Southern Hemisphere extratropical circulation: Recent trends and natural variability.

Jordan L. Thomas, Darryn Waugh, Anand Gnanadesikan,

Corresponding author: Jordan L. Thomas, Department of Earth and Planetary Sciences, Johns Hopkins University, 323 Olin Hall, 3400 N. Charles St, Baltimore, MD 21218, USA. (jthom143@jhu.edu)

1Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA.
Abstract. Changes in the Southern Annular Mode (SAM), Southern Hemisphere (SH) westerly jet location and magnitude are linked with changes in ocean circulation along with ocean heat and carbon uptake. Recent trends have been observed in these fields, but not much is known about the natural variability. Here we aim to quantify the natural variability of the SH extratropical circulation by using Coupled Model Intercomparison Project Phase 5 (CMIP5) pre-industrial control model runs and compare with the observed trends in SAM, jet magnitude, and jet location. We show that trends in SAM are due partly to external forcing, but are not outside the natural variability as described by these models. Trends in jet location and magnitude, however, lie outside the unforced natural variability but can be explained by a combination of natural variability and the ensemble-mean forced trend. These results indicate that trends in these three diagnostics cannot be used interchangeably.
1. Introduction

The Southern Ocean plays a critical role in the ocean overturning circulation and moderating global climate through carbon and heat uptake [Khatiwala et al., 2009; Gnanadesikan, 1999], with approximately 40% of anthropogenic carbon and 75% of heat entering the ocean south of 30°S [Frölicher et al., 2015; Sabine et al., 2004]. The leading mode of Southern Hemisphere (SH) extratropical variability, the Southern Annular Mode (SAM), has been shown to directly affect this overturning circulation and the distribution of anthropogenic carbon uptake by altering the magnitude and location of the westerly jet [Hall and Visbeck, 2002; Mignone et al., 2006; Sen Gupta and England, 2006]. It is therefore important to understand the variability in the SH extratropical circulation.

Observations and reanalyses have shown a positive trend in SAM and jet magnitude over the last couple decades along with a poleward shift in the jet location [Thompson et al., 2000; Thompson and Solomon, 2002] in addition to trends in subtropical sea surface temperature, Antarctic sea ice extent, ocean ventilation and gyre circulation [Parkinson and Cavalieri, 2012; Swart and Fyfe, 2012; Waugh et al., 2013; Roemmich et al., 2007]. Additionally, studies have detected anthropogenic influences in surface pressure and the westerly jet [Gillett et al., 2003; Gillett, 2005]. These trends in the SAM and consequently the jet have been largely attributed to ozone depletion in the SH stratosphere during austral summer [Previdi and Polvani, 2014; Gillett et al., 2013; Gillett and Thompson, 2003]. However, there is also evidence that this positive phase trend in the SAM is due in part to greenhouse gas warming [Arblaster and Meehl, 2006; Lee and Feldstein, 2013; Gillett et al., 2013].
While there is evidence of anthropogenic forcing, understanding the forcing in the context of natural variability is difficult given the lack of in-situ observations and satellite information prior to 1979. Previous studies have tried to quantify the natural variability in the SH using proxy records [Marshall, 2003; Visbeck, 2009] and climate models [Latif et al., 2013]. Understanding the relative contribution of natural variability and anthropogenic forcing to recent trends is critical to understanding how global climate will be influenced in the future.

In this study, we aim to further estimate the natural variability of the SH extratropical circulation by using the Coupled Model Intercomparison Project Phase 5 (CMIP5) pre-industrial control model runs. We examine five metrics of the SH extratropical circulation: the SAM, the jet location defined using the 850mb winds (U_{lat}) and the surface wind-stress (τ_{lat}), the jet magnitude defined by the 850mb winds (U_{max}) and the surface wind-stress (τ_{max}). We turn to CMIP5 pre-industrial model runs to quantify the natural variability of these five metrics to address the following questions: Can recently observed trends in SH circulation occur in CMIP5 piControl model runs due to natural variability alone, do the CMIP5 models historical (1980-2004) runs show significant trends in the circulation metrics, and do these simulated historical trends capture the characteristics of the observed trends?

2. Methods

In order to examine the natural multi-decadal-scale variability in the SH circulation we use a combination of pre-industrial control (“piControl”) and historical (1980 to 2004) runs from models. Table 1 lists the models used in this study, the length of their piControl run and the number of historical runs. The models were chosen based on the availability
of monthly-mean fields of sea level pressure, 850mb zonal winds and zonal wind-stress for both piControl and historical runs. We focused on the austral summer (averaged over December, January and February) because this is the season where the largest trends are observed [Thompson and Solomon, 2002; Thompson et al., 2011].

