Accepted Article

Title: Boron-made N2: Realization of a B≡B Triple Bond in the B2Al3-Cluster

Authors: Nikita Fedik, Chaonan Mu, Ivan Popov, Wei Wang, Jie Wang, Haopeng Wang, Kit H. Bowen, Alexander Boldyrev, and Xinxing Zhang

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Eur. J. 10.1002/chem.202001159

Link to VoR: https://doi.org/10.1002/chem.202001159
Boron-made N₂: Realization of a B≡B Triple Bond in the B₂Al₃⁻ Cluster

Nikita Fedik, Chaonan Mu, Ivan A. Popov, Wei Wang, Jie Wang, Haopeng Wang, Kit H. Bowen, Alexander I. Boldyrev and Xinxing Zhang

Abstract: Until now, all B≡B triple bonds have been achieved by adopting two ligands in the L–B≡B–L manner. Here, we report an alternative route of designing the B≡B bonds based on the assumption that by acquiring two extra electrons, an element with the atomic number Z can have properties similar to those of the element with the atomic number Z+2. Specifically, we show that due to the electron donation from Al to B, the negatively charged B≡B kernel in the B₂Al₃⁻ cluster mimics a triple N≡N bond. Comprehensive computational searches reveal that the global minimum structure of B₂Al₃⁻ exhibits a direct B–B distance of 1.553 Å, and its calculated electron vertical detachment energies are in excellent agreement with the corresponding values of the experimental photoelectron spectrum. Chemical bonding analysis revealed one σ and two π bonds between the two B atoms, thus confirming a classical textbook B≡B triple bond, similar to that of N₂.

The synthesis of homodinuclear triple bonds of Group 13 elements imposes one of the most challenging frontiers in modern chemistry. Unlike the classical textbook triple bond found in dinitrogen (N≡N) and acetylene (HC≡CH) that are composed of one σ bond and two π bonds constructed from the p orbitals perpendicular to the σ bond,[1,2] most of the existing Group 13 homodinuclear triple bonds are either non-classical or controversial. The history of Group 13 triple bonds began with the epic “digallyne debate”.[3] In 1997, Robinson and coworkers synthesized the famous “digallyne” molecule Na₆[ArGaGaAr] (Ar=η⁵-C₅H₅−2,6-iPr₂) featuring the shortest Ga–Ga bond.[4] Based on the fact that the [ArGaGaAr]⁻ core is valence-isoelectronic to acetylene, the Ga–Ga contact was initially considered as a triple bond. However, the nature of this bond caused considerable debates afterwards.[5] The affirmative side described the triple bond as a combination of two dative bonds and one π bond,[5a] or a combination of a σ bond, a π bond, and a non-classical “slipped” π bond.[5b] The opposite side opined that the Ga–Ga bond had substantial nonbonding characters.[6,7] All these studies have significantly contributed to the understanding of homodinuclear multiple bonding in Group 13 elements. For aluminum, an Al≡Al triple bond was achieved in the example of a stable Na₆[Al‘AAiAl‘] (Al‘=C₅H₅−2,6-(C₅H₅−2,4,6-iPr₂)₃) compound named dialuminyne, as reported by Power and coworkers.[8] However, similarly to the digallyne[5] molecule, it features a trans-bent structure, wherein the Al–Al interaction was also described as a non-traditional triple bond with a “slipped” π bond. More recently, our group reported an Al≡Al triple bond in the Al₃Na₃⁺ cluster in which the Al₃⁺ moiety is both isoelectronic and isostuctural to the P≡P molecule.[7]

