 

For this model, the autocorrelations 

cannot be written down explicitly, but satisfy the difference equation 
p 

Ph = 2: ¢rPh-r' h > q. 
r= 1 

(9) 

They therefore still decay to zero at an exponential rate as h ---:;.. oo, but not as a simple 
exponential sequence. 
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As in the case of the AR(1) model (7), the slope of a trend line should be estimated not by 
ordinary least-squares, but by some method that takes the covariance structure of the data into 
account. Various methods are available, and some are implemented in the more complete 
statistical packages. It is again true that the slope estimate itself is generally close to the one 
obtained by ordinary least-squares, but its standard error may be very different when calculated 
appropriately. The approximate ratio of the correct standard error to the incorrect one can again 
be calculated, but it is more easily expressed in terms of the power spectrum of the model than its 
autocovariances. 

The power spectrum of a stationary time series is the function whose Fourier coefficients are 
the autocovariances 

00 

s(f) = :2 'Yh€- 2-rrifh, 0 Sf< 1, 
h=-x 

from which it follows that 
1 

'Yh = Jo e2Tiifh s(f)df, -cc < h < :x:. 

The power spectrum of the ARMA(p, q) model (9) is 

Grenander (1954) showed that the variance of the sampling distribution of a trend estimated 
from a stretch of data of length n is, for large n, approximately 

s(O) 
var( w) = ---::n,...-----

:2 (t- ()2 
t= 1 

(10) 

Comparison with equation (5) shows that the factor a 2 in the numerator has been replaced by 
s(O), the power spectrum evaluated at zero frequency. Equation (10) can be used as the basis for 
computing the approximate standard error of the trend estimate, or merely to get an indication of 
how much the standard error differs from the result given by the formula (3), the ratio being just 

Vs(O) I J\(f)df. 
0 

2.6 Spatial Correlation 

In the previous sections we discussed the complications that arise when we analyze data 
collected over time, with correlation among observations that are close together in time (serial 
correlation, or temporal correlation). Measurements made close together in space also tend to be 
correlated, and when such measurements are analyzed jointly, their spatial correlation also 
needs to be taken into account. 

One general approach to analysis of spatiotemporal data is based on models generalized from 
the strictly temporal models described above. However, this approach requires the data to be 
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collected on a regular grid of locations, and to show some homogeneity in their correlation 
structure. One or both of these features is absent in most of the data that have been collected in 
studies of ozone and other atmospheric trends. However, more ad hoc solutions can be found for 
certain problems. 

One such problem is the need to combine quantities calculated from data collected at different 
locations. Suppose that 01 and 02 are estimates of similar quantities at two locations. Each Omight 1 
be a trend estimate, or an average ozone level over a decade, or a change in such an average from 
one decade to the next. The standard error of the average 

is given by 

SE(iJ)=~ 
where 

varcfJ) = (1/4) { var(B1) + var(02) + 2cov(01,02)}. 

The two variance terms can usually be obtained from the analysis of the data for locations 1 
and 2 separately, but the covariance term depends on the joint behavior of the two sets of data, 
and therefore can be calculated only from a joint analysis. While this is not a difficult analysis to 
carry out, it is not one that the commonly available statistical packages are set up to handle. 
Reinsel and Tiao (1987) describe a method that amounts to doing just this, in their analysis of an 
entire Dobson network, but the method is not easy to implement with standard software. As a 
result, it is more convenient to calculate summary statistics for a number of locations in a slightly 
different way. 

Consider, for instance, the problem of calculating an average trend for all Dobson stations in a 
certain latitude band. Since it is straightforward to calculate a trend for each station, it might 
seem that the way to proceed is to simply combine the individual trends. However, to compute 
the standard error for this average we would need to know all the covariances among the 
individual station trends. We can, instead, form an average ozone time series for the band, then 
estimate the trend in this single series. The standard error of the resulting estimate may then be 
obtained in the usual way. The estimated trend in the average series is, in general, close to the 
average of the individual trends, and may actually be a more appropriate quantity to consider. 

The weakness of this approach is that the analysis of the average series can account only for 
the statistical fluctuations that are visible in the average. Thus, phenomena that induce spurious 
trends in the individual station records, for example instrument drift, pass undetected, while in 
Reinsel and Tiao's approach they show up as variations among the individual trend estimates. 
As a result, the standard error obtained from analysis of an average series may need to be inflated 
to allow for such phenomena, while the standard error calculated from Reinsel and Tiao's 
method automatically allows for them. Neither approach can handle spurious trends common to 
all stations, so in either case some allowance must be made for these. 