From the monthly sea-level pressure, we calculated the SAM as the zonal sea level pressure difference between 65° and 40° degrees South. For the sake of comparisons across different models, we chose to leave the SAM as a surface pressure difference as opposed to normalizing by the standard deviation as done in Gong and Wang [1999] to avoid normalizing by different standard deviations across models. Additionally, we examine the SH westerly jet magnitude and location calculated using both zonal surface wind-stress (τ_{max} and τ_{lat}) and 850mb zonal winds (U_{max} and U_{lat}). To find the jet maximum and location, the maximum zonal-mean wind-stress/850mb winds and the surrounding 4 grid-points were isolated and interpolated to a 0.1-degree meridional grid. A quadratic polynomial was then fit to the interpolated data and the maximum magnitude and location was found.

While there are no trends (i.e., drift) in these metrics over the length of the piControl time-series (order 250-1000 years), strong multi-decadal trends are found. Time-series in SAM from a high-varying model (MPI ESM MR) and a low-varying model (MIROC5) are shown in figure 1a and c respectively. As highlighted in red, there are multiple 25-year periods that have strong trends even though there is no trend over the entire time-series. In order to quantify the variability of these multi-decadal-scale trends, we calculate the linear trend of each metric (SAM, τ_{max}, τ_{lat}, U_{max}, and U_{lat}) for consecutive and overlapping
25-yr trends for each model’s piControl run (Polvani and Smith [2013] performed a similar analysis for sea ice extent in piControl runs).

We focus on the period 1980-2004 because reanalyses are unreliable before the implementation of satellites in 1979 (Swart and Fyfe [2012] figure 1). Our analysis goes up until 2004 in order to compare with the CMIP5 historical model runs, which are typically run until year 2005. To verify that period length does not influence our results, the same analysis with CMIP5 piControl model runs and observations for the 34-year period between 1980-2014 was conducted (not shown). The results are essentially identical to those reported below as the observed changes over this period are either the same size or smaller than over the 1980-2005 period and the modeled trends are only slightly smaller.

The distribution of these 25-yr trends for the model piControl run is a measure of the natural multi-decadal variability in each model (in other words, the model internal variability with no anthropogenic influences). As an example, the probability density function (PDF) of these 25-year linear trends for the MPI ESM MR and MIROC5 models are shown in figure 1b and d. The blue curve shows the probability density of the 25-year linear trends for the SAM, and the whisker plot shows the mean (blue circle) and 2 standard deviations (whisker extent) of the 25-year trends. The means of the 25-year trends (blue dot) are near zero, consistent with there being no drift in the piControl runs, but the trend for any individual 25-year period varies from -10 to +10 hPa per 25 yrs (with standard deviation of around 4 hPa per 25 yrs). Throughout the rest of the paper we shall use the whiskers to represent the distribution of 25-year trends from the model piControl runs. Each CMIP5 model has a different piControl run length, which could potentially impact our model-model comparisons. However, subsampling the output from 1000 year
piControl runs shows limited sensitivity of the standard deviation of 25-yr trends for run lengths between 250 and 1000 yrs.

To compare the observations with the modeled natural variability, we used four re-analysis products: NCEP Reanalysis 1 (NCEP-1) [Kalnay et al., 1996], NCEP Reanalysis 2 (NCEP-2) [Kanamitsu et al., 2002], ERA-Interim [Dee et al., 2011], and JRA-55 [Kobayashi et al., 2015] during the period 1980-2004. We also calculated the linear trend between the years 1980-2004 from the model historical runs, and compared both with the observed trends and model natural decadal variability. The vertical lines in figure 1b and d represent the 1980-2004 reanalysis trends and the red asterisk shows historical simulation trend.

3. Results & Discussion

3.1. Natural Variability

We first examine the distribution of 25-year linear trends from CMIP5 piControl runs. Figure 2 shows, as whisker plots, the distributions of 25-year linear trends of (a) SAM, (b) \(U_{lat} \), (c) \(\tau_{lat} \), (d) \(U_{max} \), and (e) \(\tau_{max} \), for each model. For all five metrics, the mean 25-year linear trend (blue circles) is around zero for all the models, as expected for unforced model runs with no drift. The width of the whiskers is, however, variable across the different models, indicating differences in the multi-decadal variability among the models. Models with larger whiskers are more variable with stronger multi-decadal trends than models with smaller whiskers.

The variability of the whisker width among the models differs among the five metrics. The SAM (figure 2a) shows the most variability among the models, with the width of the whiskers ranging from 3 hPa per 25 years to 10 hPa per 25 years (the mean and
2 sigma of the whisker length for the ensemble of models is 6 ± 3 hPa per 25 years).

