Introduction
A real, N-periodic,
discrete-time signal
x[n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@
can be represented by a linear combination of
the complex exponential signals
|
e
j0
ω
o
n
=1 ,
e
j
ω
o
n
,
e
j2
ω
o
n
,…,
e
j(N−1)
ω
o
n
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGLbWaaWbaaSqabeaacaWGQbGaaGimaiabeM8a3naaBaaameaacaWGVbaabeaaliaad6gaaaGccqGH9aqpcaaIXaGaaGjbVlaacYcacaaMf8UaamyzamaaCaaaleqabaGaamOAaiabeM8a3naaBaaameaacaWGVbaabeaaliaad6gaaaGccaaMe8UaaiilaiaaywW7caWGLbWaaWbaaSqabeaacaWGQbGaaGOmaiabeM8a3naaBaaameaacaWGVbaabeaaliaad6gaaaGccaaMe8UaaiilaiablAciljaacYcacaaMf8UaamyzamaaCaaaleqabaGaamOAaiaacIcacaWGobGaeyOeI0IaaGymaiaacMcacqaHjpWDdaWgaaadbaGaam4BaaqabaWccaWGUbaaaaaa@6263@
|
|
as
|
x[n] =
∑
k=0
N−1
X
k
e
jk
ω
o
n
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbGaaGjbVlabg2da9iaaysW7daaeWbqaaiaadIfadaWgaaWcbaGaam4AaaqabaGccaWGLbWaaWbaaSqabeaacaWGQbGaam4AaiabeM8a3naaBaaameaacaWGVbaabeaaliaad6gaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGobGaeyOeI0IaaGymaaqdcqGHris5aaaa@4E56@
|
|
In these expressions,
j=
−1
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGQbGaeyypa0ZaaOaaaeaacqGHsislcaaIXaaaleqaaaaa@39F8@
, and the discrete-time fundamental frequency is
ω
o
= 2π/N
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqaHjpWDdaWgaaWcbaGaam4BaaqabaGccaaMe8Uaeyypa0JaaGjbVlaaikdacqaHapaCcaGGVaGaamOtaaaa@4156@
.
This discrete-time Fourier series
representation provides notions of frequency content of periodic discrete-time
signals, and it is very convenient for calculations involving linear,
time-invariant systems because complex exponentials are eigenfunctions of LTI
systems.
The complex coefficients
X
0
,
X
1
,…,
X
N−1
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaaicdaaeqaaOGaaGPaVlaacYcacaaMe8UaamiwamaaBaaaleaacaaIXaaabeaakiaaykW7caGGSaGaeSOjGSKaaiilaiaaysW7caWGybWaaSbaaSqaaiaad6eacqGHsislcaaIXaaabeaaaaa@46C1@
can be calculated from the expression
|
X
k
=
1
N
∑
n=0
N−1
x[n]
e
−jk
ω
o
n
, k=0,1,…,N−1
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaadUgaaeqaaOGaaGjbVlabg2da9iaaysW7daWcbaWcbaGaaGymaaqaaiaad6eaaaGcdaaeWbqaaiaadIhacaGGBbGaamOBaiaac2facaaMc8UaamyzamaaCaaaleqabaGaeyOeI0IaamOAaiaadUgacqaHjpWDdaWgaaadbaGaam4BaaqabaWccaWGUbaaaaqaaiaad6gacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigdaa0GaeyyeIuoakiaaysW7caGGSaGaaGzbVlaadUgacqGH9aqpcaaIWaGaaiilaiaaigdacaGGSaGaeSOjGSKaaiilaiaad6eacqGHsislcaaIXaaaaa@5F72@
|
|
The
X
k
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaadUgaaeqaaaaa@3839@
’s are called the spectral coefficients of the signal
x[n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@
.
A plot of
|
X
k
|
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaGG8bGaamiwamaaBaaaleaacaWGRbaabeaakiaacYhaaaa@3A43@
vs k
is called the magnitude spectrum
of
x[n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@
, and a plot of
∠
X
k
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqGHGic0caaMc8UaamiwamaaBaaaleaacaWGRbaabeaaaaa@3B62@
vs k
is called the phase spectrum of
x[n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@
.
