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Abstract
Hydration of biological macromolecules is important for their stability and function. Historically, attempts have been made to 
describe the degree of macromolecular hydration using a single parameter over a narrow range of values. Here, we describe 
a method to calculate two types of hydration: surface shell water and entrained water. A consideration of these two types 
of hydration helps to explain the “hydration problem” in hydrodynamics. The combination of these two types of hydration 
allows accurate calculation of hydrodynamic volume and related macromolecular properties such as sedimentation and dif-
fusion coefficients, intrinsic viscosities, and the concentration-dependent non-ideality identified with sedimentation velocity 
experiments.

Keywords Hydration · Hydrodynamic volume · Solvent entrainment · Sedimentation velocity · Intrinsic viscosity · Non-
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Introduction

Biological macromolecules exist and function at least partly 
in an aqueous environment. Some of the solvent water is 
associated with each macromolecule and affects its stabil-
ity and function; this water is considered macromolecular 
hydration. Many years ago, Kauzmann (Kauzmann 1959) 
identified the hydrophobic effect as a primary force in 
the folding and stability of proteins and numerous studies 
have probed the nature of hydrophobic and polar hydration 
(Baldwin 2014). Hydration water facilitates hydrogen bond 
switching and has been shown to be important in dynamical 
transitions in proteins (Tarek and Tobias 2008; Dahanayake 
and Mitchell-Koch 2018), in enzyme function (Rupley et al. 
1983) and in the allosteric regulation of proteins (Colombo 
et al. 1992). The water of hydration must be displaced for 
binding of ligands and substrates to macromolecules and this 
process contributes favorable entropy for driving enzymatic 

function (Hwang et al. 2019). Water displacement is also a 
major driving force for macromolecular assembly of systems 
like microtubules (Lee and Timasheff 1977; Vulevic and 
Correia 1997).

Hydration also affects the hydrodynamic behavior of 
macromolecules; it increases the frictional drag for both 
translational and rotational diffusion. Diffusion and sedi-
mentation of macromolecules is dependent not only on 
the size and shape of the macromolecule, but also on the 
amount of associated hydration water. Both diffusion and 
sedimentation coefficients are proportional to the transla-
tional hydrodynamic radius (RT) and it is convenient to use 
this characteristic parameter when comparing hydrodynamic 
properties as described by Garcia de la Torre (García de la 
Torre and Hernández Cifre 2020). For a macromolecule with 
molecular mass M, the RT of an equivalent sphere with the 
same diffusion, or sedimentation, coefficient can be calcu-
lated from Eq. 1,

where f P = a unitless frictional coefficient due to shape, 
M = molecular mass (g/mol), ν = macromolecular partial 
specific volume (ml/g), δ = amount of hydration water (g 
water/g macromolecule), νw = hydration water partial spe-
cific volume (ml/g), and NA = Avogadro’s number. Assum-
ing that the molecular mass and partial specific volumes 
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are known, or can be estimated, it is necessary to know two 
variables to calculate the hydrodynamic radius: the frictional 
coefficient (f P) and the amount of hydration (δ). Currently, 
there is no way to solve unambiguously for both of them. 
This inability to separate the effects of hydration and shape 
has been called the “Hydration Problem” by Harding (Hard-
ing 2001). If the macromolecular structure is known, a shape 
frictional coefficient may be estimated using Perrin’s equa-
tions (Cantor and Schimmel 1980; Perrin 1936), but as dis-
cussed below, there is no universal value for the amount of 
hydration that can be used for all proteins or all nucleotides.

Many methods demonstrate that hydration water is asso-
ciated with macromolecules. Over 50 years ago, Kuntz and 
colleagues used NMR to measure the hydration of polypep-
tides, each of which contained a specific amino acid type 
(poly-ALA, poly-ARG, etc.) (Kuntz 1971). They assigned 
a hydration value to each of the naturally occurring amino 
acids and used these values, along with amino acid com-
position, to calculate the overall hydration of proteins. The 
four folded proteins studied were in the molecular weight 
range 15–65 kDa and had hydration of 0.31–0.45 g water/g 
protein. The calculated hydration, from amino acid compo-
sition, agreed remarkably well with experimentally deter-
mined hydration on folded proteins. This agreement with 
experimental values is surprising, because it assumes that 
buried residues in folded proteins have the same hydration 
as homopolymers of the amino acid that are likely fully 
exposed to solvent. Nevertheless, numerous studies since 
that time on proteins of similar size have confirmed the same 
general range of hydration (Careri et al. 1980; Kuntz 1971; 
Kuntz and Kauzmann 1974; P. H. Yang and Rupley 1979; 
Zhou 1995).

