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ABSTRACT

This draft work summarizes the mathematical basis for the current slumped micropore optic (SMPO)
simulator. In the process it covers most of the fundamental ideas and equations. It also contains some
discussion of the implication of the SMPO mathematics upon instrument design. This document
gathers together some of the useful input data as well. While SMPO are used to observe objects at
infinity, they are tested with sources not at infinity (a beam line) or with the source behind the optic
(the test stand). We derive the mathematics for these test configurations and sketch some of the data
reduction needed to derive the parameters of the optics. Many of the SMPO applications considered
thus far require sunshades with interior baffles. We consider the interaction of these baffles with the
optic and the constraints they place on the instrument design.

1. TECHNICAL

Because this document is an active working document,
containing the latest work on simulating and character-
ization, it is subject to frequent changes, some trivial,
some significant. We will attempt to record the sig-
nificant changes in the following change log, but small
changes will not. The date of this document is given
above automatically by LATEX, and is the only version
number for this work.

1.1. Change Log

12/11/23: Added text and figures under 2.0.

01/10/23: Began construction of the section describing
the use of the test stand.

26/09/23: Corrected typo and added material to the
Willingale approximation of a reverse beamline
with post mask.

31/01/23: Added “Future” section to remind the au-
thor of things that remain to be done.

01/01/23: Introduced the Technical section to allow
better document tracking.

1.2. Future

History: Need followup on round pore attempts.

Shades: Need to work shade design mathematics in.

Coatings: Requires reflectivity at Lyα to be done cor-
rectly.

Roughness: Need to understand various approxima-
tions and(?) compare.

Taper: Need to implement a reasonable model of ta-
pered pores.

Wine Crate Optics: For M. Galeazzi.

True PSF Width: Start from Willingale.

Test Stand: Do full up model for off-center mask, for
tilted optic, and for off-center optic. Expand sim-
ulation to calculate the effect of extended source

1 The Henry A. Rowland Department of Physics and Astron-
omy, Johns Hopkins University, 3701 San Martin Drive, Balti-
more, MD, 21218; kuntz@pha.jhu.edu

spot both for central spot and for peripheral spots.
This section probably requires further work with
the test stand. For the next test stand run, should
do a closely spaced run of ZS with a fixed XM to
determine best throughput and to better constrain
spot size.

Stand Mathematics: Calculate the trade-off between
reflectivity at β−α and the reflected fraction. Re-
construct Figure 52.
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Figure 1. The reflectivity as a function of angle between the ray
and the surface, for three different energies of X-rays and an Iridium
surface. Note that reflectivity decreases as either the energy or
angle increases.

2. INTRODUCTION

X-ray mirrors are based on grazing incidence reflec-
tions because reflectivity decreases rapidly as the angle
between the ray and the surface increases, as shown in
Figure 1. Traditional optics (Wolter type I) rely on a
reflection from the interior of a hyperboloid of revolution
followed by a reflection from the interior of a paraboloid
of revolution. The two successive reflections are required
in order to reduce the focal length of the optic and to re-
duce the coma that would be produced if there were only
a single reflection. In order to build a real optic, we use a
slice of the hyperboloid of revolution made perpendicu-
lar to its axis, and a slice of the paraboloid of revolution,
also made perpendicular to its axis. Each mirror is a
shell with a particular curvature on its inner surface. In
order to increase the collecting area, we replace both the
hyperboloid section and the paraboloid section with a
series of nested hyperboloids (or paraboloids) where the
curvature of each ring is a function of the radius of the
ring. Traditionally, the spacing of the rings is such that
rays reflecting from the interior of one ring will not inter-
sect the back of the next smaller ring. As a result of this
nesting, the acceptance angle is rather small, and one
must be very clever to achieve a field of view (FOV) as
large as a degree; most Wolter type 1 optics have much
smaller FOV.

Slumped, square-pore, micro-pore optics, generally
known just as SMPO or MPO are optics that sacrifice
angular resolution in order to achieve a large FOV; the
STORM design is for ∼25◦×25◦, while transient tele-
scopes aim for FOVs on the order of 5000 square degrees

(∼ 1
8

th
of the sky.) The following document aims to ex-

plore the capabilities and limitations of these optics.

2.1. How the SMPO Work

As shown in Figure 3, an array of flat mirrors placed
perpendicular to a cylinder can focus light in one dimen-
sion. If the mirrors are perpendicular to the surface of
a sphere, and a second array is placed perpendicular to
both the first array and the surface of the sphere, then
one can focus light in two dimensions, which allows imag-
ing. There are a number of ways to arrange the reflec-
tors, as shown in Figure 4. The most easily constructed
manifestation of these two arrays of mirrors is to create

a microchannel plate with square pores, where the in-
terior of the pores become mirrors, and to slump that
microchannel plate over a spherical surface. The result
is a slumped micropore optic (SMPO, sometimes SMO).

The SMPOs to be considered here have square pores
that are square-packed. This is not the optimal packing
for an X-ray optic, but it is what is currently techni-
cally feasible. The SMPO is manufactured as a flat mi-
crochannel plate, and slumped over a spherical mandrel
or mould2. In the process the individual pores are de-
formed from square. However, for the bulk of this work,
they will be assumed to be square and aligned with the
overall x-y cartesian geometry of the device.

Each pore has a width W and is divided from another
by walls of thickness T , so the pitch P is W+T . The
length of the pores is the thickness of the optic, which
is L. The radius of curvature (which is assumed here to
refer to the underside of the optic) is Rc. Given that the
pores are square, there is a strong xy geometry imposed
upon the problem. In many cases, problems are separable
into the x and y dimensions. The z axis is taken to be the
optical axis, with the origin at the center of curvature.

Since the SMPO is a section of a sphere, any loca-
tion on the facet can be taken as the optical axis. This
property makes many problems easy. However, it can
engender a great deal of confusion. In the following work
I have tried to be consistent. The instrument axis is
through the center of the optic to the radius of curva-
ture. A facet axis is through the center of a facet to the
radius of curvature. The optical axis is through some
defined point and the radius of curvature. It is sometimes
useful to define the source axis as the vector from the
radius of curvature, through the optic, in the direction
of a source.

There are two ways in which SMPO are different from
the nested shell mirrors used by traditional X-ray optics.
First, with a few exceptions, neither the x-axis nor the
y-axis of the pore is aligned to the local radius. There-
fore an incident ray can not be focussed with a single
reflection (again with a few exceptions). Instead, there
must be a single reflection in both the x plane and in the
y plane in order for the incident ray to be focussed. This
concept is somewhat demonstrated in Figure 5. Second,
for a traditional X-ray optic with nested mirror shells,
any two adjacent mirror shells are sufficiently far apart
that any ray reflecting from the inner surface of the outer
shell will not intersect the outer surface of the inner shell.
For a SMPO, opposite walls of the pore function as our
nested mirrors. There are many incidence angles for
which a ray will reflect from both of two opposing walls,
and a very limited range of incidence angles for which a
ray will not reflect from both of the opposing walls. Rays
which are reflected from opposing walls are usually not
focussed. A third difference is that traditional X-ray op-
tics require two reflections in the same plane in order to
focus without spherical aberration. Slumped micropore
optics are subject to spherical aberration.

These two concepts make the SMPO focussing seem
rather complicated, and it is to be admitted that the
way the SMPO focusses is not entirely intuitive. In the
following sections we will use a special case, where the

2 Technically, a mandrel is cylindrical, so this is probably a
mould, though Photonis seems to refer to it as a mandrel.
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Figure 2. Wolter type 1 optics, demonstrating the nested shells, and how they restrict the angle from which photons can be accepted.
This example shows the two innermost shells of an XMM-Newton mirror, where each shell is 600 mm long, and the shells are separated by
1 mm. The acceptance angle is ∼ 11′. The dashed red line shows the hyperboloid of the inner shell while the dashed blue line shows the
paraboloid of the inner shell. Note that the scale in the R direction is expanded by a factor of 2 in order to show the separation of the two
shells.

Figure 3. The fundamental geometric construction for the optic.
The vertical line to the left is the optical axis. The series of short
radial lines represents individual reflectors. The red lines are an
incident rays parallel to the optical axis. The vertical bar represents
the distance above the center of curvature at which the off-axis ray
intersects the optical axis.

x axis of the pore is aligned with the radial vector (the
vector from the instrument axis to the pore), to calculate
where the focus is and how large an optic can actually
focus rays parallel to the instrument axis. Luckily, the
focussing problem is separable, so once one understands
how focussing is accomplished in one dimension, the ex-
tension to two dimensions is obvious.

2.2. The Shape of the PSF

Figure 6 shows the point spread function as a function
of the total number of reflections, that is, the total num-
ber of reflections in both the x and y dimensions. The
first panel is the distribution of rays that pass through
the optic undeviated. The second panel is the distri-
bution of rays that experience a single reflection, that
is, those that are focussed in one dimension but not the
other. The third panel is the distribution of rays that
experience two reflections. Note that this could be a re-

Figure 4. Demonstration of two different ways to use flat reflec-
tors to focus X-rays. The “Angel” configuration is, essentially, the
SMPO. This figure is widely found on the internet, but I have not
yet tracked down its source.

flection in x and a reflection in y, producing the (hard
to see) spot in the middle, or no reflections in one di-
mension and two reflections in the other, producing the
large square regions. Further odd numbers of reflections
produce crosses while further even numbers of reflections
produce arrays of square regions that are further and fur-
ther from the instrument axis.

The overall PSF has a very sharp core, containing
∼ 25% of the flux (depending upon energy). The two
perpendicular arms, due to rays focused in one direction
but not the other, contains ∼ 50% of the flux. Then there
is a relatively smooth diffuse background3 that contains
∼ 25%. The ratio of the core to the total throughput is
referred to as the contrast. [OK, I may be the only one
who does, but it works.] However, it should be noted
that core:arm:diffuse ratio is a strong function of the re-
flectivity as a function of energy and the incidence angle,
and thus is a strong function of the pore W/L ratio.

As can be seen in Figures 6 and 7, the PSF of the ideal-
ized devices that we simulate has a very sharp core. The
fraction of the flux in the core depends upon the energy.
The true core flux will also depend upon the resolution

3 There is a broad variation in the term used for this component.
Some use the term “background”, but this leads to confusion with
the background of the source of interest. I prefer the term “unfo-
cussed” or “unfocussed component”.
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Figure 5. Possible paths for a ray passing through a pore. The pore to the left focusses the ray, while the pore to the right causes the
ray to continue in the direction of incidence, but offset.

Figure 6. The PSF as a function of the number of reflections. The PSF has been normalized to unity at the center. The color scale is
logarithmic. The size of the “squares” is set by the radius of curvature of the device, not the size of the device.

at which one is sampling the PSF. In the bulk of the sim-
ulations done for this work, the PSF was sampled at a
resolution of 0.5 mm on the detector plane, as this is the
typical resolution of an MCP detector. CCD resolution,
of course, would be even finer. However, due to photon
starvation, the effective resolution sought is ∼ 0.25◦. Be-
cause the core sits on a broader peak, the fraction of flux
falling in the central pixel of the PSF is somewhat higher
than that truly in the core. This should be kept in mind
when considering the contrast of different optics.

2.3. Instruments

Attempting to design instruments with very large aper-
tures/very wide fields of view using SMPO brings one
face to face with reality. Individual SMPO, which we
refer to as “facets”, are relatively small, typically 4 cm
by 4 cm. Thus the spherical optic must be constructed
as a mosaic of square facets, which requires a framework
to support them. That framework reduces the effective
area of the instrument, and can introduce a number of
errors that degrade the PSF. Even the individual facets
have issues, such as surface roughness, that reduce their
effective area and increase the size of their PSFs. To un-
derstand the relative importance of these different issues,
we will be considering a number of notional instrument
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Table 1
Instrument Parameters

Parameter Symbol STORM SMILE CuPID LEXI Miami

Measurements

Pore width W 20 µm 40 µm 20 µm 20 µm 20 µm
Pitch P 26 µm 52 µm 26 µm 26 µm 26 µm
Pore length L 1 mm 1.2 mm 1mm 1 mm 1 mm
Radius of curvature Rc 100 cm 60 cm 55 cm 75 cm 100 cm
Facet Size F 4 cm× 4 cm 4 cm 4 cm 4 cm 4 cm
Number of Facets N2 100 2×16 1 9 4

Derived Parameters

Open Fraction 60% 60% 60% 60% 60%
W/L 0.02 0.033 0.02 0.02 0.02
Focal Length zf 50 cm 30 cm 27.5 cm 37.5 cm 50 cm
FOV Max(Γ) ∼ 11.5◦ 15.6◦×31.2◦? ∼ 4.1◦ ∼ 9.2◦ ∼ 4.6◦

0 Reflection Limit Γ0 1.14◦ 1.91◦

1 Reflection Limit Γ1 2.29◦ 3.81◦

2 Reflection Limit Γ2 3.43◦ 5.71◦

a Measured along the spherical surface of the optic.

Figure 7. A cross-section of the PSF for an unbaffled 3 by 3
device. Note that the scale is logarithmic. The places where the
relative rate is zero are locations of the facet support structure; the
very narrow minima are due to behavior of the optic itself. The
spacing of the narrow minima is set by the radius of curvature of
the facets.

designs that are listed in Table 1.
Throughout this work we will use the notional STORM

and LEXI designs to demonstrate the typical magnitude
of the optical distortions. The facets for these instru-
ments are representative of the types of SMPO that can
be obtained from Photonis R©. As of this writing, typi-
cally available pore sizes range from 20 µm to 40 µm (see
the trade study in §11.1), and radii of curvature range
from 55 cm to 100 cm. The standard size is 4 cm by 4
cm, and although some discussion of making larger facets
has occurred (as a result of the discussion in §11.3), it
is not clear that larger facets are technically feasible for
the standard manufacturing process.

2.4. Manufacturing

Figure 8. Partial figure taken from Mutz et al. (2007) demon-
strating the manufacturing process of SMPO at Photonis. We are
currently concerned only with square blocks.

A few notes about the manufacturing process (shown
schematically in Figure 8) are necessary to understand
many of the issues that we will be discussing in the sec-
tions below.

Manufacturing begins with a precisely machined
square tube of high index of refraction glass. This tube
is something like 7 to 10 cm in diameter. Within this
tube is tightly fitted a square core of soft glass that can
be dissolved by acid. This tube and core assembly is
then put in a furnace and drawn down to a fiber ∼ 1 mm
in diameter. This fiber has the same ratio of hard wall
to soft core as the original assembly4. The fiber is cut

4 Since all square-pore MCPs made by Photonis start with the
same tube-core assembly, the wall to opening ratio, T/W is the
same (so far) no matter the pore size. This may change in the
future.
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into uniform lengths and stacked into “multifiber bun-
dles” of 35 by 35 fibers. The multifiber bundle is, in its
turn, drawn down to a diameter of ∼ 1 mm, and cut into
lengths. The drawn multifibers are then stacked to form
a 4 cm by 4 cm block, which is heated under pressure to
make it a solid block. This block is then sliced, setting
the pore length, and then polished. Each slice is then
bathed in running acid for an extended period of time
to remove the core glass. Finally, each slice is placed in
an oven in a precisely machined concave spherical mold
and, during heating, a convex spherical mold is slowly
lowered onto it to force the SMPO into a spherical shell
with a particular radius of curvature.

In this process there are a number of uncertainties, and
there are a number of places at which defects can be in-
troduced. It would seem that the stacking is a very deli-
cate process, and that there are ways for individual fibers
(or multifiber bundles) to become misaligned within the
stack. Willingale worked on methods for determining
the amount of misalignment, but that work has not been
published to my knowledge. Within the final block, the
interfaces between multifiber bundles typically results in
some fraction of distorted pores (see Figure 9) which re-
sults in clear segmentation of the arms of the PSF.

Another potential issue is the smoothness and clean-
liness of the pores. The drawing process is expected to
produce very smooth pore walls, but we do not yet have
measurements of the remaining roughness. This uncer-
tainty enters the simulation mostly through an uncer-
tainty in the reflectivity. Similarly, the acid washing is
supposed to remove all of the core glass, but we do not
know that this is truly the case; there is some suggestion
from the chemistry that we might have difficulties with
relict soft glass.

Finally, what actually happens during the slumping
process is poorly understood, though it is clear that the
shapes of the pores, particularly those near the diagonal,
are deformed. The Leicester group’s approach (Will-
ingale et al. 2016) to this problem is rather different
from that discussed below (§4.4). It is also clear that
the slumping process is not altogether successful, as the
final SMPOs can show complex deviations from spheri-
cal. Many SMPO show astigmatism, suggesting that the
curvature in one direction is not quite the same as the
curvature in the other. These deviations produce some
of the effects described in §4.1.

2.5. History

SMPO were first proposed by Angel (1979) in a paper
that referenced the work of the biologists Vogt (1975) and
Land (1978) who had only recently realized that crus-
tacean eyes work on the same principle, as suggested by
Figure 10. Angel’s contribution was not particularly wel-
come in a time when attention was turning from all sky
surveys to high resolution investigations of individual ob-
jects (see “exchange” between Angel and Gorenstein in
Hartline (1980)). Interestingly, the Schmidt configura-
tion of flat plates (Schmidt 1975, 1981) precedes Angel’s
work, though Angel seems to have been unaware of it.

The first papers discussing the performance of SMPO
devices appear in the late eighties/early nineties and
were the product of Chapman at the University of Mel-
bourne and Fraser at the University of Leicester. (In-
deed, much of this document is encompassed in Chapman

et al. (1991), though that source was not found until the
Vade Mecum was nearly finished.) There was an explo-
ration of different means of creating square pore optics
(which is still an active question), such as etching silicon
(Peele 1999), and there was even exploration of the use of
round-pore micro-channel plates (Chapman et al. 1993).

Priedhorsky et al. (1996) seems to have been the first
to propose an all-sky monitor using lobster-eye optics,
though that idea was certainly in the air; I remember
Nick White proposing something similar when I was first
at GSFC. It would be interesting to see how many design
iterations there are between Priedhorsky’s and the recent
MidEx round with Gamow (White!) and SIBEX.

More history here as I figure it out.

2.6. Roadmap

This work is primarily focussed on the creation of a
simulator for such optics. Various aspects of the simula-
tor have been motivated by optics testing (particularly
at PANTER), while some have been motivated by pure
curiosity. Many of those side issues are included here
in order to reduce the need for others to “reinvent the
wheel”. This inclusion has led to a rather bulky docu-
ment. I have attempted to relegate details of the side-
issues to the appendices, but that has not always been
possible.

Section 3 contains an overview of an idealized optic of
indeterminate extent. It calculates the focal length of
this device, explores the issues of spherical aberration,
and sets forth the tools needed to calculate the effective
area. Section 4 considers “real” optics and their defects.
Some of those defects are intrinsic to the structure of the
optic, such as pore deformation due to slumping. There
are also, of course, extrinsic defects, or those due to acci-
dent in manufacture, such as irregularities in the radius
of curvature, Rc, from one part of the optic to another.
This section is not (and probably never will be entirely)
complete. These issues, for the most part, degrade the
PSF. Some of these issues are incorporated into the simu-
lator, others are planned to be incorporated, and yet oth-
ers may be too complex to incorporate in any meaning-
ful manner. Section 5 considers the effect of mosaicking
facets to form large aperture/wide FOV instruments, and
the impact of those effects on the simulator. Section 6
considers the effect of sunshades5. Given that SMO in-
struments are intended to have wide FOVs, sunshades
become much more complicated, and have a significant
impact on the simulator implementation. Section 7 dis-
cusses the implementation of the simulator itself.