These plots, particularly the magnitude spectrum, provide a picture of the
frequency composition of the signal. Notice that the spectral coefficients
repeat as k is varied. In particular,
for any value of k,
|
X
k+N
=
1
N
∑
n=0
N−1
x[n]
e
−j(k+N)
ω
o
n
=
1
N
∑
n=0
N−1
x[n]
e
−jk
ω
o
n
e
−jN
2π
N
n
=
1
N
∑
n=0
N−1
x[n]
e
−jk
ω
o
n
=
X
k
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakqaaeeqaaiaadIfadaWgaaWcbaGaam4AaiabgUcaRiaad6eaaeqaaOGaaGjbVlabg2da9iaaysW7daWcbaWcbaGaaGymaaqaaiaad6eaaaGcdaaeWbqaaiaadIhacaGGBbGaamOBaiaac2facaaMe8UaamyzamaaCaaaleqabaGaeyOeI0IaamOAaiaacIcacaWGRbGaey4kaSIaamOtaiaacMcacqaHjpWDdaWgaaadbaGaam4BaaqabaWccaWGUbaaaaqaaiaad6gacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigdaa0GaeyyeIuoakiabg2da9iaaysW7daWcbaWcbaGaaGymaaqaaiaad6eaaaGcdaaeWbqaaiaadIhacaGGBbGaamOBaiaac2facaaMe8UaamyzamaaCaaaleqabaGaeyOeI0IaamOAaiaadUgacqaHjpWDdaWgaaadbaGaam4BaaqabaWccaWGUbaaaOGaamyzamaaCaaaleqabaGaeyOeI0IaamOAaiaad6eadaWcbaadbaGaaGOmaiabec8aWbqaaiaad6eaaaWccaWGUbaaaaqaaiaad6gacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigdaa0GaeyyeIuoaaOqaaiabg2da9iaaysW7daWcbaWcbaGaaGymaaqaaiaad6eaaaGcdaaeWbqaaiaadIhacaGGBbGaamOBaiaac2facaaMe8UaamyzamaaCaaaleqabaGaeyOeI0IaamOAaiaadUgacqaHjpWDdaWgaaadbaGaam4BaaqabaWccaWGUbaaaaqaaiaad6gacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigdaa0GaeyyeIuoakiabg2da9iaaysW7caWGybWaaSbaaSqaaiaadUgaaeqaaaaaaa@95A5@
|
|
First Applet - Entering Signals
First Applet - Entering Coefficients or Spectra
This applet illustrates the discrete-time Fourier series
representation for
N=5
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGobGaeyypa0JaaGynaaaa@38D8@
,
that is, for
ω
o
=2 π/5
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqaHjpWDdaWgaaWcbaGaam4BaaqabaGccqGH9aqpcaaIYaGaaGPaVlabec8aWjaac+cacaaI1aaaaa@3FB3@
.
In addition to a “live” mathematical expression for the signal, display windows
show
·
two repetitions of the magnitude and phase
spectra,
·
the individual frequency components (often
called phasors) in the complex plane,
|
X
k
e
jk
2π
5
n
= |
X
k
|
e
j(k
2π
5
n+∠
X
k
)
, k=0,1,…,4
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaadUgaaeqaaOGaaGPaVlaadwgadaahaaWcbeqaaiaadQgacaWGRbWaaSqaaWqaaiaaikdacqaHapaCaeaacaaI1aaaaSGaamOBaaaakiaaysW7cqGH9aqpcaaMe8UaaiiFaiaadIfadaWgaaWcbaGaam4AaaqabaGccaGG8bGaaGPaVlaadwgadaahaaWcbeqaaiaadQgacaGGOaGaam4AamaaleaameaacaaIYaGaeqiWdahabaGaaGynaaaaliaad6gacqGHRaWkcqGHGic0caaMc8UaamiwamaaBaaameaacaWGRbaabeaaliaacMcaaaGccaGGSaGaaGzbVlaadUgacqGH9aqpcaaIWaGaaiilaiaaigdacaGGSaGaeSOjGSKaaiilaiaaisdaaaa@6323@
|
|
·
the sum of these phasor components in the
complex plane,
·
two periods of the signal
x[n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@
.
First, select one of three ways to
enter data. You can enter the spectral coefficients
X
k
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaadUgaaeqaaaaa@3839@
in terms of values for the magnitudes (in the
range
0→60
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaaIWaGaeyOKH4QaaGOnaiaaicdaaaa@3A61@
) and angles (in the range
− π→π
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqGHsislcaaMc8UaeqiWdaNaeyOKH4QaeqiWdahaaa@3E1F@
radians ). Alternatively, you can enter the
magnitude and phase spectra by sketching with the mouse, or you can enter a
signal
x[n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@
with the mouse. Then select play to observe the frequency components
and the generation of the signal from these components.
For
N=5
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGobGaeyypa0JaaGynaaaa@38D8@
the Fourier series can be written as
Exercises
(1) The repetition
property of the spectral coefficients implies that
|
X
k+5
|=|
X
k
|
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaGG8bGaamiwamaaBaaaleaacaWGRbGaey4kaSIaaGynaaqabaGccaGG8bGaeyypa0JaaiiFaiaadIfadaWgaaWcbaGaam4AaaqabaGccaGG8baaaa@40ED@
.
