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Abstract

I examine a model in which heterogeneous agents first form risk-sharing pairs,

and then repeatedly share income. I explore the interplay between matching patterns

and the (selection of) equilibria of the risk-sharing game. Agents are heterogeneous

in income autocorrelations, i.e. how their current incomes correlate with their past

incomes. Agents with high autocorrelations are hard to share risk with: if she needs

money now, then she is likely to need money again in the next period, and thus is

unlikely to repay it soon, diminishing her partners incentives to lend to her; similarly, in

periods in which she has a high income, she is unlikely to need to borrow for a long time,

diminishing her incentives to lend to her partner. With endogenous matching, all agents

prefer to match with partners who have low income autocorrelation. The resulting

equilibrium features substantial inequality and low total welfare compared to what

would happen if the agents could be forced into a specific matching but shared risks

voluntarily. Either agents match suboptimally, so agents match within-type, which

leads to inequalities across pairs and hurts the population on average, or they match

optimally, but in order to sustain cross-type matches agents end up with unequal risk

sharing arrangements, which results in lower risk sharing levels. In an extension I show

that common income shocks can change matching patterns, which, paradoxically, may

improve overall risk sharing and reduce inequality. My analysis also applies to other

sorts of heterogeneities, such as heterogeneous opportunities to rematch or migrate.
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1 Introduction

Informal risk sharing is important, but imperfect.1 Standard economic theory suggests

that people should share risk with others that are different from themselves, so as to avoid

correlations in their income and maximize the risk-sharing potentials. However, it is well-

documented that people tend to share risk with similar others.2 Why is this the case?3 This

paper provides one theoretical force to explain this pattern, based on the observation that

similar agents have common features4 that have substantial effects on agents’ incentives in

risk-sharing and consequently on the matching patterns.

To do so, I study a model where heterogeneous agents first form risk-sharing pairs,

then share risk infinitely repeatedly under limited commitment.5 One novelty of the paper

is to endogenize the matching process before informal risk sharing, which allows me to

explore the interplay between matching patterns and the (selection of) equilibria of the

risk sharing game. Agents are heterogeneous in income autocorrelations, i.e. how their

current incomes are correlated with their past incomes. The income autocorrelation is often

driven by occupations: accoding to the European Community Household Panel (ECHP,

1994-2001), autocorrelation in annual income has a median of 0.05 for “agricultural, fishery

and related labourers”, compared to a median of 0.55 for “laboureres in mining, construction,

manufacturing and transport”.6

To illustrate this idea, consider a village in which each agent has high income in half of

the periods and low income in the other half. There are two occupations: fishermen (f) and

1Pioneered by Townsend (1994), many papers reject the null hypothesis of full risk-sharing. See, for

example, Deaton (1992) for Cote d’Ivoire, Ghana and Thailand, Udry (1994) for northern Nigeria, Grimard

(1997) for the Cote d’Ivoire, Dubois (2000) for Pakistan, Fafchamps & Lund (2003) for the Philippines, etc.
2See, for example, Fafchamps & Gubert (2007) for risk-sharing within occupations, Ghatak (2000) that

documented the self-selection of individuals/households into different risk pools, and Mazzocco & Saini

(2012) for risk-sharing within caste. For general evidences of “homophily”, i.e. the tendency of people to

associate more with others that are similar to them, see McPherson (2001) and Jackson (2008) for extensive

reviews.
3Besides the explanation provided in this paper, there can be various alternative explanations. One is

based on information asymmetry. Another is culture-based, for instance, see Jackson & Xing (2014) for an

experimental study that justifies homophily based on the ease of coordination among people that have the

similar cultural background.
4In most parts of the paper I focus on the case in which agents are heterogeneous in autocorrelations in

income; in extensions I show that the model applies to a class of alternative heterogeneities based on time

preferences, income variances, wealth levels, and options to migrate/rematch, etc.
5Several papers provide empirical evidences for the importance of limited commitment in risk sharing.

See, e.g. Foster & Rosenzweig (2001), Fafchamps & Lund (2003), and De Weerdt & Dercon (2006).
6An autocorrelation of 0.05 corresponds to a probability of 52.5% for having the same income in two

consecutive periods and an autocorrelation of 0.55 corresponds to a probability of 77.5%, both in context of

the following example assuming that income follows a Markov process.
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coal miners (m). A fisherman looks for fish in every period and his/her income is roughly

independent over time. Whereas for a miner, getting a high income in one period implies a

larger chance of getting a high income again in the next period: once she finds a vein to work

in she gets high income, which remains for a while until the vein runs out; then the miner

needs to find a new vein, and the fact that those veins are hard to find means the miner

may receive low income for a long period of time. All agents are risk averse and look for a

partner to share risk. In particular, risk-sharing is in a manner that when one partner has a

high income and the other has a low income, the former can help out the latter by making

a transfer. Who shares risk with whom - will a fisherman match with another fisherman or

with a miner? How do they share risk? What are the consequences of matching in terms of

inequality and total welfare?

Positive income autocorrelations do not change the opportunities for risk-sharing, yet

reduce agents’ incentives. The frequency of dates at which one partner can help out the other

is a half,7 regardless of the agents’ income autocorrelations.8 However, one’s continuation

value from the relationship, conditional on helping out the other (i.e. one has a high income

and the other has a low income), substantially depends on agents’ autocorrelation types. In

particular, when an agent’s income is highly autocorrelated, if she needs money now, then

she is likely to need money again in the next period, and thus is unlikely to repay it soon.

This, together with impatience, implies a lower continuation value for the agent’s partner

(the lender) and thus her partner has less incentives to lend. Similarly, an agent’s high

autocorrelation not only hurts her partner’s incentives, but also her own incentives to lend:

in periods when she has a high income, she expects a string of high income in the near future

and hence is unlikely to need to borrow for a long time, which lowers her incentives to lend.

In sum, partners who have high autocorrelations are difficult to share risk with.

The above leads to a tendency of positive assortative matching. Everyone prefers to share

risk with a partner who faces a less autocorrelated income. Fishermen prefer to share risk

with other fishermen. Miners, although willing to share risk with fishermen, have to share

risk among themselves.

This matching pattern leads to substantial inequality in terms of the amount of risk faced

by the agents: fishermen share risk with other fishermen and they share risk well; whereas

for a pair of coal miners, they both have high income autocorrelation thus share risk badly.

Such an inequality inequality in risk exposure appears despite the fact that agents of all

types have exactly the same average income and income variance.

7I assume that income is independent across agents so as to get a clean benchmark. Then in Section 4 I

consider interdependence across agents.
8This implies that set of the feasible payoffs remains the same regardless of the agents’ income auto-

correlations. In other words, if agents were able to commit to risk sharing arrangements, then income

autocorrelations would have no impact on agents’ ex-ante payoffs.
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Both the matching pattern and the selection of risk-sharing equilibrium can be sub-

optimal. On one hand, compared to the case where all agents share risk across-type, when

agents match positive assortatively, one type (fisherman) gets excessive amount of risk shar-

ing and the other type (miner) gets too little risk sharing. This, together with the decreasing

marginal benefit of risk sharing, leads to a reduction in total welfare.9 On the other hand, if

agents match optimally, then in order to sustain that matching (across-type) agents have to

end up with very unequal sharing arrangements within a partnership, which in turn lowers

risk sharing levels.

A more concrete overview. My model proceeds in two phases. First, in the matching

phase, agents match in pairs and the matching is once and for all.10 Then in the risk-sharing

phase, each pair of agent share risks infinitely repeatedly under limited commitment. Limited

commitment means that agents cannot commit to future risk-sharing arrangements, so that

making a transfer in any period must be incentivized by continuation benefits in the future.

Under limited commitment, a pair of agents need to adopt a risk-sharing arrangement that is

subgame perfect,11 and such a risk-sharing arrangement is called a risk-sharing equilibrium.

An equilibrium in this two-phase game is a matching function and a collection of risk-

sharing arrangements, one for each matched pair, such that (1) the risk-sharing arrangement

for each pair is subgame perfect, and (2) no two agents can form a blocking pair, i.e. match

with each other and find some subgame perfect risk-sharing arrangement that Pareto domi-

nates the payoff they currently receive. Since any risk-sharing equilibrium can be adopted to

form a blocking pair according to the equilibrium notation, I need to characterize the whole

equilibrium risk-sharing payoff frontier, which depends on the corresponding pair of agents’

(autocorrelation) types.

There is a risk sharing equilibrium in which a pair of agents adopt the largest amounts of

transfers that are self-enforcing whenever transfers are needed.12 This equilibrium is called

the maximum transfer equilibrium (MTE). It is this equilibrium, among all risk sharing

equilibria, that achieves the largest amount of transfers and maximizes the sum of agents’

9Here I take a utilitarian perspective and consider the total welfare as the sum of all agents’ (ex-ante)

equilibrium payoffs.
10The matching phase is modeled as a “roommate problem”, i.e. any two agents can potentially form a

pair. (See, e.g. Gale & Shapley (1962) and Chiappori et. al. (2014).) This is different from the “two-sided

matching” models in which the population has two subgroups (e.g. men and women) and matching can only

occur across the groups. The roommate problems better capture the nature of matching in risk sharing, and

in addition provides additional structure in predicting the selection of risk sharing equilibrium.
11This paper will mostly focus on a simple set of equilibria, the “semi-Markovian” equilibria, for which

the subgame perfection is equivalent to “self-enforcing” that is widely adopted in the risk-sharing literature

(see, e.g. Ligon, Thomas & Worrall (2002)).
12i.e. when the two agents have different levels of income.
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ex-ante payoffs. In addition, neither agent can use a larger transfer in any other equilibrium.

This is due to a complementarity in incentive structures: one has no incentive to transfer

more while expecting a less amount from his/her partner. Finally, the MTE is also the

equilibrium that minimizes inequality between the pair of agents among all equilibria that

are Pareto undominated.

Despite the nice properties of the MTEs, when endogenous matching is accounted for,

every pair of agents with different types is forced to select some equilibrium that leads to

uneven payoffs between the agents, favoring the less autocorrelated. This is because that

agents of different types face different outside options, each of which is defined as the payoff

from a within-type pair (with the corresponding MTE played). Such an uneven arrangement

leads to reductions in both agents’ transfers, a distortion in the sum of agents’ payoffs, and

an increase in inequality.

The above issue makes across-type pairs hard to be sustained in equilibrium, and re-

inforces the matching patterns in which agents share risk with others of the same type. I

provide a simple sufficient condition for such matching patterns based on the relative po-

sitions of risk-sharing payoff frontiers and the effectiveness of transfer risk sharing payoffs

between a pair of agents. This analysis sheds light on the origins of homophily; a ubiquitous

pattern of people to interact more with others who are similar to themselves.

