Kretzmer, Erika A., N.E. Meltzer, C-A Haenggeli, and D.K. Ryugo (2004)
An animal model for cochlear implants. Archives of Otolaryngology--Head & Neck Surgery 130:499-508.

OBJECTIVE: To test the feasibility of using the deaf white cat model of early-onset deafness. We studied the neuronal effects of prosthetic intervention with a clinical, "off-the-shelf" multichannel cochlear implant.

METHODS: We placed cochlear implants in 5 deaf white kittens at age 12 and 24 weeks. The devices were activated and stimulated in the laboratory using a clinical speech processor programmed with a high-resolution continuous interleaved sampling (CIS) strategy for 8 to 24 weeks. Stimulus parameters were guided by electrically evoked brainstem responses and intracochlear-evoked potentials. Kittens were assessed with respect to their tolerance and general behavior in response to speech, music, and environmental sounds.

RESULTS: Surgical complications were minimal, and kittens tolerated the experimental procedures well. Subjects were able to detect and respond to a specific sound played from a computer speaker. Electrophysiologic responses were reliably attainable and showed consistency with observed behavioral responses to sound. This experimental paradigm, using clinical devices, can be used in a practical research setting in cats.

CONCLUSIONS: Deafness and other variations in neural activity result in many distinct changes to the central auditory pathways. Animal models will facilitate assessment of the reversibility of deafness-associated changes at the level of the neuron and its connections. Our observations of the feasibility of using clinical devices in animal models will enable us to simulate clinical conditions in addressing questions about the effects of "replacement" activity on the structure and function within the central auditory pathways in deafness.

[ Download PDF ]


[ Back ]