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ABSTRACT Protein design is a powerful tool for elucidating mechanisms of function and engineering new therapeutics and
nanotechnologies. Although soluble protein design has advanced, membrane protein design remains challenging because of
difficulties in modeling the lipid bilayer. In this work, we developed an implicit approach that captures the anisotropic structure,
shape of water-filled pores, and nanoscale dimensions of membranes with different lipid compositions. The model improves per-
formance in computational benchmarks against experimental targets, including prediction of protein orientations in the bilayer,
DDG calculations, native structure discrimination, and native sequence recovery. When applied to de novo protein design, this
approach designs sequences with an amino acid distribution near the native amino acid distribution in membrane proteins, over-
coming a critical flaw in previous membrane models that were prone to generating leucine-rich designs. Furthermore, the pro-
teins designed in the new membrane model exhibit native-like features including interfacial aromatic side chains, hydrophobic
lengths compatible with bilayer thickness, and polar pores. Our method advances high-resolution membrane protein structure
prediction and design toward tackling key biological questions and engineering challenges.
SIGNIFICANCE Membrane proteins participate in many life processes, including transport, signaling, and catalysis.
They constitute over 30% of all proteins and are targets for over 60% of pharmaceuticals. Computational design tools for
membrane proteins will transform the interrogation of basic science questions such as membrane protein thermodynamics
and the pipeline for engineering new therapeutics and nanotechnologies. Existing tools are either too expensive to
compute or rely on manual design strategies. In this work, we developed a fast and accurate method for membrane protein
design. The tool is available to the public and will accelerate the experimental design pipeline for membrane proteins.
INTRODUCTION

Membrane proteins partner with the surrounding lipid envi-
ronment to perform essential life processes. They constitute
30% of all proteins (1) and are targets for over 60% of phar-
maceuticals (2). However, experimental difficulties have
limited our insights into their molecular mechanisms of
function. Protein design tools are powerful for elucidating
biological mechanisms and developing new therapeutics.
Over the past 20 years, soluble protein design has advanced
to atomic-level accuracy (3). A remaining challenge is to
create robust tools for membrane proteins (4). There have
been several achievements in membrane protein design,
including a zinc-transporting tetramer Rocker (5), an ion-
conducting protein based on the Escherichia coliWza trans-
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porter (6), b-barrel pores with increased selectivity (7),
receptors with new ligand-binding properties (8,9), and
designed de novo a-helical bundles that insert into the mem-
brane (10). A critical limitation is capturing the heteroge-
neous membrane environment: models are either too
computationally expensive or severely approximate the
bilayer. In fact, it has been common for membrane protein
structure prediction and design to be carried out in a 30-Å
hydrophobic slab. A slab is a poor proxy for the heteroge-
neous membranes found in biology with varying lipid
composition across different organelles, cell types, and spe-
cies. To apply membrane protein design to addressing bio-
logical questions, tools must sample a realistic distribution
of amino acids tied to the diverse lipid composition.

The foundation of computational modeling and design
tools is the energy function: a mathematical model of the
physical rules that distinguish native from non-native mem-
brane protein conformations and sequences. Currently, most
computational studies of membrane proteins are molecular
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dynamics simulations with an all-atom lipid bilayer. In this
conception, the lipid molecules are represented explicitly
using force fields such as AMBER (11), CHARMM (12),
or GROMOS (13), and the protein-lipid interactions are
scored with a molecular mechanics energy function. All-
atom models are attractive because they can feature hun-
dreds of lipid types toward approximating the composition
of biological membranes. With current technology, detailed
all-atom models can be used to explore membrane dynamics
for hundreds of nanoseconds (14): the timescale required to
achieve equilibrated properties on a bilayer with �250
lipids (15). Coarse-grained representations such as
MARTINI (16) and SIRAH (17) reduce computation time
by mapping atoms onto representative beads. As a result,
simulations have explored dynamics up to the millisecond
timescale to access features of membrane organization and
large protein domain motions (18).

Implicit solvent models enable simulations to reach
longer timescales required to investigate biologically rele-
vant conformational and sequence changes. Instead of using
explicit molecules, implicit methods represent the solvent as
a continuous medium (19,20), resulting in a 50- to 100-fold
sampling speedup (21). The most detailed implicit model is
the Poisson-Boltzmann (PB) equation, which relates elec-
trostatic potential to dielectric properties of the solvent
and solute through a second-order partial differential equa-
tion (22). Numerical solvers have enabled PB calculations
on biomolecular systems (23); however, these calculations
do not scale well. To reduce computational cost, the gener-
alized Born (GB) approximation of the PB equation treats
atoms as charged spheres (24). GB methods represent the
low-dielectric membrane through various treatments
ranging from a simple switching function (25) to heteroge-
neous dielectric approaches (26). However, evaluating the
GB formalism is still computationally expensive.

A popular approach to overcoming the computational
cost of solvent electrostatics models is the Lazaridis implicit
membrane model (IMM1 (27)): a Gaussian solvent-exclu-
sion model that uses experimentally measured transfer en-
ergies of side-chain analogs in organic solvents to emulate
amino acid preferences in the bilayer (28). IMM1 has
been applied to various biomolecular modeling problems,
including studies of antimicrobial peptides (29), de novo
folding (30), and de novo design of transmembrane helical
bundles (10). However, organic solvent slabs differ from
phospholipid bilayers because lipids are thermodynamically
constrained to a bilayer configuration, resulting in a unique
polarity gradient that influences side-chain preferences
(31,32). An alternative is to directly calculate amino acid
preferences by deriving statistical potentials from a database
of known membrane protein structures (33–36). Yet, statis-
tical potentials do not capture varying physiochemical prop-
erties of the membrane.

