Introduction

A real, N-periodic, discrete-time signal x[n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@  can be represented by a linear combination of the complex exponential signals

e j0 ω o n =1   , e j ω o n    , e j2 ω o n    ,, e j(N1) ω o n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGLbWaaWbaaSqabeaacaWGQbGaaGimaiabeM8a3naaBaaameaacaWGVbaabeaaliaad6gaaaGccqGH9aqpcaaIXaGaaGjbVlaacYcacaaMf8UaamyzamaaCaaaleqabaGaamOAaiabeM8a3naaBaaameaacaWGVbaabeaaliaad6gaaaGccaaMe8UaaiilaiaaywW7caWGLbWaaWbaaSqabeaacaWGQbGaaGOmaiabeM8a3naaBaaameaacaWGVbaabeaaliaad6gaaaGccaaMe8UaaiilaiablAciljaacYcacaaMf8UaamyzamaaCaaaleqabaGaamOAaiaacIcacaWGobGaeyOeI0IaaGymaiaacMcacqaHjpWDdaWgaaadbaGaam4BaaqabaWccaWGUbaaaaaa@6263@

 

as

x[n]   =    k=0 N1 X k e jk ω o n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbGaaGjbVlabg2da9iaaysW7daaeWbqaaiaadIfadaWgaaWcbaGaam4AaaqabaGccaWGLbWaaWbaaSqabeaacaWGQbGaam4AaiabeM8a3naaBaaameaacaWGVbaabeaaliaad6gaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGobGaeyOeI0IaaGymaaqdcqGHris5aaaa@4E56@

 

In these expressions, j= 1 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGQbGaeyypa0ZaaOaaaeaacqGHsislcaaIXaaaleqaaaaa@39F8@  , and the discrete-time fundamental frequency is ω o    =   2π/N MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqaHjpWDdaWgaaWcbaGaam4BaaqabaGccaaMe8Uaeyypa0JaaGjbVlaaikdacqaHapaCcaGGVaGaamOtaaaa@4156@ . This discrete-time Fourier series representation provides notions of frequency content of periodic discrete-time signals, and it is very convenient for calculations involving linear, time-invariant systems because complex exponentials are eigenfunctions of LTI systems.

 

The complex coefficients X 0 ,    X 1 ,,    X N1 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaaicdaaeqaaOGaaGPaVlaacYcacaaMe8UaamiwamaaBaaaleaacaaIXaaabeaakiaaykW7caGGSaGaeSOjGSKaaiilaiaaysW7caWGybWaaSbaaSqaaiaad6eacqGHsislcaaIXaaabeaaaaa@46C1@  can be calculated from the expression

X k    =    1 N n=0 N1 x[n] e jk ω o n    ,k=0,1,,N1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaadUgaaeqaaOGaaGjbVlabg2da9iaaysW7daWcbaWcbaGaaGymaaqaaiaad6eaaaGcdaaeWbqaaiaadIhacaGGBbGaamOBaiaac2facaaMc8UaamyzamaaCaaaleqabaGaeyOeI0IaamOAaiaadUgacqaHjpWDdaWgaaadbaGaam4BaaqabaWccaWGUbaaaaqaaiaad6gacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigdaa0GaeyyeIuoakiaaysW7caGGSaGaaGzbVlaadUgacqGH9aqpcaaIWaGaaiilaiaaigdacaGGSaGaeSOjGSKaaiilaiaad6eacqGHsislcaaIXaaaaa@5F72@

 

The X k MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaadUgaaeqaaaaa@3839@  ’s are called the spectral coefficients of the signal x[n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@ . A plot of | X k | MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaGG8bGaamiwamaaBaaaleaacaWGRbaabeaakiaacYhaaaa@3A43@  vs k is called the magnitude spectrum of  x[n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@  , and a plot of X k MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqGHGic0caaMc8UaamiwamaaBaaaleaacaWGRbaabeaaaaa@3B62@  vs k is called the phase spectrum of  x[n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@ . These plots, particularly the magnitude spectrum, provide a picture of the frequency composition of the signal. Notice that the spectral coefficients repeat as k is varied. In particular, for any value of k,