The second major part of the Vade Mecum considers
SMPO testing. Sections 8 and 9 discuss the GSFC test
stand for characterizing individual facets. These sections
are still works in progress because the test stand itself is
still a work in progress.

Finally, there is a short section on instrument design
considerations. This section considers both requirements
to create a monolithic optic such as used by STORM and
requirements for modular wide-field designs.

5 The philosophy for designing the sunshades is provided in a
different document
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Figure 9. Left: Photomicrograph of the intersection of four micropore bundles in a finished SMPO. Photograph taken by Nick Thomas
at GSFC. Center: The PSF of that SMPO. Image taken at PANTER. Note the periodic segmentation of the arms of the PSF which
suggest the misalignment of individual multifiber bundles. Right: A profile of the arms showing the segmentation more clearly.
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Figure 10. Photomicrographs of the eye of a lobster(?) or cray-
fish(?). These images were taken from a paper by Hudec et al.
(2015), but I have reason to believe that the images may have
been taken from an older source. Pointers to that source would be
appreciated.
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3. THE MATHEMATICS OF AN IDEAL SMO

This section sketches the mathematics for an ideal
SMO, considering the focal length, the effective area, and
the field of view (FOV). By ideal, we mean more than
just a perfectly manufactured optic, we really are dealing
with a somewhat idealized optic. We will consider less
idealized optics in the following section.

3.1. Focal Length and the Focal Surface

3.1.1. A First Approximation

Figure 11 demonstrates the fundamental geometry of
the micropore optic. This figure shows a cut through the
optic made in the x plane of the optic. The series of short
radial marks represent the pore walls a distance Rc from
the origin. By construction, a ray parallel to the optical
axis, striking the wall of a pore that is inclined from the
optical axis by an angle A, will reflect from that surface
at an angle A (just Snell’s law). From the origin to the
focus to the pore is an isosceles triangle, and as A → 0
it can be seen that the focal length becomes Rc/2.

Note that, like a simple lens, a ray that strikes the
optic normal to the surface of the optic will pass through
the optic without deviation. Also notice that since the
optic is a section of a sphere, any part of the optic can
be designated the optical axis. These two rules are very
useful in many calculations.

In the following discussions, it is useful to define the
source axis as the vector from the radius of curvature,
through the optic, in the direction of a source. Note that
the source axis must be perpendicular to the optic where
it intersects the optic, and that a ray from the source
pass through the optic without deviation (assuming that
the ray did not have the misfortune to hit the top of a
pore wall).

3.1.2. Aberration

That the above demonstration that the focal length is
Rc/2 employed a limit should have given the reader a
clew that the focal length is a bit more complicated!

Consider an incoming ray that is parallel to the optical
axis and strikes the optic at a distance Rc sinA from the
optical axis. Since the angle of reflectance is the angle
of incidence, the reflected ray forms an angle A with
respect to the radius passing through through the point
of incidence. The ray crosses the optical axis a distance6

zf =
Rc

2 cosA
(1)

above the radius of curvature. One should note that
since the height of the focus above the center of curvature
depends upon the initial distance of the ray from the
optical axis (Rc sinA); there is no single focus. This is
a form of spherical aberration; its effect can be seen in
the middle panel of Figure 11. One can see that as one
increases the off-axis distance at which the ray strikes
the optic, zf increases, as does the distance from the
optical axis where the ray intersects “the focal plane”.
One should also note that rays incident from an angle
B from the optical axis will also be focused zf from the
center of curvature, but at an angle B from the optical

6 Noting that the triangle is isosceles, so that the third angle is
π-2A, the rest follows from the law of cosines.

axis. Thus the “focal plane”, such as it is, is a spherical
surface, as shown in the right-hand panel of Figure 11.

Given a source at infinity, we can determine an upper
limit to the z-extent of the “focal region”, and of the size
of the focal spot in the detector plane, by considering the
location of the “focus” for each pore, starting on-axis and
moving away from it. We make the assumption that only
a single ray is reflected by each pore. That ray will cross
the optical axis at a distance zf = Rc/(2 cosA) from the
radius of curvature. We will consider the height above
the nominal Rc/2:

∆zf = zf −
Rc
2

=
Rc
2

(
1− cosA

cosA

)
(2)

That ray will cross the optical axis at an angle 2A, as
can be seen from Figure 11. On the detector plane, that
ray will fall

x = Rc

(
sinA(1− cosA)

cos2A− sin2A

)
(3)

from the optical axis.
At this point, one could continue towards an analytic

expression for the PSF size7 but it is far easier to simulate
an optic in one dimension. Figure 12 shows the number
of pores contributing to the PSF as a function of the
distance from the center of the PSF. This plot was con-
structed by calculating arctan (x,Rc/2) ∼ x/Rc for each
pore, a determining how many pores could contribute to
each angular bin. (By expressing the result as an angle
one removes the dependence on Rc.) Note the extreme
narrowness of the “PSF” due to aberration; this is far
far narrower than the PSF typically measured for SMO
(& 9 arcminutes). Thus, the intrinsic aberration is
not a significant part of the PSF.

3.2. The Effective Acceptance Area

In this section we will derive the equations that de-
termine the effective acceptance area, which is the area
of the optic that contributes to focussing parallel rays
from a particular direction. To make the problem easy
to understand, we will consider the problem in only the x
direction and we will assume that the incoming rays are
parallel to the optical axis. We will also assume that the
pore walls are parallel; we do not currently know to what
extent this assumption is true. The pore is assumed to
have a width W and a length (or depth) L.

7 The density of rays crossing the optical axis at ∆z is given by
dA/d∆z:

dA/d∆z =
2

Rc

(
cos2 A

sinA

)
. (4)

Similarly, the density of rays striking the detector plane a distance
x from the optical axis is given by dA/dx:

dA/dx =

1

Rc

(
cos2 2A

cos 2A(cosA− cos 2A) + 2 sinA sin 2A(1− cosA)

)
. (5)

At this point, one would want to evaluate∫ N

0
πx

dA

dx
dx (6)

which is immediately problematic, even without considering the
issues raised in the text that follows.
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Figure 11. Left: The fundamental geometric construction for the optic. The vertical line to the left is the optical axis. The series of
short radial lines represents the walls of individual pores, a cross-section of the optic. The red lines are an incident rays parallel to the
optical axis. The vertical bar represents the distance above the center of curvature at which the off-axis ray intersects the optical axis.
Middle: Demonstration of the lack of a single focus. Each green line is the path of a ray, parallel to the optical axis, having struck a
different pore. The intersection with the optical axis was calculated for each ray using Equation 1. Right: Demonstration of the spherical
“focal plane”. The blue lines are two parallel rays that are incident from angle 2A from the optical axis. The intersection of the two rays
is still zf from the center of curvature, but at an 2A from the optical axis.
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Figure 12. A simulation of one-dimensional optic with Rc=1000
mm. Black: The number of pores that contribute to the PSF, as
a function of the distance from the center of the PSF, expressed
as an angular distance. As will be seen, due to geometry alone,
the contribution of pores to the focus varies with distance from
the optical axis. This effect is included in the red curve. The
reflectivity of the optic also decreases with distance from the optic
axis, which would further decrease the number of rays falling far
from the center of the PSF.

Figure 13. The cross-section of a pore, shown by the thick lines,
demonstrating the limiting angle Γ at which a ray can pass through
the pore with n reflections.

Figure 13 shows the cross-section of a pore with a se-
lection of critical rays, marked 0 through 2. In order
for a ray to pass through the pore without a reflection,
the angle with respect to the pore axis, Γ, must be less
than arctan (W/L). Not all rays at angle Γ will pass
through without reflection, but we’ll come back to that
point shortly. To pass through with only a single reflec-
tion in a given dimension, Γ < arctan (2W/L). To pass
through with n or fewer reflections in a given dimension,

Γn < arctan ((n+ 1)W/L). (7)

If the pore walls are strictly radial (rather than paral-
lel) the equations become significantly more complicated,
but the results are not significantly different. For radial
pore walls

Γ1 = arctan ((2 cosβ/ cos 2β)(W/L+ sinβ)) (8)

where
tan (β) = W/2Rc (9)

For our instrument, the difference between Equation 7
and Equation 8 is < 0.1%.

From the above, it should be apparent that rays strik-
ing near the optical axis will pass through the optic unde-
viated and unfocused. In order to be focussed (at least in
one dimension) by a single reflection, an on-axis ray must
strike the optic within Γ1Rc of the optical axis. If the
ray strikes slightly further from the optical axis, it will be
reflected at least twice in the x dimension. A ray that is
reflected twice in a given dimension will not be focussed
but will leave the optic parallel to the input ray. We can
generalize further; a ray reflected an odd number
of times in a given dimension will be focussed in
that dimension while a ray that is reflected an
even number of times in a given dimension will
not be focussed in that dimension.

Even further from the optical axis rays will be reflected
thrice in the x dimension, and thus will be focussed, but
the throughput will be much lower, being proportional
to rn where r is the reflectance and n is the number of
reflections.

Thus, the effective acceptance area is, roughly speak-
ing, the area over which rays can be focussed with a single
reflection per dimension. For a given W and L, the angu-
lar size of that area is fixed to be within arctan (2W/L)
of the optical axis. Thus, increasing the size of the
optic will not increase the effective area. One can
only increase the effective area by increasing the radius of
curvature (which increases the physical area within the
angle Γ1 from the optical axis) or by changing the W/L
ratio. The latter method will generally decrease the frac-
tion of focussed to unfocussed light. This problem will
be addressed in §11.1.

3.3. Transmission of a Single Pore

For a pore oriented at an angle Γ with respect to the
incoming ray, the minimum number of reflections is

nmin = Integer

[
L

W
tan Γ

]
. (10)

However, we note that a ray at a limiting angle is enter-
ing the pore at one edge. The parallel pores that enter
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Figure 14. The cross-section of a pore, showing the construction
for determining what fraction of the pore area allows n reflections
and what fraction allows only n+ 1 reflections.

the center of the pore will have a different number of
reflections.

Figure 14 shows the geometric construction used to
determine what fraction of the pore opening allows nmin
reflections. The figure shows an example with nmin=2.
The black line shows the limiting ray for two reflections.
If the ray enters the pore to the right of the limiting ray,
the ray will have two reflections. If the ray enters to the
left of the limiting ray, it will experience three reflections.
That is, of the rays entering the pore, some must be
reflected nmin times in order to exit, while the remainder
must be reflected nmin+1 times in order to exit the pore.
Assuming a uniform density of rays entering the pore, we
can calculate the fraction of rays being reflected either
nmin or nmin+1 times.

Continuing to use Figure 14, if

∆L = L− nminW

tan Γ
(11)

then

∆W = ∆L tan Γ (12)

and thus the fraction of the pore opening for which rays
at angle Γ experience nmin + 1 reflections is fmin =
∆W/W while that fraction for with those rays experi-
ence nmin reflections is fmax = 1−∆W/W .

Combining all of the lines of above equations we find

that

fmin =
L tan Γ

W
− Integer

[
L tan Γ

W

]
(13)

fmax = 1−
(
L tan Γ

W
− Integer

[
L tan Γ

W

])
(14)

Thus, if the reflectivity of the pore walls for an inci-
dence angle Γ is r(Γ), then the throughput of a single
pore is

fminr
nmin + fmaxr

(nmin+1) (15)

which is just the fraction of rays (or photons) entering
the pore that actually exit it. Note that one term in
this equation represents rays that are focused while the
other term represents rays that are not focussed, but fall
elsewhere on the detector. Thus, simulation of the optic
actually requires two calculations; the first is the calcu-
lating the throughput, the second is calculating where
the rays strike the detector.

If one desires the throughput of the entire optic, that
is, the effective area, then one must sum over all of the
pores. This summation introduces another factor, the
projection of the pore opening. A pore that is aligned to
the incoming rays has an opening of W . A pore that is
at an angle Γ to the ray has an effective pore opening of
only W cos Γ. There is no simple expression for the total
effective area because the reflectivity is a function of the
angle of incidence. However, consideration of the figure
in Appendix B suggests that one might actually be able
to come fairly close with an analytic expression for the
reflectivity as a function of the angle of incidence.

Assuming that the optic always has a radius greater
than Γ3, the effective area should scale as R2

c , just be-
cause the number of pores within Γ3 increases as R2

c .
In this case the ratio of the area within Γi to the area
within Γi+1 does not change, so there are no second-order
effects.

3.4. Effective Area Redux

It is useful to consider the throughput of pores as a
function of off-axis angle Γ. From Figure 15 it is clear
that the bulk of the contribution to the focused rays
comes from pores where the ray was reflected (in the
a single dimension) only once. That contribution is neg-
ligible on the axis. The fraction of rays focused increases
with angle from the instrument axis, peaking at Γ0 and
declining to Γ1. (OK, this statement ignores one signif-
icant condition, which will be discussed in §5.1.) There
is also a contribution to the focus from rays that were
reflected thrice (Γ1 to Γ3), but there is negligible con-
tribution from higher numbers of reflections. The data
used for this demonstration, a Nickel surface reflecting
0.55 keV photons, is typical. At higher energies, the
triple reflection contribution is further reduced. Con-
versely, if the reflectance remained high at higher angles,
of course, there would be more significant contributions
from higher numbers of reflections.

Thus, depending somewhat on the L/W and the Rc,
the bulk of the focussing for a source on the instrument
axis will actually be done near the edges of the SMO
facet. This fact has significant ramifications for both
design and testing, and will be explore further in §§5, 9,
and 11.
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Figure 15. The contribution to the focus as a function of dis-
tance from the optical axis. These plots have been calculated for
a one-dimensional optic where the incoming rays are parallel to
the optical axis. a) The projected area of the pore, a, as seen by
the incoming rays. b) The reflectivity, r, of the pore wall as a
function of the angle of incidence. This demonstration used Nickel
with no surface roughness for a photon energy of 0.55 keV. c) The
minimum number of reflections, nmin, in black, and the maximum
number of reflections, nmin+1, in red. d) The fraction of the
pore area allowing nmin reflections (1-∆W/W ), in black, and the
fraction allowing nmin+1, ∆W/W , in red. e) The same as the
previous panel, but only including rays that are focussed. f) The
relative contribution to the focus, arnmin (1 − ∆W/W ), in black,

and ar(nmin+1)∆W/W in red.

Note that it is the angular size of the region for which
nmin = 0 that sets the size of the “squares” in the PSF.
The minima in the PSF there are due to those photons
being removed from the unfocussed component, and be-
ing fully or partially focussed. This also means that if
the shadows of your support structures falls at the loca-
tion of the minima in the PSF, then you may have serious
problems with throughput (for a single facet instrument)
of with strong variation in the response.

3.5. The FOV

A decent approximation is that size of the FOV, as
characterized as the angular size of the region where the
vignetting function8 is greater than 0.5, is

Max(Γ) = 2Ro/Rc. (16)

where Ro is the radius of the optic measured perpendic-
ular to the optical axis. This is merely the application of
a simple geometric idea; the edge of the optic defines the

8 By vignetting function we mean the effective area as a func-
tion of angle from the instrument axis, normalized to the greatest
effective area at that energy. Thus the vignetting function has a
maximum of unity.

Figure 16. The vignetting function for the LEXI optic. The
different colors are for different energies from low (0.1 keV, purple)
through 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, 3.0, and 4.0 keV to high
(5.0 keV, red). The thick vertical bar marks Ro/RC , Ro/RC −Γ1,
and Ro/RC − Γ2 for this device.

maximum angle at which a ray can pass through a pore
without reflection. At that angle, half of the effective
acceptance area is off the optic, and thus the vignetting
function should be ∼ 0.5 at that point.

Figure 16 shows the vignetting function for a LEXI
style optic with 3×3 40 mm facets and a focal length
of 730 mm. The vignetting function was calculated at a
number of energies from 0.1 keV to 5.0 keV. We note that
at high energies, the vignetting function is very narrow,
with a dip half-way between the edge and the center.
Since the bulk of the photons at high energies are not
focussed, the dip is the shadow of the support structure.
At lower energies more of the photons are focussed. The
dip appears at the center because the support structure
is shadowing the region where the bulk of the on-axis fo-
cussing is done. There are increasing tails to large angles
as the energy decreases; the angle of incidence can be
larger at lower energies. We see that the above approxi-
mation for the size of the FOV is roughly good for lower
energies, where more of the light is focussed.

For many applications, one is interested in the angu-
lar size of the region over which the vignetting function
is relatively flat. This angular size is a function of the
size of the optic and effective acceptance area for single
reflection. As seen above in Figure 15, the area within
Γ1 makes the greatest contribution to the PSF. Thus, we
can very roughly state that the edge of the essentially un-
vignetted FOV will be an angle somewhat greater than
Γ1 and less than Γ0 in from Ro/Rc, or that the FOV has
a width of

2(Ro/Rc − Γ1 < Max(Γ)v < 2(Ro/Rc − Γ0). (17)

Although we have not explored parameter space thor-
oughly, we find that the above equation is a good approx-
imation for the region with a vignetting function > 0.9
for optics that are larger than ∼ 3Γ0.

This calculation also points out that any reasonable
optic should have Ro & 2RcΓ1; any smaller and you are
not using the optic at it’s maximum efficiency.
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3.6. Detector Size

It seems otiose to note that since the focal surface is
roughly RC/2 from the optic, the detector needs to be at
least half the linear size of the optic. However, a source
2RO/RC from the optical axis still has half the effective
area as a source on the optical axis, so it behooves us to
make the detector larger than RC/2 if at all possible.

3.7. A Few More Musings

M. Galeazzi has inquired about radial pores, that is,
pores whose walls are not parallel, but are strictly per-
pendicular to the surface of the sphere. We assume that
walls are at an angle ε/2 to the pore axis (at an angle ε
with respect to one another), and that a ray comes in at
an angle δ with respect to the pore axis, so that it strikes
the interior wall at an angle Γ1 = δ+ε/2. Looking at the
first triangle formed by the left wall, the normal to the
right wall, and the ray after the first reflection, it is clear
that Γ2 = Γ1 + ε and that for each successive reflection

ΓN = Γ1 + (N − 1)ε. (18)

This means that each successive reflection becomes more
normal to the surface. For infinite reflectivity and a very
long pore, the ray will reverse and return through the
top of the pore! More to the point, reflectivity decreases
strongly as the rays become more normal to the sur-
face, suggesting that tapered pores will produce even less
three-reflection throughput than parallel pores.

Typically, we only need to worry about, at most, three
reflections in a given dimension. In that case, the differ-
ence between the parallel case and the radial case is 3ε.
For a 20 µm pore in a 1000 mm radius of curvature facet,
ε ∼ 4.′′12, while for a 750 mm radius of curvature facet,
ε ∼ 5.′′5. Thus, this issue is not important for current
devices. However it should be noted that the larger the
pores or the shorter the focal length, the more significant
this effect will be.

Figure 17. Rough draft for a plot demonstrating the effects of
a “radial pore”, one whose walls are not parallel, but are strictly
perpendicular to the sphere. Each reflection becomes more normal
than the previous one.
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4. MATHMATICS OF A REAL SMO

This section explores a few of the issues of a single
real SMO; it is by no means an exhaustive list. We ex-
plore three large scale issues, the radius of curvature, the
bias, and the intrinsic deformation due to the slumping
of the optic. In the future, we will consider the random
misalignments of individual pores, which Willingale has
found to be a significant factor in the degradation of the
PSF.