In this work, we developed a biologically realistic im-
plicit membrane model for protein structure prediction
and design. We first developed the model from experimental
and computational modeling of phospholipid bilayers to
capture biologically important membrane features. Next,
we tested the model on four benchmarks: 1) prediction of
protein orientations in the membrane, 2) DDG of mutation
calculations, 3) native structure discrimination, and 4)
native sequence recovery. We applied the model to protein
design and investigated properties of the in silico designed
membrane proteins including the amino acid composition.
Finally, we share several design anecdotes that exhibit
native-like membrane protein features, including interfacial
aromatic side chains, hydrophobic lengths compatible with
different lipid compositions, and polar pores.
METHODS

Development of the implicit membrane model

Derivation of DGatom
w ;l -values

The Moon and Fleming hydrophobicity scale provides a set of water-to-

bilayer transfer energies DGaa
w;l for the 20 canonical amino acids (37)

measured in the reversibly folding OmpLA scaffold. Note that the default

ionization state for histidine in Rosetta is neutral and Glu and Asp are pro-

tonated because the Moon and Fleming scale was measured at pH 3.8. We

used regression to derive energies that correspond to atom types (Table S5),

called DGatom
w;l . Specifically, least-squares fitting was applied solve the equa-

tion Ax ¼ b, where A is a matrix of atom type stoichiometric coefficients

(Table S6), b is the vector of DGaa
w;l-values, and x is the desired vector of

DGatom
w;l -values. Matrix rows for glycine, alanine, and proline were excluded

to avoid overfitting. The resulting DGatom
w;l -values are in Table S7.

Molecular dynamics simulations of phospholipid bilayers

All-atommolecular dynamics simulationswere performed to extract proper-

ties of membranes with different phospholipid compositions. We simulated

phospholipid bilayers with hydrocarbon tails between 12 and 18 carbons

long and either a phosphatidylethanolamine, phosphatidylcholine (PC), or

phosphatidylglycerol headgroup (Table S1). The exceptions were 1,2-dipal-

mitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glyc-

ero-3-phospho-(1’-rac-glycerol) (DMPG) because the liquid-to-gel phase

transition temperatures are above physiological temperature (38,39).

CHARMM-GUI (40) was used to configure each bilayer system with 75

lipids in each leaflet, 22.5 Å of water on each side, and 0.1 MNaCl. Simula-

tions were performed using the NAMDmolecular dynamics engine (41) at a

constant pressure of 1 atm and a temperature of 37�C. We used the

CHARMM36 (12) force field for lipid and the TIP3 model for water. The

simulations were equilibratedwith restraints according to the procedure out-

lined by Jo et al. (40). Then, each system was simulated for 50 ns.

Derivation of depth-dependent water-density profiles

MDAnalysis (42) was used to extract water-density information from each

bilayer simulation. For each frame, the system was first recentered on the

lipid center of mass. Then, we computed a normalized histogram of TIP3

z-coordinates with 1 Å bins to capture the distribution of water molecules.

The histogram was recentered at z ¼ 0 by fitting the histogram to a cosine

function to estimate the midpoint. The time-averaged histogram was

computed by averaging the histograms representing each frame (Fig. S9).

To generate analytic profiles, we used nonlinear regression to fit each his-

togram to the logistic function, fthk:

fthk ¼ 1

1þ texpð�kzÞ: (1)
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The function fthk depends on membrane depth (z) and has two adjustable

parameters: steepness k and width t. We derived k and t for all simulated

lipid compositions. The resulting parameters are in Table S2, and the ana-

lytic water-density profiles are in Fig. S10.

Calculation of water-filled pore shapes

For proteins with more than three transmembrane segments, we introduced

a pore into the implicit membrane model. To determine the pore shape, we

created a new method to transform discrete structural information into a

smooth geometry described by differentiable functional forms. First, we

used the convex-hull algorithm described in Koehler Leman et al. (43) to

identify backbone and side-chain atoms that are in the transmembrane re-

gion (jzj % T), face the protein interior, and are not buried. A side chain

was defined as buried if it had 23 or more neighboring atoms within

12 Å of its Ca atom (44). Next, we computed a histogram of the z-coordi-

nates of pore-facing atoms with a bin size of ð1 =3ÞT. For each bin, the (x, y)
coordinates of the atoms were collected. Then, the Khachiyan algorithm

(45) was used to compute the minimal-area ellipse that bounds these coor-

dinates. Each ellipse is defined with the following parameters: major radius

(a), minor radius (b), rotation angle (q), and center (x0, y0). The radius of the

ellipse, gradius, is calculated using rotation matrix M:

M ¼
�
sinðqðzÞÞ cosðqðzÞÞ
cosðqðzÞÞ �sinðqðzÞÞ

�
; (2)

"� �2 � �2
#

gradius ¼ M � ðx � x0ðzÞÞ
aðzÞ ;

ðy� y0ðzÞÞ
bðzÞ : (3)

Cubic spline interpolation was used to fit polynomials to describe the

depth dependence of each parameter. The result is five continuous and

differentiable parametric functions: a(z), b(z), q(z), x0(z), and y0(z). The

transition between the water-filled pore and lipid phase is defined by gradius
given the transition steepness n:

fpore ¼ 1� gnradius
1þ gnradius

: (4)

Validation of model parameters

DGatom
w ;l -values

To verify DGatom
w;l -values, we first recalculated the side-chain transfer en-

ergies by solving Ax ¼ b. The Pearson correlation coefficient between

the calculated and experimentally measured side-chain transfer energies

was R2 ¼ 0.99 (Fig. S13). In addition, we used the procedure outlined in

the Methods section to estimate the DDGmut-values from Moon & Fleming

(37). Specifically, we sought to verify that DGaa
w;l trends were preserved in

context of the full energy function. The correlation between predicted

and experimentally measured DDGmut-values was R2 ¼ 0.84 (Fig. S11)

and the residuals are listed in Table S8. Note, the DDGmut for proline

was excluded from the correlation coefficients because steric clashes re-

sulted in large energies.

