Chlorofluorocarbons, Stratospheric Ozone, and the Montreal Protocol:

Anatomy of a Successful International Environmental Agreement

Part II : Development and Implementation of the Montreal Protocol

Richard S. Stolarski 27 February 2012
The Vienna Convention and the Montreal Protocol: What are they?

- The **Vienna Convention for the Protection of the Ozone Layer (1985)** is a multilateral environmental agreement. It is a framework for efforts to protect the ozone layer, but no binding actions.
 - Recognized the need to protect the ozone layer
 - Established a Secretariat & regular meeting for ozone layer issues
 - Established a framework for science research

- The **Montreal Protocol on Substances That Deplete the Ozone Layer (1987)** is an agreement which supplements the Vienna Convention.
 - Regulates the production and consumption of specific substances that modify the ozone layer.
 - Multi-Lateral Fund (Article 10), regular reporting of production & consumption (Article 7), re-examination of control measures.
 - Assessment process (Article 6), every 4 years, Science Assessment Panel (SAP), Technology and Economics Assessment Panel (TEAP), and Environmental Effects Assessment Panel (EEAP).
What is significant about the Montreal protocol?

- “Living” protocol: provision for updates
- Fund for developing countries to offset cost of potentially more expensive alternatives
- Participation of scientists, government officials, industry, and environmental organizations
- Based on scientific assessments from 3 panels
 - Scientific Assessment Panel (SAP)
 - Environmental Effects Assessment Panel (EEAP)
 - Technology and Economic Assessment Panel (TEAP)

Richard Benedick was the chief US negotiator for the Protocol.
International Ozone Assessments

- WMO World Plan of Action on the Ozone Layer - 1977
- WMO The Stratosphere 1981: Theory and Measurements
- WMO Atmospheric Ozone - 1985
- Safeguarding the Ozone Layer and the Global Climate System: 2005 (IPCC/TEAP)

Other NASA and Climatic Impact Assessment Program (CIAP) reports prior to 1981 were primarily performed in the USA

Stolarski 2/27/2012 Waugh Class
Scientific Assessment of Ozone Depletion: 2010
Scientific Assessment Panel of the Montreal Protocol

SAP Co-chairs
Ayité-Lô Ajavon (Togo)
Paul Newman (USA)
John Pyle (UK)
A.R. Ravishankara (USA)

Coordinator/Editor
Chris Ennis (USA)

Special thanks to:
Malcolm Ko (US), Ted Shepherd (Canada), and Susan Solomon (US)
with reviews and Executive Summary

Ch. 1: Ozone-Depleting Substances (ODSs) and Related Chemical
Steve Montzka (USA), Stefan Reimann (Switz.)

Ch. 2: Stratospheric Ozone and Surface Ultraviolet Radiation
Anne Douglass (USA), Vitali Fioletov (Canada)

Ch. 3: Future Ozone and Its Impact on Surface UV
Slimane Bekki (Fr.), Greg Bodeker (NZ)

Ch. 4: Stratospheric Changes and Climate
Piers Forster (UK), Dave Thompson (USA)

Ch. 5: A Focus on Information and Options for Policymakers
John Daniel (USA), Guus Velders (Netherlands)

20 Questions and Answers
David Fahey (USA), Michaela Hegglin (Canada)
Ozone Depleting Substances (ODSs)

- CFC-11 \(\text{CCl}_3\text{F} \)
- CFC-12 \(\text{CCl}_2\text{F}_2 \)
- CFC-113 \(\text{CCl}_2\text{FClF}_2 \)
- Methyl chloroform \(\text{CH}_3\text{CCl}_3 \)
- Carbon tetrachloride \(\text{CCl}_4 \)
- HCFC-22 \(\text{CHClF}_2 \)
- Halon 1211 \(\text{CBrClF}_2 \)
- Halon 1301 \(\text{CBrF}_3 \)

Solvents, foam blowing agents (cups, insulation), MDI, aerosol propellants, refrigerants, fire extinguisher (Br)
Bromine Compounds

Bromine is 50 to 60 times more efficient at destroying stratospheric ozone than chlorine

Methyl Bromide is used extensively as a fumigant
Halons

- Halon 1211 (CF$_2$ClBr) developed by ICI in UK
- Halon 1301 (CF$_3$Br) developed at Purdue U. under auspices of US Army

Used in fire suppression at concentrations no higher than 7% v/v in air and can suppress many fires at 2.9% v/v

Stolarski 2/27/2012 Waugh Class
Electrical Fire Extinguishers

- Early extinguishers for electrical fires used Carbon tetrachloride (CCl₄)
- Carbon tetrachloride originally synthesized by Henri Victor Regnault in 1839.
 - Most effective at electrical fires with no shock danger
 - But produces phosgene, chlorine gas, and hydrogen chloride in “quite dangerous concentrations”.