Water molecules associated with proteins have been iden-
tified by X-ray crystallography. Most crystallographic waters 
in RNAse are on the surface in the first shell (Esposito et al. 
2000) and represent a hydration of 0.34 g/g. It has also been 
demonstrated that different types of surface confinement 
influences hydration water properties (Persson et al. 2018).

It is generally recognized that the above hydration, when 
distributed mostly in the first solvent shell represents a 
non-contiguous layer of water molecules. This first shell 
of hydration is idealized as a thin continuous surface layer 
for estimation of hydration volume (Cantor and Schimmel 
1980). In addition to first shell water, a second type of pro-
tein-associated water has been experimentally recognized 
and termed trapped water. This water is in small, buried 
cavities or narrow channels (Durchschlag and Zipper 2003).

Despite general agreement that protein hydration 
is ~0.3–0.4 g/g, it is still not possible to use Eq. 1 to cal-
culate accurate hydrodynamic properties such as diffusion 
coefficients or sedimentation coefficients for larger proteins 
using these general hydration values. As an alternative 
method to calculate hydrodynamic properties bead modeling 

of structural models does assume a general level of hydra-
tion, as reflected in the bead size (García de la Torre and 
Hernández Cifre 2020) or by using the residue-based hydra-
tion of Kuntz as described above (Rocco and Byron 2015). 
But these methods do not allow elucidation of the separate 
contributions of hydration and shape to the overall hydrody-
namic behavior of the macromolecule. Although a common 
range of hydration levels may be sufficient to characterize 
small globular proteins, individual proteins with varied 
shape have additional associated water that affects hydro-
dynamic volume and it is this additional hydration water 
that is identified here.

Another method to calculate hydrodynamic properties 
from structural models is HullRad. HullRad is a computer 
program that uses a convex hull around a macromolecule to 
determine the molecular hydrodynamic volume (Fleming 
and Fleming 2018). We have implemented a new method 
into the HullRad algorithm that allows calculation of the 
specific hydration of macromolecules. The method is imple-
mented in a computer program called HullRadSAS. Analysis 
of the hydration associated with a variety of proteins and 
DNA demonstrates that water entrained by the macromole-
cule during diffusion, but not necessarily in contact with the 
macromolecular surface, contributes to the hydrodynamic 
volume of the macromolecule. Large proteins have signifi-
cantly more entrained water than small proteins. Inclusion 
of entrained water in the total hydration (δ) allows accurate 
calculation of translational and rotational hydrodynamic 
properties.

It should be noted that Creeth and Knight used the term 
“solvent entrainment” to describe protein hydration (Creeth 
and Knight 1965). As they defined the term, it did not con-
note any distinction between “tightly bound” and “loosely 
bound” solvent. Here, we are specifically using entrain-
ment to indicate the water within the convex hull but not on 
the surface of the macromolecule, and shell to indicate the 
hydration sites on the surface of a macromolecule always 
occupied by a water molecule. Our use of the terms shell and 
entrainment is consistent with the description by Harding 
that hydration “…represents the amount of solvent ‘asso-
ciated’ with the macromolecule and includes ‘chemically 
bound’ via hydrogen bonds and ‘physically entrained’ sol-
vent” (Harding 1997).

Methods

The design of HullRadSAS differs from the original Hull-
Rad (Fleming and Fleming 2018) as illustrated in Fig. 1. For 
both versions, a coarse-grained model of the macromolecule 
containing back-bone atoms and a single pseudo-atom side 
chain for each residue is built (Fig. 1, A and B, Left panel). 
This coarse-graining effectively averages residue side chain 
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rotamers. Similar coarse-graining is done for polynucleotides 
and oligosaccharides. In the original HullRad, an initial convex 
hull is constructed on the atom sphere centers of the coarse-
grained model (Fig. 1, A, Middle panel). The planes of this 
initial hull are expanded 2.8 Å along each plane normal to 
account for hydration (Fig. 1, A, Right panel).

In HullRadSAS, a solvent accessible surface (SAS) is con-
structed using the sphere centers of the coarse-grained model 
(Fig. 1, B, Middle panel). The points of the accessible surface 
are then used to construct a final convex hull (Fig. 1, B, Right 
panel). The final convex hull constructed this way is analo-
gous to the expanded convex hull described for the original 
HullRad. An ellipsoid of revolution is built with a major axis 
equal to the maximum dimension and the same volume of the 
convex hull; the major and minor axes of this ellipsoid are 
then used to calculate a frictional shape factor. The radius of a 
sphere equivalent to the volume of the convex hull, multiplied 
by the shape factor, equals the translational hydrodynamic 
radius of the macromolecule.

HullRadSAS is implemented in Python using the SASA 
module from Biopython (Cock et al. 2009). The code is freely 
available from the HullRad website and GitHub.