Membrane thickness

We validated the water-density profiles computed from molecular dynamics

by comparing the derived membrane thickness parameters with thickness

measured at various temperatures via x-ray and neutron scattering experi-

ments (46). First, we computed the membrane half thickness t from each

logistic curve as the Gibbs dividing surface between the water and lipid

phases (f(z) ¼ 0.5). We then calculated a line of best fit through the

measured thickness values at each temperature (Fig. S14).
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RESULTS

Biologically realistic implicit membrane model

We developed a biologically realistic implicit membrane
model inspired by IMM1 (27). Similar to IMM1, the mem-
brane is modeled as a continuum of three phases: an
isotropic phase representing bulk lipids, an isotropic phase
representing bulk water, and an anisotropic phase represent-
ing the interfacial region. To accurately model the polarity
gradient and dimensions of native membranes, we derived
new equations and parameters from biophysical measure-
ments. The result is a new energy term called DGmemb

that computes protein stability given the water-to-bilayer
transfer energyDGatom

w/l of atomic groups a and the fractional
hydration fhyd:

DGmemb ¼
XNres

r¼ 1

XNatomðrÞ

a¼ 1

�
1� fhyd

��
DGatom

w;l ðaÞ
	
: (5)

The parameter DGatom
w;l captures the thermodynamics of

protein-lipid interactions. We derived DGatom
w;l from the

Moon and Fleming side-chain hydrophobicity scale (37)
because the energies were measured in bilayers with phos-
pholipids, a major component of biological membranes
(47). Furthermore, we chose this scale because the measure-
ments capture the stability of the final folded protein relative
to the fully hydrated, unfolded state. Side-chain burial versus
solvent exposure is accounted for through neighbor count
calculations in the Rosetta energy functions. Then, following
Lazaridis’ formalism (48), the function fhyd captures the
three-dimensional shape of the implicit membrane as a
dimensionless number that describes the phase given the po-
sition of an atomic group. When an atomic group is exposed
to the lipid phase, fhyd¼ 0, whereas when an atomic group is
exposed to thewater phase, fhyd¼ 1.0. The transition between
the two isotropic phases is modeled by a composition of two
functions: fthk captures the membrane thickness, and fpore
captures the geometry of a water-exposed pore:

fhyd ¼ fthk þ fpore � fthkfpore: (6)

The function fthk (Eq. 1; see Methods) models the transi-
tion between the water and lipid phase along the z axis and is
thus an implicit representation of the hydrophobic thickness.
We developed parameters for fthk by fitting to molecular dy-
namics simulations and scattering density profiles of phos-
pholipid bilayers. The result is a logistic curve that
depends on two parameters. We derived parameters for 13
phospholipid bilayer compositions (Table S1 and S2; see
Supporting Materials and Methods). The membrane thick-
ness can be derived by setting fthk ¼ 0.5 (Fig. 1, A and B).
Thus, the user can perform simulations with any of these
13 different phospholipid compositions or, in principle,
with any mix of membrane components by using a
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FIGURE 1 Features of the biologically realistic

implicit membrane model. The implicit membrane

is modeled as three phases: two isotropic phases

for water and lipid and a transition region that

represents the interfacial headgroups. (A) The tran-

sition between phases in the z dimension is

modeled by a logistic curve that can be parameter-

ized for different lipid compositions. Example

curves for DLPC (solid, black) and POPC (dot-

dash, black) are shown in comparison to the sig-

moid curve used in IMM1 (dashed, gray). (B)

Implicit solvent phases are shown for the ammo-

nium transporter Amt-1 (PDB: 2B2F) in the z

dimension. The water phase is shown in blue, the

interface is in teal, and the lipid is in gray. (C)

The transition between phases due to an elliptical

pore is modeled by a sigmoid curve. (D) Top

view of implicit solvent phases due to a pore in

Amt-1 is shown with the same coloring scheme

as (B). The three panels of (E) demonstrate the

variation in pore shape (purple) for different cross

sections in the x, y plane along the z-axis. To see

this figure in color, go online.
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molecular dynamics run and extracting the hydration profile
parameters.

The function fpore defines the shape of a water-exposed
pore (Fig. 1, C–E). Previously, Lazaridis developed a cylin-
drical model of pores for b-barrel proteins (48). This geo-
metric assumption is straightforward for b-barrel proteins;
however, a-helical protein pores require varied geometric
descriptors such as cones, cylinders, and ellipses (49). To
accommodate these geometries, we created a model that ap-
proximates pores as an elliptical tube with varying cross sec-
tions. This parameterization allows the model to describe
cavities that do not penetrate through the membrane and
pores that constrict, expand, or twist relative to z. The en-
ergy function accounts for the pore by first calculating a
relative radius, gradius (Eqs. 2 and 3; see Methods). The tran-
sition between the two phases is modeled by a sigmoid
curve fpore (Eq. 4; see Methods) with two parameters: gradius
and the transition steepness n (default n ¼ 10). Additional
examples for larger proteins with multiple pores and pro-
teins with ellipsoidal architecture are shown in Fig. S12.

We integrated our model into the current all-atom energy
function for modeling soluble proteins in Rosetta, called
REF15 (50). REF15 computes macromolecular energies
through a linear combination of terms for van der Waals, sol-
vation, electrostatics, hydrogen bonding, backbone, and side-
chain interactions. To account for themembrane environment,
we added DGmemb with an empirically determined weight of
0.5. The resulting energy function, called franklin2019, is
given by DEfranklin2019 ¼ DEREF15 þ DGmemb.
Computational benchmark performance of the
biologically realistic implicit membrane

We evaluated the accuracy of franklin2019 using four
computational benchmark tests against experimental tar-
gets. The tests were designed to evaluate an energy func-
tion’s ability to replicate measured membrane protein
stabilities and perform accurate structure prediction and
design. We compared the performance of franklin2019
to three existing models: 1) an implicit membrane param-
eterized from the behavior of side-chain analogs in
organic solvents (M07 (30)), 2) a knowledge-based model
that captures depth-dependent amino acid preferences
(M12 (51)), and 3) the Rosetta all-atom energy function
for soluble proteins (R15 (50,52)). For brevity, we will
refer to franklin2019 as M19. We chose these models
because the low computational cost enabled evaluation
with structure prediction and design tests. Additional
details describing the benchmark tests and command
lines are provided in the Supporting Materials and
Methods.