Compared to the relatively devoid research on the Ga≡Ga and Al≡Al triple bonds, it has been fruitful for B≡B. The first example was a molecule OC≡B≡BO isolated in an argon matrix at B K by Zhou et al.[9] which further triggered copious theoretical and experimental studies on the B₂ kernel stabilized by other ligands such as NHC (N-heterocyclic carbene), diatomic molecules (CO, CS, N₂, BO), and phosphate derivatives (PCl₅, PMe₃).[9-14] Experimentally synthesized NH₃–B≡B–NH₃ crystal featured the first ambient-temperature isolable diboryne.[10] The lighter B compared to Al and Ga contributes to the linear NHC-stabilized core with very short B–B distances of 1.449 Å, which is in accordance with the B–B triple bond length (1.460 Å) predicted by Pyykkö.[15] However, Köppe and Schnöckel questioned this triple bond based on significant electronic and mechanical interactions between the B–B bond and the two B–(NHC) bonds.[17] Responding to this interpretation, Frenking’s calculations[18] and Braunschweig’s Raman spectroscopic measurements[19] further supported the existence of the B≡B triple bond in NHC–B≡B–NHC. Alterations of carbenes, including the size, degree of unsaturation, and substitution groups on the backbone of carbenes, as well as the character of the elements adjacent to the carbene carbon atom will result in remarkable difference in the σ-donating ability and the great capacity to accept π-back-donation. Based on this strategy, cyclic (alkyl) (amino) carbene (cAAC)-stabilized linear diboracumulene (cAAC)B₂ featuring a B≡B triple bond was synthesized by Braunschweig et al.[20] Subsequently, they also synthesized saturated NHC(π-C₆F₅)-stabilized diboronyne with a B≡B bond distance of 1.465 Å.[21] In 2017, a DFT study on the stabilization of B≡B triple bonds in metalloocene, Zr(r-C₆H₅)₂, was reported with different bonding situation compared to B₃H₄ complexes.[22] Furthermore, multidentate carbenes were computationally studied to stabilize the diborynes nanostructures by Nascimento’s group.[23,24] Similar to NHCs, another “nonclassical” type of carbenes called mesoionic carbenes (MICs) were demonstrated to have the possibility to stabilize B≡B triple bonds.[25]
COMMUNICATION

However, all of the existing B≡B triple bonds were constructed by using two ligands in the L–B≡B–L fashion. The ligands "forced" the three valence electrons of one B atom to bond with the other three electrons of the neighboring B atom so that the whole molecule fulfills the octet rule. Here, we utilize a completely different strategy for designing B≡B. By acquiring two extra electrons, an element with the atomic number 26, not only of the existing B≡B triple bonds were constructed by using two ligands in the L–B≡B–L fashion. The ligands "forced" the three valence electrons of one B atom to bond with the other three electrons of the neighboring B atom so that the whole molecule fulfills the octet rule. Here, we utilize a completely different strategy for designing B≡B. By acquiring two extra electrons, one anion, B\(_2\)Al\(_3\), is suggested assuming that the three Al atoms could provide three electrons to B atoms, in addition to the fourth electron given in form of the negative charge.

Due to the ability of Al to form mono-valent Al (I) compounds, as well as its lower electronegativity than that of B, this metal is chosen as a potential candidate to form B≡B. In principle, Al is anticipated to be a single electron donor instead of providing all of its three valence electrons. It has recently been shown that Al is able to donate one electron to B, making the latter isoelectronic to carbon by forming an unprecedented graphenelike 2D boron sheet. Following the above discussions, a cluster anion, B\(_2\)Al\(_3\), is suggested assuming that the three Al atoms could provide three electrons to B atoms, in addition to the forth electron given in form of the negative charge.

In lieu of the neutral B\(_2\)Al\(_3\) molecule, the B\(_2\)Al\(_3\)− anion is designed in order to facilitate the anion photoelectron spectroscopic (PES) experiments. Details of the experimental methods and the apparatus are given in the Supporting Information (SI). The PES of B\(_2\)Al\(_3\)− generated in an ion beam is taken with 3.49 eV (355 nm) laser and presented in Figure 1. The spectrum has an electron binding energy (EBE) band starting from −2.1 eV and peaks at 2.59 eV. The first experimental vertical detachment energy (VDE) is the photodetachment transition, at which the Franck-Condon overlap between the wave functions of the anion and its neutral counterpart is maximal, corresponding to the peak value of 2.59 eV. The second EBE band starts from −3.0 eV and peaks at 3.26 eV. It corresponds to the vertical transition from the anion to the first excited state of the neutral.