3.0 SEASONALITY IN OZONE DATA 

In this section we review various ways in which ozone data show seasonal behavior, the 
problems such behavior raises, and some of the solutions used. 
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3.1 Seasonal Structure in the Mean 

Seasonal structure is one aspect of many time series that needs to be considered when 
estimating a trend. It is usually easy to separate seasonal behavior from trend, so the issue is not 
one of confusion between the two so much as estimating the size of the random errors in the 
data. 

There are two basic strategies for coping with seasonality in the mean. One is to use seasonal 
adjustment to remove the seasonal behavior, and then to estimate trend from the seasonally 
adjusted data. The second is to fit a model that includes both seasonal structure and a trend term, 
so that both parts are estimated simultaneously. The former is preferred in exploratory analysis 
as it allows more flexibility in estimating the trend. For instance, a graph of the adjusted data will 
often suggest what kind of trend is actually present, and will typically provide a preliminary 
estimate of its magnitude. By contrast, simultaneous estimation is preferable when a model has 
been chosen and its parameters are being estimated. One advantage of simultaneous estimation 
is that it usually provides standard errors for all estimated parameters, as well as their 
correlations. 

In either case, it is necessary to specify the seasonal structure to be removed or incorporated 
into the model, respectively. The simplest approach is to allow an arbitrary mean for each 
month5. If we write the data as 

where Stand Zt represent the seasonal and nonseasonal parts of the data, respectively, then this 
amounts to putting 

st = JLi if data month t falls in calendar month i, i = 1,2, ... 12. 

Here, JLt is the mean of January data, JL2 is the mean of February data, and so on. 

This approach has the merits of simplicity and ease of interpretation, but in short series it may 
be undesirable to use as many as 12 parameters to describe seasonal structure. An alternative 
approach is to use a sine-cosine expansion. In this case, we put 

J 

st = JL + L {Ajcos(21ljt/12) + Bjsin(21ljt/12)} 
j=l 

where J ~ 5, using 2J + 1 parameters. Often J = 1 or J = 2 is sufficient, corresponding to 
fitting an annual wave with three parameters, or annual and semiannual waves requiring five 
parameters, respectively. If we set J = 6 with the constraint B6 = 0, there are again 12 para­
meters; this is effectively the same as allowing an arbitrary set of monthly means. 

Figure 3 shows the results of these two approaches for the monthly Arosa data. The asterisks 
indicate the monthly means; the curve is constructed from a sine-cosine expansion withJ = 2 
(estimated by ordinary least-squares). This two-frequency model fits most of the monthly means 

5 For ease of exposition we deal only with the case of monthly data. The modifications necessary for other types of 
seasonal behavior are clear. 
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Figure 3: Seasonal structure of monthly Arosa data. 
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well in the graph, but the lack of fit in March and April could be critical in a trend study (see 
Section 3.2 below). 

3.2 Seasonal Structure In the Trend 

The issue of seasonal structure in the mean of a series discussed in the previous section may 
also extend to estimating a trend, if theory or observation suggests that the trend may vary from 
season to season. 

Suppose, for instance, that trend is being measured by a ramp function such as 

A 
A + w (t- t0 ) 

A+ w(t- to)+, 

if t < t0 
if t 2: t0 

where (t- t0)+ is defined by 

(t t ) _ { 0 if t < t0 
- 0 + - (t - t

0
) if t 2: t

0
• 

The function rt has the constant level A up to month t0 , and increases with slope w units per 
month after month t0• As in the previous section, we have various ways of allowing the 
magnitude of the trend to vary from month to month. The simplest is to replace the single A by 12 
A's and the single w by 12 w's: 

rt = Ai + wi (t- t0)+ if data month t falls in calendar month i. 
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Seasonal trend estimates of this form are reported in Chapter 4. 

Again, however, we might not want to allow completely arbitrary variation in the trends from 
one month to the next. One alternative would be to use sine-cosine expansions as before: 

J 

r1 = ,\0 + L {Aicos(27ljt/12) + Bisin(27ljt/12)} 
j=I J 

+ [ Wo + L { Cicos(27ljt/12) + Disin(27ljt/12)}]et- t0 )+. 
j=l 

Notice that we have used the same number of terms in each expansion. Statistical con­
siderations such as lack of significance of some coefficients might suggest dropping terms from 
one sum but not the other, but care would have to be used. Omission of significant terms from 
one sum would introduce bias into estimates of coefficients in the other, and possibly into other 
coefficients in the same sum. In particular, bias could arise if a sine-cosine expansion were used 
for, say, the level term, and arbitrary constants were used for the trend, since using arbitrary 
constants is effectively the same as taking J = 6 (and omitting the final sine term). 