Test #1: prediction of membrane protein orientation and
insertion energy

Membrane proteins are thermodynamically stable in the
bilayer because of a favorable orientation and insertion en-
ergy. Therefore, implicit membrane energy functions must
accurately estimate these quantities. First, we evaluated
the partitioning properties of oligomeric proteins into the
implicit membrane. Here, we chose to study oligomers
because the single-transmembrane peptides may be margin-
ally hydrophobic with insertion depending on the sequence
context. We performed calculations for the acetylcholine re-
ceptor (pentamer, Fig. 2) and the influenza A M2 proton
channel (tetramer, Fig. S2). Remarkably, M19 was the
only model to predict a favorable insertion energy for
both proteins. The mapping of peptide orientation to en-
ergies is shown for the acetylcholine receptor in Fig. 2.
The M07 energy landscape (Fig. 2 C) has three small,
low-energy wells, and they are isoenergetic with the water
Biophysical Journal 118, 2042–2055, April 21, 2020 2045



A B

C D E F

JIHG

FIGURE 2 Prediction of membrane insertion and orientation for the acetylcholine receptor. (A) The sequence of the monomer and structures of both the

monomer (PDB: 1A11) and pentamer (PDB: 1EQ8) are shown. (B) Important conformations are given as a function of peptide depth (z) and tilt angle (q): G1

is the energy of the unfolded state in solution (z ¼ 30 Å, q ¼ 90�); G2 is the energy of the folded state at the interface, parallel to the plane of the interface

(z ¼ 15 Å, q ¼ 90�); G3 is the energy of the peptide oriented vertically (z ¼ 0 Å, q ¼ 0�); and G4 is the energy of a peptide buried in the membrane (z ¼ 0 Å,

q ¼ 90�). The mapping of protein orientations to energies calculated by the M07, M12, and M19 energy functions, respectively, is shown in (C)–(E) for the

monomer and (G)–(I) for the pentamer. The partitioning energies between two lipid-buried conformations (DG4/3), from interface to lipid (DG2/3) and

from water to lipid (DG1/3) are shown in (F) for the monomer and (J) for the pentamer. To see this figure in color, go online.
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phase (because M07 was not parameterized for the water
environment). This behavior is not physical. In contrast,
the lipid phase is more thermodynamically favorable than
the water phase for both M12 (Fig. 2 D) and M19 (Fig. 2
E). This result is quantified by a favorable transfer energy
from the water phase (G1) to the lipid phase (G3;
Fig. 2 F). Ultimately, M19 is the most native like because
the model accurately captures the aqueous reference state
relative to the bilayer phase.

In addition, we predicted the tilt angle for five proteins
with single transmembrane spans: influenza A M2 (Protein
Data Bank, PDB: 1MP6), acetylcholine receptor segment 2
(PDB: 1A11), NR1 subunit of the NMDA receptor (PDB:
2NR1), VPU domain of HIV-1 (PDB: 1PJE), and WALP
(WALP23). We chose the first four biological peptides
from Ulmschneider et al. (53) because the sequences are
less than 35% homologous and the tilt angles have been
measured by solid-state NMR spectroscopy. We also
2046 Biophysical Journal 118, 2042–2055, April 21, 2020
included WALP because the sequence was rationally de-
signed (54). The dependence of energy on orientation is
shown in Fig. 2, C–E for PDB: 1A11 and Figs. S2 and S3
for the remaining targets. The dependence of energy on
tilt angle is shown in Fig. S1, and the low-energy tilt angles
are listed in Table S3. We found that M19 predicted tilt an-
gles within 510�of the experimentally measured value for
four of the five peptides. Further, M19 predicted tilt angles
closest to the measured value, in contrast to M07 and M12.
Together, these results demonstrate that M19 is predictive
for both insertion and orientation.

Test #2: predicting the DDG of mutation

Predicting changes in protein stability upon single amino
acid substitutions at lipid-exposed positions informs predic-
tions of the effects of genetic mutations and de novo protein
design. We evaluated the ability of M19 to capture the
change in protein stability upon mutation, called DDGmut,
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by comparing experimentally measured values with compu-
tational predictions. Here, we used a data set of mutations at
position 111 on outer membrane palmitoyl transferase
(PagP) (55). The data set contains mutations from the host
amino acid (alanine) to all 19 other canonical amino acids.
Therefore, the DDG computed in this test represents side-
chain stability relative to alanine. A summary of prediction
accuracy relative to the experimentally measured values is
given in Fig. 3. The raw predicted values are also listed in
Table S4. Calculated energies are given in Rosetta energy
units.

The correlation between M19 predicted and experimen-
tally measured DDGmut-values was R2 ¼ 0.85. Note that
the DDGmut for proline was excluded for all three energy
functions because steric clashes resulted in large values.
Although prediction accuracy was improved relative to
M12 (R2 ¼ 0.77), the accuracy was comparable to M07
(R2 ¼ 0.84). We were surprised that M07 and M19 demon-
strated similar predictive ability. This is because a second
set of measurements in OmpLA (37) correlates well with
PagP measurements, but not with M07 predictions (56). Ac-
cording to Marx et al. (55), the largest deviations were for
side chains containing polar atoms. We therefore recalcu-
lated the correlation coefficient for polar and charged side
chains. Here, the correlations were 0.78, 0.58, and 0.94
for M07, M12, and M19, respectively. Note that this is
mainly due to Asp and Glu because the overall correlation
coefficients without these side chains are 0.90, 0.87, and
0.85 for M07, M12, and M19, respectively. Nonetheless,
we were encouraged by these results because they demon-
strate the ability of our model to capture the behavior of po-
lar side chains in the bilayer.