4.1. Radius of Curvature

Errors in the radius of curvature are errors in focal
length; your optic will be out of focus. Remember that
the part of the optic that is near the source axis does not
contribute significantly to the focussed light; the bulk of
the contribution comes from the region to either side of
the source axis where nmin changes from 1 to 2. Thus,
since the focused rays are coming from opposite sides
of the source axis, those rays meet (and cross) at the
focus. If the focal plane is not at the focus, those two
bundles with strike the focal plane at different locations.
Thus, an out of focus optic’s response to a point source is
the standard cross, but with both arms doubled, as seen
in Figure 18. Note that the doubled arms are strictly
parallel.

Of course, the radius of curvature need not be constant
over the entire facet. Consider the case of an optic with
a constant Rcx and a Rcy that varies linearly with x.
The example in Figure ?? set Rcx = Rcy at the center of
the device, with Rcy increasing from the left side of the
device to the right. The figure shows the PSF for an on-
axis source. Again we see the doubling of the arms, but
the distance between the arms depends upon the local
radius of curvature. However, in this case, the change in
Rcy is ±4 cm, which much larger than the errors typically
seen in facets.

The above case is rather trivial. One can also con-
sider the case where the curvature, Rcy , is a function of
y. Figure 20 shows the PSF for an on-axis source where
the radius of curvature at (y = 0) is roughly 6% longer
than it is at the upper and lower edges. Since the Rcy is
changing over the range of y which is primarily responsi-
ble for focussing in that direction, the two parallel arms
are significantly blurred. It should also be noted that
the width of those arms will change strongly with the y
location of the source.

4.2. Bias and Misalignment

The bias is the extent to which the pores are not per-
pendicular to the surface of the SMO facet before slump-
ing. We have assumed that a uniform bias produces a
constant (∆αx,∆αy) in the tilt of all of the pore walls.
The result is to shift the location of the center of the
PSF by (2∆αx, 2∆αy). This is shown in the first panel
of Figure 21. Given the manufacturing process, it is not
at all impossible for the bias to change from one segment
of the facet to the next9. The second panel of Figure 21
shows the PSF of an on-axis source if the bias changed
from −∆αy to +∆αy as one moves from left to right.
The two arms are no longer perpendicular.

9 See the manufacturing note in the introduction.

Figure 18. The PSF as the focal plane is moved through the
focus. In each case the PSF is formed by a single 4 cm by 4 cm facet
with Rc= 75cm, when the source is on the instrument axis. All
simulated images are logarithmically stretched to show the fainter
structure of the PSF. From top to bottom the images are for -2.0
cm, -1.0 cm, 0.0cm, 1.0 cm, and 2.0 cm, where a positive number
indicates that the detector is further from the optic.
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Figure 19. The PSF of a source on the instrument axis for an
optic where the radius of curvature in the y direction, Rcy changes
smoothly as a function of x. At the center, Rcx = Rcy= 75 cm.
At the left edge the Rcy is 4 cm longer than at the center, and at
the right edge the Rcy is 4 cm shorter than at the center.

Figure 20. The PSF of a source on the instrument axis for an
optic where the radius of curvature in the y direction, Rcy , changes
smoothly as a function of y. In this case the radius of curvature at
the center of the facet is longer than it is at the upper and lower
edges of the facet.

4.3. Rotation

Given that SMO are not axisymmetric, one might be
understandably worried about rotation, either of indi-
vidual pores, or of the SMO as a whole. Consider, in a
very simplified two-dimensional way, the interaction of a
single ray with a single pore. Figure 22 (top) shows the
interaction of a ray with a single wall. If the wall is ro-
tated by α, the output ray moves by 2α in the same sense
or direction as α. Figure 22 (bottom) constructs the path
of a ray being reflected by two perpendicular walls; the
output ray is antiparallel to the input ray. This is true,
independent of the rotation of the pore by α. With these
exemplars, we can easily understand Willingale’s rule:
rotation of a facet by α does not change the location of
the focus, but rotates the PSF by α.

4.4. Slumping & Pore Deformation

Although we do not know exactly how the slices are
slumped10, we can reasonably assume that the process
can be modeled by allowing the flat slice to slump over
a spherical mold. For this exercise we ignore the issue of
the thickness of the slice, and how slumping suggests that

10 This statement is a bit misleading. Photonis has explained the
procedure by which they slump the facets. What is not understood
is what the glass is actually doing during this process.

Figure 21. The effects of pore bias on the PSF of a source on the
instrument axis. Top: A uniform ∆αy of XX′. Bottom: The
∆αy changes smoothly with x.

the part of the pore walls near the upper surface much
stretch compared to the part near the lower surface.

Figure 23 demonstrates the issue in a rather schematic
way. The thin plate with a radius of D is placed on
a spherical mold. We assume that the lower surface of
the plate does not stretch during slumping and conforms
smoothly to the mold. If the radius of curvature of the
mold is R, after slumping the edge of the thin plate will
now be a distance D′ = Rc sin (D/Rc) from the instru-
ment axis. Thus, the pores falling on a circle of radius D
from the instrument axis must now form a circle of radius
D′ < D. (See Figure 24. The slumping thus ought to
produce a compressional force perpendicular to the local
vector towards the facet axis.

4.4.1. A Possible Mathematical Description

We will further assume that there is no stretching or
compressing of the pore walls along their lengths, but
we will assume that the pore walls can pivot like hinges
where they intersect. Since the glass is slumped while
hot, the “no stretching” assumption may not be reason-
able. By these assumptions, the pores on the x and y
axes of the optic will not be altered as the compressional
force is along the lengths of the pore walls. At an angle
π/4 from the x or y axes, the compressional force must
exerted on diagonally opposed corners and one would
expect the square pore to become diamond shaped, with
the longer axis aligned with the local radius to the facet
axis. One might also expect that pores along the π/4
vector to be offset outwards as a result of the elongation
of pores on the same vector at smaller radii. Overall, one
might expect a pin-cushion-like distortion in the arrange-
ment of pores.
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Figure 22. A demonstration of the effect of rotating a pore. Top: For a single reflection, rotation of the wall by α results in a rotation
of the output beam by 2α. Bottom: For a double reflection from perpendicular walls, the rotation of the pore by δ causes no rotation of
the output ray. Here, for clarity, I show a rotated beam rather than the equivalent rotated box. For both figures the thick lines are the
reflective surfaces.

Figure 23. A cross-section of the optic before and after slumping.
A point a distance D from the instrument axis of the unslumped
optic will be a distance D′ < D after slumping.

One might develop a scheme in which the compres-
sion of a given pore is proportional to the projection of
the compressional force onto the pore diagonal, but it
is certainly not clear whether this is how the grid be-
haves. Willingale states that this problem was given to
an expert in finite element analysis and has been solved.
While an independent solution is found on this side of
the Atlantic, we can propose some simple analyses to
understand the magnitude of the issue.

With a modicum of care for round-off errors, one can
implement a numerical solution assuming an infinitely
thin slumped plate. We assume that the walls do not
change their lengths, but are free to pivot at their inter-
sections. If we fix the location of wall intersections along
the x and y axes of the optic, we can then sequentially
solve for the location of all of the other wall intersections.

Figure 24. A demonstration of the ways pores may be distorted
due to slumping. The solid red line shows the radius D before
slumping while the dashed red line shows the location of that radius
after slumping. The green lines show the grid before slumping
while the arrows show the direction of the forces on each pore.
The dashed lines show π/8±!pi/32.

The derivation is given in the appendices. Problems with
numerical accuracy can be decreased if one requires the
solutions to be symmetric about the π/4 radius. The
amount of deformation as a function of location for the
upper right quadrant of the optic is shown in 25. The
amount of deformation of a pore is measured as the differ-
ence between the slumped pore diagonal and the original
pore diagonal. Here we measure the more radial of the
two diagonals so that the distortion increases towards
the π/4 radius and towards greater radii. As is shown in
the appendices, this analytic solution has the functional
forms expected from the simple compression along the
circle. The deformation as a function of azimuth has the
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Figure 25. The pore compression as a function of location for the
upper right quadrant for the sin (2φ) model. The color scale runs
from insignificant deformation (black), to maximum deformation
(red).

form
sin (2φ) (19)

while the deformation along the π/4 radius has the form

1− Rc
D

sin

(
D

Rc

)
. (20)

This later quantity is proportional to relative compres-
sion at a particular radius (D − D′)/D. However, the
scaling of these functional forms to fit the analytic solu-
tion is not obvious. By fitting these functional forms to
the calculated deformation we find that the deformation,
d is given precisely by

1.5 sin (2φ)

(
1− Rc

D
sin

(
D

Rc

))
. (21)

4.4.2. Deformation of a Single Pixel

Of interest is the extent to which the walls of the pore
are no longer perpendicular. This can be calculated from
the analytic model using the dot product of adjacent
walls. The difference between the measured angle and
π/2 is shown in Figure 26 as a function of location11.
For the bulk of the optic, the difference is less than an
arcminute. Consider just a single reflection from a sin-
gle wall. If the wall is rotated an arcminute, the beam
originally with undeviated in the ŷ direction will no suf-
fer a 2.′0 deviation in the ŷ direction. A 2.′0 rotation of

11 One must be careful about how one measures this angle. The
angle cited in the text was measured, in essence, in the plane tan-
gent to the sphere at the location of the pore. Vectors describing
two adjacent walls were constructed from the calculated wall inter-
sections, and the angle taken from the arccosine of the dot product
of those vectors. If, instead, one were to measure the angle as pro-
jected onto the plane perpendicular to the optical axis, one would
find the angle changes by a fraction of an arcsecond! For the D/Rc
ratios encountered with STORM, the elongation of the pore in the
radial direction is roughly compensated by the cos (D′/Rc) effect
of the projection. The change in this projected angle is comparable
to noise in the numerical accuracy.

Figure 26. The angle between two adjacent sides of the pore as a
function of location expressed as the difference from perpendicular,
in arcminutes.

Figure 27. The regions of the pore producing one (blue), two
(green), or three (red) reflections. Top left: no deformation, top
right: a tenth of a degree deformation, bottom left: one degree
deformation, and bottom right: ten degrees of deformation.

the beam, for the STORM configuration, is equivalent to
a ∼ 0.03 cm movement in the detector plane, which is
much smaller than our detector pixels. For SMILE type
detectors, with 108 µm effective pixels, this movement is
∼ 2.6 effective pixels. SVOM has 75 µm pixels so this
would mean a motion of 4 detector pixels. Thus, the
deformation could be important for those instruments,
while negligible for STORM.

However, the effect of deformation is not quite so
straight forward, since we are typically dealing with mul-
tiple reflections from non-perpendicular walls. As shown
in §3, some fraction of the pore area will lead to fmin re-
flections while the remainder will lead to fmax bounces.
For a square pore the two dimensions are separable. This
is not so for a deformed pore. Figure 27 shows the rela-
tive areas for each of the possible number of reflections
as the pore is progressively deformed. The relative areas
for a tenth of a degree deformation are less than a half
percent different from the un-deformed case.
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5. SMO MOSAICS

Given their typical size (4 cm by 4 cm), single SMOs
are not particularly useful. Instead, one must mosaic
them together in order to increase throughput12 and
field-of-view. There are a number of issues involved with
mosaicking. One will need to support the facets, and any
support structure will produce shadows on the detector
plane. Since the individual SMO are square, mosaicking
them onto the surface of a sphere is not trivial. Mosaick-
ing also introduces yet more ways to degrade the image
quality. We will consider two of them; the frame/facet
mismatch (where the radius of curvature of the facets
does not match the radius of curvature of the frame in
which they sit) and the misalignment of facets.

5.1. Support Structures

It is useful to consider the throughput of pores as a
function of off-axis angle Γ. From Figure 15 it is clear
that the bulk of the contribution to the focused rays
comes from pores where the ray was reflected (in the
a single dimension) only once. That contribution is zero
on the optical axis, peaks at Γ0, and declines to Γ1 There
is also a minor contribution from rays that were reflected
thrice (Γ1 to Γ3), but there is negligible contribution from
higher numbers of reflections.

Consider a facet centered on the optical axis. For the
LEXI optic, the edge of the center facet is 1.◦528 off-axis,
while Γ0=1.◦146. Thus, the region contributing most to
the focussing of an on-axis source is mostly on that facet.
For the proposed STORM optic, however, the edge of the
facet is 1.◦146 from the optical axis, placing the support
structure right where the contribution to focussing is at
its greatest. Thus, STORM optic would be a very poor
instrument for imaging a source on the optical axis. The
STORM situation is shown (roughly) in Figure 28.

Consider the difference between placing the optical axis
in the center of the facet (centered, middle panel of Fig-
ure 28) and placing it at the crossing of the supports
(crossed, bottom panel of Figure 28). In the crossed im-
age, the obscuration removes primarily the low Γ rays,
which are not strongly focussed, while the obscuration in
the centered image falls right on the source of the great-
est contribution to the focussed image. If the support
structure period is twice the angular scale of the peak
contribution (as it is with STORM) then one maximizes
the amplitude of the variation in the throughput and (I
believe, still have to check) maximizes the decrease of
throughput per area obscured.

Figure 29 shows the vignetting functions for a LEXI-
style instrument as a function of energy, for the total
transmitted flux, as well as for the fully, partially, and
non-focussed rays. As pointed out for a previous fig-
ure, at low energies the vignetting function has a dip at
the optical axis due to partial obscuration of the peak
focussing area by the support structure. At higher ener-
gies, the dip is due to the actual shadow of the support
structure.

The fully focussed fraction typically falls with energy
as the reflectivity for a given incidence falls with energy.

12 This statement may seem as if I am repudiating the rule that
increasing the size of the optic does not increase the effective area.
However, for many typical RC , the effective acceptance area is
larger than the typical device size.

Figure 28. Top: A map of the relative contribution to the
focussing as a function of position on the optic. Middle: The same
map showing the location of the area shadowed by the support
structure when a facet is centered on the optical axis. Bottom:
The same map showing the location of the area shadowed by the
support structure when the support structure crossing is centered
on the optical axis.

Here we see a slight increase from the very lowest energy
(0.1 keV) to ∼1 keV due to the fact (?) that at the very
lowest energies three reflection focussing becomes more
likely, and the device is not wide enough to include all of
the area for which three reflection focussing is possible.

The partially focussed fraction holds a slight surprise.
At the very highest energies considered here, the shadow
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Figure 29. The vignetting function as a function of energy for the total transmitted flux (T), fully focussed flux (F), partially focussed
flux (P), and non-focussed flux (N). In each case, the curve has been divided by the maximum of the total transmitted flux curve for that
energy. The energies are given in the legend.

of the support structure shows a slight peak at its cen-
ter. Note also how flat much of the vignetting function is.
This is due to the fact that the reflectivity at this energy
has fallen to zero for an incident angle of Γ0. Thus, the
peak of the reflectivity is angle smaller (perhaps much
smaller) than Γ0 from the optical axis. At the highest
energy shown here, the peak reflectivity is slightly fur-
ther from the optical axis as the width of the support
structure. Again we note that the fraction of partially
focussed light decreases strongly with energy.

The non-focussed fraction shows the expected behav-
ior. At higher energies, the SMPO acts mostly as a colli-
mator. At the lowest energies two-reflection (in a single
dimension) rays become more likely, and the non-central
squares of the PSF become more prominent.

One other useful concept to explore with these vi-
gnetting functions is the fraction of focussed light com-
pare to the non-focussed light. Figure 30 shows this
quantity as a function of off-axis angle. At both low and

high energies the ratio is nearly flat. At moderate ener-
gies (∼0.7-1.5 keV) the fully focussed fraction can vary
strongly, being much greater where the support structure
minimizes the non-focussed flux. Reducing the focussed
component compared to the unfocussed component at
the centers of facets increases the point source detection
threshold and will make structures in the diffuse emis-
sion more difficult to detect. This lack of detectability
will be periodic across the FOV.

5.2. Tiling Geometry

Thus far we have been treating the optic as a single
monolithic structure. There is, alas, a limit on the size
of a single SMO. Thus larger optics must be made by
tiling or mosaicking together individual SMOs, or facets,
to attain the required size. How does one tile the square
facets onto a spherical surface? In the following, we are
going to explore close-packing the facets, ignoring the
need for supports and such. We assume that the optic is
2N facets wide, and facets have a width F . (Clearly, N
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Figure 30. The fully focussed flux divided by the non focussed
flux as a function of off-axis angle.

Figure 31. Demonstration of how a square facet sits into the
latitude/longitude grid. All quantities are angles.

could be integral or half-integral. We’ve opted for this
formulation to make some of the derivations easier in the
following.)

When looking at a sphere, lines of constant latitude
are, in fact and in deed, parallel. Thus, let us begin by
assuming a pole in the ŷ direction and tiling facets along
a line of constant latitude, φ, that is supposed to be the
outer limit of the optic in the +ŷ direction. Clearly,
φ = NF/Rc and we want to place the facets so that
their upper edge is along the latitude NF/Rc. This is
equivalent to placing the facets so that a vertical line
through the middle of the facet is aligned with a line of
constant longitude (for a pole in the ŷ direction).

The width, in angle (that is, longitude), of a sin-
gle facet whose top edge is along φ = NF/Rc
will be F/Rc cos (NF/Rc). However, the equiva-
lent width, in angle, along the bottom edge, will be
F/Rc cos ((N − 1)F/Rc). It can be seen if the upper cor-

Figure 32. A projection of the optic into the xy plane. The
optic has a spherical surface. The parallel solid red lines are lines
of constant latitude if the pole were in the ŷ direction while the
dashed red lines are lines of constant latitude if the pole were in
the x̂ direction (fewer shown to keep the plot readable!). The blue
lines are lines of constant longitude for the pole being in either
the x̂ or ŷ direction. The black lines show the results of the first
method of close-packing of the facets described in the text. The
green lines trace the direction of the facet centers. Here we have
assumed Rc=100 cm. Note that ẑ is out of the page.

ners of two adjacent facets touch, their bottom corners
will be separated by

g = F

(
cos ((n− 1)F/Rc)

cos (nF/Rc)
− 1

)
(22)

in linear measure (not angle). Thus there will be a wedge
shaped space between every pair of facets that is side by
side, but none between the top of one row and the bottom
of the next. The relative width of that wedge increases
as one moves away from the equator.

There are two ways that one might think of tiling the
facets. In both cases one starts at the center of the upper
edge of the array of facets, moving outward from the
center, and then down.

Constant Longitude Tiling: In the first case, one
aligns the centers of the facets in the next row down
with the longitudes of the centers of the upper most row.
Thus, each column of facets is centered on a constant
longitude, as shown in Figure 32. In this case, the gap
between columns of facets increases strongly towards the
equator. The gaps between facets for y=0 will be

g = F

(
1

cos (NFRc
)
− 1

)
. (23)

For the STORM parameters and this tiling, the gaps be-
tween facets will be 0.0813 cm along y = 0. Depending on
the details of the pore width/length ratio, the facet size,
and the thickness of the support structures, the constant
longitude tiling could exacerbate the periodic variation
in the effective area across the FOV, as described in §??.

Close-Pack Tiling: In the second case, one tiles each
row so that the corners furthest from the ”equator” are
touching while the corners closer to the equator are not.
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Figure 33. As for the previous figure, but showing the results of
the second method of close-packing the facets.

In this case the gap size, g, depends upon the row num-
ber n as in Equation 22. For the STORM parameters
and this tiling, the gaps between the facets will decrease
from 0.0292 cm on the top row to 0.00320 cm on the row
along y=0. This “saw-tooth” configuration minimizes
the gaps between facets and minimizes the variation in
the effective are within the FOV.