What other patterns or symmetries do you observe in the magnitude spectrum?
Justify your answer mathematically.
(2) Repetition of
the spectral coefficients implies that
∠
X
k+5
=∠
X
k
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqGHGic0caWGybWaaSbaaSqaaiaadUgacqGHRaWkcaaI1aaabeaakiabg2da9iabgcIiqlaadIfadaWgaaWcbaGaam4Aaaqabaaaaa@401F@
.
What other patterns or symmetries do you observe in the phase spectrum? Justify
your answer mathematically.
(3) Using (1) and
(2), explain why
|
X
2
|=|
X
3
|
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaGG8bGaamiwamaaBaaaleaacaaIYaaabeaakiaacYhacqGH9aqpcaGG8bGaamiwamaaBaaaleaacaaIZaaabeaakiaacYhaaaa@3EE5@
and
∠
X
2
=−∠
X
3
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqGHGic0caWGybWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaeyiiIaTaamiwamaaBaaaleaacaaIZaaabeaaaaa@3F04@
for every (real) signal
x[n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@
.
(4) Suppose
x[n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@
is even,
that is,
x[−n]=x[n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiabgkHiTiaad6gacaGGDbGaeyypa0JaamiEaiaacUfacaWGUbGaaiyxaaaa@3F93@
.
What can you conclude about the spectral coefficients? Can you justify your
answer mathematically? (For convenience of signal entry, use the periodicity
property,
x[n]=x[n+5]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbGaeyypa0JaamiEaiaacUfacaWGUbGaey4kaSIaaGynaiaac2faaaa@4047@
to express the even property as
x[n]=x[5−n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbGaeyypa0JaamiEaiaacUfacaaI1aGaeyOeI0IaamOBaiaac2faaaa@4052@
.)
(5) Suppose
x[n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@
has exactly one nonzero value per period. What
do you observe about the magnitude spectrum? Does it matter where the nonzero
value occurs? Justify your answer mathematically.
(6) If
x[n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacaGGDbaaaa@39F0@
has exactly one nonzero value per period, what
do you observe about the phase spectrum? Does it matter where the nonzero value
occurs?
Second Applet
For this applet you can enter a value of N between 4 and 32, and then enter
either a signal or the frequency spectra by sketching with the mouse. Only one
period of the signal and one repetition of the spectra are shown.
Exercises
(1) If the period N is an even integer and
x[n+N/2]=−x[n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacqGHRaWkcaWGobGaai4laiaaikdacaGGDbGaeyypa0JaeyOeI0IaamiEaiaacUfacaWGUbGaaiyxaaaa@42B7@
, what pattern do you observe in the magnitude
spectrum? Justify your answer mathematically.
(2) If N is an even integer and
x[n+N/2]=x[n]
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWG4bGaai4waiaad6gacqGHRaWkcaWGobGaai4laiaaikdacaGGDbGaeyypa0JaamiEaiaacUfacaWGUbGaaiyxaaaa@41CA@
, what pattern do you observe in the magnitude
spectrum? Justify your answer mathematically.
(3) If
N=20
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGobGaeyypa0JaaGOmaiaaicdaaaa@398F@
,
what frequencies correspond to the spectral coefficients
X
k
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaadUgaaeqaaaaa@3839@
for
k=0,9,19
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGRbGaaGjbVlabg2da9iaaysW7caaIWaGaaiilaiaaysW7caaI5aGaaiilaiaaysW7caaIXaGaaGyoaaaa@42C5@
?
Which of these frequencies would you call “high” frequencies, and which would
you call “low?”
(4) If
N=20
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGobGaeyypa0JaaGOmaiaaicdaaaa@398F@
,
what is the signal that has all spectral coefficients zero except
X
10
=1
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaaigdacaaIWaaabeaakiaaysW7cqGH9aqpcaaMe8UaaGymaaaa@3DA3@
?
What is the signal if
X
10
=−1
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGybWaaSbaaSqaaiaaigdacaaIWaaabeaakiaaysW7cqGH9aqpcaaMe8UaeyOeI0IaaGymaaaa@3E90@
?
(5) If N is divisible by 4, what are the
spectral coefficients corresponding to discrete-time sinusoids with periods of N,
N/2
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGobGaai4laiaaikdaaaa@3882@
,
and
N/4
MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVeYdOipfYlH8qipiY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaabaWaaeaaeaaakeaacaWGobGaai4laiaaisdaaaa@3884@
?
return
to demonstrations page
Applets by Michael Ross and
Lan Ma.
|