Results and discussion

Hydration and translational hydrodynamics

To validate HullRadSAS, we compared the performance 
of HullRadSAS to the original HullRad. Both versions of 
the program calculate essentially identical results for the 
translational hydrodynamic radii (RT) of 32 proteins from 
the data set used to calibrate HullRad (Fleming and Flem-
ing 2018) (Supplemental Fig. S1 and Table S1).

In HullRadSAS, an SAS of the macromolecule is used 
as the object for construction of a convex hull. The opti-
mal value of 0.85 Å for SAS probe radius was determined 
empirically (Supplemental Fig. S2). In the original Hull-
Rad, the planes of the convex initial hull were expanded 
2.8 Å. This expansion of the initial hull is to account for 
hydration and the optimal expansion of 2.8 Å was empiri-
cally determined (see Supplemental Fig. 3 in Fleming 
and Fleming (Fleming and Fleming 2018)). In HullRad-
SAS, the convex hull is a priori expanded, because it is 
constructed on the surface points of the SAS. Here, the 

Fig. 1  Design of HullRad and 
HullRadSAS. The figure is a 
two-dimensional representa-
tion of the three-dimensional 
objects. A, Original HullRad; 
Left, coarse-grained model 
of the macromolecule (gray 
spheres). Middle, a convex hull 
(orange lines) constructed on 
the atom sphere centers of the 
coarse-grained model. Right, 
Initial convex hull is expanded 
to account for hydration (black 
lines). B, HullRadSAS; Left, 
coarse-grained model of the 
macromolecule (gray spheres). 
Middle, a solvent accessible 
surface (orange dots) con-
structed using the sphere centers 
of the coarse-grained model. 
Right, a convex hull (black 
lines) constructed to enclose the 
points of the accessible surface. 
The radius of a sphere equiva-
lent to the volume of the black 
convex hulls is proportional to 
the hydrodynamic volume of the 
macromolecule
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distance between the convex hull and the atom centers of 
the coarse-grained model equals 0.85 Å plus the radius 
of the closest atom. Atoms in the coarse-grained model 
include both back-bone atoms and the side chain single 
pseudo-atoms, all with atomic radius arbitrarily defined 
as 2.0 Å for calculation of the SAS. Therefore, in Hull-
RadSAS, the distance between the hull planes and closest 
atom center is 0.85 + 2.0 = 2.85 Å. We note that the hydro-
dynamic prediction program BEST also uses an SAS in 
the algorithm (Aragon and Hahn 2006). In this case, the 
SAS is used as a basis for computing boundary elements.

Hydrodynamic volume is defined as the sum of the time-
average of the molecular volume and the volume of the sol-
vent molecules associated with it (Cammack et al. 2006). 
Figure 2 illustrates two types of water that contribute to the 
hydrodynamic volume of a macromolecule: Surface shell 
water and entrained water. In the procedure described here, 
the first shell of hydration (defined by the SAS) is mod-
eled by a continuous layer. The amount of water in the shell 
volume is calculated using a density of water 10% greater 
than that of bulk water (Halle 2004). The amount of water 
in the entrained volume is calculated using the density of 
bulk water.

Only the first shell water (plus a small amount of sec-
ond shell water) is observed with methods such as NMR 
(Esposito et al. 2000). As calculated by HullRadSAS, the 
amount of shell water is between 0.23 and 0.35 g water/g 
protein for a set of proteins ranging in molecular weight 
from 6 to 828 kDa (Fig. 3). The amount of shell water is pro-
portional to protein size for small proteins but is consistently 
between 0.23 and 0.28 g/g for proteins larger than ~200 kDa 
(Fig. 3). As discussed below, larger proteins have a more 
rugged surface topology or extended non-spherical shape 

with proportionately more surface area/volume and these 
factors account for the fact that first shell hydration does not 
follow the expected decrease in surface area to volume ratio 
of a sphere for these larger proteins.

For small globular proteins, the first shell water makes 
up most of the macromolecular hydration, but larger pro-
teins have significantly more entrained water (Fig.  4). 
Proteins larger than ~200 kDa have 0.5 g/g or more of 
entrained water. Two proteins in the data set, IgG and 
GroEL, include extraordinary amounts of entrained water 
and the reason for this is illustrated in Fig. 5. IgG has large 

Fig. 2  HullRadSAS provides the means to calculate two types of 
hydration. The figure is a two-dimensional representation of the 
three-dimensional objects. Left, the volume (cyan) between the SAS 
(orange dots) and surface of the macromolecular atoms (gray spheres) 
represents the first hydration shell. Right, the volume (magenta) 
between the SAS (orange dots) and convex hull (thick black lines) 
represents water entrained in crevices, grooves, and pockets of the 
molecule and part of the hydrodynamic volume

Fig. 3  HullRadSAS calculated first shell hydration water depends on 
protein size. The amount of shell water calculated by HullRadSAS is 
plotted versus protein molecular weight as cyan circles