A Comparison: As discussed in another document,
the Earth-shade must have a series of parallel interior
fins in order to be short enough to be deployed. The fins
must be perpendicular to the surface of the optic in order
to minimize the shadowing by it of the optic. For me-
chanical stability, the base of the fin should be anchored
to the optic support structure. Thus, they may either be
flat and anchored to the longitudinal supports, or curved
and anchored to the latitudinal supports. There are also
configurations where some fins cross the centers of the
facets. Since these fins can only be anchored at a lim-
ited number of locations, the feasibility of curved fins is
not clear. Thus, it is worth considering the quantitative
differences of the two methods.

If we assume the standard 4 cm facets, and assume
a minimum 1 mm spacing between facets, then we can
simulate the STORM optic for both tiling methods. The
results are shown in Figure 34. We find that over the
center of the FOV, the close-pack method produces an
effective area that is < 2% higher than the constant-
longitude method. The effective area shows a peri-
odic variation whose amplitude is ∼0.07%(∼0.05% for
the close-pack(constant-longitude) method. Thus, unless
one really needs that last ∼1.8% improvement, the pack-
ing has little impact. This may not be the case if the min-
imum facet spacing is increased or the pore width/height
ratio is changed.

5.3. Frame/Facet Mismatches13

13 This work was done while at PANTER doing work with LEXI.
Much of this work is due to Vadim Burwitz, for whom mosaicked
SMO instruments are now familiar. My work here is mostly putting
that work into my existing formalism.

Figure 34. Vignetting curve for βy = 0 the same device with
close-pack (black) and constant-longitude (red) tiling.

The frame/facet mismatch occurs when the facet ra-
dius of curvature (RF ) is not the same as the radius of
curvature of the frame in which the facets are set (RC).
In the case of LEXI, this was due to the delivered facets
having a radius of curvature that was consistently shorter
than the specification (730 mm versus 750 mm). Thus,
even if the facets are correctly aligned so that the pore
at the center of each facet is perfectly radial, the field of
view will be discontinuous, in that a source falling be-
tween the two facets will produce two images, one due
to each facet. At the corners, where four facets meet,
one gets four images. The result can be understood from
Figure 35.

Figure 35 (top) shows a cross-section along the x-axis
of a multifacet optic. Here the radius of curvature of the
frame is RC , while the radius of curvature of the individ-
ual facets is RF < RC . The geometric construction of
the frame is shown in black, while that of the individual
facets is shown in red. This graphic is for an extreme case
in order to make the relationships clear. The facets are
more strongly curved than the frame, and their origins of
curvature are a distance ∆R from the frame origin of cur-
vature. Note as well that the area of the sky subtended
by each facet is α′ > α, the area of the sky subtended by
a facet with RF=RC . Thus, a source which is at an angle
α/2 from the instrument axis (the z-axis in this diagram)
is “seen” by both facets, but the light is focussed to dif-
ferent points by the two facets. This focussing is shown
in the bottom panel of Figure 35. Here, the color coding
indicates the relative contribution of each ray to the fo-
cus; blue-purple indicates a small contribution, while red
indicates a large contribution14.

To understand the implications of this configuration,
we have to work through the mathematics. The black
dashed line in the top panel of Figure 35 is a chord span-

14 For the reader who may have jumped directly to this section,
see Section 3.4 for an explication.
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Figure 35. Cross-section of an optic with a frame/facet mis-
match. The extent of the mismatch has been exaggerated in order
to make all of the relevant geometry visible. Top: The diagram
shows the central facet and one side facet. The frame and its mea-
surements are shown in black. The dashed black line is a chord
stretching from one side of the side facet to the other. The dotted
black straight line is the nominal detector plane, while the dotted
black curve is the focal surface. The facets, which have a shorter
radius of curvature are shown in red. Their centers of curvature
are at A and B, both a distance ∆R from the center of curvature of
the frame. Bottom: The same as the previous panel, but showing
the focussed rays from a source located α/2 from the instrument
axis. The color coding is roughly the relative weight of each ray
coming to the focus; blue having low weight and red having high
weight.

ning a single facet. The length of the chord is

x = 2RC sinα/2 = 2RF sinα′/2 (24)

From the construction one can determine that

∆R =

(
R2
C −

x2

4

) 1
2

−
(
R2
F −

x2

4

) 1
2

(25)

This is simply a statement that ∆R is given by the dis-
tance from the frame origin of curvature to the chord
minus the distance from the facet origin of curvature to
the chord. For RC=750 mm and RF=730 mm (the case
for LEXI) ∆R=20.000077 mm.

Now we consider the light coming from a source at
an angle α/2 from the instrument axis, which is in the
direction of the junction of the two facets. The two green
(heavy black) lines in the top (bottom) panel of Figure 35
indicate the undeflected ray from that direction for both
facets. The intersection of this ray with the focal surface
(shown as the dotted red curves) indicates the places that
the source is focused by the two different facets. There
is not a nice way of representing the distance between
these points. (One can calculate the (x, z) location of the
origins of curvature, and the the locations of the foci with
respect to those positions, but that does not produce a
terribly nice formula.) For the LEXI case the distance
between the foci is 1.093 mm, or 10.′01 (roughly the size
of the PSF), but those spots are significantly above the
designed detector plane.

What we see from Figure 35 is that if you follow the
bundle of the most heavily weighted rays, the ray bundles
from the two facets do converge at some distance below
the individual foci where, of course, both bundles have
diverged significantly. One can estimate where that con-
vergence will be; the peak of the weighting will occur Γ0

closer to the center of the facet axis than α/2. This leads
to a messy formula for the distance of that convergence
from the origin of the frame curvature:

R′′ =
C sin (Γ0 − arcsin (∆R sin (α/2)/C))

sin Γ0
(26)

where

C =

(
∆R2 +

(
RF
2

2)
+RF∆R cos (α/2)

) 1
2

(27)

For LEXI, the convergence of the most strongly weighted
bundles is 357.5 mm from the origin of curvature for the
frame or 392.5 mm from the optic. This is slightly more
that we measured at PANTER (see Figure 36) but, given
our rather simple assumptions about which part of the
bundle is important and the fact that the LEXI facets
have some intrinsic misalignment, the agreement isn’t
too bad.

5.4. Misalignment vs. Mismatch

The frame/facet mismatch produces one focus spot per
facet. Similarly, the misalignment of facets will produce
one focus spot per facet. Can one distinguish between
frame/facet mismatch and a misalignment? Considera-
tion of Figure 35 suggests that we might see a difference
between the two cases since the focal lengths are differ-
ent.
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Figure 36. The size of the PSF as a function of optic-detector
separation for beams towards the corners of the central facet of
LEXI. The data (boxes) and fits are shown for each of the four
corners.

Figure 37. Spot size as a function of focal plane distance when
the optical axis is placed at the boundary of two facets. The solid
line shows the expected behavior for a properly aligned optic. The
spot size perpendicular to the axis of the two facets is plotted as
boxes. The spot size along the axis of the two facets is plotted
as diamonds. Black: Two facets having RF =730 mm in a frame
with RC=750 mm. Blue: Two facets having RF =RC=750 mm
where one facet has been misaligned by 4.′58 along the axis linking
the two facets. The angle is away from the other facet. Green:
The same as the previous case but with a misalignment of 2.′29.
Red: The same as the previous but with a misalignment of 1.′15.
Orange: See text.

We consider two adjacent facets, and misalignment
only along the axis between the two facets. (Misalign-
ment in the perpendicular direction would be immedi-
ately obvious.) We simulated15 two facets with RF=730
mm set in a frame with RC=750 mm. We measured the
angular distance between the two spots in the frame’s
focal plane, 4.′58. We then simulated two facets with

15 Simulations made with PBP4 for LEXI testing at PANTER.

RF=750, but misalignment of 4.′58. We simulated the
image in a series of focal planes with distances both
shorter and longer than the ideal facet focus. This means
that for the frame/facet mismatch series is centered 365
mm while the misalignment series is centered on 375 mm.
For each focal plane distance we measured the “spot size”
both along the axis linking the facets and axis perpen-
dicular to that. Given that the “spot” is likely to be two
spots, we defined the spot size along a given axis, to be
the size of the interval containing greater than 15% of
the peak flux.

The above test is to see if one can distinguish between
the two cases when the spot separation in the design
focal plane is the same. We find that there is no sig-
nificant difference in the spot size as a function of focal
distance between the frame/facet mismatch and the facet
misalignment. Close examination of the cross section of
the spots show that there are differences, the subspots for
the mismatch contain more flux than the subspots for the
misalignment for intrafocal distances, and the reverse is
true for extrafocal distances. However these differences
are likely to be too small to be detected with real devices.

In practice, one might be dealing with both phenomena
simultaneously. In Figure 35, the red curve is a simula-
tion where the facets have RF=730 mm and are set in
a frame with RC=750 mm, and the side facet is mis-
aligned by 2.′29, putting it’s focus closer to that of the
other facet. You can see that configuration is very sim-
ilar to that with no frame/facet mismatch, and only a
2.′29 misalignment away from the other facet.

Lessons learned: Make sure that you measure the
radius of curvature for each optic before you machine the
frame in which they are to sit. Make sure you understand
the metrology of your frame. That way the ambiguity
between frame/facet mismatch and misalignment can be
avoided.

5.5. Further Considerations Concerning Mismatches &
Misalignments

Consider an on-axis source, where the optical axis
passes through the center of a facet. One can deter-
mine the relative amounts of flux transmitted by that
facet and the surrounding facets. Clearly, the fraction
of the flux transmitted by the central facet decreases as
RC increases. It is also clear that the fraction of the flux
transmitted by the central facet decreases as the energy
decreases.

Figure 38 shows the fraction of the fully, partially, and
non-focussed flux transmitted by the center facet, the
facets sharing an edge with the central facet, and the
facets diagonally adjacent to the center facet, as a func-
tion of energy. For a LEXI style optic with RC=750 mm,
at low energies only ∼40% of the focussed flux is due to
the center facet; roughly the same amount is contributed
by the two facets to either side and the facets above and
below. Thus, over half of the flux in the core of the PSF
is contributed by facets that may be misaligned with the
center facet. For a STORM style optic with RC=1000
mm, the situation is even worse, only ∼20% of the flux
is from the center facet; the bulk of the flux is due to
focussing by the surrounding facets. Thus, alignment
of the facets is exceptionally important at lower
energies, particularly at longer RC .



SMO Vade Mecum 25

Figure 38. The fraction of the fully (solid line), partially (dashed)
and non-focussed (dotted) flux transmitted by the central facet
(black), the facets sharing an edge with the central facet (red), and
the facets diagonally adjacent to the central facet (green). Top:
for a RC=750 mm optic Bottom: for a RC=1000 mm optic. In
both cases W/L=0.02 and the facet is 40 mm by 40 mm.



26

Figure 39. Increasingly reasonable designs for the STORM sun-
shade with internal baffles. The Earth is to the left and the Sun is
to the right. In each case, the curve at the bottom of the plot is
the surface of the optic.

6. SHADES & BAFFLES

There are two separate issues to be considered here,
the sunshade which surrounds the optic, and the inte-
rior baffles which, at least ideally, run between rows or
columns of facets16. We will consider primarily the baf-
fles, as the mathematics for the sunshade are similar. For
the baffles, we want the fins to be perpendicular to the
local surface in order to minimize shadowing. It is antic-
ipated that the interior baffles will need to run in only a
single direction, which is perpendicular to the Earth-Sun
line.

Figure 39 shows a series of designs for the STORM sun-
shade with interior baffles. This sunshade was designed
for staring at the nose of the magnetosheath when the
Earth is 6.5◦ from the optical axis and the Sun is 56.5◦

from the optical axis. For many applications, running
baffles only along the facet boundaries is insufficient to
produce a short enough sunshade. Baffle fins for LEXI
have to be spaced at 1

3 facet intervals in order for the
sunshade to be short enough, while STORM could cope
with baffle fins spaced at 1

2 facet intervals. Thus, con-
cerns about the interaction of tiling and the baffle fins
are, to some extent, otiose.

6.0.1. Throughput

16 The calculation of the lengths of the sunshade and baffles are
not covered here but is in a separate document. We will assume
here that there are no reflections from the baffles.

Calculating the reduction in throughput is really the
point of simulation. However, some though experiments
can provide some useful understanding. First, remember
that the baffles run in only one direction, so the problem
can be worked in a single dimension. We will consider
two situations; one where the optical axis in on a baffle
fin, and a second where the optical axis is intermediate
between two fins. In both cases the RC of the optic and
the angular separation of the fins is kept constant. Given
that only a limited area contributes to the focussing, and
given that the baffle fins are perpendicular to the surface
of the optic, we expect expect the amount of shadowing
to non-negligible, but small.

Our example in Figure 40 is theRC∼1000 mm STORM
optic, where we’ve chosen a representative length (100
mm) for the baffle fins. The curve at the bottom of each
plot is the surface of the optic, and we have shown either
two or three baffle fins. The dashed red lines are parallel
to the optical axis; the parts of the optic between the
dashed red lines and the nearest fin are shadowed. The
blue lines mark the location Γ0 where fraction of singly
reflected rays peak. We can see that a source parallel to a
baffle fin is focused primarily by the part of the optic that
is near the shadow cast by the next baffle fin. However,
it is a relatively small area that is being shadowed. The
situation is even better for a source half-way in between
two fins. Here the amount of the optic that is shadowed
is smaller, and the region being shadowed contributes
less to the focussing of the source.

We thus expect the baffle fins to introduce a periodic
variation in the effective area. Since longer fins shadow
more area, we expect the overall vignetting function to be
asymmetric. Figure 41 shows how the vignetting func-
tion changes as the number of fins is increased for the
STORM optic. It should be noted that the way that
one describes the loss of effective area is important. For
example, one would cite very different numbers if one
were considering only a source on-axis, an extended re-
gion surrounding optical axis, or one is considering the
overall effective area of the instrument.

6.0.2. Simulator Implementation

We wish to determine the shadow cast on the optic by
the baffle fins given a uniform light source in the direction
~B = [bx, by, bz]. It is assumed that the baffle fin is planer,
tilted with respect to the optical axis by an angle θ at
x=0, and that the top edge of the baffle fin is defined by
some function f(y). The simplest solution is to calculate
for a pore at a the location [ax, ay, az], whether a ray
starting at that location and pointing towards the light
source intersects the fin above or below its outer edge.
That is, we solve:

~A+ L~B = [x cos θ, 0, z sin theta] (28)

or

L =
ax cos θ − az sin θ

bz sin θ − bx cos θ
. (29)

The point of intersection is then [ax+Lbx, ay +dby, az +

dbz] = ~I, and one can determine if the pore is shadowed
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Figure 40. Demonstrating the two extremes of shadows cast by baffle fins. The curve at the bottom is the surface of optic. The blue
lines mark the location where the fraction of singly reflected rays peak. Top: A fin is pointed directly towards the source. Bottom: The
source direction is halfway between two fins.

Figure 41. Demonstrating the two extremes of shadows cast by
baffle fins. The curve at the bottom is the surface of optic. The
blue lines mark the location where the fraction of singly reflected
rays peak. Top: A fin is pointed directly towards the source.
Bottom: The source direction is halfway between two fins.

if √
I2
x + I2

y + I2
z >RC and√

I2
x + I2

z <f(Iy) (30)

We have generally assumed that the top edge of the
baffle fin is straight. This means that the fin is longer
at large |y| than it is in the middle of the optic. One
could well image employing baffle fins whose top edge has
a constant distance from the optic radius of curvature.
There is more work to be done here to understand to
what design is optimal. Thus, only the straight edged
baffle fins have been implemented thus far.
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Figure 42. A pointless(?) demonstration of the incommutable
nature of rotations. The solid black line traces an x̂ rotation by φ
followed by a ŷ rotation by φ as projected into the xy plane. The
solid red line traces an ŷ rotation by φ followed by a x̂ rotation
by φ as projected into the xy plane. Here φ = 11.◦46, which is the
size of the upper quadrant of the STORM optics in the absence
of support structures and the like. The dashed lines are lines of
constant longitude for the poles in the direction of x̂ and ŷ.

7. SMPO SIMULATOR IMPLEMENTATION

The calculation is done on a facet-by-facet basis, and
for a given facet it is done on a pore-by-pore basis. In
the current implementation the ray exiting the pore is as-
sumed to exit the center of the pore, a simplification that
may cause problems when attempting to model higher
angular resolution optics. Most of the following is just
thinking in text.

There is the fundamental problem that a x̂ rotation
by φ followed by a ŷ rotation by θ is not the same as
a ŷ rotation by θ followed by a x̂ rotation by φ. Thus
we must set a convention for the order. It seems most
natural to set the longitude to be in the x̂ direction and
latitude in the ŷ direction.

7.1. Algorithm

7.1.1. Calculate the location and rotation of the facet

Presumably, we can denote each facet by the longitude
and latitude of its center, and we can assume that the ŷ
axis of the facet is a line of constant longitude. We as-
sume the maximal packing of square facets, with indices
ii = 0 to N in the x̂ direction and jj = 0 to N in the ŷ
direction. The facet centers will have latitudes

ψmid =

(
N

2
− 0.5 + ii

)
F

Rc
. (31)

Their longitudes φ are set by the closest possible packing
at the latitude

ψext = ψmid(1 + 0.5
ψmid
|ψmid|

) (32)

and thus the longitudes of the middle of the facets are

φmid =

(
N

2
− 0.5 + jj

)
F

Rc cos (φext)
. (33)

And then

xmid = Rc sin (φmid) cos (ψmid), (34)

ymid = Rc sin (ψmid), (35)

zmid = Rc cos (φmid). cos (ψmid) (36)

The rotation of the facet, for an ideal instrument, is taken
care of by requiring that the ŷ axis of the facet be aligned
with line of longitude running through the center of the
facet. We should probably include the capability of ad-
justing the rotation in order to take installation toler-
ances into consideration.

7.1.2. Calculate the location and rotation of the pore

The location of the corners of the pores is given by the
mesh algorithm/code described in Appendix D. Since
the deformations are relatively small, we may (or may
not) ignore the effect of the deformation on the fraction
of the pore with n versus n + 1 reflections. However,
we want to capture the effect of the deformation on the
location that the reflected beam intersects the detector
plane. To do so, we will need the location of the pore,
[x, y, z], the magnitude of the acute angle of the pore
walls, γ, and the overall rotation of the pore, η.

7.1.3. Calculate the shadowing by the support structure, the
shades, and the fins

Once the array of the individual pores in a facet is set
up, a shadow mask is created to determine which pores
will not be exposed to light, or are otherwise blocked.

The pores sitting on the support structure will not
transmit. In the old implementation, the gap between
facets has been added to the size of the facet, but blocked
out. It is not clear how this is (to be) handled in the new
implementation.

The pores sitting directly underneath a fin should be
blocked out. In the current implementation, the fin is
assumed to be 1 mm wide.

Pores can be shaded by the fins. This depends upon
the direction of the light source. The calculation of this
is sketched in the previous section.

7.1.4. Calculate the fractions in each output beam

For each pore, one knows that angle from the optical
axis in both the x and the y direction, (Γx,Γy). Thus
one can calculate

nmin(x, y) = Int

[
L

W
tan (Γx,Γy)

]
(37)

and the fraction of light suffering (nmin, nmax) reflections
in a single direction is

fmin =
L

W
tan Γi − Int

[
L

W
tan (Γx,Γy)

]
fmin+1 = 1− fmin (38)

Thus, for every pore there are precisely four possibili-
ties17

fx,minfy,min fx,min+1fy,min
fx,minfy,min+1 fx,min+1fy,min+1

(39)

17 This is true for a square pore, but not for non-square pores.
We have not yet begun to fight that battle.
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7.1.5. Calculate the landing spot of each beam

For each of those possibilities, one must determine the
landing spot on the detector of that ray. This problem
can be divided into the two dimensions. If, for a given
dimension, n is even, then the output ray has the same
direction as the input ray, and we conveniently ignore
the fact that the output ray will be slightly offset from
the input ray. If, for a given dimension, n is odd, then
the input ray of angle β with respect to the optical axis
will exit at an angle γ = 0− (β+ 2α) with respect to the
optical axis.