In order to determine the structure of the experimentally observed cluster, which is expected to have lowest energy on the potential energy surface, an unbiased search\(^{29-31}\) was performed for both singlet and triplet spin state electronic configurations of the B\(_2\)Al\(_3\)− stoichiometry using the Coalescence Kick method\(^{32}\) at the PBE0/6-311+G\(^{2}\) level of theory. All isomers within 20 kcal/mol were fully reoptimized using more extensive aug-cc-pVQZ basis set including full electron correlation.\(^{33}\) Finally, relative energies were obtained at the CCSD(T)/aug-cc-pVQZ\(^{35-37}\) level. Details of the theoretical methods are given in the SI.

Figure 1. Experimental photoelectron spectrum of B\(_2\)Al\(_3\) taken with 355 nm laser (black line) and calculated vertical detachment energies at CCSD(T) for Iso I (red stick) and Iso II (blue stick).

The five lowest isomers of B\(_2\)Al\(_3\)− are presented in Figure 2 (Iso I–V). The global minimum (GM) structure (Iso I) has a direct B–B contact of 1.553 Å. One of the Al atoms bridges the two B atoms, and the other two Al atoms coordinate the two B atoms radially, resulting in a C\(_{2v}\) symmetry. Noteworthy, the B–B bond length (1.553 Å) is longer than that in the reported NHC–B≡B=NHC molecule (1.449 Å).\(^{14}\) Instead of being a disproof, the longer B–B bond in B\(_2\)Al\(_3\)− is an indicator of significant electron donation from Al. As a result, the negative charges on B repulse atoms away from each other. Table 1 summarizes the experimental and calculated VDE values of Iso I and Iso II at three different levels of theory. Excellent agreement is observed between the experiment and theory within three different theoretical methods for Iso I. The calculated VDEs of Iso I are plotted as red sticks in Figure 1. This unambiguous agreement confirms that Iso I is indeed the main contributor to the ion beam and the measured photoelectron spectrum. The small relative energy difference of Iso II (2.2 kcal/mol at CCSD(T) level) makes it a possible candidate to be observed in the PES as well.

Table 1. Calculated and experimental VDEs (eV) of B\(_2\)Al\(_3\)−.

<table>
<thead>
<tr>
<th>Iso</th>
<th>Neutral configuration</th>
<th>VDE</th>
<th>EOM</th>
<th>CCSD(T)</th>
<th>aug-cc-pVQZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iso I</td>
<td>1a(^{2})2a(^{2})2b(^{2})3a(^{2})3b(^{2})4a(^{2})2b5a(^{-})</td>
<td>2.59</td>
<td>2.57</td>
<td>2.56</td>
<td>2.42</td>
</tr>
<tr>
<td>Iso I</td>
<td>1a(^{2})2a(^{2})2b(^{2})3a(^{2})3b(^{2})4a(^{2})2b5a(^{-})</td>
<td>3.26</td>
<td>3.25</td>
<td>3.31</td>
<td>3.15</td>
</tr>
<tr>
<td>Iso II</td>
<td>1a(^{2})2a(^{2})2a(^{2})4a(^{2})5a(^{-})</td>
<td>2.59</td>
<td>2.83</td>
<td>2.76</td>
<td>2.56</td>
</tr>
<tr>
<td>Iso II</td>
<td>1a(^{2})2a(^{2})2a(^{2})4a(^{2})5a(^{-})</td>
<td>3.26</td>
<td>3.23</td>
<td>3.42</td>
<td>3.02</td>
</tr>
</tbody>
</table>