We examined DDGmut predictions that deviate more than
1.5 Rosetta energy units from the measured value. For
M19, this included predictions for G, T, V, Y, and L. To
investigate, we analyzed contributions of the component
energies to the overall DDGmut (Figs. S4–S6). From the
component energies, we found that glycine, threonine,
and valine had errors arising from over- or underestimation
A B C

FIGURE 3 Comparison between computationally predicted and experimental

proline is not shown because of steric clashes resulting in a large DDGmut-value.

addition, amino acids are colored according to the following categories: charged

(green). (A) The structure of the PagP scaffold (PDB: 3GP6) with the mutation sit

are colored in a similar manner as in Fig 1. The DDGmut predictions for mutation

this figure in color, go online.
of van der Waals energy. This suggests double counting be-
tween the physics-based terms and the water-to-bilayer en-
ergy that captures all of the enthalpic contributions to
DDGmut. On the other hand, tyrosine was predicted to be
too favorable because of a large attractive van der Waals
and water-to-bilayer energy, also suggesting double count-
ing. We were most surprised by the prediction of leucine as
less favorable relative to alanine because it is typically one
of the most common side chains in the bilayer. This differ-
ence arises from a large positive contribution from the
two-body solvation term (fa_sol), a term we have not yet
refitted for the membrane because of insufficient experi-
mental data.

Test #3: discrimination of native structures from decoys

Identification of native-like structures in an ensemble of
candidate structures is a key function of biomolecular
modeling energy functions. To evaluate native structure
discrimination, we refined ensembles of candidate struc-
tures generated by molecular dynamics (57) and then
computed the root mean-square deviation (RMSD) between
the native crystal and the candidate models. We performed
the analysis for five targets: bacteriorhodopsin (Brd7),
fumarate reductase (Fmr5), lactose permease (LtpA),
rhodopsin (RhoD), and V-ATPase (Vatp). To quantify decoy
discrimination, we computed the Boltzmann-weighted
average RMS value, called WRMS, for all targets (Table 1;
see Supporting Materials and Methods for definition of
WRMS). In addition, a mapping of energy versus RMSD
for each target is shown in Fig. S7.

On average, all of the energy functions distinguished
near-native from non-native conformations up to 2.1–
2.3 Å from the native crystal structure, except M12, which
distinguished conformations at 2.8 Å from the native crystal
structure. In addition, for all targets except LtpA, all energy
models score the native conformation as lower energy than
the decoy structures. Upon examination of individual tar-
gets, we also found that no specific energy model was
consistently better or worse.
D

ly measured DDGmut for mutations in PagP. For all correlation plots (B–D),

The dotted gray line is the line of best fit, and the solid gray line is y ¼ x. In

(orange), nonpolar (red), aromatic (blue), polar (purple), and special case

e V111 highlighted in dark gray is shown. The implicit solvent phases in (A)

s in PagP by M07, M12, and M19 are shown in (B)–(D), respectively. To see
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TABLE 1 Weighted RMSD of Refined and Rescored Candidate

Models by Each Energy Function

Target R15 (Å) M07 (Å) M12 (Å) M19 (Å)

Brd7 1.95 3.21 5.89 2.59

Fmr5 3.33 3.62 3.50 3.11

LtpA 2.25 1.65 1.69 2.20

RhoD 1.88 1.77 1.62 1.93

Vatp 1.38 1.52 1.36 1.55

Average 2.16 2.81 2.35 2.28

Alford et al.
Wewere surprised that the new implicit membrane model
did not have an impact on native structure discrimination.
Furthermore, R15, which does not consider the membrane,
was able to distinguish near-native from non-native decoys
at similar resolution. This result suggests although mem-
brane environment energy terms are important, most of the
high-resolution discrimination is driven by van der Waals
and side-chain packing at high resolution. This finding com-
plements recent work byMravic et al. (58) that demonstrates
side-chain packing is a key driver for stability.

Test #4: native sequence recovery

A fourth test evaluates sequence recovery: the fraction of
amino acids recovered after performing complete redesign
on naturally occurring proteins. High sequence recovery
has long been correlated with strong energy function perfor-
mance for soluble proteins (44). We therefore performed
special
(13%)

aromatic
    (12%)

polar
(19.5%)

charged
(17.5%)

nonpolar
(38%)

A B

D E F

FIGURE 4 Properties of designed membrane protein sequences relative to thei

by two metrics: the fraction of all amino acids recovered on the y axis and the fra

the x axis. An accurate energy function would have a high sequence-recovery rat

for all positions in (A), buried versus surface-exposed positions in (B), and wate

sition of the native sequences in the benchmark set. (E)–(G) show the KL diver

distribution in native membrane proteins. The designs by M07, M12, and M19 ar
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this test in the context of our membrane protein energy func-
tion. In this work, we used a test set of 133 a-helical and
b-barrel membrane proteins. The test set is a subset of the
222-member data set from Koehler Leman et al. (43) and
was chosen because it is the largest possible subset of
high-resolution structures with diverse sequences, further
filtered for proteins with known host lipid compositions.

To perform redesign, we used a Monte Carlo fixed-back-
bone design protocol which samples possible sequences using
a full protein rotamer-and-sequence optimization and a multi-
cool annealer-simulated annealing protocol (59). Each protein
is initialized in the orientation computed from theOrientations
of Proteins inMembranes database (60), and the orientation is
kept fixed during sequence search. Then, we computed two
metrics: 1) the fraction of all amino acids recovered and 2)
the fraction of amino acid types with individual recovery rates
greater than 0.05, the same probability of choosing an amino
acid at random. Overall, 31.8% of the amino acids designed
by M19 were identical to the native amino acid (Fig. 4 A).
The soluble protein energy functionR15 recovered the second
highest percentage of amino acid positions at 29.9%. In
contrast, the two existing implicit membrane models lagged
behind, withM07 at 26.5% andM12 at 26.7%. The individual
amino acid recovery rates were also revealing. Here, M19 and
R15 recovered all 20 amino acids at rates above random,
whereas M12 recovered 19 and M07 recovered 14.