3.3 Seasonal Structure in the Correlations 

In Section 2 we have discussed the use of time-series models to represent the correlation 
among measurements such as ozone columns at different times at the same location (or 
geographical region). One way in which those models are not sufficiently general is that they 
have stationary covariance structure: 

cov(y1,Yt-h) = a function only of h. 

However, most ozone time series have covariances that depend on the season as well as the 
time separation h. This is most easily seen in the monthly dependence of the standard deviation. 
As was mentioned in Section 1.1, failure to allow for such seasonality in covariance structure 
distorts any analysis by placing equal weight on the more variable winter data and the less 
variable summer data. 

Two approaches have emerged for coping with this problem. Reinsel and his coworkers have 
developed and exploited a method that can be described as seasonally weighted least-squares, 
while the values reported in Chapter 4 were obtained essentially by standardization of the data 
before fitting the trend model. The two approaches may be compared in terms of a cor­
responding model for the noise term TJt· In each case, the analysis may be interpreted as using a 
modified ARMA model (cf. equation 9). Reinsel's approach corresponds to the model 

8(B) 
TJt = <f>(B) (O'tEt), 

while the approach used in this report corresponds to 

8(B) 
TJt = O't <f>(B) E t· 

In each case, the scale factors O't are periodic, and reflect the seasonal dependence of the 
standard deviation of the noise TJt and of the innovations Et, respectively. Both general models 
appear plausible, but studies of which fits ozone data better have not been performed in depth. 
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4.0 Summary 

Ready, widespread acceptance of the results of a scientific investigation depends critically on 
the credibility of the study, and, in the case of a data-oriented study, this in turn depends largely 
on two factors: the quality of the data on which the study is based and the quality of the 
subsequent analysis of those data. Data quality for each of the measuring systems is discussed in 
the relevant chapters; here we offer only broad comments. The primary focus of this appendix is 
on data analysis techniques, about which we offer more specific suggestions. 

• Trend estimates-There are many ways to qualify the trend in a set of data, including fitting 
a straight line, fitting a ramp (or hockey stick) function, or comparing averages over 
different time windows. In each case, the resulting quantity should be accompanied by an 
appropriate standard error. 

• Standard errors-A standard error has meaning only in the context of being a model for the 
way in which the data were sampled. If the data show evidence of spatial or temporal 
correlation, the sampling model must reflect this. Computer software for building the 
required sampling models and calculating the corresponding trend estimates and stand­
ard errors is widely available and should be used more extensively. 

• Current results-Trend estimates based on fitting ramp functions reported in Chapter 4, 
and those of Reinsel, Tiao, and their coworkers, adequately account for serial correlation 
and its seasonal structure, and represent state-of-Jhe::ait~stimates. Estimates of trends 
from Total Ozone Mapping Spectrometer (TOMS) data, also reported in Chapter 4, allow 
for serial correlation, but not for its seasonal structure. Although not state of the art, the 
results should be close. Standard errors of other trend estimates obtained by least-squares 
fitting without allowance for serial correlation may be incorrect by factors of more than 
three. 

• Ground-based total ozone column data-It has been demonstrated that the quality of Dobson 
total ozone column data can be improved substantially by retroactive application of 
corrections based on calibration changes. This is best carried out by complete re­
calculation of each day's data on the basis of corrected algorithms, but useful improve­
ments can be made by correcting monthly averages. Stations should be urged to give a 
higher priority to such adjustments to historical data, and to ensuring publication of the 
adjusted data by the World Ozone Center. 

• Ground-based ozone profile data-The largest remaining question about the quality of the 
ozone profile data obtained by the Umkehr technique is the impact of aerosols. This 
question will have to be resolved before the Umkehr network can fulfill its dual roles of 
providing ground-based information about trends in ozone profiles and of providing 
ground truth for the validation of satelliteborne instruments. 

• Satellite ozone measurements-The realization that the effect of diffuser plate degradation 
on Nimbus-7 cannot be uniquely separated from other instrument changes underscores 
the difficulty of maintaining measurement stability with satellite-based systems. This 
illustrates the continuing need for cross-checking all types of measurements, a need about 
which there has been a tendency to become complacent. 
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