The ray then lands on the detector a distance

∆X = (Zpore − Zdet) tan γx
∆Y = (Zpore − Zdet) tan γy (40)

from the optical axis in that dimension.
Thus, it is relatively trivial to vary to height of the fo-

cal plane in order to understand what happens when the
instrument is out of focus. We have not implemented a
curved focal plane as no curved detectors are yet avail-
able.

Note that to imitate the effect of bias or facet mis-
alignment, one can simply modify (αx, αy), perhaps as a
function of position. If one had a function for the pore or
pore bundle misalignment, then that distribution could
also be incorporated at this point.

The one thing that can not be easily implemented in
this scheme is the effects of pores that are not square.
Sufficient thought on this problem has simply not yet
occurred.

7.2. Post Simulation

Often, the whole point of the simulation of an instru-
ment is to produce a simulation of an observation with
that instrument. For each location on the sky, you need
the flux from the sky, the instrumental effective area in
that direction, and the instrumental PSF in that direc-
tion. Each location on the sky can be thought of as
projecting its PSF onto the detector. This means that
the count rate in a pixel of the detector is the sum, over
all locations in the sky, of the product of the sky flux at
that location and the appropriate element of the PSF at
the location. This would be a convolution if the PSF did
not vary with location. The variation of the PSF with
location makes image construction more complicated.

In order to make the exposition as simple as possible,
consider the problem in one dimension. Let us assume
that the detector pixels, i, are spaced uniformly, and that
we have calculated the PSF for each pixel, and that the
PSF has been calculated at the same grid spacing as the
detector pixels. An example, showing the PSF for every
tenth pixel, is shown in the lower panel of Figure 43.
Note that each physical detector pixel corresponds to a
particular angle from the optical axis. (In the above
mentioned figure, the x-axis is linear in pixel number,
and non-linear in angle.) The output image is the sum of
these PSFs, weighted by the brightness of the sky in the
direction of the PSF center. That formulation considers
the output image to be the sum of the projections from
each part of the sky. Conversely, the flux in detector
pixel i is

j=∞∑
j=−∞

PSFi+j(−j)Ii+j (41)

Figure 43. The vignetting functions and PSFs for the one-
dimensional demonstration of image construction. Top: The
upper solid curve is the total vignetting function. The remaining
curves show the vignetting for each of the PSF components, dotted
is the unfocussed photons, dashed is the partially focussed photons,
and solid is the fully focussed photons. Bottom: The PSF at the
location of every tenth pixel. The on-axis PSF is shown in black.
Note the logarithmic scale.

where PSFi+j(i − j) is the PSF for a location an angle
i+ j from the optical axis evaluated at an angle −j from
its center, and Ii+j is the input sky flux an angle i +
j from the optical axis. However, since the simulator
produces the PSFs, gridded in the detector coordinates,
it is usually most simple to think of the output image as
the sky weighted sum of the PSF 18.

Since the PSF changes with location, one needs a very
large number of PSFs is required to correctly simulate
an output image. For an ideal SMPO, the PSF does
not change with location. (ignoring the effects of the

18 I cheated when creating these PSFs. They are not the PSF
from a true one-dimensional detector. Instead, the PSFs used be-
low are just the central strip from a two-dimensional PSF, which
means that the fully focussed photons are over represented.
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deformation of the pores in the corners of the facets, etc..)
However, the support structures and, more importantly,
the edges of the optic, do change the PSF as a function
of position. The question becomes whether one can use
a combination of the on-axis PSF and the map of the
effective area (otherwise called the vignetting function)
to approximately simulate an output image.

We note that the PSF consists of a strong central peak,
and much lower, though quite broad wings. The strength
of the central peak compared to the wings suggests that
the output image is probably not sensitive to the details
of the wings. (Such suggestions are often wrong!) We
can try replacing the correct PSF with a shifted copy of
the on-axis PSF, scaled by the vignetting function. We’ll
call this a “constant PSF approximation”.

Figure 44 shows output images where the input image
had a uniform surface brightness with a single “point
source”. In one case this source has been placed in the
center of the FOV, while in the other it was placed at
the edge of the FOV. The black curve is the correct sim-
ulation where the correct PSF has been used for every
point. The red curve is a simulation where the on-axis
PSF was shifted and scaled by the local vignetting func-
tion. The red curve is good at the center of the FOV,
but gets the overall vignetting incorrect. Note that this
method does not get the point source correct when it is
no longer in the center of the FOV, though it does better
than the next several methods.

Since we have approximated the PSF with a constant
shape, but variable normalization, one might wonder if a
convolution might work; convolve the input with the on-
axis PSF, and then multiply the result by the vignetting
function. This method is shown by the purple curve
(which is usually the same as the blue curve). It gets
the vignetting mostly correct (it would have to!) but
it gets the point source strength substantially incorrect.
Can I explain this?

One might attribute the error in our first approxima-
tion to the fact that the relative strengths of the core, the
arms, and the unfocussed components vary with off-axis
angle. We have applied the constant PSF approximation
to each of these components separately. The result is the
green line. It does better than convolution for the point
source, but gets the vignetting even more badly incor-
rect. Finally, one could attempt to do the convolution,
but for the three components separately, but that pro-
duces nearly the same result as using convolution on the
total PSF, as one might expect.

Having found that nothing really works as well as using
the location specific PSF, let us note that the problems
occur when the local vignetting function is not flat. So
if we created a SMPO with an extended flat FOV, then
most of these issues would not arise until we got to the
edge of the FOV. However, if one is interested in build-
ing up the FOV from modules, creating the observation
simulation remains somewhat problematic.

7.3. Accelerating Executions

One of the wisest decisions made for PBP was to allow
the user to set the step between pores. That is, does one
want to calculate every single pore? Or is every other
pore, every fourth pore, or every eighth pore sufficient?
Table 2 list the execution time for simulations of a sin-
gle RC=1000 mm face for 18 different energies, as run

Figure 44. Demonstration, using a one dimensional optic and
detector, of the limitations of approximating the true PSF by a
single PSF and the vignetting function. Left: The output for a
flat input with a source at the center. Black: the correct image
Red: image created from the vignetting scaled on-axis PSF Purple:
image created by convolving the on-axis PSF with the image and
then multiplying by the vignetting function Green: image created
from the vignetting scaled on-axis PSF, but done on a component
by component basis (unfocussed, partially focussed, and fully fo-
cussed) and then summed Blue: the convolution method done on
a component by component basis. Tick marks have been placed
at the peak of the point source for each method. Lower Right:
Same as the previous, but for an input image with an off-center
source.
on my current laptop. As expected, the execution time
increases at almost the same rate as the increase in the
number of pores calculated. The fractional uncertainties
increase with step size, and are larger for fully focussed
rays than partially focussed rays or unfocussed rays. It
appears that a step size of 4 provides reasonable accuracy
while still decreasing processing time.

7.4. Input Parameters

All versions require one to set:

• RC
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Table 2
Relative Execution Timesa

Version Step Time ∆E.A.b

(sec)

PBP3 8 8 5.41e-3
PBP3 4 28 9.38e-5
PBP3 2 108 8.62e-5
PBP3 1 419 -
PBP3bc 8 9 9.03e-4,5.93e-3,1.15e-2
PBP3bc 4 30 1.81e-5,3.83e-5,3.85e-3
PBP3bc 2 109 3.42e-6,5.98e-6,3.16e-3
PBP3b 1 431 -,-,-
PBP4 8
PBP4 4
PBP4 2
PBP4 1

a For a single 40 mm by 40 mm facet and 18 energies.
b The value given is the maximum absolute value of
the difference between the total transmitted flux cal-
culated with a given step size and that calculated for
a step size of 1, divided by that calculated for a step
size of 1. (So, the fractional error.)
c For PBP3b, the PSF image is separated into unfo-
cussed, partially focussed, and fully focussed images.
The uncertainties are for each image, in this order.

• Pore width (W ), pore length (L), and pore wall
thickness.

• Size of the facet. If there is a gap between facets,
the width of that gap must be added to the facet
size.

• The width of the gap between facets and the
amount of the facet resting on the support.

• The number of facets in x and y.

• Whether each facet is open or closed. (Closed are
facets that are blanked off.)

• The vector of energies to be calculated.

• The name of the file containing the reflectivity in-
formation.

• The function that creates a mask to map which
pores are blocked or shadowed.

• The parameters describing the sunshade baffle lo-
cations and sizes.

• The height of the detector above the nominal
RC/2.

• The pixel size of the detector. The program will en-
sure that the output array is big enough to include
all rays transmitted by the optic.

• The detector mask function; essentially the func-
tion that sets the region to be “active” or
“blocked”.

• The angles from the optical axis of the source
(βx, βy).

• The step size between calculated pores.

7.5. Versions

PBP3: This is the basic version of the software.
PBP3B: PBP3 but with the PSF image split into three

planes: non-focussed rays (0), partially focussed rays (1),
and fully focussed rays. This may be an evolutionary
dead-end.

PBP3A: PBP3 but with the PSF image split into
planes, each plane containing only rays having had a to-
tal of n reflections. This version of the code no longer
exists, but could be resurrected.

PBP4: PBP4 requires the following further paramters
to be set

• Maps of the bias angles in x and y for each facet.

• Maps of the misalignment angles in x and y for
each facet.

PBP5: PBP5 is experimental. It introduces a “dis-
tortion map” that should contain the information about
the change in bias across a single facet.

7.6. Data Structures

For the instrument as a whole, there are a number of
arrays that describe the properties of each facet. For
a facet, there are a number of arrays that describe the
properties of each pore. As the program handles more
complex issues, the number of arrays increase (and the
processing time increases!)

The facet arrays for PBP3:

• open map: contains a 1 for every populated facet
and a 0 for every blanked-off facet.

• alpha x cen map: contains the off-axis angle in x
at the center of each facet.

• alpha y cen map: contains the off-axis angle in y
at the center of each facet.

The facet arrays for PBP4:

• open map: contains a 1 for every populated facet
and a 0 for every blanked-off facet.

• alpha x cen map: contains the off-axis angle in x
at the center of each facet.

• alpha y cen map: contains the off-axis angle in y
at the center of each facet.

• bias x map: contains bias angle in x. Positive val-
ues are

• bias y map: contains the bias angle in y. Positive
values are

• misa x map: contains the misalignment angle in x.
Positive values are

• misa y map: contains the misalignment angle in y.
Positive values are

The pore arrays for PBP3. In this version the pores
are all assumed to be square. Thus:

• shadow mask: each elements contains a code for a
single pore.
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– 1: the pore is open

– -1: the pore is blocked by the support struc-
ture

– -2: the pore is blocked by an internal baffle
(i.e., the baffle is effectively on the optic at
that pore).

– -3: the pore is in the shadow cast by the ex-
ternal shade or an internal baffle

– -4: the pore is blocked by the external frame

The pore arrays for PBP4 are as for PBP3. The pore
arrays for PBP5 will be more extensive as they will at-
tempt to capture the slumping deformation. There will
probably be pore arrays describing

• the x and y location of the corner of the pore closest
to the center of the facet. This is to adequately
characterize the movement of the pore due to the
deformation.

• the angle between the walls of the corner of the
pore closest to the center of the facet. This should
always be an acute angle.

I hope to convert these into an array that describes the
changes in the x̂ and ŷ location of the output ray’s inter-
section with the focal plane. It remains to be seen how
this should be best accomplished.
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8. SMPO TESTING CONFIGURATIONS

8.1. Introduction

There are three possible MPO test configurations,
which are shown in Figure 45. The first configuration
(A) is a traditional beamline where the source is suffi-
ciently far from the optic that the divergence of the beam
is relatively small, and the detector is placed at the focus
of the optic. This configuration requires long beamlines
and, typically large chambers that require an extended
time to be evacuated to the required pressure for X-ray
testing. The second configuration (B) is the reverse of
the beamline configuration, where the source is placed at
or near the focus of the optic, and the detector is placed
in the collimated beam. This can be accomplished with a
chamber that is only somewhat larger than the radius of
curvature of the optic. Such a chamber can be evacuated
relatively quickly, and thus is ideal for the quick testing
of individual facets. Further, the entire test rig is rela-
tively compact and portable. This is true perhaps more
in theory than in current practice. Finally, there is the
“double-reversed” configuration (C), where the source is
placed only a short distance in front of the optic, and
the detector is placed at or near the focus. This con-
figuration has not be explored in the same detail as the
other two. This section of the vade mecum will consider
the mathematics of reversed- and double-reversed beam-
lines, as the optics of the beam line are relatively well
understood.

There are three things that we want to determine from
testing an SMPO optic. 1.) We want to determine,
if possible, the true radius of curvature, RC . 2.) We
want to determine the open fraction, the throughput of
fully focussed rays, and the throughput of partially fo-
cussed rays. 3.) We want to measure the size of the
point spread function (PSF). While all of these can be
accomplished in a beam line with the beam illuminating
the whole optic, none of these can be accomplished for
the reverse beamline and double reverse beamline con-
figurations if the illuminating beam fills the optic. For
the reverse and double reverse beamline configurations,
all three measurements may be accomplished with an
appropriate mask. At minimum, the mask must have a
hole on the optical axis (the “central” hole) and a hole
off axis (the “peripheral” hole). Measuring the location
of the off-axis spot compared to the on-axis spot allows
one to determine the radius of curvature, RC . The size of
the spots allow a measure of the PSF. The relative count
rates of the spots allow a measure of the throughput19.

The following subsections will (when they are com-
plete) derive the equations for determining the radius
of curvature (RC) when the mask and optic is a known
distance ZS from the source and a known distance ZD
from the detector. It is assumed that the optic has a
half-width of XF so that the distance from the optical
axis to a corner, where the optic rests on the mask or
reference plane is XF

√
2. There are two pin-holes in the

mask: one on the optical axis, and the other at a dis-
tance XM

√
2 from the center along the diagonal. We

should choose XM so that, when the source is in the fo-

19 This statement is true in theory. However, the uncertainties
is the current test set-up make the PSF and throughput measure-
ments difficult.

Figure 45. Three possible testing configurations for an MPO. In
all cases the solid curve is the optic, the thick dotted line shows the
detector plane, the thin dotted lines are possible mask locations,
and the solid line are rays. The dashed lines are radii perpendicu-
lar to the surface of the optic. S is the location of the source. A:
The standard beamline configuration, with a source at “near infin-
ity” and the detector plane at the focus. B: The reverse beamline
configuration, with the source at the focus. C: The “double reverse
beamline” has the configuration as a beamline, but with a source
close to the optic. In all cases a mask can be introduced either
between the source and the optic (a premask) or between the optic
and the detector (a postmask).
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Table 3
Reverse Beamline - Premask Variables

Symbola Explanation

E distance from mask to optic on the optical axis
F focal length
F ′ Rc − F
G distance from source to center of curvature
L length of an individual pore = thickness of the optic
Rc Radius of curvature
W width of an individual pore
XD off-axis beam spot on the detector
XF radius of the facet
XM distance from the optical axis of pin-hole in mask
ZD distance from the mask to the detector
ZS distance from the mask to the source
α angle from OA of reflecting pore wall
β angle from OA of ray from source

a Quantities in red are those that are either known or measured directly.

cus, all rays passing through the hole will, upon striking
the optic, experience a single reflection in each dimen-
sion. However, we may not have that option as we need
to ensure that the X-rays from the peripheral spots are
reflected onto the detector, and detectors are typically
not very large. Thus, in the following derivation, XM is
assumed to be known, but not assumed to have any spe-
cial value. Finally, it is assumed that one can measure
the distance at the detector, between the centers of the
spots produced by the two pin-holes, XD

√
2.

Typically, given the radius of curvature of the facet, the
ZS , and ZD, one would calculate what XM is required to
fit the peripheral spot onto the detector. Using a mask
with that XM , we would then measure XD and, with ZS
and ZD, would calculate RC . The following derivations
will demonstrate how to derive RC from XD given all of
the other parameters. In most cases there are no closed
solutions and we must rely on numerical methods.

For both the reversed beamline and double-reversed
beamline configurations one can, in principle, place a
mask in the beam either before it strikes the optic, a
“premask”, or after striking the optic, a “postmask”.
It is not always apparent which placement is best for
determining the radius of curvature, RC . For both of
these configurations the location of the mask makes a
large difference in the complexity of the mathematics,
but changes the XD-RC relation in only a small way, so
long as the mask is relatively close to the optic. Thus,
we have four different configurations to consider.

8.2. Reverse Beamline Configuration Testing with
Premask

In this configuration the source is placed at or near the
focus of the optic on the concave side of the optic, while
the detector is placed on the opposite side of the optic.
The detector is thus on the side of the optic where the
rays are quasi-parallel. It is assumed that the corners of
the concave side of the optic rest upon a mask.

Figure 46 demonstrates the general geometry of the
pre-mask reverse beamline configuration as a cross sec-
tion through the optical axis and one of the principle
axes of the optic. The black lines demonstrate the ge-
ometry for a perfect optic for which the source is at the
focus, while the red and green curves show two other
optics with shorter radii of curvatures, mounted in the
same configuration. That is, each of the optics is rest-

Figure 46. Reverse beamline configuration geometry for a pre-
reflection mask. The detector plane is shown by a heavy dotted
line. The black curve is the location of the optic for a radius of
curvature, RC , centered at the origin. The source is at S, which is
the focus for this optic. The mask is at the level of the horizontal
dotted line marked “MASK”; the other horizontal dotted line shows
the level of the corners of the optic. A ray from the source passes
through the pin-hole (XM from the optical axis) and strikes the
optic a distance XO from the optical axis, and is reflected towards
the detector. The red and green curves show two other possible
optics for which S is not at the focus, and the resulting optical
paths due to a ray through the pin-hole. The dotted vertical black
line denotes the edge of the optic. In order to make a readable
figure, these dimensions do not correspond to any real optics.

ing on the mask in the corners. The horizontal dotted
line marked “MASK” represents the mask upon which
the optic rests, and is the fundamental reference surface.
The dashed vertical line shows the distance from the op-
tical axis to the corner of the optic, while the dotted
vertical line shows the distance from the optical axis to
the edge of the facet.

Some Geometry: At the center of each side, the
optic will not rest on the mask, but will be elevated a
distance EE . We can define the quantity E which is the
distance between the top of the mask and the bottom
of the optic on the optical axis. From the construction
in Figure 46 (we have fudged this a bit to reduce the
number of figures) we see that

E = RC −
√
R2
C − 2X2

F (42)

This means at the center line (in either direction), the
bottom of the optic will rest a distance Ee above the
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mask where

EE =
√
R2
C −X2

F −
√
R2
C − 2X2

F (43)

Neither of these quantities are easily mensurable, and
neither enter the calculations here, but these are useful
quantities for laying out the geometry.