Extensions. The first extension concerns what happens if agents’ income flows are corre-

lated. In particular, agents with the same type are affected by type-specific common shocks,

so that they have positively correlated income. Incomes for different types of agents remain to

be independent. 13 Common shocks reduce the risk sharing potentials for every within-type

pair. Therefore, when the frequency of common shocks increases, risk sharing performances

become worse for a within-type pair, while it remains unchanged for an across-type pair. In

the presence of less-frequent common shocks, the pattern of sharing risk with similar others

remains in equilibrium and is more inefficient. Surprisingly, when the common shocks are

frequent enough, an increase in their frequency may improve total welfare. These positive

welfare effects of common shocks come about through a change in the endogenous matching

pattern and a reduction in the asymmetry (i.e. the departure of selected equilibrium from

the MTE) in risk-sharing among heterogeneous types.

The second extension is to explore alternative heterogeneities. In particular, agents are

heterogeneous in 1) their wealth levels, 2) their income variances, or 3) their patience. This

list covers both the differences in environments that different agents may face (the first

13This captures the idea that agents similar to each other (e.g. in occupations) tend to have larger

interpersonal correlations between their incomes. For instance, a storm keeps all fishermen at home and all

of them get low income during that period.
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two) and the difference in agents’ preferences (the third). In all the above, the equilibrium

payoff frontier in risk sharing moves monotonically in types and therefore everyone has the

same preference for their partner’s types: everyone likes a wealthier partner, everyone likes a

partner with more variable income, and that everyone likes a more patient partner. Results

about the interplay between matching and risk sharing are parallel to those presented in

the case where agents are heterogeneous in autocorrelations. The analysis with alternative

heterogeneities shed lights on several empirical findings, including that the rich receive more

from (rather than give to) the poor (Misrut (2008)), and the self-selection of individuals into

different risk pools (Ghatak (2000)).

The third extension allows agents to opt out of their current relationship and match with

other people. Migration is one example of the rematch process: agents migrate and form

new risk-sharing partnerships.14 A more effective rematch process, measured by a shorter

waiting before being matched again, can actually make everyone worse off. This is due to

a negative effect of rematching on risk-sharing: the opportunity of rematching results in a

smaller cost in breaking the current relationship, and thus reduces agents’ incentives to make

a transfer. In addition, when agents are heterogeneous in their opportunities of rematch,

everyone prefers to share risk with a partner with worse rematch options and consequently

there is a tendency of sorting with respect to the opportunity of rematch.

Related literature. This paper adds to several branches of literature, besides the empir-

ical literature already cited in this introduction.

First, the paper is related to the literature on the imperfect risk sharing with fixed

risk-sharing pairs.15 Those papers assume agents are born into their risk sharing groups

and cannot choose with whom to share risk. In contrast, my paper explicitly models the

matching process among hetergeneous agents. In addition I show that endogenous matching

affects the selection of the risk sharing arrangements, which in every across-type pair leads

to further distortions in both agents’ transfers.

Another related branch of the literature is refers to matching with heterogeneous agents

in the absence of subsequent strategic interactions.16 Related to risk sharing, existing pa-

pers mainly focus on matching among agents that are heterogeneous in risk preferences.17

14For migration and consumption smoothing, see, e.g. Rosenzweig & Stark (1989), Morten (2013), and

citations therein.
15These include hidden income (Cole & Kocherlakota (2001)), moral hazard (Phelan & Townsend (1991)),

and limited commitment (Coate & Ravallion (1993), Kocherlakota (1996), Fafchamps (1999), and Ligon,

Thomas & Worrall (2002)). The risk sharing part of our paper builds upon the limited commitment models,

esp. Ligon, Thomas & Worrall (2002), who also allows for auto-correlations.
16This literature is pioneered by initiated by Gale and Shapley (1962) & Becker (1972), and later advances

include Roth & Sotomayor (1989), Avery & Levin (2010), Chade et al. (2014), etc.
17See, e.g. Schulhofer-Wohl (2006), Legros & Newman (2007), Chiappori & Reny (2015) and Wang (2015)
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This paper differs from the above in three main aspects. First, all the above assume full

commitments in the post-matching stage, whereas I relax this assumption and explicitly

analyze the incentive issues that are salient in risk-sharing. Second, this paper models the

matching phase as a “roommate problem”, i.e. any two agents can potentially form a pair.18

Such a framework better captures the nature of matching in risk sharing, and also provides

additional structure in predicting the selection of risk sharing equilibrium. Third, while the

literature focuses on heterogeneity in risk preferences which often leads to negative sorting,

this paper explore novel sources of heterogeneities (autocorrelations in the main model, then

income levels, income variances, time preferences and options of rematch/migration as ex-

tensions). With any of these heterogeneities, all agents have similar preferences over the

partner’s types, and as a result there is a tendency for positive assortative matching. Thus

this paper provides an new perspective on the origin of homophily.19

There is also a branch of literature on endogenous partnership formation with homoge-

neous agents.20 These papers provide important insights on the sizes and shapes of part-

nerships, yet cannot answer the question of “who interacts with whom”. This question is

better explored in our framework with heterogeneous agents. As for how partnership forma-

tion affects the play of the subsequent game, our paper closely relates to Jackson & Watts

(2010), but identifies a very different key determinant for the selection of equilibrium: it is

the relative advantage in risk sharing between different types in this paper, in contrast to

the relative population size in Jackson & Watts (2010).21

The rest of the paper proceeds as follows: Section 2 presents the model and equilib-

rium notions. Section 3 characterize features in risk-sharing equilibria, their selection when

for theoretical discussions, and Ackerberg & Botticini (2002) for empirical evidences.
18See, e.g. Gale & Shapley (1962), Gusfield & Irving (1989), Klaus & Klijn (2010), Irving (1985), Tan

(1991) & Chung (2000) for roommate problems with non-transferable utilities; and Karlander & Eriksson

(2001), Klaus and Nichifor (2010), Talman & Yang (2011), Chiappori et. al. (2014) for the cases with

perfectly transferable utilities. This paper can be viewed as a roommate problem with utilities partially

transferable along the frontiers, which are shaped by the subsequent risk-sharing phase. The risk sharing

game provides regularities on how the payoff frontiers depend on the combination of types, and thus adds

tractability to the roommate problem.
19See, e.g. McPherson et. al. (2001), Jackson (2008), Currarini et. al. (2009) and the extensive literature

reviews therein.
20For instance, Genicot & Ray (2003) show that stable groups are of bounded sizes when allowing for

coalitional deviations. Bloch et.al. (2008) studies stable risk sharing networks. Jackson & Watts (2010)

establish a framework in which agents form groups to play games. Agents are divided into several “roles”

and each group requires one agent from each role. In their paper, agents in a role are identical.
21For more papers studying the implications of endogenous partnership formations for behavior, see, e.g.

Kelso & Crawford (1982), Rubinstein & Wolinsky (1985), and Hatfield & Milgrom (2005) for market and

bargaining settings, Watson (1999) for mutual investment, Goyal & Vega-Redondo (2005) for coordinations,

and Ghosh & Ray (1996) for cooperations in prisoners dilemma games.
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matching is endogenized, implications for total welfare, and conditions for positive assorta-

tive matching. Section 4 introduces common shocks for agents who have the same type and

discusses their welfare effects. Section 5 explores three alternative heterogeneities. Section

6 allows for rematch. Section 7 concludes.

2 Model: Matching and Repeated Risk Sharing

In this section I present the model. A population of agents, denoted by N , act in a two-phase

game. In phase one (the matching phase) agents form bilateral risk-sharing pairs; then in

phase two each pair of agents share risks with each other infinitely repeatedly under limited

commitment. Before describing the two phases in more detail, I first describe the income

patterns that agents face and the source of heterogenity.

At each date t = 0, 1, . . ., each agent i receives an income (amount of consumption good,

also referred to as “money”) sti ∈ {0, 1}, in which 0 represents a low income and 1 a high

income. The consumption good is non-storable. I assume income shocks are independent

across agents, until Section 4 in which common shocks are introduced.

An agent’s income flow can be (auto-)correlated over time, and agents are heterogeneous

in the time-patterns of income flows. In particular, an agent’s income flow (s0i , . . . , s
t
i, . . .) fol-

lows a Markov process with state space {0, 1} and transition matrix Πi ≡

[
θi 1− θi

1− θi θi

]
,

in which θi ∈ [0.5, 1) is called the agent’s autocorrelation type. An agent has i.i.d. income if

θ = 0.5, has positively correlated income if θ > 0.5; and I assume no one has a negatively

correlated income flow. Throughout the paper I assume the number of agents in each type

is even.22

To focus on the effects of autocorrelation, I assume that agents are the same in other

dimensions. In particular, all agents share the same expected income (per-period): Pr(s0i =

0) = 0.5,∀i so that the two levels of income are equally likely ex-ante and both have a

frequency of 0.5. Agents also have the same preference. In particular, agent i has per-period

von Neumann-Morgenstern utility u(cti) in which cti is the consumption of agent i. Agents

are risk averse: u′(c) > 0, u′′(c) < 0, ∀c. Agents discount the future with common discount

factor δ ∈ (0, 1), and are expected utility maximizers.

Agents form risk-sharing pairs at the beginning of t = 0 before the time-0 income is

realized. A matching fuction is denoted by m : N → N , with m(i) representing the agent

with whom agent i is matched. The partnerships are bilateral so that j = m(i) ⇐⇒ i =

m(j). The match is once and for all, so agents are not able to rematch in the future. Agents

commonly observe each other’s autocorrelation types at the time of matching, and each agent

22The number of agents is even so that it is feasible to have all agents match within their types.
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faces the rest of the whole population as potential partners.

Each pair of agents (i, j) s.t. i = m(j) share risks with each other. The risk-sharing

relationship is modeled as an infinitely repeated stochastic game, with the agents’ (joint)

income as exogenous states. By construction, the sequence of (joint) income states follow

a Markov process with state space S ≡ {(1, 1), (1, 0), (0, 1), (0, 0)} and transition matrix

Π(θi, θj) = Πi⊗Πj, i.e. the Kronecker product of the two transition matrices for individual

income states.