This indicates there is little agreement in the magnitude of the natural variability of the
unforced system in SAM among the CMIP5 models. The jet location variability, U_{lat}
(figure 2b) and τ_{lat} (figure 2c) also differs across the various models, but the differences
are not as pronounced as in the SAM (whisker width is 2 ± 0.75 degrees per 25 years).

There is even less variability between the models in jet magnitude. For the 850mb winds
(figure 2d) the whisker extent is 0.75 ± 0.25 ms^{-1} per 25 years, while for magnitude of the
surface wind-stress (figure 2e) it is approximately 0.015 ± 0.005 Pa per 25 years. To better
understand how these metrics compare to each other, we compare the linear correlations
of each of the jet metrics with the SAM (figure 3). The highest correlations occur between
the SAM and the jet latitude metrics, with average R^2 values of 0.7 for both τ_{lat} and U_{lat}.

The correlations between the SAM and jet magnitude metrics are significantly lower with
average R^2 values at 0.5, with the R^2 values for correlations of SAM with τ_{max} always
being greater than that of SAM with U_{max}.

The comparison of magnitude of natural decadal variability of the different metrics and
correlation between the metrics shows our first key result: The SAM, jet location and jet
magnitude metrics are not interchangable.

3.2. Observed trends

With a description of the natural variability from the piControl run for each model, we
now compare the observed reanalysis trends to the modeled natural variability to examine
if the observed trend is forced or natural. In each panel in figure 2, the dashed horizontal
lines show the magnitude of the observed reanalysis trends. As expected from the above
analysis there are differences among the different metrics.
The observed SAM trend observations lie just within the whiskers for most of the models, indicating the observed trends lie within the model natural variability. To quantify this further, the probability of each model randomly obtaining a trend with the magnitude of the average reanalysis SAM trend or larger is shown in table 2 (column 1). 10 of the 14 models have a probability of 5% or greater, and thus there is a significant (at the 5% level) probability of obtaining the observed 25-year trend in the piControl simulations by chance alone. In other words, the observed trend over the period 1980-2004 in the SAM lies just within the edge of natural variability as described by these models. This result also holds for the period 1980-2014 (not shown).

The observed τ_{lat} and U_{lat} trends are just outside the model’s natural decadal variability (figure 2b and c). If we calculate the probability of each model obtaining the observed average reanalysis U_{lat} trend (table 2, column 2), then we see that no models have a probability of 5% or greater; however, 6 of the 14 have greater than a 1% probability. Thus, there is not a significant (at the 5% level) probability of obtaining the observed trend using natural variability alone.

In contrast, the observed τ_{max} and U_{max} trends are both outside the natural variability as described by the models (figure 2d and e). The probability of obtaining the average reanalysis U_{max} trend in all but one of the piControl models is less than 1% (table 2, column 3) and therefore there is not a significant (at the 1% level) probability of the natural variability reproducing the observed trend. The probabilities of the piControl τ_{max} and τ_{lat} obtaining the observed trends are not shown in table 2, but are consistent with the U_{max} and U_{lat} probabilities.
The above shows that the observed trends in the SAM largely lie at the edge of natural multi-decadal variability of the piControl model runs. However, this does not necessarily mean that the observed trends are not forced by anthropogenic activities, merely that the observations can contain a large component of natural variability in the SAM. The observed trend in the jet location and magnitude, however, is outside the variability of most models piControl runs. This does suggest an external force driving the jet to strengthen and shift over this 25-year period.

3.3. Model historical trends

We now examine the model historical runs to understand how the modeled trends compare to the modeled natural variability and to compare the modeled trends with the observed trends. The red asterisks in figure 2 represent the 25-year trend for each historical run (the number of historical runs varies among the models).

There is considerable variability amongst the models in the magnitude of the trends, but for all five metrics the vast majority of the simulated historical trends are of the same sign (increase in SAM, poleward shift and strengthening of the jet). This consistency in sign indicates that external (anthropogenic) forcing is causing at least part of the trend. However, the magnitude of the historical trends are almost all within the natural multi-decadal variability of the corresponding model (i.e. within the whiskers). Thus while the response in the models between 1980 and 2004 is due (at least in part) to forcing, the response does not overwhelm the natural variability.