To examine the influence of different solvent environ-
ments, we recomputed sequence recovery over subsets of
C
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residues. First, we compared buried versus solvent-exposed
side chains (Fig. 4 B). For all energy functions, recovery was
significantly higher for buried side chains than solvent-
exposed side chains, as noted in previous studies, because
of higher packing density (44). On the surface, M12 recov-
ered 25% of acid positions, slightly higher than the 22% re-
covery rate by M19. However, M19 recovered 16 amino
acids at rates above random, whereas M12 recovered only
12 amino acids. In essence, M19 gets the overall answer cor-
rect slightly less frequently; however, it is better at getting
more amino acid types correct.

Next, we examined sequence-recovery differences be-
tween side chains facing the water and lipid phases
(Fig. 4 C). In the lipid phase, all membrane energy functions
recovered nearly the same fraction of amino acids. The main
differentiating feature is the number of amino acids recov-
ered with greater than random probability. Whereas M07
and M12 recovered four and five amino acids, respectively,
M19 recovered 14 amino acids. We observed a similar trend
in the water phase. Here, M12 has the highest overall
sequence-recovery rate of 27%, next to M19 with a recovery
rate of 23%. However, M12 only recovered 10 amino acid
types, whereas M19 recovers 14. These results reveal that
early energy functions used a rudimentary design strategy:
prioritizing only some amino acid types. In contrast, M19
is capable of designing more chemically diverse sequences.

Looking ahead, there are many ways to expand this
benchmark to provide more insight. Here, we used a
fixed-backbone design algorithm to generate new se-
quences. An interesting future area would be to use flexible
backbone design to enable a larger range of possible se-
quences. This is an easy extension because the pore shape
calculation plus energy evaluation is efficient. In addition,
we can compute sequence logos for each design relative
to homologous sequences. This provides insight into recov-
ered positions that are also conserved. Thus, our sequence-
recovery test provides a foundation for learning more about
energy function features in the future.

Comparison with the ref15_memb energy function

While this work was in revision, another membrane
energy function was published by Weinstein et al. (61)
(ref15_memb, R15M). This presented a good opportunity
to compare the performance of franklin2019 with a more
recent Rosetta model. We ran all four benchmark tests,
and the results are reported in Fig. S8. Overall, M19 outper-
formed R15M on all tests. The largest discrepancy was per-
formance on the DDG of mutation test, with R15M
incorrectly predicting DDG-values for both OmpLA and
PagP. The predicted tilt angles were correct for only one
of five targets. The resolution of decoy discrimination was
overall higher than for M19. Specifically, for R15M, the
weighted RMS values were 6.00, 7.22, 2.47, 3.26, and
2.99 for Brd7, Fmr5, LtpA, RhoD, and Vatp, respectively.
Further, although both methods predicted a more near-
native distribution of amino acids during design, M19 out-
performed in both Kullback-Leibler (KL) divergence and
recovery metrics, especially for lipid-facing residues.

We were surprised about the discrepancy between M19
and R15M because both energy functions use the same
foundation (R15), and the transfer energies in R15M from
the dSTbL assay (62) have been shown to correlate with
the Moon and Fleming scale. We hypothesize that the
main challenge is consideration of side-chain exposure.
R15M does not account for lipid composition or pores and
cavities. Further, the method was predominantly bench-
marked on docking and folding of single-span dimers,
whereas the benchmarks in this work are larger and quanti-
tatively more diverse. Therefore, these results suggest that
although R15M may be specialized for single-transmem-
brane dimers, M19 is capable of handling more complex
membrane protein topologies.
Designed membrane proteins exhibit native-like
features

The sequence-recovery experiment enables us to study
properties of in silico designed membrane proteins. These
properties are crucial for demonstrating that the implicit
model has native membrane properties and is capable of
facilitating realistic design experiments. Below, we examine
various sequence and structural features important for mem-
brane protein stability and function.

Amino acid distribution in designed proteins mirrors the native
distribution

We examined the distribution of amino acids in design pro-
tein sequences relative to their native counterparts. Specif-
ically, we measured the KL divergence (DKL) (Eq. S2; see
Supporting Materials and Methods) on our membrane pro-
tein data set. A negative DKL-value indicates that sequences
are underenriched in specific amino acid types, whereas a
positive DKL-value indicates that sequences are overen-
riched. An ideal KL-value is zero. Remarkably, sequences
designed by M19 are near native with DKL ¼ �2.7. This
is in stark contrast to sequences designed by M07 and
M12, which are strongly divergent from native membrane
protein sequences, with DKL ¼ �24.6 and DKL ¼ �26.6,
respectively.

To learn more about the design implications of each en-
ergy function, we computed the KL for each amino acid
type (Fig. 4, D–G) and compared it to the composition of
amino acids in the native set. The M07 sequences are over-
enriched in nonpolar amino acids and underenriched in all
other categories. The deficits are large, with underenrich-
ment values ranging from 10�2 to 10�4. The M12 sequences
are less skewed, with the magnitude of underenrichment
deficits ranging between 10�1 and 10�2. However, there is
still a large overenrichment of nonpolar amino acids,
including I, L, and M, as well as W and T. In contrast, the
Biophysical Journal 118, 2042–2055, April 21, 2020 2049
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distribution of amino acids in M19 sequences is comparable
to the native distribution, with the magnitude of under- and
overenrichment values ranging between 101 and 10�1. Thus,
M07 and M12 employ a rudimentary design strategy: only
choosing nonpolar amino acids guaranteed to be compatible
with the greasy membrane environment. The M19 model
does not rely on this assumption and can design every amino
acid type within each phase. As a result, M19 designs pro-
teins with an amino acid distribution that is close to the
native membrane protein sequence composition. We thus
expect that M19 will more accurately evaluate the effects
of genetic mutations on protein stability. Further, the diver-
sified sequences will enable designed membrane proteins to
achieve a broader range of architectures and functions.