At each date t = 0, 1, . . ., agents can make transfers to each other after the realization of

their income shocks, which are commonly observable. Formally, an action qti ∈ [0, 1] is the

amount of transfer made by agent i to his/her partner. A strategy of agent i assigns an action

to each decision node, i.e. qi : S×
⋃
tH

t → R+, in which S is the set of income states and H t

is the set of histories up to time t, with a representative element ht =
(
sτi , s

τ
j , q

τ
i , q

τ
j

)
τ=0,...,t−1.

An agent’s consumption is his/her income minus the net transfer to the other. In particular,

agent i’s expected payoff from a strategy profile (qi,qj) is

Ui(qi,qj) ≡
∑
t≥0

∑
st,ht−1

δt Pr(st, ht−1) u
(
sti − qi(s

t, ht−1) + qj(s
t, ht−1)

)
.

There is no information asymmetry: each pair of agents commonly observe their transfers

in the past, and past and current income states. Therefore limited commitment is the only

friction that agents face in risk-sharing. In particular agents cannot commit to (or find a

third party to enforce) further risk-sharing arrangements, so that at any point of the risk

sharing phase one’s incentives of transfering money to the other must be provided by the

expectation in continuation gains from the relationship. In particular notion of risk-sharing

equilibrium requires that the risk-sharing strategy profile is subgame perfect.

An example.

Before introducing the equilibrium notions, first consider an example highlighting why

autocorrelation matters to risk-sharing. Suppose two agents have already been matched to

share risk. The following example presents the time series of income realizations for agent 1

(red rectangles) and agent 2 (green triangles), with varying combinations of autocorrelation

types. For instance, in period 0 of panel 1), agent 2 gets a high income and agent 1 gets a

low one, and this is the situation in which 2 can help 1 out by delivering a transfer. I use

the green dot-dashed arrows to represent the dates on which agent 2 can help agent 1, and

the red dashed arrows to represent the dates on which agent 1 can help 2 (i.e. when 1 has a

high income and 2 has a low income).

Among the total of 18 periods, the average number of periods in which one guy can

help out the other (i.e. the arrow appears) is the same (9 in this example) regardless of the
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autocorrelations, due to the equal likelihoods of high and low income levels and independence

across agents.

Nonetheless, incentives are particularly different across cases. First consider case 1) in

which both agents’ incomes are i.i.d. After agent 2 giving out his money in period 0, he

gets some money back in period 2, which happens pretty soon. Whereas in case 2) when

one agent has more autocorrelation and the other remains i.i.d., 2 gets a first transfer back

later, in period 5. This is because agent 2’s high income lasts for a while. Things are even

worse in case 3) when both agents’ incomes are positively autocorrelated: it takes a much

longer wait for agent 2 to get a first transfer back (in period 8), since agent 2’s high income

and agent 1’s low income both last for a while. Furthermore, before getting the first transfer

back, agent 2 not only waits longer for the first transfer, but also expects to do more favors

in case 2) and 3).

Therefore, in terms of the continuation value (of sustaining the relationship), it is much

worse for agent 2 to deliver a favor in case 3) than in case 1); even though ex-ante they can

share risk in the same number of periods.

1) θ1 = 0.5, θ2 = 0.5: both have iid income flows.

0"

1"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17"

s1"

s2"

s1"
s2"

t"

st"

2) θ1 = 0.5, θ2 = 0.7: the second agent has a postively autocorrelated income flow.

0"

1"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17"

s1"

s2"

s1"
s2"

t"

st"

3) θ1 = 0.7, θ2 = 0.7: both agents have positively autocorrelated income flows.

0"

1"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17"
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s2"

s1"
s2"
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st"
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The examples may seem specific but the insights are general: autocorrelations hurt in-

centives, and thus reduce the gains from risk sharing. I will more precisely present these

insights after formally introducing the equilibrium notions.

2.1 Equilibrium Notions

In this part I first introduce the equilibrium notion in risk-sharing phase (taking matching

patterns as given), then adopt it to define the equilibrium for the whole game including the

matching and risk-sharing phases. Intuitively, an equilibrium consists of a matching function

and a risk-sharing equilibrium for each pair, such that the matching is stable in the sense

that any pair of agents (matched or unmatched) cannot find a risk-sharing equilibrium as a

Pareto improvement for these two agents.

Semi-Markovian risk-sharing equilibria. For illustrative purpose I mainly focus on a

class of strategies that is “history independent”, i.e. each agent chooses the same amount of

transfer at any point of time when a transfer is needed, with the only exception that when

anyone deviates from the above, no further transfers will be made between the pair of agents

(so that both agents are in autarky). One can view such strategies as depending only on

the current state, including the income state and an endogenous state variable that keeps

track of whether any deviation has occurred. In this sense, I call the class “semi-Markovian

strategies”. I also assume that transfers only occur when the pair of agents currently receive

different levels of income, and in particular are made from agent who gets a high income to

his/her partner who gets a low income.

Definition 1 (semi-Markovian strategy profile and equilibrium) A strategy pro-

file (q1,q2) is semi-Markovian if there exists a pair of transfers (q1, q2) ∈ [0, 1]2 such that

• qi(s
0, ht−1) ≡ qi if (sti, s

t
j) = (1, 0) and this condition is satisfied for history ht−1,

∀τ < t, i = 1, 2;

• qi(s
0, ht−1) ≡ 0 otherwise.

A semi-Markovian strategy profile, represented by its corresponding pair of transfers

(q1, q2), is a semi-Markovian equilibrium if (q1,q2) is subgame perfect.

Matching game equilibria. Let Γ(θi, θj) be the set of all (semi-Markovian) risk-sharing

equilibria (qi,qj), for a pair of agents with types (θi, θj). A matching game equilibrium is

defined as follows:

Definition 2 (Matching game equilibrium)
(
m, {(qi, qj)}m(i)=j,i<j

)
is a matching game

equilibrium if
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1. for any i and j matched (m(i) = j): (qi, qj) ∈ Γ(θi, θj) is a risk-sharing equilibrium.

2. for any i and j, there exists no risk-sharing equilibrium (between i and j) that Pareto

dominates what i and j currently receive.23

A matching game equilibrium specifies a matching function, and a risk-sharing equilib-

rium for each matched pair. In addition, the matching should be “stable”: on one hand,

this requires that the any matched pair of agents the specified risk-sharing equilibrium is

not Pareto dominated by any other risk-sharing equilibrium; on the other hand, this also

requires that no pair of unmatched agents can find some risk-sharing equilibrium (when

matched with each other) that Pareto dominates what they currently receive.

The notion of “stability” is quite strong in that it allows for any two agents to form

a blocking pair with any risk-sharing equilibrium. As a result, in order to analyze the

matching game equilibrium I need to fully characterize the equilibrium payoff frontier in the

risk-sharing phase, for each pair of types.

3 Equilibrium Analysis

Recall that the model has two phases: agents first match in pairs and then risk-sharing takes

place in each pair. This section characterizes equilibria using backward induction: first

I characterize features of equilibrium payoff frontier in risk-sharing and illustrate how the

frontier depends on the pair of types; then I analyze the equilibrium in the whole game. There

is an interplay between matching and risk-sharing. First, endogenous matching determines

the selection of risk-sharing equilibria for each pair. Second, equilibrium matching pattern

is determined by the risk-sharing equilibrium frontiers.

3.1 Risk-sharing equilibria

I first characterize the risk-sharing equilibria for a given pair, say agents 1 and 2 with types

θ1, θ2. Due to the lack of commitment, one’s decision of giving out money needs to be

incentivized by the expectation of future gains. I say a strategy profile is self-enforcing if

none of the two agents has incentive to deviate under the punishment of staying in autarky,

i.e. no further transfers are made from then on. This can be viewed as a “grim trigger”

punishment in the risk-sharing environment.

23Formally, @(q̂i, q̂j) ∈ Γ(θi, θj) s.t. Ui(q̂i, q̂j) ≥ Ui(qi, qm(i)) and Uj(q̂i, q̂j) ≥ Uj(qj , qm(j)) and at least one

inequality is strict.
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Definition 3 (Self-enforcing transfers) A risk-sharing strategy profile (q1,q2) is

self-enforcing if ∀i = 1, 2,∀(st, ht−1):

U t
i (q1,q2 | (st, ht−1)) ≥ UAut,t

i (st, ht−1) ≡ U t
i (0,0 | (st, ht−1)) (1)

With semi-Markovian strategy profile (q1, q2), this can be re-written as ( ∀{i, j} = {1, 2})

u(1)− u(1− qi) ≤
∑
τ>0

δτ
[
pgive,τ |give(u(qj)− u(0))− preceive,τ |give(u(1)− u(1− qi))

]
, (2)

in which (∀τ = 1, 2, . . .)

• pgive,τ |give ≡ Pr(st+τ = (1, 0) | st = (1, 0)), increasing in θ’s;

• preceive,τ |give ≡ Pr(st+τ = (0, 1) | st = (1, 0)), decreasing in θ’s.

In particular, the LHS in (3) is the cost of helping out the other in the current period t,

and the RHS is the expected continuation value in sustaining the relationship (relative to the

“outside option” of autarky). When either autocorrelation type increases, the likelihoods of

the future gain (u(qj)−u(0)) go down and the likelihoods of the future cost (u(1)−u(1−qj))
go up, hence either agent faces a tighter incentive constraint.

For any strategy profile, a necessary condition for subgame perfection is being self-

enforcing, since each player can always guarantee himself the autarky payoff. For semi-

Markovian strategy profiles, being self-enforcing is also sufficient condition for being an

equilibrium.

Lemma 1 (q1, q2) is a (semi-Markovian) risk-sharing equilibrium if and only if it is self-

enforcing, i.e. (∀{i, j} = {1, 2})

u(1)− u(1− qi)
u(qj)− u(0)

≤
∑

τ δ
τpreceive,τ |give∑

τ δ
τpgive,τ |give + 1

≡ H(θ1, θ2), (3)

in which H(θ1, θ2) decreases in both arguments.

Autocorrelation hurts incentives. When either agent’s income becomes more positively

autocorrelated, what happens today better predicts the future. Hence an agent who is

giving out money today expects a larger chance (pgive,τ |give) to be giving out money again

and a lower chance (preceive,τ |give) to be receiving money at any point of time in the future.

Therefore, due to the expectation of a lower gain in the future, an agent has less incentive

to give out money.

In above I have characterized the set of risk-sharing equilibrium transfers. What about

equilibrium payoffs?

12



Notice that all pairs of agents face the same (ex-ante) chance of sharing risk, regardless

of their autocorrelation types. In particular, the ex-ante frequencies for each agent to give

out money and to receive money are both a quarter. Thus an agent’s ex-ante payoff from a

strategy profile (q1, q2) is:

Ui(q1, q2) =
1

4(1− δ)
[u(qj) + u(1− qi) + u(1) + u(0)] ,∀i = 1, 2. (4)

This, together with Lemma 1, imply the following basic properties for the set of risk

sharing equilibria and equilibrium payoffs.