For the SAM, the magnitude of the individual historical ensemble member trends are largely within the estimated natural variability and highly variable, with some ensemble members having trends of the opposite sign to the observations (dashed horizontal lines).
Because the observed trends are generally within the natural decadal variability of the models, a close agreement between individual historical ensemble members and observed trends would not be expected due to the high component of natural variability. Most of the ensemble members have positive trends and the magnitude of the multi-model ensemble mean historical trend is similar to the observations. This further suggests an anthropogenic forcing pushing the SAM towards positive phase.

The same comparison for jet location and magnitude yields different results. The observed trends in the jet metrics are outside the natural variability of the models, and generally larger than the modeled historical trends (especially for the magnitude of the wind stress). A possible cause for this is that the observed trends are due to anthropogenic forcing that is not well represented (or under represented) in the models. However, another possibility is that there are issues with the reanalyses and the reanalyses are overestimating the real trend. This may especially be the case for the NCEP reanalyses, where the wind stress trends are significantly outside the model natural variability but the 850 hPa winds are just outside the model natural variability.

If we consider the observed trends to be a combination of natural variability and external forcing, and if we use the ensemble-mean historical trend as a representation of the forced response, we can better capture the observed trend. The last 3 columns in table 2 show the probability of obtaining the mean reanalysis trend from a combination of each model’s natural variability and the multi-model ensemble mean historical trend (results for τ_{lat} and τ_{max} are not shown, but are consistent with U_{lat} and U_{max}). The probabilities for each metric are substantially greater, indicating that there is a significant probability, in most models, that the observed trends are due to this combination of natural variability.
and anthropogenic forcing. This does not exclude the possibility that the models are
systematically biased low, or that the reanalyses are biased high, but it suggests that the
mismatch is smaller than might be suggested from previous work [Swart and Fyfe, 2012].

4. Conclusions

Changes in the SAM are often linked with concurrent changes in the SH westerly jet
magnitude and location [Hall & Visbeck, 2002]. Additionally, observational studies have
shown recent trends in these diagnostics and attribute them to a combination of ozone
depletion and greenhouse gas induced warming [Arblaster and Meehl, 2006]. By comparing
CMIP5 models piControl and historical runs with reanalysis observations, we have shown
that there are significant differences in the observed and modeled trends of the SAM from
those in the jet. Hence, the SAM and jet metrics cannot be used interchangeably.

Examining the natural variability of the SAM using CMIP5 preindustrial control runs
has led to the conclusion that the observed trend is not decisively outside the natural
variability as simulated by the CMIP5 models. While the modeled natural variability in
SAM in quite large, the positive bias of the model historical trends suggest influence of an
external forcing. The failure of individual historical models to simulate the magnitude of
the observed historical trend could be due to the natural variability and not deficiencies
in the simulations.

In contrast, the observed trends in jet location and magnitude are outside the natural
variability of the models. The historical model runs also seem to underestimate the
magnitude of these trends, especially in jet magnitude. Combining the natural variability
and historical trend brings the models closer to capturing the observed trends in jet
location and magnitude, but this does not eliminate the possibility that the model trends
are biased low or the reanalyses are biased high.

Changes in the SAM and SH westerly jet have been linked with significant changes in
ocean circulation, ocean heat and carbon uptake [Mignone et al., 2006], and Antarctic
sea-ice extent [Fan et al., 2014]. We suggest that changes in SAM and jet latitude may
behave differently than changes in jet magnitude and thus may have independent effects
on the Southern Ocean and Antarctic climate. Understanding how these atmospheric
variables interact with each other will be critical for predicting the future evolution of
ocean circulation and the earth system.

Acknowledgments. This research was supported by the U.S. National Science Found-
dation (NSF) under grants ANT-1043307 and FESD-1338814. We thank the World Cli-
mate Research Programmes Working Group on Coupled Modelling for making the CMIP5
data available (available at http://cmip-pcmdi.llnl.gov/cmip5/), in addition to the model-
ing groups who produced this data. Reanalysis data can be found at the following websites:
Reanalysis 1 http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html, Re-
analysis 2 http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html, ERA-
Interim http://apps.ecmwf.int/datasets/data/interim-full-moda/, and JRA-55
http://rda.ucar.edu/datasets/ds628.0/ . We would like to also thank Lorenzo Polvani and
Karen Smith for help with the CMIP5 data acquisition and helpful discussions.

References

Mignone, B. K., A. Gnanadesikan, J. L. Sarmiento, and R. D. Slater (2006), Central role of Southern Hemisphere winds and eddies in modulating the oceanic up-

Table 1. CMIP 5 models used in this study.