Solving for RC : A ray originating at S at an an-
gle β from the optical axis will strike the optic at the
“reflection point”, a distance XO from the optical axis.
Ignoring, for the moment, the practical issue of whether
that ray actually strikes a reflective surface (as opposed
to passing through the optic without striking it, or being
blocked by the walls) that reflective surface is at an angle
α to the optical axis. The angle between the ray and the
reflective surface is β−α. The reflected ray will be at an
angle

δ = 2α− β (44)

with respect to the optical axis.
Once the ZD, ZS , and XM (and thus β) are set, deter-

mining XD from a given RC and α is straight forward:

XD −XO

ZD − ZO
= tan δ = tan (2α− β) (45)

However, what we need to do is determine RC from XD

without any knowledge of XO, ZO, or α.
To put it formally, the problem is solved with the fol-

lowing constraints. First, the optic is a section of a
sphere. Second, one point on that sphere is where the
corner of the facet touches the mask. Third, the sec-
ond point on that sphere is along the line defined by the
source location (ZS) and the pin-hole in the mask (XM ).
Fourth, the relation between α, β, and δ. Finally, the
location where the output ray strikes the detector. In
practice, we first use the constraints to derive a relation-
ship between ZO, G, and the other measured quantities.
Second, we derive XD as a function of G. Finally, we
used the measured XD to select the correct G, and from
that we derive RC .

The constraints placed by the two points on the spher-
ical surface of the optic can be expressed as

R2
C = (ZS +G)2 + 2X2

F (corner)

= (ZS +G+ ZO)2 +X2
O (refl. pnt.)

= (ZS +G+ ZO)2 + (ZS + ZO)2 tan2 β (46)

where the third line is a re-expression of the second line,
replacing XO. Setting these two expressions for RC equal
to one another and rearranging the terms leads to

0 =aZ2
O + bZO + c where (47)

a= (1 + tan2 β)

b= 2[ZS(1 + tan2 β) +G]

c=Z2
S tan2 β − 2X2

F

which may be solved for ZO as a function of G. The
result is a complete mess, so I’ll not reproduce it here.
Although there are two roots, only the positive branch is
needed. Note, once you have Z0(G) then

XO(G) = [ZO(G) + ZS ] tanβ] =
(ZO + ZS)XM

ZS
. (48)

Table 4
Reverse Beamline Premask Errors

Param True Delta Delta
Value Valuea XD
(mm) (mm)

ZS 330.0 +1.0 1.12%
ZD ZT − (ZS + ZM ) +1.0 0.09%
XF 20.0 +1.0 0.06%
XM 10.0 +0.1 1.00%

a Change in the parameters value which produces
the change in XD in the following column. All
parameters are varied independently, not simulta-
neously.

We now derive XD as a function of G. First, we note
that α as a function of G is

α(G) = arctan

[
(ZS + ZO(G)) tanβ

G+ ZS + ZO(G)

]
. (49)

Therefore

XD(G) = XO(G) + [ZD −ZO(G)] tan (2α(G)− β) (50)

which is nothing more than a derangement of Equa-
tion 45. Then, given the true XD one can determine
what G could produce that value using some kind of
root finder. Having selected the correct value of G we
can then find that

RC =
√

(G+ ZS)2 + 2X2
F (51)

The Uncertainty in RC : It is not yet clear what limits
there are on the precision with which we can determine
RC . We can set up the test rig to have ZS and ZD to
some uncertainty σS and σD, which very well may be an-
ticorrelated. Seemingly, the facet size, XF will also have
an uncertainty σF . The XM can be precisely set, though
not particularly to the optimal value for the actual RC .

To understand the uncertainties I have used values
from the current test rig. I assumed that ZD+ZS is
set to 989.887 mm (using the current numbers from Nick
Thomas). Then, assuming that RC truly is 75.0 cm we
can

1. Calculate β from XM .

2. Calculate YS , a, b = f(G), and c from β, ZS , XF ,

and G, where we can use ~G, a list of likely values.

3. Calculate, successively, ZO, α, XD, and RC . We
have to be careful of the order in which we calculate
quantities to ensure that we are we do not introduce
any assumptions about focussing.)

Using the values for ZS , ZD, XM , and XF , from Ta-
ble 4 we can determine the percentage error in XD given
a reasonable input error in each of the input parame-
ters (separately). The values are given in Table 4 and
shown in Figure 47, which demonstrates both the overall
relation between RC and XD and the uncertainties intro-
duced by each parameter. As might have been expected,
errors in XM and ZS are the most significant. The error
introduced by ZD is much smaller.

Setting XM : As noted above, one desires to place
the peripheral hole far enough from the center that there
are a high fraction of reflected photons, but not so far
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Figure 47. A plot of XD as a function of RC for a 750 mm radius
of curvature optic. Blue dashed line: an error of 1 mm in ZD
(which is nearly indistinguishable from the true XD-RC function)
Green dot-dashed line: an error of 1 mm in ZS , Red dot-dashed
line: an error of 1 mm in XF , Dotted line: an error of 0.1 mm
in XM .

out that the reflected spots falls off of the detector. This
construction does not provide an easy way of determining
XM , see §8.4 for a reasonable method.

Measuring Throughput: Measuring the throughput
requires a simulation of the test rig.This can not be done
with the current PBP, but a special implementation of
PBP for this configuration is in the works.
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Table 5
Reverse Beamline - Postmask Variables

Symbola Explanation

E distance from reference surface to optic on the OA
F focal length
F ′ Rc − F
G distance from source to center of curvature
L length of an individual pore = thickness of the optic
Rc Radius of curvature
W width of an individual pore
XD off-axis beam spot on the detector
XF radius of the facet
XM distance from the optical axis of pin-hole in mask
ZD distance from the mask to the detector
ZM distance from the mask to the reference plane
ZS distance from the mask to the source
α angle from OA of reflecting pore wall
β angle from OA of ray from source

a Quantities in red are those that are either known or measured directly.

8.3. Reverse Beamline Configuration Testing with
Postmask

In this configuration the source is placed at or near the
focus of the optic on the concave side of the optic, while
the detector is placed on the opposite side of the optic.
The detector is thus on the side of the optic where the
rays are quasi-parallel. It is assumed that the mask is
placed nearly on the convex side of the optic. The loca-
tion of the corners of the facet is an important reference
surface.

Figure 48 demonstrates the general geometry of the
post-mask reverse beamline configuration as a cross sec-
tion through the optical axis and one of the principle axes
of the optic. The black lines demonstrate the geometry
for a perfect optic for which the source is at the focus,
while the red and green curves show two other optics
with shorter radii of curvatures, mounted in the same
configuration. That is, each of the optics is resting on
the reference surface in the corners. The reference sur-
face is shown as a horizontal dotted line marked “REF”.
In all cases, the upper surface of the mask, the horizon-
tal dotted line marked “MASK”, is a distance ZM above
the reference surface. The dashed vertical line shows the
distance from the optical axis to the corner of the optic,
while the dotted vertical line shows the distance from the
optical axis to the edge of the facet.

Solving for RC : As for the previous case, we work
from a series of constraints. First, the optic is a section
of a sphere. Second, one point on that sphere is where
the corner of the facet touches the reference plane, which
is at a precisely known distance from the mask. Third,
the second point on the sphere is along a line defined by
the spot illuminated on the detector and the pin-hole in
the mask. Finally, the relation between α, β, δ, and XD.

The first constraint gives us

XO =RC sinα (52)

ZO =RC cosα. (53)

The second constraint gives us

RC =
√

(G+ ZS)2 + 2X2
F or G =

√
R2
C − 2X2

F − ZS .
(54)

Figure 48. Reverse beamline configuration geometry with a post-
reflection mask. The detector plane is shown by a heavy dotted
line. The black curve is the location of the optic for a radius of
curvature, RC , centered at the origin. The source is at S, which is
the focus for this optic. The mask is at the level of the horizontal
dotted line marked “MASK”; the horizontal dotted line marked
“REF” is the reference surface upon which rest the corners of the
optic. A ray from the source strikes the optic a distance XO from
the optical axis, and is reflected through the pin-hole in the mask
a distance XM from the optical axis, and towards the detector.
The red and green curves show two other possible optics for which
S is not at the focus, and the resulting optical paths due to a
ray through the pin-hole. The dotted vertical black line denotes
the edge of the optic. In order to make a readable figure, these
dimensions do not correspond to any real optics.

The third constraint provides

XD −XM

ZD
= tan δ (55)

XM −XO

ZM + ZS +G− ZO
= tan δ (56)

directly from the construction in Figure 48, with help
from Figure 49. Note that the left-hand side of the first
line is composed solely of measured quantities, meaning
that tan δ is known from measured quantities. We fur-
ther know that

δ = 2α− β (57)

from Equation 44. Finally, we also know, from the law
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Figure 49. A detail from the previous figure from around the
reflection point.

of sines that
sin (β − α)

G
=

sinβ

RC
(58)

from which one can isolate β in the law of sines,

tanβ =
sinα

cosα−G/RC
. (59)

There is clearly a relation between α, β, and G/RC .
However, unlike the reverse beamline configuration with
a premask, where β is fixed, here α, β, and δ all change
as RC changes. Keeping the source at the same location
with respect to the reference plane, asRC increases, α de-
creases by a small amount, and β increases (though, ad-
mittedly, by an almost imperceptible amount), all keep-
ing the output ray in the pin-hole atXM . This difference,
it appears, means that there is no analytic solution, only
a numerical one.

Thus, the algorithm for determining XD from the mea-
sured values (XM , XF , ZS , ZM , ZD), stands as follows.

1. Set a guess of RC .

2. Calculate G =
√
R2
C − 2X2

F − YS .

3. For a range of α′ calculate β(α′) using the law
of sines. I have found it adequate for α′ =
arctan (XM/RC) ± 5◦, but the step size needs to
be ∼ 10−5◦.

4. Calculate δ(α′) from 2α′ − β(α′).

5. Calculate XO(α′) = sinα′ and YO(α′) = cosα′.

6. Calculate tan δ′(α′) = XM−XO(α′)
YM+YS+G−YO(α′) .

7. Determine which δ′(α′) equals the δ(α′). This es-
sentially is finding a δ with is consistent with both
Equation 55 and Equation 56.

To elucidate, for a given value of RC , we must find the
α (and thus XO) for which the angle δ of the ray coming
off of the pore interior is the same as the δ require to get

Table 6
Reverse Beamline Postmask Errors

Param True Delta Delta
Valuea Value XD
(mm) (mm)

ZS 330.0 +1.0 1.12%
ZD ZT − (ZS + ZM ) +1.0 0.09%
ZM 1.5 +1.0 0.03%
XF 20.0 +1.0 0.06%
XM 10.0 +0.1 1.00%

a Quantities in red are those that are either
known or measured directly.

Figure 50. A plot of XD as a function of RC for a 750 mm
radius of curvature optic. Blue dashed line: an error of 1 mm
in ZD (which is nearly indistinguishable from the true XD-RC
function) Green dot-dashed line: an error of 1 mm in ZS , Purple
dashed line: an error of 1 mm in ZM , Red dot-dashed line: an
error of 1 mm in XF , Dotted line: an error of 0.1 mm in XM .

the ray from XO through XM . Once we determine that
α we can calculate the XD.

This method works quite well. There are, however, a
number of issues that have been ignored: the source will
have a finite extent (∼200µm radius), and the optic has
a finite thickness.

The Uncertainty in RC : As in the previous section,
we have calculated XD from RC under the assumption
that: RC=750.0 mm and ZT=989.887 mm and the pa-
rameters given in Table 11. We then solved for XD given
an increment in each input parameter separately. The
percentage change of XD is given in the table, while the
results can also be seen in Figure 50. Note that the er-
rors are not significantly different than those found for
the premask case.

Measuring Throughput: Measuring the throughput
requires a simulation of the test rig.This can not be done
with the current PBP, but a special implementation of
PBP for this configuration is in the works.
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Table 7
Reverse Beamline - Willingale Variables

Symbola Explanation

G distance from source to center of curvature
L length of an individual pore = thickness of the optic
Rc Radius of curvature
W width of an individual pore
XD off-axis beam spot on the detector
XM distance from the optical axis of pin-hole in mask
ZD distance from the mask to the detector
ZS distance from the mask to the source
α angle from OA of reflecting pore wall
β angle from OA of ray from source

a Quantities in red are those that are either known or measured directly.

8.4. Reverse Beamline Configuration - Willingale
Approximation

Willingale has a very different solution to the problem
of the reverse beamline that, once one has lovingly and
carefully laid out the problem as exactingly as possible,
seems too simple to work. His configuration is shown in
Figure 51. The optic is approximated as flat and coin-
cident with the mask. The inclination of the pores from
the optical axis is still given by arctan (X/RC).

Solving for RC : From construction we find that

XD = XM + ZD tan δ (60)

where δ = 2α − β. We can then use a series of small
angle approximations to solve for XD given S and RC :

tan δ= tan (2α− β)

∼ tan 2α− tanβ

∼2 tanα− tanβ. (61)

where

tanα=
XM

RC

tanβ=
XM

ZS
(62)

From this we find that

XD = XM

[
1 + ZD

2ZS −RC
RCZS

]
. (63)

This can be further manipulated to yield

RC =
2ZS

1− ZS

ZD
(1− XD

XM
)

(64)

Setting XM : Note that Equation 63 provides an easy
way to determine where the peripheral hole should be,
given RC , YS , and desired XD.

Uncertainty: How good is this approximation? One
would expect that, for long focal length optics, such an
approximation might be adequate. For a typical 4 cm
by 4 cm facet with RC=75 cm, the center of the optic
is a whole 0.02667 cm above the reference plane, which
is small compared to the other relevant quantities. Thus
the assumption of a flat optic is not unreasonable. For
the premask configuration, the co-extant of the mask and
the optic is also reasonable. It may be less reasonable for
the postmask configuration given that, for that configu-
ration, the mask may be placed some distance away from
the optic.

Figure 51. Reverse beamline configuration geometry with a mask
as formulated by Willingale. The detector plane is shown by a
heavy dotted line. The dotted line is the optic and the mask,
both of which are assumed to be flat. Thus, there is no difference
between a premask and a postmask configuration. The inclination
of pores to the optical axis is given by α. The source is at S,
which is the focus for this optic. When in focus, a ray from the
source strikes the optic a distance XO from the optical axis, and
is reflected through the pin-hole in the mask a distance XM=XO
from the optical axis, and towards the detector. The red is the
construction for another possible optic for which S is not at the
focus.

Nick Thomas points out that a pore, 20µm across, as
seen from the source, 37.5 cm away, subtends 5.3×10−5

radian. For typical values of alpha (∼ 1.◦5), the approx-
imation tan (β − α) ∼ tanβ − tanα introduces an error
of 3.6×10−5, which is smaller than the extent of a pore.
He also points out that the source size is ∼400µm, with
will subtend an angle of 1.06×10−3 radian, which is far
bigger than the error introduced by the small angle ap-
proximation.

Comparison to Complex Calculations: I ran the com-
plex method (Kuntz) and the simple method (Willingale)
for the same pre-mask and post-mask configurations. In
all cases I calculated XD for a ±10 mm range around
the true RC=750 mm. For both configurations, XD was
calculated from RC in the manners described in the pre-
vious two sections.

For the premask configuration, the ZS for the Will-
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Figure 52. A plot of XD as a function of RC for a 750 mm radius
of curvature optic. Black solid line: The relation derived from the
complex premask calculation. Black dotted line: The relation de-
rived from the Willingale calculation. Red solid line: The relation
derived from the complex postmask calculation for ZM=1.5 mm.
Red dashed line: The relation derived from the Willingale cal-
culation for ZM=1.5 mm. Blue solid line: The relation derived
from the complex postmask calculation for ZM=2.5 mm. Blue
dashed line: The relation derived from the Willingale calculation
for ZM=2.5 mm Green solid line: The relation derived from the
complex postmask calculation for ZM=5.0 mm Green dashed line:
The relation derived from the Willingale calculation for ZM=5.0
mm.

Table 8
Reverse Beamline Willingale Errors

Test K-Wa (K-W)/Ka

(mm) (%)

Premask 0.053 0.8
Postmask ZM=1.5 mm 0.00012 0.002
Postmask ZM=2.5 mm -0.0020 0.03
Postmask ZM=5.0 mm -0.0071 0.11

a K-W is the XD calculated by the complex meth-
ods above minus the XD calculated by the Will-
ingale method.

ingale calculation was taken to be the same ZS used in
the more complex calculation of §8.2. However, for the
postmask configuration, one must be more careful about
the ZS used in the Willingale calculation, the ZS + E
used in the more complex calculation should be used.
(We did try using ZS + ZM , but it produced a much
larger descrepency between the complex and Willingale
calculations.) The results are shown in Figure 8.4 and in
Table 8.

The difference between the premask calculation and
the Willingale calculation is significant, on the order of 4
13.5 µm pixels (for the current detector) which, in prin-
ciple, should be noticeable. The difference between the
postmask calculation and the Willingale calculation is
quite small for small ZM , and increases as XM increases.
For all of the postmask cases, the differences are fractions
of a pixel.

We should also note that there is a difference in XD

depending upon whether the mask is behind or in front

of the optic. That difference is unlikely to pose design
restrictions.

8.4.1. Setting Up XM

In the two previous sections, it has been noted that,
ideally, one would want to set XM so that it samples the
part of the facet having a high fraction of singly reflected
rays. (Since it is on a diagonal, that criterion is sufficient
for both dimensions.) As usual

W

L
= tan (β − α) (65)

Assuming a radius of curvature RC , and a source a dis-
tance ZS from the optic, then, using the small angle ap-
proximation that tan (β − α) ∼ tanβ − tanα we find

W

L
= tan (β − α) ∼

[
XM

ZS
− XM

RC

]
. (66)

From this we find that

XM ∼
[
W

L

]
RCZS
RC − ZS

(67)

However, as a practical matter, those reflected rays
may not fall onto the detector that is being used. Fur-
ther, note that one can change either XM or ZS in or-
der to get the peripheral spots to land on the detector.
This means that there is a certain amount of freedom of
choice here. However, it is best to consider the through-
put of each combination of XM and ZS that puts the
peripheral spots onto the detector, and chose the best
combination in order to produce the brightest possible
peripheral spots.

Since ZD + ZS is usually fixed to some constant Ztot,
we can, from Equation 63 find that

XM =
XD[

1 + (Ztot − ZS) 2ZS−RC

RCZS

] . (68)

One can combine the previous two equations and rear-
range terms to find that ZS can be found by the quadratic
equation where

a=−2W/L (69)

b= 2W/L(Rc + Ztot)−XD (70)

c=−RC(ZtotW/L+XD) (71)

which is rather an ungainly equation. Figure 8.4.1 shows
the functional forms of our equations for XM for the
LEXI test stand operations in 2021. Note that by set-
ting tan (β − α) to the W/L for the particular device,
we effectively remove any consideration of the change
in reflectivity with angle. However, there is a trade-off
between the efficiency of reflectivity at β − α with the
reflected fraction.

8.4.2. The Trade-Off

This section was lifted from the LEXI test stand report.
It needs to be re-done in order to ensure that the results
are correct, and to put the results into a more useful
form.

As described above, the distance from the source to
the optic/mask assembly is set by the distance between
the peripheral holes in the mask, and is set to maximize
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Figure 53. The relation between XM and XS given a fixed XD,
from Equation 68, (black) and from Equation 67 (red), which op-
timizes the focused fraction in the peripheral holes. The solid lines
are for RC = 750 mm while the dashed lines are for RC = 725
mm. The dotted line shows the XM that was actually used. The
value of Ztot=989.9 mm and the experimental XD ∼ 6.75 mm.
For RC = 750 mm we get the best XM , ZS at 10.7 mm, 311.7 mm
while for RC = 725 mm we get 10.5 mm, 304.7 mm.

the fraction of focused rays passing through the periph-
eral holes. However, it should be noted that the this
maximization is based on geometric criteria only. We
now consider how the brightness of the peripheral spots
change with a change in the source-to-optic distance.