X k+N    =    1 N n=0 N1 x[n]    e j(k+N) ω o n =    1 N n=0 N1 x[n]    e jk ω o n e jN 2π N n =    1 N n=0 N1 x[n]    e jk ω o n =    X k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakqaaeeqaaiaadIfadaWgaaWcbaGaam4AaiabgUcaRiaad6eaaeqaaOGaaGjbVlabg2da9iaaysW7daWcbaWcbaGaaGymaaqaaiaad6eaaaGcdaaeWbqaaiaadIhacaGGBbGaamOBaiaac2facaaMe8UaamyzamaaCaaaleqabaGaeyOeI0IaamOAaiaacIcacaWGRbGaey4kaSIaamOtaiaacMcacqaHjpWDdaWgaaadbaGaam4BaaqabaWccaWGUbaaaaqaaiaad6gacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigdaa0GaeyyeIuoakiabg2da9iaaysW7daWcbaWcbaGaaGymaaqaaiaad6eaaaGcdaaeWbqaaiaadIhacaGGBbGaamOBaiaac2facaaMe8UaamyzamaaCaaaleqabaGaeyOeI0IaamOAaiaadUgacqaHjpWDdaWgaaadbaGaam4BaaqabaWccaWGUbaaaOGaamyzamaaCaaaleqabaGaeyOeI0IaamOAaiaad6eadaWcbaadbaGaaGOmaiabec8aWbqaaiaad6eaaaWccaWGUbaaaaqaaiaad6gacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigdaa0GaeyyeIuoaaOqaaiabg2da9iaaysW7daWcbaWcbaGaaGymaaqaaiaad6eaaaGcdaaeWbqaaiaadIhacaGGBbGaamOBaiaac2facaaMe8UaamyzamaaCaaaleqabaGaeyOeI0IaamOAaiaadUgacqaHjpWDdaWgaaadbaGaam4BaaqabaWccaWGUbaaaaqaaiaad6gacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigdaa0GaeyyeIuoakiabg2da9iaaysW7caWGybWaaSbaaSqaaiaadUgaaeqaaaaaaa@95A5@

 

 

First Applet - Entering Signals

First Applet - Entering Coefficients or Spectra

This applet illustrates the discrete-time Fourier series representation for N=5 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGobGaeyypa0JaaGynaaaa@38D8@ , that is, for ω o =2π/5 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqaHjpWDdaWgaaWcbaGaam4BaaqabaGccqGH9aqpcaaIYaGaaGPaVlabec8aWjaac+cacaaI1aaaaa@3FB3@ . In addition to a “live” mathematical expression for the signal, display windows show

·        two repetitions of the magnitude and phase spectra,

·        the individual frequency components (often called phasors) in the complex plane,

X k e jk 2π 5 n    =   | X k | e j(k 2π 5 n+ X k ) ,k=0,1,,4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaadUgaaeqaaOGaaGPaVlaadwgadaahaaWcbeqaaiaadQgacaWGRbWaaSqaaWqaaiaaikdacqaHapaCaeaacaaI1aaaaSGaamOBaaaakiaaysW7cqGH9aqpcaaMe8UaaiiFaiaadIfadaWgaaWcbaGaam4AaaqabaGccaGG8bGaaGPaVlaadwgadaahaaWcbeqaaiaadQgacaGGOaGaam4AamaaleaameaacaaIYaGaeqiWdahabaGaaGynaaaaliaad6gacqGHRaWkcqGHGic0caaMc8UaamiwamaaBaaameaacaWGRbaabeaaliaacMcaaaGccaGGSaGaaGzbVlaadUgacqGH9aqpcaaIWaGaaiilaiaaigdacaGGSaGaeSOjGSKaaiilaiaaisdaaaa@6323@

 

·        the sum of these phasor components in the complex plane,

·        two periods of the signal x[n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@ .

 

First, select one of three ways to enter data. You can enter the spectral coefficients X k MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaadUgaaeqaaaaa@3839@  in terms of values for the magnitudes (in the range 060 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaaIWaGaeyOKH4QaaGOnaiaaicdaaaa@3A61@  ) and angles (in the range ππ MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqGHsislcaaMc8UaeqiWdaNaeyOKH4QaeqiWdahaaa@3E1F@  radians ). Alternatively, you can enter the magnitude and phase spectra by sketching with the mouse, or you can enter a signal x[n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@  with the mouse. Then select play to observe the frequency components and the generation of the signal from these components.

 

For  N=5 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGobGaeyypa0JaaGynaaaa@38D8@  the Fourier series can be written as

x[n] = X 0 j ∠X 0 X 1 j ω 0 n ∠X 1 X 2 j 2 ω 0 n ∠X 2 X 3 j 3 ω 0 n ∠X 3 X 4 j 4 ω 0 n ∠X 4

Enter values for the coefficients below.
To update the expression below, click outside the text field.