<table>
<thead>
<tr>
<th>Model</th>
<th>piControl model run length (years)</th>
<th>Historical model ensemble runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CanESM2</td>
<td>996</td>
<td>1</td>
</tr>
<tr>
<td>CNRM CM5</td>
<td>850</td>
<td>10</td>
</tr>
<tr>
<td>GFDL ESM2M</td>
<td>500</td>
<td>1</td>
</tr>
<tr>
<td>IPSL CM5a LR</td>
<td>1000</td>
<td>6</td>
</tr>
<tr>
<td>IPSL CM5a MR</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>IPSL CM5b LR</td>
<td>300</td>
<td>1</td>
</tr>
<tr>
<td>MIROC ESM</td>
<td>531</td>
<td>3</td>
</tr>
<tr>
<td>MIROC ESM CHEM</td>
<td>255</td>
<td>1</td>
</tr>
<tr>
<td>MIROC5</td>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>MPI ESM LR</td>
<td>1000</td>
<td>3</td>
</tr>
<tr>
<td>MPI ESM MR</td>
<td>1000</td>
<td>3</td>
</tr>
<tr>
<td>MRI CGCM3</td>
<td>500</td>
<td>3</td>
</tr>
<tr>
<td>NOR ESM1m M</td>
<td>501</td>
<td>1</td>
</tr>
<tr>
<td>NOR ESM1m ME</td>
<td>252</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. Probability of obtaining averaged reanalysis trend by only natural variability (first three columns) and natural variability + historical multi-model ensemble trend (second three columns). Bolded values indicate a probability of 5% or higher.

<table>
<thead>
<tr>
<th>Model</th>
<th>Natural Variability</th>
<th>Nat. Variability + Hist. Ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAM</td>
<td>U_{loc}</td>
</tr>
<tr>
<td>CanESM2</td>
<td>5.98%</td>
<td>0.09%</td>
</tr>
<tr>
<td>CNRM CM5</td>
<td>4.18%</td>
<td>0.21%</td>
</tr>
<tr>
<td>GFDL ESM2M</td>
<td>5.41%</td>
<td>1.05%</td>
</tr>
<tr>
<td>IPSL CM5a LR</td>
<td>17.24%</td>
<td>2.79%</td>
</tr>
<tr>
<td>IPSL CM5a MR</td>
<td>9.29%</td>
<td>1.84%</td>
</tr>
<tr>
<td>IPSL CM5b LR</td>
<td>16.3%</td>
<td>3.70%</td>
</tr>
<tr>
<td>MIROC ESM</td>
<td>5.69%</td>
<td>0.078%</td>
</tr>
<tr>
<td>MIROC ESM CHEM</td>
<td>10.24%</td>
<td>0.52%</td>
</tr>
<tr>
<td>MIROC5</td>
<td>1.18%</td>
<td>0.005%</td>
</tr>
<tr>
<td>MPI ESM LR</td>
<td>8.40%</td>
<td>1.70%</td>
</tr>
<tr>
<td>MPI ESM MR</td>
<td>9.50%</td>
<td>1.81%</td>
</tr>
<tr>
<td>MRI CGCM3</td>
<td>5.14%</td>
<td>0.27%</td>
</tr>
<tr>
<td>NOR ESM1m M</td>
<td>3.98%</td>
<td>0.09%</td>
</tr>
<tr>
<td>NOR ESM1m ME</td>
<td>3.63%</td>
<td>0.09%</td>
</tr>
</tbody>
</table>
Figure 1. SAM time-series for (a) MPI ESM MR and (c) MIROC5 piControl runs over the first 100 years. The red lines indicate periods where the trend is greater than the average reanalysis trend between 1980-2004. Figures b and d show the probability density functions for the 25-year linear SAM trends in MPI ESM MR and MIROC5 respectively. The blue dot represents the mean of the 25-year trends while the whiskers extend 2 standard deviations. The vertical lines represent the observed trends: NCEP R1 (green), NCEP R2, ERA-Int, and JRA-55 (black), and the red asterisk shows the magnitude of the historical model run trend (first ensemble member).
Figure 2. Natural variability, historical trends and observations for (a) SAM, (b) 850mb jet latitude, (c) wind-stress jet latitude, (d) 850mb jet magnitude, and (e) wind-stress jet magnitude. Blue circles show the mean of the piControl 25-year linear trends indicating model drift. Whisker length is 2 standard deviations. Red points show the historical run trends for each ensemble member. Horizontal dashed lines indicate the absolute value of the observed trends: NCEP R1 (green), NCEP R2 (orange), ERA-Int (purple), and JRA-55 (black).
Figure 3. Correlation coefficient squared for correlation of the 25-year linear trends in wind-stress jet location, wind-stress jet magnitude, 850mb jet location, and 850mb jet magnitude with the 25-year trends in SAM for each model.