Fig. 4  HullRadSAS calculates both shell and entrained hydration 
water. Left panel, total hydration water for the data set of proteins in 
Supplemental Table S1 is plotted versus protein molecular weight as 
grey circles; middle panel, first shell hydration water amount is plot-
ted as cyan circles (the data is the same as in Fig. 3); right panel, the 
entrained water is plotted as magenta circles. Two proteins with large 
amounts of entrained water are labeled (IgG and GroEL)
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spaces between the domains that are encapsulated within 
the convex hull, and GroEl has a large cavity that is com-
pletely within the protein itself. It is important to re-iterate 
that the volume of the convex hull is proportional to the 
hydrodynamic volume of these proteins, so the entrained 
water is effectively part of the protein during diffusion and 
sedimentation.

The convex hull constructed by the HullRad algorithm 
accurately describes the hydrodynamic volume of greatly 
expanded structures found in the structural ensemble of an 
intrinsically disordered protein (IDP) (Fleming and Flem-
ing 2018). Inevitably, large amounts of entrained water are 
encapsulated by the convex hull of an expanded protein. 
Differential residue hydration has been found to explain the 
sequence dependence of IDP expansion/collapse (Wuttke 
et al. 2014), but these sequence specific effects would be 
expected to influence first shell hydration and not entrained 
hydration. In addition, surface shell water may be subtly dif-
ferent for unfolded proteins compared to the native folded 
state (Sengupta et al. 2008). However, the degree of expan-
sion, partially driven by sequence specific hydration, is 
hydrodynamically modeled by HullRad.

The inclusion of hydration water beyond the first shell in 
the hydrodynamic volume is demonstrated in more detail 
by consideration of the data in Table 1 and Fig. 6. The first 
four proteins listed in Table 1 are relatively small proteins 
with shell hydration of 0.30–0.34 g/g and entrained hydra-
tion of 0.12–0.25 g/g. Figure 6 (top panel) shows that these 
four proteins are well described as ellipsoidal in shape and 
without major crevices or grooves. In contrast, the last four 
proteins have similar, or slightly less, shell hydration but 
much larger entrained hydration of 0.41–1.65 g/g. Figure 6 
(bottom panel) shows that these latter four proteins have tor-
tuous surfaces with large crevices or grooves. It is only with 
the inclusion of the entrained water in the hydrodynamic 
volume that accurate hydrodynamic radii are calculated 
(Table 1, last column).

In contrast to the consensus described in the Introduction 
that proteins have a common and limited range of hydration, 
Squire and Himmel provided a detailed analysis for a set of 
proteins with known structures and concluded that “individ-
ual proteins demonstrate wide variations in their hydration 
levels” (Squire and Himmel 1979). They went on to say that 
these variations reflect “considerable individual character” 

Fig. 5  Some proteins contain large crevices or cavities within the 
hydrodynamic volume. A Human IgG (PDBcode: 1HZH) and B, E. 
coli GroEL (PDBcode: 2CGT) are shown as ribbon drawings (top) 
and atomic sphere models (bottom) together with their respective 
convex hulls. GroEL within the convex hull in the bottom image is 
shown as a slice to visualize the internal cavity. The convex hulls 
were constructed on the respective SAS points for each protein coarse 
grain model. PyMOL (DeLano 2015) was used to create the images

Table 1  Hydration and 
translational hydrodynamic radii 
for folded proteins

a Experimental RT values from Supplemental Table S3
b Shell and entrained hydration water calculated with HullRadSAS
c RT calculated with HullRadSAS

Protein (PDB Code) MW
(Da)

RT,Exp
a

(Å)
Shell δb

(g/g)
Entrained δb

(g/g)
RT,HRSAS

c

(Å)
RT,HRSAS—RT,Exp
(%Error)

RNase A (8RAT) 13,692 18.9 0.34 0.25 19.0 0.58
Lysozyme (1AKI) 14,315 18.6 0.30 0.13 18.6 − 0.16
Apo-Mb (1MGN) 17,359 20.8 0.32 0.12 20.0 − 3.71
Trypsinogen (1TGN) 22,620 22.2 0.32 0.20 22.2 0.21
HSA (1AO6) 66,482 34.0 0.30 0.61 35.0 3.06
Human IgG (1HZH) 143,337 55.1 0.33 1.65 54.6 − 0.93
Aldolase (1ADO) 156,776 47.6 0.28 0.72 47.6 − 0.16
Urease (3LA4) 539,700 65.8 0.24 0.41 66.4 0.91
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with respect to transport properties. Our data show that the 
tortuous surfaces with varying amounts of entrained water of 
proteins illustrated in the bottom panel of Fig. 6 contribute 
to the individual character of proteins found by transport 
methods. Kumonsinski and Pessen used small angle X-ray 
scattering (SAXS) to estimate the hydrodynamic volume of 
a set of proteins (Kumosinski and Pessen 1985). In their 
method, the scattering volume was used as a proxy for the 
hydrodynamic volume. However, hydration water can only 
be detected by SAXS if the water has a density different 
from the bulk water. As discussed above, entrained water is 
likely to have the same density as bulk water and, therefore, 
the hydration levels estimated by Kumonsinski and Pessen 
are lower than those calculated by HullRadSAS.