Lemma 2 The set of risk-sharing equilibria Γ(θi, θj) and the set of equilibrium payoffs U(θi, θj)

are both compact and convex, and have the minimum (0, 0) and (UAut, UAut), respectively,

∀(θi, θj).

In every pair, there is a maximum transfer (risk-sharing) equilibrium (MTE) (q∗, q∗)(θi, θj):

q∗ ≡ argmaxqUi(q, q) s.t.
u(1)− u(1− q)
u(q)− u(0)

≤ H(θi, θj)

The resulting (ex-ante) payoff

U∗(θi, θj) ≡ U(q∗(θi, θj), q
∗(θi, θj))

is called the maximum transfer equilibrium payoff (MTE payoff). The symmetry in the set

of equilibria also implies the symmetric structure in the MTE and its payoff.

Lemma 3 (Maximum transfer equilibrium, MTE) In the risk sharing phase with ev-

ery pair of agents (i, j), the maximum transfer equilibrium (q∗, q∗)(θi, θj), compared to any

other equilibrium ∀(qi, qj) ∈ Γ(θi, θj), achieves

1. a lower inequality: |Ui(q∗, q∗)− Uj(q∗, q∗)| ≤ |Ui(qi, qj)− Uj(qi, qj)|;

2. a strictly higher sum of ex-ante payoffs: Ui(q
∗, q∗) + Uj(q

∗, q∗) > Ui(qi, qj) + Uj(qi, qj);

3. strictly higher levels of transfers: q∗(θi, θj) > max{qi, qj}.

For the limited commitment to have non-trivial incentive effects, I assume that the agents

cannot achieve the first-best transfer qFB = 0.5 for any pair of types. Under this assumption,

q∗(θi, θj) is the maximum transfer used by both agents in any risk-sharing equilibrium.

Moreover, it is also the maximum amount of transfer that can be used by either agent

in every equilibrium. This is due to a complementarity in incentive structures: it is self-

enforcing for one agent to transfer more when he expects a larger amount of transfer from

his partner.

13



How do autocorrelations affect payoffs in risk sharing? An important lesson from equa-

tion (4) is that the autocorrelations have no direct effect to ex-ante payoff. They only affect

agents’ payoff indirectly through the incentives. Therefore, we have the following compara-

tive statics of the set of equilibria (and their payoffs).

Proposition 1 (Risk sharing equilibrium: comparative statics) The set of risk-sharing

equilibria Γ(θi, θj) and the set of equilibrium payoffs U(θi, θj) both shrink as either autocor-

relation type increases:
(θi, θj) ≥ (θ′i, θ

′
j) =⇒ Γ(θi, θj) ⊆ Γ(θ′i, θ

′
j), U(θi, θj) ⊆ U(θ′i, θ

′
j)

As for the MTEs: both the maximum transfer q∗(θi, θj) and the MTE payoff U∗(θi, θj)

decrease in both arguments.

An increase in one’s autocorrelation hurts not only this agent’s own incentives, but also

the others. This is because for one’s switches role from giving out money to receiving money,

both agents’ income states need be flipped. The effects are symmetric, resulting a symmetry

in the set of equilibria with respect to the 45 degree line.

So far, I have illustrated several properties of risk-sharing equilibria. First, in every pair,

including one with different types of agents, there is a maximum transfer equilibrium which

has the largest amount of transfer, largest sum of equilibrium payoff, and lowest inequality,

across all equilibria. Second, autocorrelations hurt incentives: the set of equilibria shrinks

as either agent’s has more positively autocorrelated income.

In below I present some simulated examples. The goal of the examples to illustrate what

happens when the commitment is removed, and what happens with autocorrelations. The

top-left panel is the benchmark case with full commitment environment, and shows the set

of feasible payoffs. Notice that the set does not vary in autocorrelations. Commitment is

removed for the other three panels, which show how the set of equilibrium payoffs (under

limited commitment) changes with varying combinations of autocorrelations. Let us consider

the gains from risk-sharing, measured as the maximum transfer equilibrium payoff minus the

autarky payoff (numbers in charts).

While removing commitment per se may not reduce the gains by a lot (100% to 95%

when both agents are i.i.d.), autocorrelations bring tremendous losses: the gains drop to

65% as one agent has an autocorrelation type of 0.7, and further to 19% when both agents

have positive autocorrelations.

In addition, the gains have decreasing differences in autocorrelation types: 95%− 65% >

65% − 19%. Hence in the total-gain maximizing matching pattern is negative assorta-

tive matching, i.e. two agents with different autocorrelation types (0.5 and 0.7) should

be matched together. However, this pattern needs not occur in any matching equilibrium.

Such distortions in total-welfare can be a general feature for matching game equilibria. The

subsequent sections explore these observations in more details.
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Note: parameters used: u = −e−c, δ = 0.82, θ = 0.5 or 0.7. As a benchmark, the top-left panel is the feasible

set, i.e. the set of ex-ante payoffs with full commitment. The other three panels are the set of equilibrium

payoffs with varying autocorrelation types (specified in titles). “FB gains” is defined as the MTE payoff

minus the autarky payoff.

3.2 Matching shapes the selection of risk-sharing equilibria

How does endogenous matching affect the selection of risk-sharing equilibrium? Will the

corresponding maximum transfer equilibrium be selected in each pair? Or will it be some

other equilibrium? Thses questions are answered in this section. As illustrated in the

following proposition, whether the MTE is selected is determined by whether the pair of

agents are of the same type or different types.

Lemma 4 (Equal payoff for same-type agents) In any matching game equilibrium, all

agents of a same type receive the same level of payoff. In particular, Ui ≥ U∗(θi, θi), i.e. i

receives at least the MTE payoff when matched within-type.

Proposition 2 (Matching determines selection) With endogenous matching, in any

matching game equilibrium
(
m, {(qi, qj)}

)
the selection of risk-sharing equilibria in each pair

depends on whether the two agents have the same type. ∀(i, j), j = m(i):
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1. If θi 6= θj (across-type pair), the agents play an asymmetric equilibrium that favors the

less-autocorrelated. Compared to the corresponding maximum symmetric equilibrium,

any asymmetric equilibrium results in a reduction in the sum of payoffs, an increase

in inequality, and distortions in both agents’ transfers.

2. If θi = θj (within-type pair), the MTE is played, i.e. qi = qj = q∗(θi, θi).

Matching shapes equilibrium selection because an agent’s outside option is determined

endogenously in the matching phase. A fisherman, who is less autocorrelated, gets a higher

within-type payoff. Such a payoff exceeds the MTE payoff when the fisherman matches with

a miner who is more autocorrelated (U∗(θf , θm) < U∗(θf , θf )). Therefore, for any across-

type match to be present, agents have to play some asymmetric equilibrium that favors the

fisherman. In particular, both the fisherman and the miner should get at least their within-

type payoffs. If there are more than one such equilibria, which one is selected depends on

the relative sizes of the two groups: the selected equilibrium is such that an agent from

the relatively smaller group is indifferent between matching across-type and within-type. In

sum, the selection of equilibrium is first determined by the relative relative advantages of

the types, then the relative population sizes.

The asymmetric treatment results in several distortions, compared to to the MTE that

the pair of agents could have chosen without endogenous matching. Both agents choose less

transfers, due to the complementarity in agents’ incentive structures. An increase in the

fisherman’s payoff leads to a larger reduction in the miner’s.

3.3 Implications for total welfare

In this part I discuss the implications of the above results on total welfare in terms of the the

sum of agents’ (ex-ante) payoff. Compared to a benchmark in which matching is exogenously

controlled by a benevolent social planner who maximizes total welfare, with endogenous

matching the outcomes can lead to substantial reductions in total welfare. Either people

match suboptimally - so that they match with someone who has similar income patterns,

which ends up hurting the population overall - or they match optimally, but then in order

to sustain that matching agents end up with very unequal sharing arrangements within a

partnership, which in turn lowers overall sharing levels.24

With a social planner controlling the matching. Consider a social planner who can

assigns pairs of agents to match with each other, yet cannot help to resolve the limited-

24Notice that if payoffs were perfectly transferrable, the total welfare would be maximized in equilibria.

So the concavity in risk-sharing equilibrium payoff frontier, i.e. the fact that arrangements other than the

MTE lead to distortions in the amount of sharing and sum of payoffs, is the source of inefficiency.
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commitement issue in their risk-sharing phase.25 In particular, the set of feasible arrange-

ments for the social planner is {(m, (qi, qj)m(i)=j,i<j) | (qi, qj) ∈ Γ(θi, θj),∀m(i) = j}, i.e.

any arrangement under the planner’s intervention should still have each pair playing some

risk-sharing equilibrium.

I now specify a sufficient condition under which equilibrium leads to suboptimal alloca-

tions. The condition is
∂2U∗(θi,θj)
∂θi∂θj

< 0, a discrete form of which is that the MTE payoff has

decreasing differences w.r.t. types. One important class of environments covered by this

condition is when agents have CARA utility with any Arrow-Pratt measure of absolute risk

aversion.

Proposition 3 (Optimal versus equilibrium arrangements) If the MTE payoff has

decreasing differences w.r.t. types, equilibrium allocation is never optimal. In particular, the

optimal arrangement (that maximizes total welfare) is to have negative assortative matching
26 and each pair play their maximum transfer equilibrium; whereas any equilibrium necessarily

has either positive assortative matching or non-MTE equilibria in some pairs, hence is never

an optimal arrangement.

Corollary 1 When agents have CARA utility function u(c) = const − e−λc,∀λ > 0, the

equilibrium arrangement is never optimal.27

As illustrated in the above results, two sources of suboptimalities arise in equilibrium:

1. Suboptimal matching patterns: even when across-type pairs generates a higher total

welfare than the average of two within-type pairs (in terms of the MTE payoffs), the

equilibrium matching pattern can be positive assortative.

2. Suboptimal selection of risk-sharing arrangements: every pair of agents with different

types is forced to select an equilibrium other than the MTE. Such a selection leads to

a reduction in total welfare, an increase in inequality and distortions in both agents’

risk-sharing transfers.