Three-dimensional membrane geometry enables design of
polar pores

We were interested to see whether a three-dimensional im-
plicit membrane shape facilitates accurate protein design.
To do so, we investigated the native and designed sequence
of the scaffold protein voltage-dependent anion channel 1
(VDAC1; PDB: 3EMN; Fig. 5). The native sequence of
this b-barrel protein pore is rich in charged amino acids. In
the two-dimensional membranes used by M07 and M12,
the pore-facing residues are designed as if they are in the lipid
phase, and as a result, the designed sequences are rich in
nonpolar amino acids. In contrast, the three-dimensional im-
plicit membrane geometry treats pore-facing residues as
exposed to thewater phase; thus, the designed sequence con-
tains both polar and charged amino acids. These positive fea-
tures are reflected in the sequence for this specific target.
Here, M19 exhibits the highest recovery over all surface res-
idues and lipid-facing and aqueous-facing residues when
compared with other energy functions. This result suggests
A B
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the potential of M19 to perform accurate design on both the
lipid-facing and water-filled-pore-facing surfaces.

An unexpected result was that M19 outperformed R15 in
the aqueous pore of VDAC1. In fact, we expected the perfor-
mance of R15 to match M19 because in the pore region,
fhyd ¼ 0. We hypothesize that the pore size and transition
steepness were underestimated, and thus, the calculation
was influenced by M19. Although it is hard to draw a quan-
titative conclusion about the improved performance, we sug-
gest a future step of investigating the amino acid composition
of a larger set of b-barrel pores to understand the result.
Biologically relevant lipid composition
parameters improve per-target sequence
recovery

Finally, we were eager to explore whether implicit mem-
brane parameters for different lipid compositions can
improve design outcomes. This question is difficult to eval-
uate because the host membrane composition of proteins is
not always known. At the same time, this question is crucial
because of the long-standing criticism that implicit mem-
brane models do not accurately capture the properties of
different lipid membrane compositions. In this work, we
investigated this question anecdotally by examining two ex-
amples from our membrane protein design data set.

First, we examined the b-barrel protein scaffold outer
membrane transporter FecA from E. coli. The outer
membranes of gram-negative bacteria are significantly
thinner than eukaryotic plasmamembranes.We therefore hy-
pothesized that sequence recovery of lipid-facing residues in
this protein would be higher in a thinner membrane. To test
this hypothesis, we again searched for low-energy sequences
C
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in anM19membranewith either 1,2-dilauroyl-sn-glycero-3-
phosphocholine (DLPC) or 1-palmitoyl-2-oleoyl-glycerol-
3-phosphocholine (POPC) parameters. Encouragingly, the
recovery of lipid-facing residues in this protein was 33% in
DLPC, in contrast to 28% in POPC. We also repeated this
test on the a-helical protein scaffold VCX1 calcium-proton
exchanger from Saccharomyces cerevisiae. Here, we ex-
pected the reverse trend: improved design in a POPC mem-
brane over DLPC. Again, the design results followed: 22%
sequence recovery in DLPC and 29% in POPC. These results
demonstrate that lipid composition parameters facilitate
more biologically realistic structure prediction and design.

In addition, there was an inevitable question that we
wanted to ask about our b-barrel protein scaffold. Experi-
mental studies have long demonstrated that b-barrel mem-
brane proteins have high concentrations of aromatic side
chains near the interfacial headgroups (63). Although the
thermodynamics of this phenomena are not completely un-
derstood, it has been suggested that stacking of the aro-
matics nearby polar headgroups stabilizes the protein (64).
Thus, we asked the question: does M19 also design aro-
matics near the anisotropic phase representing interfacial
headgroups? To answer, we calculated the apparent mem-
brane thickness according to the average positions of aro-
matic side chains in native and designed FecA (Fig. 6).
We found that M19 designed with a larger apparent thick-
ness in POPC rather than DLPC membranes. Notably, the
DLPC aromatic thickness is near the native aromatic thick-
ness. Although still anecdotal, these results suggest that
M19 designs proteins with native-like features.
DISCUSSION

In this work, we developed, implemented, and tested a new
energy function for membrane protein structure prediction
A B
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and design. The energy function, called franklin2019, uses
an implicit approach to represent the anisotropic structure
and nanoscale dimensions of membranes with varied
phospholipid composition, a key component of biological
membranes. Through computational benchmarking, we
demonstrated that the model could replicate experimentally
measured protein stabilities and orientations. With multiple
diverse benchmark sets, we demonstrated that franklin2019
improves modeling and design of membrane proteins with
complex topologies, pores, and juxtamembrane domains.
Further, proteins designed by franklin2019 exhibit native-
like features, including amino acid distribution, aromatic
amino acids near interfacial headgroups, and hydrophobic
match with specific lipid compositions. Together, these fea-
tures demonstrate the potential of franklin2019 to advance
high-resolution membrane protein structure prediction and
design.

Through the goal of developing a new energy function,
our study interrogated fundamental questions about the
design rules for native membrane proteins. First, the implicit
model is based on transfer energies from a thermodynamic
hydrophobicity scale measured in a phospholipid bilayer.
The high sequence-recovery rate demonstrates the impor-
tance of thermostability and bulk phospholipid chemistry
in constraining membrane protein sequences. Furthermore,
previous work relied on narrow membrane protein design
rules such as enrichment of leucine side chains in the hydro-
phobic core. We demonstrated that native membrane protein
sequences are diverse and not constrained to hydrophobic
amino acids. Accordingly, our energy function uses the
full palette of amino acid chemistries during design.

This work was enabled by the Moon and Fleming (37) hy-
drophobicity scale. Although there has been extensive work
to quantify transfer energies (65), the Moon and Fleming
scale captures the actual equilibrium change in free energy
C
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in the context of a membrane protein in a phospholipid
bilayer (66). Thus, the implicit model captures more biolog-
ically realistic context relative to prior models that approx-
imated the membrane as a slab of nonpolar organic solvent.
One consideration of using the Moon and Fleming scale is
that franklin2019 would not capture nonthermodynamic (ki-
netic) end states of ab initio folding in which chaperones are
required. For example, in a-helical membrane protein
folding, the intermediate states in the two-stage folding pro-
cess may not be captured (67). However, because the goal of
Rosetta calculations is to capture the free energy minima,
this does not impose limitations. Second, the measurements
were taken at pH 3.8. As a result, the energetics of Asp and
Glu are undervalued because the side chains are protonated.
This may affect estimates of transfer energies for soluble
proteins and marginally hydrophobic proteins. Accurately
assigning the protonation states of Asp and Glu is an
ongoing challenge because of membrane-induced pKa shifts
that alter the protonation equilibrium (68).