Hydration water dynamics

The fact that entrained water is part of the hydrodynamic 
volume does not mean that the same water molecules are 
permanently associated with the protein. Residence times 
for water molecules in the first shell of hydration are on the 
order of tens of ps (Halle and Davidovic 2003; Wüthrich 
et al. 1996). But entrained water in crevices is expected to 
have the mobility of bulk water with diffusion coefficients at 
least 10–100 times larger (Rupley and Careri 1991). With a 
“residence time” in a crevice of <1 ps, entrained water will 
diffuse in and out of a crevice many times while a protein 
diffuses the distance of its diameter. However, entrained 
water statistically will be part of the macromolecule as the 
protein diffuses. As stated by Halle and Davidovic, “…large-
scale shape irregularities, such as [a] binding cleft …, make 
the [diffusing] protein displace a larger amount of solvent 
than would a compact protein of the same volume” (Halle 
and Davidovic 2003).

The geometrical definition of entrained water illustrated in 
Fig. 2 is that water enclosed by the convex hull minus shell 

water. Therefore, true “trapped” water, that water with long 
residence times in internal cavities would be included in 
the geometrical definition of entrained water. Although the 
amount of water in internal cavities usually is small relative 
to the total hydration described here (Williams et al. 1994), it 
would be included in the entrained category and, of course, be 
part of the diffusing macromolecule.

Non-ideality in sedimentation velocity analysis

Creeth and Knight clearly envisioned that the amount of 
entrained water could vary with the protein (Creeth and Knight 
1965). They argued that large effective hydrodynamic volumes 
from extensive solvent entrainment provided an interpretation 
of concentration-dependent non-ideality revealed in sedimen-
tation velocity experiments.

Sedimentation coefficients are usually obtained at finite 
concentrations of solute and corrected to zero concentration. 
This is necessary, because the measured sedimentation coeffi-
cient (s) has been found to be concentration dependent accord-
ing to the following generally accepted relationship,

where s0 is the sedimentation coefficient at infinite dilution, 
c is the solute concentration, and ks is an empirically deter-
mined constant known as the hydrodynamic non-ideality 
constant. Rowe derived the following relationship between 
ks and hydrodynamic properties (Eq. 11 in Rowe (Rowe 
1977)),

(2)s = s0∕(1 + ksc)

(3)ks∕v = 2(vs∕v + (f∕f0)
3)

Fig. 6  Many large proteins are 
non-spherical in shape with 
tortuous surfaces. The eight pro-
teins listed in Table 1 are shown 
as surface models, all images 
are to the same scale. PyMOL 
(DeLano 2015) was used to cre-
ate the images
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where ν is the partial specific volume of the macromolecule 
(ml/g), (f/f 0)3 is a unitless effective frictional ratio com-
prised of two factors due to swelling and asymmetry (Eq. 22 
in Rowe (Rowe 1977)), and Vs is the specific volume associ-
ated with the unit mass of hydrated macromolecules (obtain-
able from the convex hull volume calculated by HullRad and 
HullRadSAS).

Concentration dependence in sedimentation velocity 
experiments may be due to macromolecular hydration, 
shape asymmetry, or interactions such as self-association 
or association with other components in solution. Global 
modeling of these effects in high concentration solutions 
is now possible with analytical ultracentrifuge data analy-
sis software such as SEDANAL (Stafford 2016; Stafford 
and Sherwood 2004). The range of ks found experimen-
tally is from ~ 2 to 20 ml/g for globular proteins (Wright 
et  al. 2018; Creeth and Knight 1965). Wright et  al. 
(Wright et al. 2018) studied the non-ideality of a mono-
clonal antibody and human IgG with sedimentation veloc-
ity experiments and determined ks values of ~ 3.0 ml/g. 
When they accounted for the effect of self-association 
in the fitting model with SEDANAL the ks due only to 
hydration and shape was increased to ~11 ml/g. When 
Eq. 3 is implemented in HullRadSAS, the calculated ks 
for human IgG is 11.1 ml/g. This striking agreement lends 
support to the results reported in Wright et al. (Wright 
et al. 2018) and to the conclusion of Yang et al. (Yang 
et al. 2018) that experimental values of ks that deviate 
from calculated values are suggestive of weak association 
that masks the magnitude of ks.