A social planner’s intervention on matching patterns can correct both suboptimalities in

above. The effect on inefficient matching is direct as the planner has full control over the

25Otherwise if the social planner can impose transfers, the first-best result with qFB = 0.5 can be imposed

and agents’ payoffs are independent from matching patterns.
26When the type space is not continuous, or the second order derivatives do not exist, the condition with

cross-partials can be replaced by having strictly increasing differences (see, e.g. Topkis (1998), Milgrom &

Roberts (1990)). “Negative assortative matching” means that the agent with the largest type matches with

the one with the lowest type, the one with the second-largest type matches with the second lowest, etc. (see,

e.g. Becker (1973), Chiappori & Reny (2015).)
27See appendix A.2 for explicit results with CARA utilities.
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matching. As for the second source: when an intervention impose a matching, no agent has

an option choose other partners and hence in an (across-type) pair agents are no longer forced

to adopt an asymmetric arrangement. Therefore very pair can choose the MTE, resulting in

no distortion due to the selection of equilibria.

Finally, either of the above two cases leads to an inequality among agents of different

types. Those agents who face more correlated income expose to more risk in consumptions,

despite the fact that all agents share the same average income and income variance.

3.4 Matching patterns

As illustrated in the previous section, with endogenous matching every pair agents with

different types is forced to select some risk-sharing equilibrium other than their maximum

transfer equilibrium (MTE), resulting in distortions in the amounts of risk-sharing as well as

total welfare. As a result, the matching pattern is also biased to the extent that agents tend to

match with partners that are similar to them in types. This section analyzes the matching

pattern in more detail and provides a simple sufficient condition for positive assortative

matching to be the unique matching pattern that can be present in equilibrium. The sufficient

condition is characterized with two key factors: 1) the relative positions of the risk-sharing

equilibrium frontiers (in terms of the MTE payoffs) and 2) the “effectiveness of transfer”

in the across-type pair, i.e. the maximum rate at which the more autorrelated agent can

transfer equilibrium payoff to attact the less autocorrelated.

Consider a population with two types of agents: fishermen (f) and miners (m). The

fishermen’s income is less positively autocorrelated than the miners’ (θf < θm). When

matched within-type, the fishermen gain less than the miners do, and in this sense I call the

fishermen a “more-favored” type, and the miners a “less-favored” type.

Two features of the risk-sharing equilibria lead to a tendency for same-type pairs to

appear in a matching equilibrium. First, a monotonicity of equilibrium surplus in types,

or in another word, everyone prefers a less-autocorrelated partner (fishman). Second, the

difficulty for the miner to attract the fisherman - due to the distortions in the amounts of

sharing associated to any asymmetric risk-sharing arrangements.

A fisherman can be attracted by a miner to form a risk-sharing partnership if in such an

across-type pair agents can find a risk-sharing equilibrium from which both types get at least

as much as they could get from matching with a same-type partner (Lemma 4). Whether the

existence of such an equilibrium depends on not only the relative positions of the frontiers,

but also their shapes. Two cases may occur for an across-type pair with (θf , θm) regarding

the shape of its Pareto frontier:

• Case 1. There exists a risk-sharing equilibrium that Pareto dominates all others; (such
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a Pareto dominant equilibrium must be the MTE.)

• Case 2. There exists no Pareto dominant risk-sharing equilibrium.

U1"

U2"

UAut%

f"vs"f"

m"vs"m"

f"vs"m""

U1"

U2"

UAut%

f"vs"f"

m"vs"m"

f"vs"m""

Case%1% Case%2%

Case 1 is extreme and positive assortative matching is the unique equilibrium matching

pattern: the MTE is the most favourite for both types and no one can get a higher payoff from

any other risk-sharing equilibrium. As a result, a miner can never attract a fisherman (recall

that U∗(θf , θm) < U∗(θf , θf )) and thus in equilibrium everyone matches with a same-type

partner.

In Case 2, which matching pattern appears in equilibrium depends on two factors: 1)

the relative positions of equilibrium frontiers with different combinations of types, and 2)

the shape of the across-type equilibrium frontier. The first factor governs how much payoff

is needed to attract a fishman, and how much payoff a miner would like to give up, and the

second factor determines the effectiveness of “transferring” payoffs from the miner to the

fisherman.

In below I present a sufficient condition for positive assortative matching, based on the

two factors in above. In particular, the “effectiveness of transfer” for an across-type pair is

the maximum rate at which a miner can transfer equilibrium payoff to a fisherman along the

equilibrium payoff frontier. Formally:

Definition 4 (Effectiveness of transfer) The effectiveness of transfer for an across-

type pair is defined as γ(θf , θm) ≡ sup
Um<U∗,(Uf ,Um)∈U

− dUf

dUm
.

Due to the concavity of the equilibrium payoff frontier, γ(θf , θm) is actually the limit of

the rate dUf

dUm
as Um → U∗ (from below). That is, the rate is maximized at the maximum

transfer equilibrium (MTE), and decreases as the risk-sharing arrangement is further away

from the MTE.

Recall that when the (ex-ante) utilities are perfectly transferable, positive assortative

matching occurs when the surplus has increasing differences in agents’ types.28 There is a

28See, e.g. Becker (1973).
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corresponding sufficient condition in our environment, in terms of the MTE payoffs:

U∗(θf , θf )− U∗(θf , θm)

U∗(θf , θm)− U∗(θm, θm)
≥ γ(θf , θm), (5)

in which the effectiveness of transfer is bounded above: γ(θf , θm) < u′(1−q∗(θf ,θm))
u′(q∗(θf ,θm))

< 1. To

be more specific, γ(θf , θm) ≡ H
1−H

[
u′(1−q∗)
u′(q∗)

− u′(q∗)
u′(1−q∗)

]
.29

Proposition 4 (Sufficient condition for positive assortative matching) When (5) is

satisfied, there is an unique matching game equilibrium in terms of the outcomes, in which

• All matches are within-type: θi = θj,∀i,∀j = m(i);

• All pairs play maximum transfer equilibria: qi = q∗(θi, θi),∀i.

Notice that this Proposition covers Case 1 as a special case: that the MTE is Pareto dom-

inant if and only if γ(θf , θm) ≤ 0 and hence condition (5) is always satisfied. In particular,

the expression of γ implies that Case 1 occurs if and only if

u′(1− q∗(θf , θm))

u′(q∗(θf , θm))
≤
√
H(θf , θm), (6)

which therefore is also a sufficient condition for positive assortative matching.

4 Within-Type Common Shocks

In practice, one major source of inefficiency for sharing risk with similar others30 is that

agents who are similar to each other tend to face common shocks to their income. For

instance, stormy weather is likely to keep all fishermen in the area staying at home so that

they all get low income on that day. Such common shocks reduce the opportunities of

risk-sharing among similar agents. This section explicitly models such common shocks.

In particular, agents of the same type are affected by common income shocks. The wel-

fare effects of common shocks are two-fold, depending their frequencies. With less-frequent

common shocks, within-type pairs can still be present, resulting in larger inefficiency in equi-

librium outcomes. In contrast, frequent-enough common shocks may improve total welfare

through changing the matching pattern as well as allowing for the selection of less unequal

(i.e. closer to the MTE) risk-sharing arrangements.

29Derivation of this appears in the Appendix.
30Recall that in our model similar agents are those who are in the same occupation, so that they also have

the same autocorrelation type.
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Common shocks. I model (type-specific) common shocks as income shocks that, if occur,

overwhelm individual shocks for all agents of that type. In particular, for each type θ, a

common shock st(θ) occurs with probability of η, equally likely to be 1 or 0, and does not

occur (null) with a probability of 1− η. An agent i’s income is determined by the common

shock if st(θi) = 1 or 0, and determined by his/her individual state sti if the common shock

does not occur.

Agents of different types still face independent income flows. This can be viewed as

an extreme version of that the income correlation (across agents’) is much larger within a

occupation than across occupations. In addition, I assume that for each type the (non-null)

common shocks share the same autocorrelation as the individual agents’ income flow, i.e.

Pr(st(θ) = st−1(θ) | st−1(θ) = 1 or 0) = θ. Under this assumption, one can verify that the

likelihood of common shocks η has no effect on the set of equilibrium (payoff) for across-type

matches.

Common shocks reduce equilibrium payoffs for a within-type pair, since there is less

chance for risk-sharing (transfer), which is possible with an ex-ante frequency of 1−η
2

when

the common shock does not occur. This also results in an indirect effect through incentives:

lower amounts of transfers can be supported in equilibrium. As the likelihood of common

shocks increases, the equilibrium payoff frontier moves further towards the origin. This

observation is summarized in the following Lemma.

Lemma 5 U∗(θi, θj | η) decreases in η if θi = θj, and remains constant if θi 6= θj.

Effects of common shocks on total welfare. For within-type pairs, common shocks

result in a reduction of total payoff and hence positive assortative matching can be more

inefficient.

However, a larger likelihood in common shocks need not reduce the total welfare, be-

cause common shocks can affect the matching patterns and/or the selection of risk-sharing

equilibrium in across-type pairs.

The welfare effects of common shocks can be illustrated by the following chart. On the

horizontal axis is the likelihood of common shocks η, and on the vertical axis comes the

per-pair welfare.

This chart captures the case in which there is no Pareto dominant risk-sharing equilibrium

in Γ(θm, θf | η = 0) (Case 2 in section 3.4), so that asymmetric risk-sharing arrangement

can occur in the across-type pair. Also it assumes that the equilibrium matching pattern is

positive assortative matching at η = 0.
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 Common shocks

  Total welfare (per pair)

I 
Within-

 matches

II 
 Across-

 matches;
 Asy. eq.

III 
 Across-

 matches;
 Sym. eq.

2𝑈∗(𝜃𝑓, 𝜃𝑚) 
 

𝑈∗(𝜃𝑚, 𝜃𝑚) 
+𝑈∗(𝜃𝑓, 𝜃𝑓) 

There are three regimes depending on the likelihood of common shocks η. There are two

thresholds of η: η s.t. both across-type and within-type pairs can occur in equilibrium (and

agents are indifferent between the two.) η s.t. U∗(θf , θf | η) = U∗(θm, θf | η).

I (η < η): within-type pairs still occur in equilibrium and common shocks reduce welfare.

II (η < η < η): across-pairs occur in equilibrium. In this regime, an increase in η reduces

inequality and increase total welfare, as it decreases the more-favored type’s “outside

option” U∗(θf , θf | η) and hence an equilibrium closer to the MTE can be selected.

III (η > η): agents’ payoff from a within-type is too low and the more-favored type would

rather stays in an across-type pair even if the MTE is played. In this regime, an

increase in η has no further welfare effects.

It is not surprise that common shocks can reduce total welfare. However, (as in regimes

II and III) common shocks can also improve total welfare, due to their impacts on the

equilibrium matching pattern.