Next, we sought to develop a model that describes bila-
yers with different lipid compositions. We were inspired
by prior studies that added more detail to implicit ‘‘slab’’
models, including anionic lipid parameters (69) and adjust-
able bilayer thickness (26). In this work, we focused on sin-
gle-component phospholipid bilayers for two reasons: 1)
there are significant small-angle x-ray scattering and
neutron scattering data available for validation, and 2)
many experiments are performed in single-component bila-
yers, enabling easy comparison. We coined our model ‘‘bio-
logically realistic’’ to highlight the advance of using
phospholipid models over prior organic slab models. Impor-
tantly, there are many future steps required to achieve a
‘‘biologically accurate’’ model. First, native membranes
include hundreds of lipid types, distributed nonuniformly
(47). Although all-atom models remain difficult, there has
been excellent progress in coarse-grained modeling of
native lipid bilayers (70). Thus, a possible step is to develop
model parameters from these coarse-grained models.
Another important step is to generate parameters for the
asymmetric lipid composition to emulate the outer mem-
brane of gram-negative bacteria (71). Additionally, the
membrane bends and curves to accommodate the hydropho-
bic surface of proteins (72). A further challenge is account-
ing for local properties such as specific protein interactions
with lipids and cholesterol, which may be captured by a
hybrid implicit-explicit approach such as SPadES (73) or
HMMM (74). Finally, an open question is how to account
for mechanical properties such as lateral pressure and strain
due to local curvature. In these scenarios, it is most likely
that implicit membrane simulations will compliment infor-
mation from emerging membrane protein modeling tools
and molecular dynamics simulations to investigate struc-
ture, dynamics, and function.

Another important methodological step is modeling of
membrane protein pores and cavities. Previously, implicit
2052 Biophysical Journal 118, 2042–2055, April 21, 2020
models approximated pores as cylinders (48) or segregated
side chains using grid-based approaches (75). In contrast,
franklin2019 uses continuous functions to model a wide
range of pore geometries. We chose this approach over sol-
vent-accessible surface area calculations to reduce compu-
tational cost, enabling scalability for more sophisticated
molecular modeling applications such as flexible backbone
design. For future work, we aim to capture membrane de-
formations (76) through the integration of continuum
elastic models (77,78) or hybrid continuum-atomistic
models (79). Additionally, more work is needed to account
for fenestrations that alter the solvent exposure of lipid
accessible residues (80). Ultimately, these features will
advance franklin2019 from capturing static membrane fea-
tures to incorporate dynamics important for protein
function.

We evaluated our implicit membrane model using sparse,
high-resolution experimental data. This approach contrasts
soluble protein energy function evaluation, in which there
is an abundance of thermodynamic and spectroscopic mea-
surements of small molecules (81) and high-resolution pro-
tein structures (82). To overcome the possibility of
overfitting, we limited the validation data to high-quality
measurements. For instance, we did not use crystal struc-
tures with R3 Å resolution or DDGmut-values that were
not measured in a reversible system. Further, we bench-
marked our energy function against both thermodynamic
and structure prediction data. Previous studies have evalu-
ated membrane energy functions on a single test such as
tilt angles (53), native structure discrimination (57,83), pre-
dicting hydrophobic lengths (75), DDG prediction (84), and
sequence recovery (85). Simultaneously performing the
benchmarks enables a well-rounded evaluation of the en-
ergy function for diverse biomolecular modeling tasks.

Looking ahead, a larger benchmark set will enable
broader energy function development and optimization.
This work focused on developing a single empirical term
that captures water-to-bilayer transfer energetics that could
be added to the existing Rosetta energy function. Naturally,
this introduces double counting between the new term and
existing physics-based terms such as solvation and electro-
statics. Previous work on the soluble protein energy function
used a Nelder-Mead optimization scheme (52) to remove
double counting. Although there are currently insufficient
data to apply this approach, we envision that as more data
emerge, we will be able to apply more robust fitting tech-
niques, including machine learning. Furthermore, additional
benchmark data will enable adding membrane dependence
to the solvation and electrostatic terms, which will improve
the modeling of local side-chain environments. Important
future requirements for a larger benchmark set include
more diverse modeling tasks such as capturing multiple
conformation states and diverse data sources such as models
from x-ray crystallography, cryo-electron microscopy, and
NMR spectroscopy.
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An important remaining task is to compare the perfor-
mance of franklin2019 with the latest methods in other mo-
lecular modeling packages. Currently, there are several
technical hurdles: 1) alternate membrane representations
are not implemented within the Rosetta package, and 2)
other packages cannot generate all of the requisite data for
each benchmark (e.g., design is computationally expensive
for classical molecular dynamics packages). Notably, the
latest energy functions for membrane protein modeling
use a wide range of physical, empirical, and statistical
models for energy calculations. Therefore, direct compari-
son will provide important information to the community
about the best strategies for membrane protein structure pre-
diction and design.

In summary, we developed a biologically realistic energy
function for membrane protein structure prediction and
design. The energy function is implemented within the Ro-
setta software and can be used for a wide range of macromo-
lecular modeling tools. By pursuing a balance of efficiency
and accuracy, we anticipate that the implicit membrane will
enable high-throughput and high-resolution membrane pro-
tein structure prediction and design. Importantly, this model
transforms once protein-centric tools to techniques that can
predict and design structures tied to varied biologically rele-
vant lipid compositions.
Data availability

The energy function and benchmark tests presented are
available in the Rosetta software suite (https://www.
rosettacommons.org). Rosetta is available to noncommer-
cial users for free and to commercial users for a fee.
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