A comparison of calculated and experimental ks values 
in concentrated and/or complicated solutions would help 
identify interacting systems. Such information would be 
useful to understand the influence of serum or crowded 
cellular compartments on the diffusion properties of 
macromolecules.

Rotational hydrodynamics and intrinsic viscosity

The basis of the HullRad algorithm is that an expanded 
convex hull represents the hydrated hydrodynamic volume 
of a macromolecule. As described above, the translational 
hydrodynamic radius of a macromolecule may be calculated 
by multiplying the radius of a sphere equivalent to the vol-
ume of the expanded convex hull by a shape factor. In this 
case, the shape factor is derived from Perrin’s equations.

As described in the Supplemental Information for Flem-
ing and Fleming (Fleming and Fleming 2018), the hydration 
layer has different effects on rotational and translational 
diffusion, and rotational diffusion is affected by asymmetry 
differently than translational diffusion. In the original Hull-
Rad, these differences for rotational diffusion are accounted 
for by empirical adjustment of both the hydration layer 
thickness and Perrin-derived shape factor. HullRadSAS uses 
the same approach and also calculates accurate rotational 
hydrodynamic properties. The hydration and rotational 
hydrodynamic radii for four small and four large proteins 
are listed in Table 2. All these proteins have shell hydra-
tion of 0.33–0.35 g/g. The four smallest proteins have small 
entrained hydration of 0.06–0.1 g/g, and the larger proteins 
have entrained hydration of 0.16–0.51 g/g. Again, inclusion 
of the entrained hydration volumes is necessary to obtain 
calculated hydrodynamic radii that agree with experimental 
values (Table 2, last column).

Intrinsic viscosity may also be accounted for in terms of 
hydrodynamic volume and shape asymmetry (Rowe 1977). 
The intrinsic viscosity ([η]) of a sphere is related to the 
hydrodynamic volume (Vh) as described by Einstein,

where NA and M are defined above for Eq. 1. For asym-
metric macromolecules [η] is exquisitely sensitive to shape 
especially for large axial ratios and this sensitivity makes 

(4)[!] = (5∕2)NAVh∕M

Table 2  Hydration and 
rotational hydrodynamic radii 
for folded proteins

a Experimental RR values from Table 2 in Fleming and Fleming (Fleming & Fleming 2018)
b Shell and entrained hydration water calculated with HullRadSAS
c RR calculated with HullRadSAS

Protein (PDB Code) MW
(Da)

RR,Exp
a

(Å)
Shell δb

(g/g)
Entrained δb

(g/g)
RR,HRSAS

c

(Å)
RR,HRSAS—RR,Exp
(%Error)

BPTI (5PTI) 6518 15.3 0.34 0.10 15.50 1.31
Calbindin (1IG5) 8502 17.0 0.35 0.10 16.93 -0.41
Ubiquitin (1UBQ) 8566 16.8 0.35 0.10 17.08 1.67
Plastocyanin (1PCS) 10,322 18.0 0.33 0.06 17.76 − 1.33
RNase A (1AQP) 13,692 20.0 0.33 0.25 20.44 2.20
Spo0F (2FSP) 14,230 20.1 0.33 0.16 20.42 1.59
β-Lactglob (2AKQ) 17,963 22.6 0.33 0.23 21.69 − 4.03
Apo-AK (4AKE) 23,589 26.1 0.33 0.51 26.42 1.23
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intrinsic velocity a useful property for describing elongated 
and rod-like macromolecules. To account for shape effects 
the factor of (5/2) in Eq. 4 is sometimes replaced by the 
Simha factor (Cantor and Schimmel 1980; Rowe 1977) for 
calculating intrinsic viscosity. We have found that a function 
derived from the gyration tensor alone (Garcı ́a de la Torre 
et al. 2000) works well as a shape factor to calculate intrinsic 
viscosity. Supplemental Table S2 and Fig. S3 illustrate the 
excellent agreement between the intrinsic viscosities calcu-
lated by HullRadSAS and experimental values for a set of 
proteins and DNA duplexes.

Hydration and nucleic acids

The data in Table 3 indicate that duplex DNA has slightly 
more first shell hydration (0.35–0.38 g/g) than the proteins 
listed in Tables 1 and 2. The entrained water in B-DNA 
represents significantly more hydration with values rang-
ing from 0.47 to0.70 g/g that are proportional to the length 
of duplex (Table 3). The slight length dependence on the 
amount of entrained water is due to end effects for these 
relatively short duplexes, and the relative proportion of 
entrained water in the grooves would be expected to level 
off for very long duplexes where end effects become insig-
nificant. Z-DNA has similar first shell hydration (0.37 g/g), 
but the entrained hydration is less than found for B-DNA 
of the same length. G-quadruplex DNA also has a similar 
amount of shell water (0.36 g/g) and an intermediate level 
of entrained water. It should be noted that the duplex DNA 
examples in Table 3 would be too short to exhibit flexible 
bending and therefore a single structure is representative of 
the solution conformation (Kovacic and van Holde 1977). 
Figure 7 illustrates that both the minor and major grooves 
of B-DNA (Panel A) contribute significant volume encap-
sulated by the convex hull, whereas the shallow grooves 
of Z-DNA (Panel B) contribute much less encapsulated 

volume. G-quadruplex-DNA (Panel C) has fewer large 
crevices compared to B-DNA and this is responsible for the 
intermediate level of entrained water.