By construction, we set the distance from the optical
axis to the peripheral hole so that the angle of incidence
of a ray with the pore wall, Γ, at the center of the periph-
eral hole is given by Γ = arctan (W/L) which maximizes
the number of rays with a single reflection in each di-
mension. Thus, for a peripheral hole, the side closest to
the axis will have nmin = 0 and fmin small and declining
towards the center, at the center nmin changes from 0
to 1 and fmin changes from 0 to 1, and fmin declines
towards the opposite side.

To understand the effect of changing the source dis-
tance, ZS on the output peripheral spot, I created a
square grid of pores. For each pore I calculated angle
from the optical axis in the x dimension, αx and in the y
dimension, αy using the Willingale small angle approx-
imation: α ∼ tanα = XM/Rc. Similarly, I calculated
the angles βx and βy for the source, and from them the
angle of incidence in both dimensions: Γx and Γy. From
the above formulae I calculated fraction of rays entering
a pore that are reflected a single time in each dimension.
Figure 54 shows the focussed fraction as a function of
the source distance. (Note that this plot does not in-
clude the reduction by the open fraction which is ∼ 0.6.)
Note that the focussed fraction is a slightly assymmetric
function with the focussed fraction being slightly higher
at ZS + ∆ than it is at ZS − ∆. Moving the source by
10 mm from ZS reduces the focused fraction by ∼ 7.5%.

However, this is not the primary effect. The reflec-
tivity is a strong function of the incidence angle Γ. To
determine the throughput, one must multiply by the re-
flectivity for the reflection in x and by the reflectivity for

the reflection in y. Since the reflectivity decreases as the
incidence angle increases, as ZS decreases, Γ increases,
the reflectivity falls, as does the throughput. Thus the
peak of the throughput function is at greater ZS than the
peak of the focused fraction function, and the through-
put function is far more asymmetric than the focused
fraction function.

We should also note that the peak of the peripheral
spot need not represent the output angle at the center of
the hole, as it is the throughput weighted average of the
output angle over the entire hole.
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Figure 54. Top Left: The focused fraction for a peripheral hole as a function of the distance from the source to the optic. The dotted
vertical line is the value of ZS while the dashed vertical line is the value of ZS used for the later facets. Top Right: The reflectivity as a
function of the angle of incidence. The vertical lines mark the angles of incidence at the center of the peripheral hole for the extreme values
of ZS shown in the other panels. Bottom Left: The fractional throughput not included the effect of the open area fraction as a function
of distance of the source from the optic. The open area fraction is 0.6. Bottom Right: The expected distance of the peripheral spot from
the centerline on the detector for a Rc=750 mm optic.
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Table 9
Double Reverse Beamline - Willingale Variables

Symbola Explanation

L length of an individual pore = thickness of the optic
Rc Radius of curvature
W width of an individual pore
XD off-axis beam spot on the detector
XM distance from the optical axis of pin-hole in mask
ZD distance from the mask to the detector
ZS distance from the mask to the source
α angle from OA of reflecting pore wall
γ angle from OA of ray from source

a Quantities in red are those that are either known or measured directly.

Figure 55. Double reverse beamline configuration geometry with
a mask using Willingale’s approximations. The detector plane is
shown by a heavy dotted line. The dotted line is the optic and
the mask, both of which are assumed to be flat. Thus, there is no
difference between a premask and a postmask configuration. The
inclination of pores to the optical axis is given by α. The source is
at S. A ray from the source strikes the optic a distance XM from
the optical axis, and is reflected through the pin-hole in the mask,
and towards the detector. The red is the construction for another
possible optic with a shorter RC placed in the same configuration.

8.5. Double-Reverse Beamline Configuration -
Willingale Approximation

Given that Willingale’s method is so effective for the
reverse beamline configuration, it is useful to try the
same technique for the double reverse beamline config-
uration. (I’m unaware of any previous attempt to do,
and there may be a reason for that.) Figure 55 shows

this configuration. As with the reverse beamline config-
uration, there is no distinction between a premask and a
postmask configuration.

From Figure 55 we see that

XD +XM = ZD tan (2α+ γ) (72)

Using the small angle approximation that tan (2α+ γ) ∼
2 tanα+ tan γ, we find that

XD = XM

[
ZD

2ZS +RC
RCZS

− 1

]
. (73)

As usual, the peripheral pin-hole in the mask is ideally
placed to isolate the rays that have only a single reflection
in each dimension. For this configuration this means that

W

L
= tan (α+ γ). (74)

Using tanα = XM/RC , tan γ = XM/ZS , and the small
angle approximation we find that

XM ∼
[
W

L

]
RCZS
RC + ZS

. (75)

These equations have a pleasing symmetry with those
for the reverse beamline configuration.

Comentariolus: For the current test stand, the dis-
tance from the source to the detector is 989.887 mm.
The distance from the source to the optic YS = 389+55

−95
mm, where the range is the travel of the platform. Us-
ing these numbers we can calculate that, for a RC=750
mm, W/L=0.02 facet, the ideal XM ranges from 4.2 mm
to 5.6 mm (for ZS ranging from 294 mm to 444mm).
These are rather close to the central hole, and might re-
quire careful sizing of the central hole. The resulting XD

ranges from 13.6 mm to 9.4 mm; the half-width of the
CCD is 13.8 cm. Thus, this configuration is possible; the
output beam does fall onto the CCD, though for one ex-
treme it falls close to the edge. Alignment issues may be
important.

The reflection angle, γ + α for both extremes is 1.14◦

which is still reasonable for good throughput, but may
not be ideal. Depending upon the reflectivity curve of
the surface of the optic, a smaller XM may be better for
both throughput and for placing the spot closer to the
center of the detector.

8.6. Willingale vs. Willingale: Reverse Beamline vs.
Double Reverse Beamline

Using Willingale approximations for both the reverse
beamline configuration and the double reverse beamline
configuration allows one to make a simple direct compar-
ison of the two configurations. We see from the above
formulae that

XM =

[
W

L

](
RCYS
RC ∓ YS

)
and

XD = XM

[
∓YD

2YS ∓RC
RCYS

± 1

]
(76)

Lever Arm: Given an expected RC , how much change
in XD is there per change in RC? For the LEXI optic
with RC=750 mm, ZS=375 mm, and DD=988.9 mm-
ZS , we can compare the quantity XD(RC) − XD(750)
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for the two difference configurations. This comparison,
requires the optimization of XM for both configurations.



SMO Vade Mecum 45

Table 10
Double Reverse Beamline - Postmask Variables

Symbola Explanation

E distance from the mask to optic on the OA
L length of an individual pore = thickness of the optic
Rc Radius of curvature
W width of an individual pore
XD off-axis beam spot on the detector
XF radius of the facet
XM distance from the OA of pin-hole in mask
X0 distance from OA of reflection point
ZD distance from the mask to the detector
ZS distance from the mask to the source
Z0 distance above mask of reflection point
α angle from the OA of reflecting pore wall
γ angle from the OA of ray from source

a Quantities in red are those that are either known or measured directly.

8.7. Double-Reverse Beamline Configuration Testing
with Postmask

In this configuration the source is placed on the convex
side of the optic, while the detector is placed on the op-
posite side of the optic. Since the source rays strike the
optic rather more obliquely than for the other configu-
rations, the setup is rather more complex. It is assumed
that the concave side of the optic rests upon a mask, and
that the distance between the mask and the source, ZS
is known, as is the distance between the mask and the
detector ZD. Both of these quantities will be assumed
to be to the top of the mask. Given XF , the distance
between the mask and the center of the optic is E as
given in §8.2. It is assumed that XM has been set.

I suspect that there may be an error in the following
derivation.

Solving for RC : From the animadversions of the pre-
vious sections, it should be no surprise that one can’t
simply measure XD and calculate RC . Indeed, one must
assume an RC (which provides E), and then use a root
finder (or the equivalent) to determine the value of X0

for which the reflected beam passes through the mask at
XM . Once that X0 has been found, XD follows simply.

For a given X ′0:

Z ′0 =E −
[
RC −

√
R2
C −X ′20

]
γ′= arctan

(
X ′0

ZS − Z ′0

)
α′= arcsin

(
X ′0
RC

)
δ′=γ′ + 2α′

X ′M =X ′0 − Z ′0 tan δ (77)

where we have used primes to indicate test values.
We must, somehow, iteratively find the X ′0 for which
X ′M=XM .

Then,
XD = (Z0 + ZD) tan δ −X0. (78)

The Uncertainty in RC : As in previous sections, we
have calculated XD from RC under the assumption that:
RC=750.0 mm and ZT=989.887 mm and the parameters
given in Table 11. We then solved for XD given an incre-
ment in each input parameter separately. The percentage

Figure 56. Double reverse beamline configuration geometry. The
black curve is the location of the optic for a radius of curvature,
RC , centered at the origin. The source is at S. The mask is at the
level of the horizontal dotted line. A ray from the source strikes the
optic a distance XO from the optical axis, and is reflected towards
the detector. The red and green lines show two other possible rays
from the source. The dotted vertical black line denotes the edge
of the optic. In order to make a readable figure, these dimensions
do not correspond to any real optics. In particular, the detector is
likely to be placed below the point of curvature.

Table 11
Reverse Beamline Postmask Errors

Param True Delta Delta
Valuea Value XD
(mm) (mm)

ZS 330.0 +1.0 0.12%
ZD ZT − (ZS + ZM ) +1.0 0.16%
XF 20.0 +1.0 0.04%
XM 10.0 +0.1 2.35%
Willingale 0.0 32.1%

change of XD is given in the table, while the results can
also be seen in Figure 57.

Figure 57 has a rather odd size to put it on the same
scale as the other error figures in the previous sections.
While the errors due to ZS , ZD, and XF are not unusual,
compared to the reverse beamline configurations, the er-
ror introduced by XM is far larger. This large offset is
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Figure 57. A plot of XD as a function of RC for a 750 mm radius
of curvature optic. Blue dashed line: an error of 1 mm in ZD,
Green dot-dashed line: an error of 1 mm in ZS , Red dot-dashed
line: an error of 1 mm in XF , Dotted line: an error of 0.1 mm
in XM .

likely due to the larger δ for the double-reverse beamline
than found in the reverse beamline. We also note that
the dXD/dRC is smaller for the double-reverse beamline
than it is for the reverse beamline, suggesting that it’s
not as sensitive for measuring the RC .

We will also note that the “Willingale approximation”
(not that he’s ever used this approximation for a double-
reverse beamline) is not on this plot; the approximation
prediction for XD is 9.12 mm, a 32.1% error. Thus, the
Willingale-style approximation should not be used for
the double-reverse beamline with a postmask. As we will
see in the next section, the Willingale-style approxima-
tion is fine for a double-reverse beamline with a premask.
The difference is presumably due to the much larger an-
gle between the ray and the optical axis after reflection
compare to before reflection.

Summary: We conclude that the double-reverse
beamline with a postmask is not a good configuration
for measuring RC due to the need for a small XM (to
get the spot on the detector), the sensitivity of the XD

to errors in XM , and a smaller dXD/dRC .
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Table 12
Double Reverse Beamline - Premask Variables

Symbola Explanation

E distance from the mask to optic on the OA
L length of an individual pore = thickness of the optic
Rc Radius of curvature
W width of an individual pore
XD off-axis beam spot on the detector
XF radius of the facet
XM distance from the OA of pin-hole in mask
X0 distance from OA of reflection point
ZD distance from the reference plane to the detector
ZS distance from the reference plane to the source
ZM distance from the reference plane to the mask
Z0 distance above mask of reflection point
α angle from the OA of reflecting pore wall
γ angle from the OA of ray from source

a Quantities in red are those that are either known or measured directly.

8.8. Double-Reverse Beamline Configuration Testing
with Premask

In this configuration the source is placed on the convex
side of the optic, while the detector is placed on the op-
posite side of the optic. Since the source rays strike the
optic rather more obliquely than for the other configu-
rations, the setup is rather more complex. It is assumed
that the concave side of the optic rests upon a reference
plane, and that the distance between the reference plane
and the source, ZS is known, as is the distance between
the reference plane and the detector ZD. The mask is
placed on the source side of the optic a distance ZM from
the reference plane. Given XF , the distance between the
mask and the center of the optic is E as given in §8.2. It
is assumed that XM has been set.

Solving for RC : As we saw with the double-reverse
beamline with a postmask, one can’t simply measure
XD and calculate RC . Indeed, one must assume an RC
(which provides E), and then use a root finder (or the
equivalent) to determine the value of X0 for which the
reflected beam passes through the mask at XM . Once
that X0 has been found, XD follows simply.

For a given RC :

tan γ=

(
XM

ZS − ZM

)
X0 =

(
XM (ZS − E)

ZS − ZM

)
= (ZS − E) tan γ

Z0 =E −
[
RC −

√
R2
C −X2

0

]
α= arcsin

(
X0

RC

)
δ=γ + 2α (79)

(80)

Then,
XD = (Z0 + ZD) tan δ −X0. (81)

Thus, we need to use the equivalent of a root finder to
determine RC from XD.

The Uncertainty in RC : As in previous sections, we
have calculated XD from RC under the assumption that:
RC=750.0 mm and ZT=989.887 mm and the parameters
given in Table 4. We then solved for XD given an incre-

Figure 58. Double reverse beamline configuration geometry. The
black curve is the location of the optic for a radius of curvature, RC ,
centered at the origin. The source is at S. The mask is at the level
of the horizontal dotted line marked “MASK” while the reference
plane upon with the optic sits is the horizontal dotted line marked
“REF”. A ray from the source strikes the optic a distance XO from
the optical axis, and is reflected towards the detector. The dotted
vertical black line denotes the edge of the optic. In order to make
a readable figure, these dimensions do not correspond to any real
optics. In particular, the detector is likely to be placed below the
point of curvature.

Table 13
Double Reverse Beamline Premask Errors

Param True Delta Delta
Valuea Value XD
(mm) (mm)

ZS 330.0 +1.0 0.18%
ZD ZT − (ZS + ZM ) +1.0 0.20%
ZM 2.0 +1.0 0.26%
XF 20.0 +1.0 0.009%
XM 10.0 +0.1 2.35%
Willingale 0.0 0.2%

ment in each input parameter separately. The percentage
change of XD is given in the table, while the results can
also be seen in Figure 59.

We note that the Willingale-style approximation is
good for this configuration so long as one uses the mask
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Figure 59. A plot of XD as a function of RC for a 750 mm radius
of curvature optic. Blue dashed line: an error of 1 mm in ZD,
Green dot-dashed line: an error of 1 mm in ZS , Purple dashed line:
an error of 1 mm in ZM , Red dot-dashed line: an error of 1 mm
in XF , Dotted line: an error of 0.1 mm in XM .

plane for the calculations of ZS and ZD rather than the
reference plane.

8.9. Summary
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9. TEST STAND TESTING

9.1. Current Test Stand

Figure 60. The drawing of the current test stand as designed by
Nick Thomas in the orientation that is currently used. The source
is at the top and the CCD is at the bottom. (Yes, we all think
the same thing about that. Nick had his constraints and he would
have done it differently if he could have.)

The current GSFC test stand is a reverse beam line
configuration with a post-mask, as described in §§8.3 and
8.4 and shown in Figure 51. The physical structure of the
current GSFC test stand is shown in Figure 9.1, which
has the source at the top, and the detector at the bottom.

One important consideration is the size of the detec-
tor. Typical CCDs do not have formats of 4 cm by 4 cm,
so we will need to set the XM to explore the part of the
detector which will be doing the bulk of the focussing,
while setting the ZS to ensure that the beams from the
peripheral holes fall on the detector. Moving the source

Table 14
LEXI Test Stand Parameters

Parameter Symbol Value

Optic

Nominal radius of curvature Rc 750 mm
Nominal pore width W 20e-3 mm
Nominal pore length L 1.0 mm

Mask

Center hole radius rc 1.0 mm
Peripheral hole radius rp 0.5 mm
Peripheral hole distance from axis XM 10 mm

Stand

Distance from source to detector Ztot 989.887 mm
Distance from optic to source ZS 310 mm
Distance from optic to detector ZD Ztot − ZS

Detector

CCD size ∼2100 pixels
Pixel size 13.5 µm

closer to the optic, moves the part of the optic that is re-
flecting X-rays closer to the center and makes the output
beams more converging.

As noted in the introduction to §8, we want to deter-
mine the true radius of curvature RC , the throughput
of fully focused rays for some “representative” portions
of the SMO, and we would like some measure of the ex-
pected PSF. We can determine the RC using the distance
between the spots produced by the peripheral holes. We
should be able to determine the throughput of the fully
focused rays by comparing the number of counts we get
in the peripheral spots to the number of counts we get
in the center spot. However, we have a fundamental un-
certainty here that has not yet been resolved. We do not
know the illumination pattern of the source. Thus, we
do not know with great certainty what ratio we would
expect between the illumination of the central hole and
that of the peripheral holes. Finally, we might expect to
say something about the size of the PSF from the size of
the peripheral spots.

In the following section we will explore a number of
complications in the use of the test stand, as well as
quantify a number of possible sources of error.

9.2. The Standard Method

The standard mask has a circular hole at the optical
axis of the MPO, of radius rc, and four peripheral holes
or radius rp, arranged in a square, that are each XM

√
2

from the optical axis. The pore walls set the x and y axes,
and the peripheral holes have the same distances from the
x axis as they do from the y axis. The mask parameters
for the LEXI campaign, as shown in Table 14, had been
set in the past for other optics but, as can be seen in
§8.4, were reasonably well optimized for LEXI. Figure 9.2
shows a typical image from the LEXI campaign. We
should note a number of details.

First, the light in the central spot is not uniform.
For comparison, Figure 62 shows a simulated image of
what we expect from a perfect optic in a perfect test
stand, while Figure 63 shows the distribution of the non-,
partially-, and fully-focused photons for the central spot,
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Figure 61. A typical image produced by the current test stand
for one of the LEXI optics. Note the offset cruciform pattern with
the central spot, and the faintness/difference in intensity of the
spots produced by the peripheral holes.

Figure 62. Top: Simulation of the image produced by a perfect
optic in the test stand. There are a number of issues with this
figure caused, in part by the “beating” between pores, and image
pixels.

as well as the fully-focused photons from a peripheral
spot. (Note that the non- and partially-focused photons
from the peripheral spot will not land on the detector.)
The central hole is sufficiently large that rays passing
through the outer part of it have a reasonable proba-
bility of being partially or fully focused, while those at
the center are most likely to pass through without reflec-
tion. This means that determining the true number of
completely non-focused photons is not trivial.

Second, we note that the cruciform pattern from the
partially and fully focused photons is not centered on the
spot. This suggests a misalignment of the optic (tilt? off
center?) or mask (off-center?) with the optical axis of
the test stand.