[a] TD-M1/aug-cc-pVQZ\(^{33}\).
[b] OVGF/aug-cc-pVQZ\(^{33}\).
[c] CCSD(T)/aug-cc-pVQZ.
[d] EOM-CCSD/aug-cc-pVQZ.
The assessment of B-B bond character based on relaxed force constants (FCs)56-69, unfortunately, is not straightforward. FC of B≡B stretching mode is found to be 3.8 (hereinafter, in mdy/n/A), which is close to the previously reported value for B≡B70. However, it is reasonable to expect B≡B in B\textsubscript{2}Al\textsubscript{3}– to be somewhat weaker and longer than in classical covalent compounds. For instance, relaxed FCs of Na\textsubscript{2}Al\textsubscript{3} (0.95) and Na\textsubscript{2}Al\textsubscript{2} (1.08), both having Al≡Al triple bonds, are lower than the relaxed FC responsible for stretching mode (1.43) in RR′AI=AIR′ molecule.7 Obviously, the atomic environment of the bond affects FC tremendously, and, for instance, bulky ligands (as in RR′AI=AIR′) can significantly strengthen the bond. On the contrary, the B≡B skeleton in B\textsubscript{2}Al\textsubscript{3}– acquires extra electrons, thus increasing the Coulomb repulsion. As a consequence, we should expect elongation of the bond and decrease of the FC. For the detailed discussion regarding the relaxed FCs, refer to a recent article by Zhang et al7 and SI where this discussion is deepened alongside with some notes about the bond dissociation energy.

The AdNDP analysis of Iso II is displayed in Figure S4. It is interesting to find that it also has the triple B≡B bond. The two s-type lone pairs, one σ bond and two π bonds are all similar to their counterparts of the GM Iso I, thus confirming that the B≡B kernel in B\textsubscript{2}Al\textsubscript{3}– is indeed an isoelectronic analogue of N\textsubscript{2}.

To conclude, we have computationally designed and experimentally observed a B\textsubscript{2}Al\textsubscript{3}–cluster whose GM has a B≡B triple bond. PES spectrum exhibits two electronic transitions up to ~3.5 eV, both of which agree perfectly with the calculated values of the GM structure, suggesting that the computationally predicted structure corresponds to the one observed in the experiment. The AdNDP analysis indicates that the B≡B triple bond consists of one σ and two genuine π bonds. However, due to the significant Coulomb repulsion, this bond is predictably weaker than in other, especially, neutral B species. We have shown that it is possible to design a classical B≡B triple bond, similar to that of N\textsubscript{2}, without any stabilizing bulky ligands. We anticipate that this work will not only promote a further search for other electronically enriched species but will also facilitate the design of novel solid-state compounds featuring B≡B building blocks, which could be stabilized by the metal ions.

Acknowledgements

X.Z. acknowledges the National Key R&D Program of China (2018YFE0115000) and the NSF of Tianjin City (19JCYBJC19600). I.A.P. is supported by J. Robert Oppenheimer Distinguished Postdoctoral Fellowship at Los Alamos National Laboratory (LANL). LANL is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract 89233218CNA000001). The theoretical work was supported by the National Science Foundation (CHE-1664379 to A.I.B). This material is based on work supported by the Air Force Office of Scientific Research (AFOSR) under grant number, FA9550-19-1-0077 (K.H.B.). The support and resources from the Center for High Performance Computing at the University of Utah are gratefully acknowledged.

Keywords: B≡B triple bond • photoelectron spectroscopy • ab initio calculations • boron clusters

Figure 3. Chemical bonds of Iso I of B\textsubscript{2}Al\textsubscript{3}–(A) and N\textsubscript{2} (B) recovered by the AdNDP analysis. The compositions of the triple bonds are high-lighted by a box.
Entry for the Table of Contents (Please choose one layout)

Layout 1:

Electron donation from Al to B leads to the formation of B≡B triple bond in experimentally observed B$_2$Al$_3$ cluster.

Nikita Fedik*, Chaonan Mu*, Ivan A. Popov, Wei Wang, Jie Wang, Haopeng Wang, Kit H. Bowen, Alexander I. Boldyrev* and Xinxing Zhang

Boron-made N$_2$: Realization of a B≡B Triple Bond in the B$_2$Al$_3$ Cluster

Page No. – Page No.

Accepted Manuscript

Chemistry - A European Journal

This article is protected by copyright. All rights reserved.