Stolarski 2/27/2012 Waugh Class
Milestones in Emissions of ODSs

- US EPA Regulations on Aerosol Sprays
- Molina and Rowland Paper
- Montreal Protocol
- Amendments to the Montreal Protocol

Graph showing emissions of halogen source gases (ODSs + natural sources) weighted by Ozone Depletion Potential (ODP) from 1960 to 2020. Key points include:

- Natural emissions
- Based on atmospheric observations and industry data
- Future projections

Stolarski 2/27/2012 Waugh Class
The Montreal Protocol

History

- March, 1985: Vienna Convention for Protection of the Ozone Layer
- Sept 16, 1987: opened for signature
- Jan 1, 1989: entered into force
- May, 1989: first meeting of the parties

Revisions or Amendments

- 1990 London
- 1992 Copenhagen
- 1997 Montreal
- 1999 Beijing
- 2007 Montreal

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>Signature Vienna Convention</th>
<th>Signature Montreal Protocol</th>
<th>Vienna Convention</th>
<th>Montreal Protocol</th>
<th>London Amendment</th>
<th>Copenhagen Amendment</th>
<th>Montreal Amendment</th>
<th>Beijing Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTALS</td>
<td>28</td>
<td>46</td>
<td>197</td>
<td>197</td>
<td>196</td>
<td>194</td>
<td>186</td>
<td>173</td>
</tr>
</tbody>
</table>
CFC Lifetimes
(Atmospheric Residence Times)

<table>
<thead>
<tr>
<th>Industrial Designation or Common Name</th>
<th>Chemical Formula</th>
<th>Lifetime (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halogen-substituted methanes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFC-41</td>
<td>CH₃F</td>
<td>2.4</td>
</tr>
<tr>
<td>HFC-32</td>
<td>CH₂F₂</td>
<td>4.9</td>
</tr>
<tr>
<td>HFC-23</td>
<td>CHF₃</td>
<td>270</td>
</tr>
<tr>
<td>FC-14 (Carbon tetrafluoride)</td>
<td>CF₄</td>
<td>50 000</td>
</tr>
<tr>
<td>Methyl chloride</td>
<td>CH₃Cl</td>
<td>1.0</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>CH₂Cl₂</td>
<td>0.38</td>
</tr>
<tr>
<td>Chloroform</td>
<td>CHCl₃</td>
<td>0.41</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>CCl₄</td>
<td>26</td>
</tr>
<tr>
<td>HCFC-31</td>
<td>CH₂ClF</td>
<td>1.3</td>
</tr>
<tr>
<td>HCFC-22</td>
<td>CHClF₂</td>
<td>12.0</td>
</tr>
<tr>
<td>HCFC-21</td>
<td>CHCl₂F</td>
<td>1.7</td>
</tr>
<tr>
<td>CFC-13</td>
<td>CClF₃</td>
<td>640</td>
</tr>
<tr>
<td>CFC-12</td>
<td>CCl₂F₂</td>
<td>100</td>
</tr>
<tr>
<td>CFC-11</td>
<td>CCl₃F</td>
<td>45</td>
</tr>
</tbody>
</table>

More Fluorine → Longer lifetime
Hydrogen → Shorter lifetime

E.g. CHClF₂ + OH → CF₂Cl + H₂O

Most commonly used in 1980s

CFC 11 and 12 were increasing at 3-5%/year during 1970s and 1980s
Progression of Chlorine Compounds under the Provisions of the Montreal Protocol

- CFCs – fully halogenated hydrocarbons
- HCFCs – hydrogen substituted for shorter lifetimes
- HFCs – no chlorine, no ozone depletion

? What next??
Production of CFCs 11 and 12 Fell Off Rapidly with Montreal Protocol

- Production of fully-halogenated CFCs fell off rapidly

![Graph showing annual production of CFCs from 1980 to 2005](image.png)
Replacement HCFCs began to have increased production

- Replacement HCFCs increased (and some have already begun to decrease)
- HCFCs have shorter lifetime, smaller ozone depletion potential, and small global warming potential than the CFCs they replaced
HCFCs are now beginning to be replaced by HFCs

- HFCs, which contain no chlorine, have already begun to be phased in as replacements for HCFCs

HFCs are still greenhouse gases
Growth Rate of some CFCs from Measurements at Surface Stations

- Long-lived CFC 12 has leveled off
- CFC 11 has begun to decline
- CFC 113 (CF$_3$CCl$_3$) has also begun to decline
- Methyl chloroform has reached near-zero concentration

Atmospheric Measurements from NOAA Network
The Protocol is having a real effect!