Furthermore, when U∗(θm, θm) + U∗(θf , θf ) < 2U∗(θm, θf ) at η = 0,31 an environment

with common shocks may result in a lower inequality (in terms of risk exposure) and a larger

total welfare than its counterparty without common shocks. A large likelihood of common

shocks may help to correct both suboptimal matching pattern and suboptimal selection of

risk-sharing equilibrium.

What if the parameter assumptions made for the above chart does not hold? If the MTE

Pareto dominates other risk-sharing equilibria in the across-type pair (Case 1 in section

3.4), then regime II disappears as no other risk-sharing equilibrium can occur in a matching

31Recall that a sufficient condition for this is that agents have CARA utilities and face non-negatively

autocorrelated income (see subsection 3.3), so that with a social planner who imposes interventions on

matching, the optimal arrangement is to have negatively assortative matching (and all pairs play the maxi-

mum symmtric equilibrium).
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equilibrium, and at η = η the total welfare jumps to its level in regime III. Else if at η = 0 we

already have negative assortative matching, then regime I disappears and common shocks

only benefit total welfare.

5 Alternative Heterogeneities

This paper has focused on the heterogeneity of agents’ income autocorrelations. This section

shows that the machineary developed also applies to various other heterogeneities that can

be relevant in practice. Main results presented in previous sections are extended correspond-

ingly. I present three examples:

• heterogeneous time preferences;

• heterogeneous wealth levels (i.e. averages in income);

• heterogeneous income variances.

The basic comparative statics, i.e. the set of equilibria changes monotonically in agents’

types, apply to all of the above three examples. Parallel to the fact that everyone likes a

less-autocorrelated partner (Proposition 1), with the alternative heterogeneities: everyone

likes a more patient partner; everyone likes a wealthier partner; and everyone likes a partner

with more variable income.

The lessons on the interplay between matching and risk sharing also apply. In every pair

there is a risk-sharing equilibrium in which agents adopt maximum self-enforcing transfers

(no need to be symmetric). It is also the equilibrium that maximizes the sum of the two

agents’ payoffs. With endogenous matching, however, that maximum transfer equilibrium

cannot occur when a pair of agents have different types: for the more favored agent, the

payoff from such an equilibrium is less than his/her outside option (when matched within-

type). As a result, for an across-type pair to occur, the less favored should try harder to

attract the more favored. Such an attempt leads to a distortions in both agents’ transfers

and a reduction in total welfare, due to the complementarity in agents’ incentive structures.

Finally, the above incentive issues again bias the matching process.

I provide the formal discussions for the alternative heterogeneities in turn. To highlight

the effect of each heterogeneity, I assume that agents differ only in the heterogeneity that

is currently considered and are equal in other dimensions. In particular, when discussing

any of the above, agents are no longer different in autocorrelations: for simplicity, assume

that the income shocks are i.i.d. over time and independent across agents. I again consider

semi-Markovian strategies in the risk sharing phase.
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5.1 Heterogeneous time preferences

There are two types of agents: the more patient and the less patient, with discount factors

δh > δl respectively. Agents’ income shocks are such that sti = 0 or 1, equally likely, i.i.d.

over time and independent across agents.

Consider two agents, 1 and 2, that are in a pair. Similar to Lemma 1, the set of risk shar-

ing equilibria Γ(δ1, δ2) equals to the set of self-enforcing semi-Markovian strategies profiles,

and is characterized by the following:

u(1)− u(1− q∗1)

u(q∗2)− u(0)
≤ H(δ1);

and
u(1)− u(1− q∗2)

u(q∗1)− u(0)
≤ H(δ2);

in which H(δi) ≡
(

δi
4(1−δi)

)
/
(

δi
4(1−δi) + 1

)
increases in δi.

The maximun transfer equilibrium (MTE),
(
q∗1(δ1, δ2), q

∗
2(δ1, δ2)

)
, is the (joint) solution to

the above two (self-enforcing) conditions with equalities. By construction
(
q∗1(δ1, δ2), q

∗
2(δ1, δ2)

)
is a risk-sharing equilibrium. In addition, due to the complementarity in incentive structures,

q∗i (δ1, δ2) is the maximum amount of transfer that can be chosen by agent i in any (semi-

Markovian) equilibrium:

(q1, q2) ∈ Γ(δ1, δ2), (q1, q2) 6=
(
q∗1(δ1, δ2), q

∗
2(δ1, δ2)

)
=⇒ qi < q∗i (δ1, δ2), i = 1, 2 (7)

Let U∗i (δ1, δ2) be agent i’s payoff in this equilibrium. Parallel to Lemma 3, U∗1 (δ1, δ2) +

U∗2 (δ1, δ2) maximizes the sum of (ex-ante) payoff that can be achieved among any risk-sharing

equilibrium with a pair of types (δ1, δ2).
32

When either agent becomes more patient, the set of equilibria expands and the maximum

self-enforcing transfers are larger:

Γ(δl, δl) ⊂ Γ(δl, δh) ⊂ Γ(δh, δh);

q∗i (δ
l, δl) < q∗i (δ

l, δh) < q∗i (δ
h, δh),∀i = 1, 2.

An agent’s ex-ante payoff only depends on the transfers and his/her own type, but not

(directly) on other’t type: Ui = 1
4(1−δi) [u(q−i) + u(1− qi) + u(1) + u(0)] ,∀i = 1, 2. There-

fore, the monotonicity of the set of equilibrium transfers implies a monotonicity of agents’

payoffs:

U∗i (δl, δl) < U∗i (δl, δh) < U∗i (δh, δh),∀i = 1, 2

32Again we assume q∗i (δ1, δ2) ≤ qFB = 0.5,∀i, δ1, δ2, i.e. the first best level of transfer is not sustainable

in any equilibrium. A similar assumption is made also in subsections 5.2 and 5.3.
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With endogenous matching, Ui ≥ U∗i (δi, δi), i.e. every agent receives a payoff that is at

least her “outside option” from a within-type match. This, together with the monotoncity

of payoffs, implies that in every pair agents with different types has to select some a risk-

sharing equilibrium other than the MTE. The selection leads to distortions in both agents’

transfers, and a reduction in total welfare.

Proposition 5 (Risk-sharing in across-type pairs) When an across-type pair with (δl, δh)

occurs in equilibrium, agents have to select a risk-sharing arrangement (q1, q2) such that

q2 < q1 < q∗1(δl, δh) < q∗2(δl, δh). (8)

Taking into account of endogenous matching reverses the prediction of “who makes more

transfers”. In the maximum transfer equilibrium, it is the more patient agent who has

incentives to transfer more. In contrast, when endogenize matching is accounted for, the

opposite answer applies to the risk sharing equilibrium that is selected: the less patient

agent transfers more to (than he/she receives from) the more patient. In addition to this

fact, both transfers in the selected equilibrium is below the lowest amount in the maximum

transfer equilibrium. Both observations generalize to the situations with other heterogenities

(see 5.2 and 5.3).

Finally, some words about the matching patterns. Parallel to (5), a sufficient condition

for positive assortative matching to be the only equilibrium matching pattern is

U∗2 (δ
h,δh)−U∗2 (δl,δh)

U∗1 (δ
l,δh)−U∗1 (δl,δl)

≥ γ1(δ
l, δh), (9)

in which γ1(δ
l, δh) <

u′(1−q∗1(δl,δh))
u′(q∗2(δ

l,δh))
< 1 is the maximum rate at which the agent who has a

less favored type can “transfer” equilibrium payoff to her partner.

5.2 Heterogeneous wealth levels

In this part agents are heterogeneous in income levels. As will be illustrated soon, ignoring

matching the wealthier agents are the ones who afford to share more money; whereas when

matching is accounted for, when a wealthier agent is matched with a poorer agent, in equi-

librium they have to select a risk-sharing arrangement in which the wealthier agent receives

more from the poor.33

Formally, income shocks are such that every agent gets 0 on a bad day, but agents

with different types get different amounts of income on a good day. An agent’s type is the

33This observation is consistent to the empirical finding in Misrut (2008). In particular, using detailed

inter-household transfer data from Romania, Misrut (2008) finds that the rich receive more. She adopts this

finding to argue that transfers are driven by social norms rather than by altruism. The observation just

introduced in this paper provides an alternative explaination for the same empirical pattern.
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amount he/she receives on a good day: sti = 0 or θi, with θi ∈ Θ ⊂ [θ, θ]. Again assume that

good days and bad days are equally likely, and all income shocks are i.i.d. over time and

independent across agents.

For a pair of agents 1 and 2, (q1, q2) is a (semi-Markovian) risk-sharing equilibrium if and

only if
u(θi)− u(θi − qi)
u(q−i)− u(0)

≤ H,∀i = 1, 2

Risk aversion implies that u(θi) − u(θi − qi) strictly decreases in θi: for any amout of

transfer, it is less costly when the agent is wealtier. Therefore, any transfers (q1, q2) that

are self-enforcing for a pair of less wealthy agents, they are also self-enforcing for a pair of

wealthier agents:
(θi, θj) ≥ (θ′i, θ

′
j) =⇒ Γ(θ′i, θ

′
j) ⊂ Γ(θi, θj).

The above monotonicity result implies results parallel to subsection 5.1: including the

selection of equilibrium and its welfare consequences, as well as the condition for matching

patterns.

One feature in equilibrium selection is worth noting: parallel to Proposition 5, in every

across-type pair with θ1 > θ2, the maximum transfer equilibrium has q∗1(θ1, θ2) > q∗2(θ1, θ2),

since the wealthier agent is afford to transfer more. However, with endogenous matching,

agents are forced to select some equilibrium (q1, q2) such that q1 < q2 < q∗2(θ1, θ2). That is,

the wealthier agent receives more from his/her poorer partner!

5.3 Heterogeneous income variances

In this part I consider the case in which agents share the same average income but may face

different variances in income. The analysis presented in this part provides an alternative

perspective to the empirical evidence that individuals/households self-select into different

risk pools (see, e.g. Ghatak (2000)).

In particular, agent i gets sti = 0.5 − θi on a bad day, and 0.5 + θi on a good day, for

θi ∈ [θ, θ] ⊂ (0, 0.5].34

For a pair of agents 1 and 2, (q1, q2) is a (semi-Markovian) risk-sharing equilibrium if and

only if
u(0.5 + θi)− u(0.5 + θi − qi)
u(0.5− θi + q−i)− u(0.5− θi)

≤ H,∀i = 1, 2

Risk aversion implies that LHS strictly decreases in θi, for any (q1, q2): any amount

of transfers costs less, and benefits more, for an agent that faces a more various income.