An infrared study of protein-free calf thymus DNA indi-
cated on the order of 20 molecules of water per nucleotide 
associated with B-DNA and with only 5–6 tightly bound 
(Falk et al. 1963). This total number of water molecules 
would represent slightly greater than 1 g/g of hydration and 
agrees with both gravimetric (Falk et al. 1962) and neutron 
quasielastic scattering methods (Bastos et al. 2004). Consist-
ent with these infrared results, neutron scattering identified 
two types of water: ~ 30% strongly attached to the B-DNA 
surface with the remainder having a limited diffusive motion 
(Bastos et al. 2004). In contrast, only a total of nine water 
molecules per nucleotide are found to fully hydrate Z-DNA 
(Umehara et al. 1990). The hydration of both forms of DNA 
calculated by HullRadSAS is consistent with these accumu-
lated experimental results that describe the two types, and 
relative amounts, of hydration.

Table 3  Hydration and 
translational hydrodynamic 
radii for DNA

a Experimental RT values from Table 3 in Fleming and Fleming (Fleming & Fleming 2018)
b Shell and entrained hydration water calculated with HullRadSAS
c RT calculated with HullRadSAS
d NMR model 4, with lowest RMSD from ensemble average was used
e Experimental RT value is average calculated from data in Li et al. (Li 2005) and Hellman et al. (Hellman 
et al. 2010) using a partial specific volume of 0.525 as determined by Hellman et al. (Hellman et al. 2010)

Protein (PDB Code) MW
(Da)

RT,Exp
(Å)

Shell δb

(g/g)
Entrained δb

(g/g)
RT,HRSAS

c

(Å)
RT,HRSAS—RT,Exp
(%Error)

B-DNA 8mer 4832 14.1a 0.38 0.47 14.0 − 0.01
B-DNA 12mer 7313 16.6a 0.37 0.55 16.5 − 0.01
B-DNA 20mer 12,270 19.7a 0.35 0.66 20.4 0.04
B-DNA 24mer 15,216 22.5a 0.36 0.70 22.4 − 0.01
Z-DNA 12mer (4OCB) 7319 N.A 0.37 0.32 15.7 N.A
G-quadruplex  (143Dd) 6988 15.8e 0.36 0.36 15.3 − 2.84

Fig. 7  Different DNA structures have different hydration volumes. A 
12 bp B-DNA duplex; B Z-DNA duplex; and C, Q-quadruplex-DNA 
are shown as atomic spheres. The respective convex hulls constructed 
by HullRadSAS are shown with gray planes and edges as black lines. 
PyMOL (DeLano 2015) was used to create the images. See Table 3 
for hydration details



European Biophysics Journal 

1 3

Summary

A method using the solvent accessible surface to construct 
a convex hull around a macromolecule for calculating the 
hydrodynamic volume is described. The method allows dif-
ferentiation of two types of macromolecular hydration: sur-
face shell and entrained water. Surface hydration calculated 
by this method agrees with historical values of ~0.35 g/g 
which largely measured only the first shell hydration. Larger 
proteins and DNA have significantly more entrained water 
(0.5—1.6 g/g) that contributes to hydrodynamic volume. 
The hydrodynamic volumes calculated by HullRad and Hull-
RadSAS allow accurate calculation of several hydrodynamic 
properties including: translational and rotational hydrody-
namic radii, intrinsic viscosities, and the concentration 
dependence of the sedimentation constant due to hydration. 
While only HullRadSAS provides hydration values, both 
versions calculate the same macromolecular hydrodynamic 
volume and, therefore, the same hydrodynamic properties. 
HullRadSAS is slower than the original HullRad because of 
the need to calculate the solvent accessible surface.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00249- 022- 01627-8.
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SUPPLEMENTAL FIGURE S1  HullRadSAS and HullRad predict the same translational 
hydrodynamic radii. 

   
HullRadSAS predicted RT values for folded proteins are plotted versus the HullRad 
predicted values for the data set of proteins listed in Supplemental Table S1. The black 
line through the data points represents a slope of one and intercept of zero. 
 