1. Controlled Substances are leveling off or decreasing

2. Stratospheric chlorine has begun to decrease

3. Ozone shows signs of responding to the leveling off of chlorine
We put these together into an “Equivalent Effective Stratospheric Chlorine” or EESC
Ozone Hole Recovery

- Caused by chlorine and bromine from human-produced gases
- Estimate that hole will begin to show size decreases by ~2023, and be similar to 1980 by 2070
- Recent occurrences of particularly small (2002) or large (2006) ozone holes are not indicative of a long-term trend.
Key findings of the SAP

(a) Ozone-depleting chlorine and bromine in the lower atmosphere

ODSs are behaving as expected

(b) Carbon dioxide

Climate change and ozone layer are intricately coupled. Climate change will become more important. MP can potentially influence climate

(c) Antarctic total ozone in October

Ozone hole continues to persist, as expected. It is expected to recover later this century.

(d) Northern midlatitude total ozone

Global ozone depletion is smaller than the ozone hole. It has not gotten worse because of the MP. Expected to recover towards the middle of this century.

(e) Northern midlatitude surface ultraviolet radiation

Surface UV changes are small to date. In the future, it will be influenced by climate change more than ozone depletion.

Stolarski 2/27/2012 Waugh Class

Figure ES-2, Scientific Assessment of Ozone Depletion: 2010
GHGs change ozone levels
Fixed ODS, increasing GHGs (2065-1980)

Stratosphere cools because of GHGs

O₃ increases in upper stratosphere

T (K)

O₃ (ppmv)

O₃ (DU)

Troposphere warms because of GHGs

Feng Li, NASA/GSFC

Stolarski 2/27/2012 Waugh Class

Li, Stolarski, and Newman, Atmos. Chem. Phys., 9, 2207-2213, 2009
GHGs change ozone levels
Fixed ODS, increasing GHGs (2065-1980)

O₃ decreases in tropics, increases in extratropics

GHGs cause Brewer-Dobson circulation to accelerate

Feng Li, NASA/GSFC
Stolarski 2/27/2012 Waugh Class

Li, Stolarski, and Newman, Atmos. Chem. Phys., 9, 2207-2213, 2009
GHGs change ozone levels
Fixed ODS, increasing GHGs (2065-1980)

Stratosphere cools because of GHGs
O₃ increases in upper stratosphere

T (K) O₃ (ppmv) O₃ (DU)

Because of GHGs, the ozone layer will not return to its pre-industrial levels.

Troposphere warms because of GHGs
O₃ decreases in tropics, increases in extratropics

GHGs cause Brewer-Dobson circulation to accelerate

Feng Li, NASA/GSFC
Stolarski 2/27/2012 Waugh Class

Li, Stolarski, and Newman, Atmos. Chem. Phys., 9, 2207-2213, 2009
Where is the Montreal Protocol Going?

- **Push to regulate HFCs**
 - They have no ozone depletion potential
 - But they are a greenhouse gas
 - Production and atmospheric concentrations increasing because of Montreal Protocol

- **Should Montreal Protocol regulate them?**
- **Or should they come under Kyoto Protocol?**
 - Montreal regulates production
 - Kyoto regulates emission

- **What about nitrous oxide?**
 - Greenhouse gas
 - Ozone depleter
 - By-product of fertilizer application, among many other things
Comparison Ozone vs Climate

- Vienna Convention (1985)
- UNFCCC Framework Convention on Climate Change (Bonn, 1992)
- Kyoto Protocol (1997)

Why has one worked so well while the other has not?

What do you think?
Some possible reasons for success of Montreal Protocol relative to Kyoto Protocol

• Smoking gun, i.e. ozone hole?
• Availability of replacements?
• CFCs less integral to our society?
• Press coverage?
• Nay-sayers/non-believers?
• IPCC vs Ozone Assessment?
• Regulating emission vs production?
• Nature of the problem (size and time scale of perturbation relative to natural variability)?
• Scare scenarios overplayed?