34We assume that for any agent i, the first-best transfer to him/her, qFB,i = θi, is not achievable in any

equilibrium when matched with a partner of any type that is feasible.
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Therefore we have the comparative statics of the set of equilibria with repect to income

variances:
(θi, θj) ≥ (θ′i, θ

′
j) =⇒ Γ(θ′i, θ

′
j) ⊂ Γ(θi, θj).

The above monotonicity result again implies results parallel to subsection 5.1: including

the selection of equilibrium and its welfare consequences, as well as the condition for matching

patterns.

6 Rematch and Migration

This section relaxes the assumption that matching is once-and-for-all by allowing for rematch.

I highlight two results. First, less friction in the rematch process (captured by a shorter

waiting) can make everyone worse off. This is due to a negative effect of rematch on risk-

sharing incentives: the opportunity of rematching results in a smaller cost in breaking the

current relationship, and thus reduces agents’ incentives to make a transfer. Second, when

agents are heterogeneous in their opportunities of rematch (/migration), everyone prefers to

share risk with a partner with worse rematch options and consequencely there is a tendency

of sorting with respect to the opportunity of rematch.

6.1 More effective rematch can hurt

A more effective rematch process reduces agents’ incentives in risk sharing, and this negative

effect can be big enough to overwhelm the direct benefits of a reduced waiting time for being

rematched. To highlight this insight, it suffices to consider a simple environment in which

agents are homogeneous and face i.i.d. income, equally likely to be 1 or 0 in each period. An

existing relationship can be broken in two ways: first, each agent leaves the economy at an

exogeneous rate of η > 0 in each period (due to reasons including death, no more need for

informal risk-sharing, etc.); and second, any agent can endogenously opt out. An agent who

is currently not in any partnership can (re-)match, which is captured by the effective discount

factor for waiting (in a reduced form) by δr ∈ (0, 1), with the subscript r for “rematch”.

In particular, δr decreases when a longer period of waiting is needed, for instance, when it

is easier to migrate to a new place and find new partners to share risk. Finally, the new

partners cannot observe what happened to the agent in the past, thus cannot tell whether

that agent being available is because her partner left or she chose to opt out or.

Since agents are homogeneous in the matching and rematching process, I focus on the

case in which agents adopt symmetric and stationary strategies, so that the amount of

transfer is always q ∈ (0, 0.5) whenever a transfer is needed, in all (initial and rematched)

partnerships. I will find the largest self-enforcing transfer q, with which the agents’ payoffs

will be evaluated.
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When rematches are available, the present value (in terms of the net gain from autarky)

for an agent who is currently in a partnership, V (q, δr), contains two components: 1) the

payoff from the current partnership, in which an agent essentially discounts the future with

a factor δη ≡ δ(1 − η)2, taking into account of the probability that both she and her may

leave due to exogenous shocks; 2) the value from the next rematch if her partner leaves

(exogenously) earlier than she does, the probability of which is
∑∞

τ=1 δ
τ (1−η)τ (1−η)τ−1η =

η
1−η

δη
1−δη . The two together lead to

V (q, δr) =
u(q)− u(0) + u(1− q)− u(1)

4(1− δη)
+

η

1− η
δη

1− δη
δrV (q, δr), (10)

i.e.

V (q, δr) =

(
1− η

1− η
δη

1− δη
δr

)−1
· u(q)− u(0) + u(1− q)− u(1)

4(1− δη)
. (11)

Easy to see ∂U
∂δr

> 0,∀q > 0: fixing the amount of transfer, everyone becomes strictly

better off when expecting a shorter waiting for being rematched, i.e. when the rematch

process is more effective.

The (maximum) size of self-enforcing transfer q(δr), however, does vary in δr. More

effectiveness of rematch results in a larger outside option for anyone to break the current re-

lationship, and consequently only a lower amount of transfers can be sustained. In particular,

the self-enforcing constraint becomes:

u(1− q)− u(1) + δηV (q, δr) ≥ δrV (q, δr), (12)

in which the RHS is one’s outside option from breaking the current relationship.

(11) and (12) implies that the maximum amount of self-enforcing transfer, q(δr), is a

solution to
u(1)− u(1− q(δr))
u(q(δr))− u(0)

= H(δr), (13)

in which H(δr) ≡
(

δη−δr
4(1−δη)

)
/
(

1− η
1−η

δη
1−δη δr + δη−δr

4(1−δη)

)
.

Lemma 6 (Better rematch options hurt incentives) When δr increases, H(δr) decreases

and so does the maximum transfer q(δr).

When the maximum self-enforcing transfer is used, each agent’s expected payoff is

V (q(δr), δr) = (δη − δr)−1(u(1)− u(1− q(δr)). (14)

An increase in the effectiveness of rematch market, measured by δr, has two effect:

+ direct effect (shorter waiting): an agent’s expected payoff goes up, fixing any amount

of transfer(s);
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− indirect effect (incentives): agents have are less willing to make a transfer, due to a

larger outside option from the rematch market.

Due to the negative indirect effect through incentives, a more effective rematch market

can make everyone worse off! This is illustrated in the following example.

Example 1 The figure below plots agents’ equilibrium payoff (net gain from risk-sharing,

compared to autarky, for someone currently in a partnership), V (q(δr), δr) as a function of

effective discount factor for waiting δr, for η = 0.05, δ = 0.9, and CARA utility u(c) = −e−c.
This is compared to the present value with a fixed favor q = 0.3 (so ignoring incentive effects).

I also plot how the equilibrium transfer q(δr) varies in δr, and compare it to the first-best

level 0.5.
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As seen in the example, every agent is strictly worse off when the rematch market is more

effective: the equilibrium payoff is strictly decreasing in gT . This result is due to the fact

that the negative indirect effect (through incentives) overwhelms the positive direct effect

(through shorter waiting).

6.2 Heterogeneous opportunities in rematch and migration

This section explores the matching and risk sharing in a population where agents have

different rematch opportunities. Agent i’s rematch opportunity is again captured by the

effective discount factor δr,i, which decreases in the amount of time she expects to wait

before matched with a new risk-sharing partner. Despite of having differential effectiveness

in rematch, all agents face the same exogeneous rate of leaving the economy η > 0.

For any pair of agents 1 and 2, the self-enforcing constraint (induced by (11) and (12)

with δr replaced by δr,i’s) is:

u(1)− u(1− qi)
u(q−i)− u(0)

≤ H(δr,i),∀i = 1, 2, (15)
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recall H(δr,i) ≡
(
δη−δr,i
4(1−δη)

)
/
(

1− η
1−η

δη
1−δη δr,i +

δη−δr,i
4(1−δη)

)
.

Better migration options (larger δr,i) result in a smaller H(δr,i) (Lemma 6) and hence a

less incentive to share risk.

Proposition 6 With small enough η > 0 (exogeneous rate of exit), the set of risk-sharing

equilibria Γ(δr,1, δr,2) and the set of equilibrium payoffs U(δr,1, δr,2) both shrink as either δr,i

increases, i.e. either agent has better rematch options.

(δr,1, δr,2) ≥ (δ′r,1, δ
′
r,2) =⇒ Γ(δr,1, δr,2) ⊆ Γ(δr,1, δr,2), U(δr,1, δr,2) ⊆ U(δ′r,1, δ

′
r,2)

The above proposition implies that the insights presented in the previous parts of the pa-

per also apply to this situation in which agents have heterogeneous opportunities in rematch

and migration. In particular, there is a tendency of agents to share risk with those who

have similar migration options to them. Also agents with better migration options expose

to more risk in consumptions.

7 Conclusion

I present a tractable framework to study the interplay between matching and informal risk

sharing. I also explore a novel heterogeneity of agents, who face different autocorrelations

in their income flows. Such time patterns are likely to be associated with the agents’ occu-

pations.

Autocorrelations do not affect an agents average income, nor the ex-ante frequency of

periods in which a pair of agents can help each other. However a high autocorrelation in

either agent’s income hurts both agents’ incentives in risk sharing. Therefore, everyone

prefers to share risk with a partner who has a less autocorrelated income.

Endogenous matching determines the selection of risk-sharing equilibria, since an agent’s

outside option is determined by the payoff from matching with other potential partners. The

less autocorrelated have higher outside options, and thus should be favored when matched

with an agent who has more autocorrelated income. Such an asymmetric arrangement

reduces both agents’ transfers because of a complementarity in incentive structures: one is

willing to make large transfers only when expecting her partner to do so.

In terms of total welfare, either people match suboptimally - so that they match with

someone who has similar income patterns, which ends up hurting the population on average

and increasing inequality - or they match optimally, but then in order to sustain that match-

ing agents end up with very unequal sharing arrangements within a partnership, which in

turn lowers risk sharing levels. In either case there is substantial inequality in terms of risk
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exposure (in consumption) between two types of agents who face exactly the same mean and

variance of income but different income autocorrelations.

This study highlights the importance of, and calls for empirical attention to, time se-

ries patterns in income. When ignoring incentives in risk-sharing, autocorrelations do not

change risk-sharing potentials between any pair of agents. However, when the incentives are

accounted for, autocorrelations are proven to have substantial effects on risk-sharing and

matching patterns, and consequently on inequality and total welfare.

As an extension I consider the welfare effects of within-type common shocks, which reduce

the gain from risk-sharing for within-type pairs. Such common shocks can reduce or improve

total welfare, depending on their frequency. The improvement is because common shocks

(when occurring frequently enough) can change matching patterns and reduce the inequality

in risk exposure between heterogeneous types.

The framework emphasizes the interaction of matching and play, and applies to general

settings. Firstly, it applies to all sources of heterogeneities as long as agents have common

preferences over the partners’ types. This includes heterogeneities in income levels, income

variances, time preferences, and opportunities to migrate and rematch.
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A Appendix

A.1 Proofs omitted from main text

Proof to Lemma 1.

We prove that H(θ1, θ2) decreases in both arguments. It sufficies to prove that pgive,τ |give

increases in both arguments, and preceive,τ |give decreases in both arguments, ∀τ > 0. In

addition, independence between agents implies that pgive,τ |give = Pr(sτ1 = s01)× Pr(sτ2 = s02),

and preceive,τ |give = Pr(sτ1 6= s01) × Pr(sτ2 6= s02). Hence it sufficies to prove that Pr(sτi = s0i )

increases in θi, ∀i, τ .