X 0 = ∠X 0 =
X 1 = ∠X 1 =
X 2 = ∠X 2 =
X 3 = ∠X 3 =
X 4 = ∠X 4 =

 

Exercises

 

(1)  The repetition property of the spectral coefficients implies that | X k+5 |=| X k | MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaGG8bGaamiwamaaBaaaleaacaWGRbGaey4kaSIaaGynaaqabaGccaGG8bGaeyypa0JaaiiFaiaadIfadaWgaaWcbaGaam4AaaqabaGccaGG8baaaa@40ED@ . What other patterns or symmetries do you observe in the magnitude spectrum? Justify your answer mathematically.

 

(2)   Repetition of the spectral coefficients implies that X k+5 = X k MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqGHGic0caWGybWaaSbaaSqaaiaadUgacqGHRaWkcaaI1aaabeaakiabg2da9iabgcIiqlaadIfadaWgaaWcbaGaam4Aaaqabaaaaa@401F@ . What other patterns or symmetries do you observe in the phase spectrum? Justify your answer mathematically.

 

(3)  Using (1) and (2), explain why | X 2 |=| X 3 | MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaGG8bGaamiwamaaBaaaleaacaaIYaaabeaakiaacYhacqGH9aqpcaGG8bGaamiwamaaBaaaleaacaaIZaaabeaakiaacYhaaaa@3EE5@  and X 2 = X 3 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqGHGic0caWGybWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaeyiiIaTaamiwamaaBaaaleaacaaIZaaabeaaaaa@3F04@  for every (real) signal x[n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@ .

 

(4)  Suppose x[n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@  is even, that is, x[n]=x[n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiabgkHiTiaad6gacaGGDbGaeyypa0JaamiEaiaacUfacaWGUbGaaiyxaaaa@3F93@ . What can you conclude about the spectral coefficients? Can you justify your answer mathematically? (For convenience of signal entry, use the periodicity property, x[n]=x[n+5] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbGaeyypa0JaamiEaiaacUfacaWGUbGaey4kaSIaaGynaiaac2faaaa@4047@  to express the even property as x[n]=x[5n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbGaeyypa0JaamiEaiaacUfacaaI1aGaeyOeI0IaamOBaiaac2faaaa@4052@ .)

 

(5) Suppose x[n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@  has exactly one nonzero value per period. What do you observe about the magnitude spectrum? Does it matter where the nonzero value occurs? Justify your answer mathematically.

 

(6)  If x[n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@  has exactly one nonzero value per period, what do you observe about the phase spectrum? Does it matter where the nonzero value occurs?

 

Second Applet

 

For this applet you can enter a value of N between 4 and 32, and then enter either a signal or the frequency spectra by sketching with the mouse. Only one period of the signal and one repetition of the spectra are shown.

 

Exercises

(1)  If the period N is an even integer and x[n+N/2]=x[n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacqGHRaWkcaWGobGaai4laiaaikdacaGGDbGaeyypa0JaeyOeI0IaamiEaiaacUfacaWGUbGaaiyxaaaa@42B7@  , what pattern do you observe in the magnitude spectrum? Justify your answer mathematically.

 

(2)  If N is an even integer and x[n+N/2]=x[n] MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacqGHRaWkcaWGobGaai4laiaaikdacaGGDbGaeyypa0JaamiEaiaacUfacaWGUbGaaiyxaaaa@41CA@  , what pattern do you observe in the magnitude spectrum? Justify your answer mathematically.

 

(3)  If N=20 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGobGaeyypa0JaaGOmaiaaicdaaaa@398F@ , what frequencies correspond to the spectral coefficients X k MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaadUgaaeqaaaaa@3839@  for k=0,9,19 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGRbGaaGjbVlabg2da9iaaysW7caaIWaGaaiilaiaaysW7caaI5aGaaiilaiaaysW7caaIXaGaaGyoaaaa@42C5@ ? Which of these frequencies would you call “high” frequencies, and which would you call “low?”

 

(4)  If N=20 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGobGaeyypa0JaaGOmaiaaicdaaaa@398F@ , what is the signal that has all spectral coefficients zero except X 10 =1 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaaigdacaaIWaaabeaakiaaysW7cqGH9aqpcaaMe8UaaGymaaaa@3DA3@ ? What is the signal if  X 10 =1 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaaigdacaaIWaaabeaakiaaysW7cqGH9aqpcaaMe8UaeyOeI0IaaGymaaaa@3E90@ ?

 

(5)  If N is divisible by 4, what are the spectral coefficients corresponding to discrete-time sinusoids with periods of N, N/2 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGobGaai4laiaaikdaaaa@3882@ , and N/4 MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGobGaai4laiaaisdaaaa@3884@ ?

 

return to demonstrations page

Applets by Michael Ross and Lan Ma.