 
  



 3 

 
SUPPLEMENTAL FIGURE S2  Optimization of the SAS probe radius. 

   
Translational hydrodynamic radii (RT) were calculated using HullRadSAS for the proteins 
listed in Supplemental Table S1. The absolute value percent error between the 
experimental value and calculated value of RT for different SAS probe radii is plotted as 
gray circles. An optimal probe radius of 0.85 Å was chosen. 
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SUPPLEMENTAL FIGURE S3  HullRadSAS accurately predicts intrinsic viscosities. 

   
Intrinsic viscosities [h] calculated using HullRadSAS are plotted versus experimental 
values for the proteins and DNA listed in Supplemental Table S2. The black line through 
the data points represents a slope of one and intercept of zero. 
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SUPPLEMENTAL TABLE S1 Translational Hydrodynamic Radii for Folded Proteins. 
Protein (PDB Code) MW 

(Da) 
RT,Exp

a 
(Å) 

RT,HR
b 

(Å) 
RT,HRSAS

c 
(Å) 

BPTI (5PTI) 6518 14.5 14.3 14.4 
Cytochrome c (1HRC) 11703 17.3 17.2 17.3 
RNase A (8RAT) 13692 18.9 19.0 19.0 
Lysozyme (1AKI) 14315 18.6 18.5 18.6 
LegHb (1LH1) 16657 21.4 20.2 20.2 
Apo-Mb (1MGN) 17359 20.8 19.9 20.0 
Soy TI (1AVU) 19984 22.6 21.9 22.0 
Trypsinogen (1TGN) 22620 22.1 22.1 22.2 
b-Trypsin (1TPO) 23124 22.8 22.2 22.3 
a-Chymotrypsin (4CHA) 25041 22.7 22.9 22.9 
Chymotrypsinogen (2CGA) 25670 22.6 23.3 23.3 
Carbonic Anhydrase (2CAB) 28757 24.1 23.9 23.9 
Superoxide Dismutase (2SOD) 31089 25.9 25.8 25.7 
Pepsin (4PEP) 34516 24.6 26.2 26.2 
b-Lactoglobulin (1BEB) 36606 27.4 27.3 27.2 
TPI (8TIM) 52996 29.7 30.5 30.4 
Hb (CO) (1HCO) 61942 31.5 31.6 31.5 
HSA (1AO6) 66482 34.0 35.1 35.0 
Alkaline Phosphatase (1ALK) 94082 37.6 37.0 36.4 
Citrate Synthase (1CTS) 97835 37.0 37.7 37.6 
Inorganic PPase (2AU9) 117361 37.6 39.4 39.3 
Tryp. Synthase (1KFK) 138595 44.4 45.8 45.5 
Human IgG (1HZH) 143337 55.1 55.0 54.6 
Apo G3PD (2CG1) 143743 42.9 43.3 43.3 
Apo LDH (5LDH) 145749 42.5 42.5 42.4 
Aldolase (1ADO) 156776 47.6 47.7 47.6 
Holo Catalase (4BLC) 230321 52.3 52.4 52.2 
Xanthine Oxidase (1FIQ) 267770 54.5 54.5 54.3 
b-Galactosidase (4V40) 464490 68.5 67.1 66.9 
Apo-Ferritin (3AJO) 512084 67.4 64.7 64.6 
Urease (3LA4) 539700 65.8 66.6 66.4 
GroEL (2CGT) 828989 82.8 86.3 86.1 

aExperimental RT values from Table 1 of Fleming and Fleming (Fleming & Fleming, 2018). 
bRT calculated with HullRad. 
cRT calculated with HullRadSAS. 
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SUPPLEMENTAL TABLE S2 Intrinsic Viscosities for Folded Proteins and DNA Duplexes. 
Protein (PDB Code) MW 

(kDa) 
[h]exp 
(ml/g) 

[h]calc
a 

(ml/g) 
[h]calc-[ h]exp 

(%Error) 
[h]exp 

Reference 
RNase A  
(8RAT) 13692 3.30 3.34 1.3 

(Buzzell & Tanford, 
1956) 

Lysozyme  
(1AKI) 14315 3.00 3.18 6.0 

(Sophianopoulos et al., 
1962) 

Apo-Mb  
(1MGN) 17359 3.15 3.16 0.3 

(Wyman & Ingalls, 
1943) 

Chymotrypsinogen 
 (2CGA) 25670 3.13 3.17 1.4 

(Schwert, 1951) 

Human IgG  
(1HZH) 143337 8.67 9.00 3.8 

(Monkos & Turczynski, 
1999) 

B-DNA  
20mer 12270 7.50 7.79 3.9 

(Tsortos et al., 2011) 

B-DNA  
30mer 19129 10.40 10.10 -2.9 

(Tsortos et al., 2011) 

aCalculated values from HullRadSAS 
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