We prove the above by mathematical induction. For τ = 1, Pr(sτi = s0i ) = θi increases

in θi. For τ ≥ 1, assume that Pr(sτi = s0i ) increases in θi; which implies that Pr(sτi =

s0i ) − Pr(sτi 6= s0i ) increases in θi, since the two terms add up to 1. Now we prove the

property for τ + 1. We have

Pr(sτ+1
i = s0i ) = Pr(sτi = s0i )× θi + Pr(sτi 6= s0i )× (1− θi),

and

Pr(sτ+1
i 6= s0i ) = Pr(sτi 6= s0i )× θi + Pr(sτi = s0i )× (1− θi).

Hence Pr(sτ+1
i = s0i ) − Pr(sτ+1

i 6= s0i ) = (Pr(sτi = s0i ) − Pr(sτi 6= s0i ))(2θi − 1) increases in

θi (recall that θi ≥ 0.5). Since the two terms in LHS add up to 1, we have Pr(sτ+1
i = s0i )

increases in θi.

Proof to Lemma 3.

First prove #3: Assume ∃(q̃i, q̃j) that is self-enforcing such that q̃i > q∗. I aim to lead to a

contradiction by constructing a symmetric equilibrium with transfers larger than q∗ .

Step 1: q̃i, q̃j > q∗, otherwise (if q̃j ≤ q∗) u(1)−u(1−q̃i)
u(q̃j)−u(0) > u(1)−u(1−q∗)

u(q∗)−u(0) = H(θi, θj) violating

the self-enforcing constraint.

Step 2: Let q̃ = min{q̃i, q̃j}. (q̃i, q̃j) > (q∗, q∗) is self-enforcing implies that (q̃, q̃) is self-

enforcing (due to the symmetry of the self-enforcing constraint) and hence is a (symmtric)

equilibrium. Contradiction. Finally, there is no self-enforcing pair (qi, qj) with qi = q∗ and

qj < q∗, due to the binding self-enforcing constraint at (q∗, q∗). This concludes the proof to

#3.

For #1: Maximizing the sum of the ex-ante payoffs is to maximize u(qi) +u(1− qi) +u(qj) +

u(1 − qj). Notice that u(qi) + u(1 − qi) < u(q∗) + u(1 − q∗),∀qi < q∗ < 0.5. Hence (q∗, q∗)

maximizes the sum of the ex-ante payoffs among all (qi, qj) ≤ (q∗, q∗), hence (by #3) among

all (semi-markovian) equilibria.

#2 is straightforward since Ui(q
∗, q∗)− Ui(q∗, q∗) = 0.
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Proof to Lemma 4.

Assume not, i.e. ∃i 6= j s.t. θi = θj and Ui < Uj. Two cases are possible:

1. if i and j are not matched: i and m(j) can form a blocking pair. →←
2. If i and j are matched: pick another agent k with the same type. It must be the

case that k’s payoff differs from either i’s or j’s. Thus we are back to case 1. Finally, if

Ui < U∗(θi, θi), then find j 6= i s.t. θi = θj. The above results imply Uj < Ui < U∗(θi, θj),

and thus i and j can form a blocking pair. →←

Proof to Proposition 2.

#2 is an immediate corollary to Lemma 4 (by the definition of maximum transfer equi-

librium).

For #1: the less-autocorrelated agent, i, gets Ui(qi, qj) ≥ U∗(θi, θi) > U∗(θi, θj) in which

the latter inequality follows the comparative statics for U∗. As a result, the other agent

j = m(i) gets less than the maximum symmetric payoff.

Derivation to the bound for γ(θf , θm).

Let ai ≡ u(qi) − u(0), a∗ = q∗(θf , θm), v(ai) ≡ u(1) − u(1 − qi), and H ≡ H(θf , θm)

(defined in equation (3)). Also the ex-ante payoff can be re-normalized as Ui = ai − v(aj).

Suppose agent 1 has θf and agent 2 has θm. With these notations, the relationship of U1

and U2 along the equilibrium payoff frontier can be captured as

maxa1,a2 U2 = a1 − v(a2)

s.t. v(a1)−Ha2 ≤ 0 (IC1)

v(a2)−Ha1 ≤ 0 (IC2)

a2 − v(a1) ≥ U1

We need to consider the region with U2 > U1, in which (IC1) is binding, i.e. a′2(a1) =

H−1v′(a1). Therefore, dU2(a1,a2(a1))/da1
dU1(a1,a2(a1))/da1

=
1−v′(a2)a′2(a1)
a′2(a1)−v′(a1)

. The above two equations together

imply limU1→−U∗ −dU2

dU1
=

v′(a∗)− H
v′(a∗)

1−H = v′(a∗) +
(
v′(a∗)− 1

v′(a∗)

)
H

1−H . Thus dU2

dU1
< v′(a∗) =

u′(1−q∗)
u′(q∗)

< 1 since v′(a∗)− 1
v′(a∗)

< 0.

Proof to Proposition 4.

The reason that condition (5) is sufficient for positive assortative matching can be illus-

trated with the following graph:
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Points A, E, D represent the maximum symmetric equilibrium payoff for a pair with

(θf , θf ), (θf , θm), and (θm, θm) respectively. Line DC is along the tangency of the risk-

sharing equilibrium payoff frontier (the lower half) at point D. Since the frontier is con-

cave, it lies below line DC. By proposition 2, a necessary condition for a (θf , θm) pair

to occur in equilibrium is that there exists some point in U(θm, θf ) that Pareto dom-

inates (U(θm, θm), U(θf , θf )). Therefore, it is necessary to have some point on the line

DC that Pareto dominates (U(θm, θm), U(θf , θf )). The graph plots the threshold case, in

which the point (U(θm, θm), U(θf , θf )) is on line DC (I call that point C to save nota-

tion). By definition, γ = |DB|
|BC| . Since AD is along the 45-degree line, |AB| = |BD|. Hence

γ = |BC|
|DB| = |BC|

|AB| = |DE|
|AD| = U∗(θm,θm)−U∗(θf ,θm)

U∗(θf ,θm)−U∗(θf ,θf ) . By construction, we have (5) is sufficient for

only within-type pairs to occur in equilibrium. Finally by proposition 2 again, symmetric

risk-sharing equilibria shall be selected by every pair.

Proof to Proposition 5.

q∗1(δl, δh) < q∗2(δl, δh) is resulted directly from the definition of maximum transfer equi-

librium and the self-enforcing constraints: note that H(δh) > H(δl) and hence the δh agent

has a more relaxed incentive constraint.

We now prove q1 > q2 for any (q1, q2) ∈ Γ(δl, δh) that can be selected in an across-type pair

in any matching game equilibrium. Assume not, i.e. q1 ≤ q2, then U2(q1, q2) ≤ U2(q2, q2) <

U2(q
∗
2(δl, δh), q∗2(δl, δh)) ≤ U2(q

∗
2(δh, δh), q∗2(δh, δh)). That is, in such an equilibrium the more

favored type gets a payoff below his/her outside option. This contradicts with Lemma 4.

Finally, the above, together with q∗1(δl, δh) > q1 completes the proof.

Proof to Lemma 6.

q(δr) increases in H(δr), hence it suffices to show that H(δr) decreases in δr. Re-

call H(δr) ≡
(

δη−δr
4(1−δη)

)
/
(

1− η
1−η

δη
1−δη δr + δη−δr

4(1−δη)

)
. As δr increases, the numerator de-

creases. The denominator decreases in δr: the coefficient of δr is written as − 1−η−4ηδη
4(1−η)(1−δη) =

−1−4η(1−η)δ
4(1−δη) ≤ 0, in which the second equality follows δη ≡ δ(1− η)2.
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A.2 More detail with CARA utilities

This part explores the case in which agents have CARA utility function u(c) = 1 − e−λc,

λ > 0. For comparative statics with respect to income levels, let each agent’s income levels

be y and y, such that y > y > 0. The amount of transfer is correspondingly q ∈ [0,
y−y
2

]. In

this case, we have the benefit/cost at transferring q in terms of payoff are:

u(y + q)− u(y) = e−λ(y+q)(eλq − 1);

u(y)− u(y − q) = e−λy(eλq − 1).

Therefore, the self-enforcing constraint (3) between a pair of agents 1 and 2 becomes

u(y)− u(y − qi)
u(y + q−i)− u(y)

=
eλqi − 1

eλq−i − 1
e−λ(y−y−q−i) ≤ H(θ1, θ2),∀i = 1, 2, (16)

recall H(θ1, θ2) ≡
∑
τ δ

τpreceive,τ |give∑
τ δ

τpgive,τ |give+1
strictly decreases in θ’s.

In particular, the transfer in maximum transfer equilibrium (MTE), q∗(θ1, θ2), solves the

following equation

e−λ(y−y−q
∗(θ1,θ2)) = H(θ1, θ2). (17)

Thus the MTE payoff

U∗(θ1, θ2) =
1

4(1− δ)
[
u(y + q∗) + u(y − q∗) + u(y) + u(y)

]
=

1

4(1− δ)

[
4− e−λyH(θ1, θ2)−

e−λy

H(θ1, θ2)
− e−λy − e−λy

] (18)

One observation is that the MTE payoff, U∗(θ1, θ2), has decreasing differences in autocor-

relation types. In particular, ∂
2U∗(θ1,θ2)
∂θ1∂θ2

=
(

(1−H)(e−λy − e−λy

H
)
)
12

= (−e−λy+e−λyH−2)H12−

2e−λyH−3H1H2 < 1, in which Hi ≡ ∂H
∂θi

and H12 ≡ ∂2H
∂θ1∂θ2

, and one can verify H12 > 0 and

(1 − eλ(y−y)H2) HH12

2H1H2
< 1. Hence if ex-ante payoff is perfectly transferable between agents,

then negative assortative matching will result.

In below we discuss the comparative statics of matching patterns with respect to income

levels.

Lemma 7 When agents have CARA utilities, the condition for positive assortative matching,

(5), is more likely to hold (LHS increases and RHS decreases) when y becomes smaller or y

becomes larger.
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As a result, a policy/shock that increases the low income (e.g. subsidies in bad periods)

tends to push the matching patterns more toward positive assortative matching, whereas a

policy/shock that increases the high income (e.g. better prices for fish and coal) tends to

allow for more across-type pairs.

Finally, with CARA utilities, u′(1−q∗(θf ,θm))
u′(q∗(θf ,θm))

= −e−λ(y−y), ∀(θf , θm). Therefore, the nec-

essary and sufficient condition (6) for case 1, i.e. the MTE is Pareto dominant for an

across-type pair becomes:

−e−λ(y−y) ≤
√
H(θf , θm), (19)
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