Aura and Stratospheric Ozone

Richard S. Stolarski
Johns Hopkins University
Baltimore, MD

(Emeritus at GSFC)

Stratospheric Ozone

Ozone is a tri-atomic form of oxygen, O₃

- Ozone is produced by ultraviolet radiation from the sun
- Ozone is destroyed by chemical reactions that recombine ozone to molecular oxygen

$$(0 + 0_3 \rightarrow 0_2 + 0_2)$$

 Ozone is a "renewable resource": its concentration is determined by a balance of production and loss

Stratospheric Ozone

Ozone forms a layer in the stratosphere

Ozone layer shields the surface from UV radiation

The Fluorocarbon-Ozone Problem

 Ozone destruction can be enhanced by catalytic reactions of the oxides of chlorine, bromine, nitrogen, and hydrogen

 Most chlorine compounds are soluble and do not reach the stratosphere

The Fluorocarbon-Ozone Problem

 Chlorofluorocarbons (CFCs) are industrially-produced chemicals that were used in refrigeration, aerosol sprays, foam-blowing, etc

$$CFC-11 = CFCl3$$

$$CFC-12 = CF2Cl2$$

$$CFC-113 = C2F3Cl3$$

 They are insoluble, unreactive, and non-absorbing of visible radiation; they can reach the stratosphere where UV radiation releases the chlorine

The Fluorocarbon-Ozone Problem

- Fluorocarbons emissions were growing rapidly in the 1970s and 1980s
- The Montreal Protocol
 (1987) and its amendments
 (1990, 1992, 1997, 1999)
 began limiting production
- Chlorine levels are declining

How does Aura enter this picture?

- Ozone concentrations were decreasing
- They appear to have leveled off
- Was this because of the Montreal Protocol?
- What will happen in the future?

Data from the NASA/NOAA SBUV series of instruments

Can we explain the general shape of this curve? Can we explain the deviations from this shape?

How does Aura enter this picture?

- "Ozone hole" observed in southern polar spring
- Very different behavior in north polar region
- What causes difference?
- What causes year-toyear variation, particularly in NH?

Southern Polar Region

Northern Polar Region

Graphics from ozonewatch.gsfc.nasa.gov

Aura MLS Measures Ozone and the Chemicals that Determine its Concentration

South Polar 24 September 2006

- Temperature: cold T results in PSCs
- Nitric acid: HNO₃ removed by PSCs
- HCl: reservoir for chlorine
- CIO: active form of chlorine for catalysis
- Ozone: reduced by chlorine catalysis

We can contrast the northern and southern polar regions

South Polar 24 September 2006

North Polar 10 March 2011

We can observe radically different northern polar winters

North Polar 1 March 2005

North Polar 10 March 2011

We can observe a daily sequence over an entire polar winter

Next 10 slides will show this sequence for the south polar region

Attribution and future prediction

- With Aura we have been able to observe the interaction of chemistry with the motions of the stratosphere over the entire globe under a wide variety of conditions
- We can use models, together with Aura data to attribute variations in ozone to cause
- We thus have the tools to make future predictions of ozone with a greater degree of confidence due to the measurements on Aura
- If future ozone deviates from expectation, we have the capability to diagnose the cause