Third, we note that there is a lower-brightness “rim”
to the central spot, which can be seen in Figure 64. Since
the rays that form the outer regions of the central spot
are non-focused, we need not worry about the scattering
of rays due to the misalignment of pores, which Will-
ingale has found to produce a Lorentzian distribution

Figure 63. Simulation of the image produced by a perfect in the
test stand, separated by focus type. The scalings are arbitrary
and the first two images have been cleverly crafted to avoid the
pixelization issues. All images have the same pixel scale. From top
to bottom: Center unfocussed, center partially focussed, center
fully focussed, and the upper right peripheral focussed.
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rather than Gaussian one. (This distribution should be
applicable to the partially and fully focused rays.) What
is the effect of the misalignment of pores on the unre-
flected rays? A tilt of a pore away from the ideal will
decrease (or increase) the open area for a given pore,
and can change the location of the unreflected rays by
only a very small amount. If we look at the measured
radial profile of the central spot, we see that there is a
linear decline between the inner and outer break points.
A linear decline is symptomatic of a convolution with a
tophat function, and can’t be duplicated with a Gaussian
or a Lorentzian. Note that if the broadening of the of the
image is due to convolution with a tophat, the radius of
the true edge of the spot will be the mean of the inner
and outer break points.

One possible source for the tophat broadening might
be the width of the pores, which was not taken into ac-
count in the model. The angular extent of a pore, as seen
from the source is ∼ 13.3′′. What is the angular size of
the linear decline? In the LEXI campaign we determined
the linear distance on the detector over which the linear
decline occurred, ∆XD was 44.7 pixels for ZS=310 mm..
There was quite a spread of values at each value of ZS ,
and there was clear evidence that ∆XD decreased as ZS
increased. We use the total distance from the source to
the detector to determine the angular size of the linear
decline: 125.7′′. This is a factor of 9.45 larger than the
angle subtended by a pore. Thus while the angular ex-
tent of the pores could contribute to the “broadening”
of the central spot, it could not explain the broadening
seen.

The linear distance between the inner and outer break
points, and that that distance decreases as ZS increases
argues that the source, as seen by the optic has a finite
and non-negligible extent. Indeed, the emitting spot size
on the foil is thought to have a diameter of 400 µm. If
the linear extent of the source is

XS =
ZS
ZD

∆XD. (82)

For the above data we find that XS=275 µm, which is
reasonably close to the assumed spot size. A spot size
of 400 µm should produce a ∆XD of 65 pixels at the
detector. If we assume that the diameter of the central
hole, XM , is correct, the difference between expected and
measured would require unreasonably large errors in ZS
(28%) and/or ZD (21%). We note that the near linear
decline from the inner break point to the outer break
point implies that the source intensity is relatively uni-
form within the source radius.

Fourth, we note that the strength of the peripheral
spots is not uniform. This is related to the off-center
location of the focus (compared to the center of the center
spot). However, I have not had the time to model this
correctly.

9.2.1. Measuring RC

9.2.2. Measuring Thoughput

9.3. Errors

9.3.1. Tilt of the Optic/Mask Assembly

We want to determine what happens to the peripheral
spot spacing if the optic/mask assembly is tilted with
respect to the source, optic center, detector axis. Clearly,

Figure 64. Black: The radial profile of the central spot. Red:
A fit to that profile. The slope from the center to the break at
∼ 210 pixels is due to the structure of the non-, partially-, and
fully-focused photons. The slope from the break to the background
is due to the finite source size.

Figure 65. Geometric construction for determining the effect of
the tilt of the optic/mask assembly. Here, instead of rotating the
optic about its center point, we have rotated the location of the
source about the same point.

a tilt will cause the spots will move across the face of the
detector. What we are interested in here is the extent to
which the movement is different for adjacent spots. The
geometry is shown in Figure 66. Here, instead of tilting
the optic, we have rotated the source position by an angle
δ from the axis of the optic. We wish to determine the
angles between a ray from the source and a pore at a
fixed distance from the optical axis, γ− and γ+, in order
to determine how the spots will move with respect to
one another. From the geometric construction we see
that the distance between the radius of curvature and
the source, r′ will be

r′2 = R2
c + Z2

S − 2RcZS cos δ (83)

The angle ε can be seen to be

ε = arcsin

(
ZS sin δ

r′

)
. (84)
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Figure 66. The amount of change of the distance between two
(non-diagonal) spots as a function of the tilt in the optic/mask
assembly. The red horizontal lines mark increments of a single
pixel on the current CCD.

The distances from the source to the fixed spots on the
optic are given by

L2 = R2
c + r′2 − 2Rcr

′ cos (α± ε) (85)

Thus, the angles of incidence, γ− and γ+ are given by

γ = arcsin

[
sin (α± ε)r′

L

]
(86)

If γ (without superscipts) is the angle on incidence when
the source is on the optical axis, then we are interested
in comparing γ+−γ with γ−γ−, and it is the difference
in those two angles that will move the spots with respect
to one another. For the LEXI optic, assuming ZS=300
mm, Figure 66 shows the change in spot distance as a
function of the tilt angle.

9.3.2. Horizontal Translation of the Mask with respect to the
Optic

Here it is assumed that, in one way or another, the cen-
ter of the mask’s center hole is not aligned with the op-
tical axis. This misalignment could, for example, be due
to an unrecognized bias in the optic. With the current
mask, the central hole is large enough (radius = 1 mm)
that a significant fraction of the light passing through the
hole is actually reflected once in one or both dimensions;
it is not a representative of unreflected emission only. If
we displace the central hole from the optical axis, then
the circle of unreflected light will move across the detec-
tor, but the location of the focussed light will not. Thus,
the difference between the circle of unreflected light and
the center of the focussed light contains the information
required to determine the offset of the hole from the op-
tical axis.

[And the rest of this section is a work in progress.]

9.3.3. Vertical Translation of the Optic

9.4. Summary
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10. OPTICAL TESTING

It has long been suggested that, given the well known
Photonis R© demonstration showing a SMO focussing op-
tical light, that one might be able to use optical light
to characterize the quality of an individual SMO. N.
Thomas (and M. Collier?) attempted to use lasers to
test optics as part of the TAO project, and found that
there were horrible problems. M. Galeazzi is currently
finding the same thing. The bottom line is that even
a coated SMO operates as a two-dimensional diffraction
grating, and we now wonder if the Photonis R© demon-
stration is misleading, as what is shown very well might
be the diffraction pattern.
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11. INSTRUMENT DESIGN CONSIDERATIONS

11.1. W/L

Although the current suppliers of SMOs provide rather
limited options for W , L, and Rc, it is still worthwhile to
explore how the effective area varies withW/L. Figure 67
shows the results of a set of simulations for STORM type
optics with Rc=100 cm, Ro=20 cm, L=0.1 cm, and a
fixed open fraction of 0.6. (This last assumption seems
to match Photonis products, and it makes sense for optics
that are drawn from the same block but with different
stretches.)

Increasing the W while keeping L fixed increases the
angle for which rays can pass through the optic undevi-
ated, Γ0, as well as increasing all the other Γn. This will
certainly increase the total throughput or effective area,
as in shown in the left panel of Figure 67. Changing the
coating, for the most part, just scales the entire curve,
though by different factors at different energies. Note
the curves are less steep than Γ2

0 due to the reflectivity
decreasing with higher incidence angles.

Increasing the throughput provides more counts, but
that need not be a good thing if the contrast is reduced.
The middle panel of Figure 67 shows the contrast, the
flux in the core compared to the total flux, as a func-
tion of W/L. The effect of the reflectivity as a function
of energy and incidence angle is apparent, and different
coatings can show rather different curves. Similarly, the
plot the flux in the arms compared to the total flux shows
a dependence upon the coating of the optic.

From the plot of the contrast as a function of W/L it is
clear that the optimal W/L depends upon the coating of
the optic and the energy range of importance. It is clear
that for Ni, W/L=0.02 is more favored for typical soft
applications, while for Ir, W/L=0.04 might be better.
Typically, the W/L available (at least from Photonis) are
0.02 and 0.04, which are both within the useful range.

Interesting, as increasing the W/L increases the effec-
tive acceptance area (compared to a fixed facet size),
devices with larger W/L have stronger vignetting than
devices with smaller W/L. The converse statement is
that devices with smaller W/L have a flatter vignetting
function. This is important for the region for which the
throughput is &80% of the on-axis throughput; the W/L
does not significantly change the off-axis angle at which
the vignetting function is 50% of the on-axis value. (As
noted above, the 50% vignetting angle is set by simple
geometry, the maximum angle at which a ray can pass
directly through a pore without reflection.) [Still need to
produce the plots of vignetting as a function of W/L for
a STORM type device.]

11.1.1. Contrast: Point Sources vs. Diffuse Emission

TBD

11.2. Tiling Geometry

See § ??.

11.3. Facet Size

Tiling means that there must be support structures
that obscure parts of the device, which reduces the ef-
fective area. It should be noted that even if the support
structure did not obscure any of the optic by, for exam-
ple supporting them only by their edges, spreading the

facets apart (and blocking the area between the facets)
also reduces the total throughput. However, considering
the total throughput obscures some important issues.

In Figure ?? we demonstrated that the contribution of
a ray to the focus depends upon the distance it falls from
the optical axis. If we assume that the facets are butted,
and that a 2 mm wide support runs under each seam,
obscuring 1 mm of each side of each facet, then for the
STORM optic the reduction in total throughput is 10.0%
while the active optic area has been reduced 9.75%.

Even though SMOs are typically used to be wide-
field imagers, it is useful to consider the way the sup-
port structure effects different parts of the FOV. For the
STORM optic, the individual facets are 4 cm by 4 cm,
which, for Rc=100 cm, means that the facet has a radius
of 1.145 deg, which is roughly Γ0, where the contribution
to the focussed image is highest.

Consider the difference between placing the optical axis
in the center of the facet (centered) and placing it at the
crossing of the supports (crossed). If we consider just the
throughput of the focussed core of two-reflection PSF, we
find that the centered image has ∼ 20% lower through-
put than the crossed image. In the crossed image, the
obscuration removes primarily the low Γ rays, which are
not strongly focussed, while the obscuration in the cen-
tered image falls right on the source of the greatest con-
tribution to the focussed image. Conversely, considering
just the throughput of the non-reflected component of
the PSF, it is reduced in the crossed image by ∼ 20%
compared to the centered image.

Reducing the focussed component compared to the un-
focussed component increases the point source detection
threshold and will make structures in the diffuse emission
more difficult to detect. This lack of detectability will be
periodic across the FOV. This reduction is bad, and the
variation is problematic. However, this exploration may
be the worst case scenario because of the scale of the
obscuration.

For comparison, consider a STORM created with 8 cm
by 8 cm facets and the same size supports. (Not currently
feasible, but potentially possible in the future.) If we
consider just the throughput of the focussed core of two-
reflection PSF, we find that the centered image has ∼ 1%
lower throughput than the crossed image. This is due
to the fact that the obscuration falls outside the region
contributing to the focussing. Conversely, the unfocussed
throughput is ∼ 20% lower in the crossed image than in
the centered one. Thus, the larger facets provide a more
uniform throughput for the focussed light.

Since Γn is a function of W/L, for a given Rc we might
adjust the pore width so that edge of a 4 cm by 4 cm
facet falls at Γ1 (a relative null for the contribution to
the focussed light) rather than at Γ0. This would require
changing W from 20 µm to 10 µm, which would reduce
the throughput significantly (see Figure 67). Conversely,
increasing W to 40 µm places Γ0 at 2.29◦, the center of
the adjacent facet. Depending upon the coating of the
optic this might mean lack of contrast, or not.

This is clearly a topic that should be revisited, perhaps
in partnership with Photonis.

11.4. Facet Coating

TBD
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Figure 67. Total effective area and contrast as a function of W/L. All are shown as a function of photon energy in keV. All were
calculated on-axis for an optic with Rc=100 cm, Ro=20 cm, L=0.1 cm, and a fixed open fraction of 0.6. Left: The effective area as a
function of W/L. The solid lines are for an Ir coated optic, the dashed lines are for a Ni coated optic. The dotted line is a scaled plot of

Γ2
0 = arctan (W/L)2. Middle: The ratio of the flux in the core to the total flux. Right: The ratio of the flux in the arms to the total

flux. [Since the behavior changes above 2 keV, I should extend this to higher energies.]

Figure 68. The vignetting functions for a non-STORM optic with
W=40 µm and L of either 2.0 mm (black) or 2.4 mm (red). The
solid lines are the vignetting for the total throughput. The dotted
lines are the vignetting for just fully focussed photons. Note that
all vignetting functions were normalized to unity on axis.

11.4.1. Uncoated Optics

The first problem confronting those seeking to simu-
late an uncoated optic is the composition of the glass.
Since the glass composition is a proprietary recipe, we’ll
never know for sure. However, optical testing of LEXI
at PANTER provides a certain amount of insight to this
question.

Figure ?? shows the effective area curve determined for
the LEXI optic (with optical blocking filters) at PAN-
TER with the TRoPIC camera, which has a line spread
function of ∼75 eV. The curve has been binned to 25 eV
in order to improve the signal to noise. The absorption

edges have been marked. We expect absorption edges
from C (284.2 eV), N (407.9 eV), O (543.1 eV), and Al
(72.95, 72.55, and 1559.6 eV) from the optical blocking
filters, and at least O (543.1 eV) and Si (99.82, 149.7,
and 1839 eV) from the bare glass. Other ingredients of
the glass would create absorption edges at other ener-
gies. Willingale has suggested Pb (2484, 2586, 3066, and
3554 eV), K (297.3 and 3608 eV), Na (1070.8 eV), and Bi
(2688 and 3177 eV). The same figure shows the simulated
LEXI optic for SiO2 and more complex glass (provided
by Willingale) without blocking filters, with blocking fil-
ters, and with blocking filters smoothed by the TRoPIC
line spread function.

The Si (1839 eV) edge, which is quite apparent in the
sims, is detectable in the data mostly as a change in
slope. The Pb edge (2484) ought to be detectable in the
same way but does not appear in the data. Most of the
other edges in the complex lead glass would not be visible
in our data. Thus, as outlined in Kuntz et al (2022), we
don’t have a good simulation for a bare glass SMPO.

11.5. Detector Placement

11.6. Modularization

There are a number of wide-field missions that have
considered building multiple small modules rather than
a single large module. There are at least two situations in
which this trade is of interest. The first is when one de-
sires to cover a large area which need not be contiguous,
such as for surveys. The second is when the modules are
to be coaligned in order to get a greater effective area.
In both cases we consider n modules of m by m facets
with a set radius of curvature, where the radius of the
one reflection effective acceptance area (Γ1) is smaller
than the radius of the optic. The number m is set by
engineering constraints, usually the physical size of the
dtector, and we wish to compare the performance of a
larger number of smaller modules with a smaller number
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Figure 69. Top: Simulations for LEXI using SiO2 (red) and a more complex lead glass (black). The higher pair of curves is without
the optical blocking filter, while the lower pair of curves is with the optical blocking filter and smoothed to match the TRoPIC line spread
function. Edges are marked. Bottom: The LEXI effective area curve on the optical axis.

of larger modules where, in both cases, the total number
of facets is the same.

11.6.1. Co-aligned Modules

Here the consideration is primarily one of the FOV.
However, it should be remembered that while n mod-
ules will cover the same area n times, it also incurs n
times the instrumental background and n times the cos-
mic background. Thus, having n modules may not gain
the S/N needed. However, since this depends upon the
relative strengths of the emission and the instrumental
noise, there is not much sense in exploring that in this
more general setting.

11.6.2. Non-aligned Modules

We will compare the FOV and effective area of 3 by 3
array of 2×2 facet modules with that of a 2 by 2 array
of 3×3 facet modules, and will determine the equivalent
monolithic m×m facet instrument.

Before one can really address this problem, one must
decide how uniform the FOV needs to be. One possible
solution is to adjust the relative module pointings so that
the 50% vignetting function of one module lies in the
same direction as the 50% vignetting function of the next
module. That way, at the module boundaries one should
get the same number of counts as at the center (though
with twice the instrumental noise). A second possible
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Figure 70. Top: Vignetting function for a 2×2 facet module.
The energies are listed in Table 15 and run from low at the top to
higher at the bottom. Bottom: Vignetting function for a 3×3
facet module. The energies are listed in Table 16 and run from low
at the top to higher at the bottom.

solution is to adjust the relative module pointings so that
the 90% vignetting function of one module lies in the
same direction as the 90% vignetting function of the next
module. This is probably closer than one would ever
want the modules, but it serves as a useful terminus ad
quem. Given how the vignetting function changes with
energy, it is clear that the solution will depend upon the
energy of interest. Tables 15 and 16 show the linear size
of a 3 by 3 array of 2×2 facet modules with a 2 by 2 array
of 3×3 facet modules for energies from 0.1 to 4 keV.

Compare the linear size of the FOV for the “total” vi-
gnetting function between Tables 15 and 16. It is clear
that “butting” the modules at the 50% vignetting func-
tion produces a larger FOV for the 3 by 3 array of 2×2
facet modules. However, that advantage is greatest at
lowe energies, it’s a small advantage at 1 keV (14.◦80 vs.
14.◦09), and at higher energies the 2 by 2 array of 3×3
facet modules has a slight advantage. If, however, we

are butting at the 90% vignetting function, the 2 by 2
array of 3×3 facets has the advantage for energies & 0.5
keV. Thus, so long as the butting is at vignetting values
> 50%, the 3×3 facet modules have a slight advantage
for energies &1 keV.

Now, if we are concerned about point sources, we can
“butt” the modules based on the vignetting function for
just the fully focussed photons. [This is a crude thing to
do, and it is not yet clear whether doing this correctly
will get a different result.] In this case, butting at the
50% vignetting provides some advantage for 2×2 facet
modules at lower energies. For higher values of the vi-
gnetting function, the 2×2 modules have the advantage.

The above comparison, however, is not fair, as the lin-
ear FOV size for 3 by 3 array of 2×2 modules is at a lower
effective area than 2 by 2 array of 3×3 modules. So we
have taken the peak effective area (measured from the
entire PSF) for the 2×2 modules, determined the FOV
at that effective area for a 3×3 module, and again calcu-
lated the linear FOV size. For a given effective area at
the boundary between modules, the 3×3 facet modules
usually have the larger FOV. At 2 keV the modules are
relatively equivalent, but the 3×3 facet modules perform
better at both lower and(!?!) higher energies.

11.6.3. Point Sources

We assume that each detector has a constant intrinsic
noise level D and quantum efficiency Q. We assume a flat
cosmic background of C photons/cm2/s/arcmin2. Upon
this background, we wish to detect a point-like source
with a flux of F photons/cm2/s. To understand the de-
tectability of such a source, we really need to simulate
the image carefully, calculating the PSF at every pixel
for a region that is as wide as the PSF at the location of
the point source. This remains TBD. Presumably, this
would allow us to determine, at least to some extent, the
amount by which one does need to butt the modules.
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Table 15
2×2 Modules

E Corea Totalb

50% P.E.A.c 90% P.E.A.c 50% P.E.A.c 90% P.E.A.c

E.A.d FOVe E.A. FOV E.A. FOV E.A. FOV
keV (cm2) (◦) (cm2) (◦) (cm2) (◦) (cm2) (◦)

0.1 4.32 28.89 7.77 3.52 14.27 28.89 25.68 11.28
0.2 3.32 16.91 5.98 2.82 10.42 16.91 18.76 6.34
0.3 3.14 16.91 5.66 2.82 9.80 16.21 17.63 6.34
0.4 3.02 16.21 5.44 2.82 9.39 15.50 16.90 6.34
0.5 2.98 16.21 5.37 2.82 9.26 15.50 16.66 6.34
0.6 2.99 16.21 5.38 2.82 9.25 15.50 16.66 5.64
0.7 2.97 16.21 5.35 2.82 9.19 15.50 16.54 5.64
0.8 2.94 15.50 5.30 2.82 9.08 14.80 16.34 5.64
0.9 2.97 15.50 5.34 2.82 9.14 14.80 16.45 5.64
1.0 2.96 15.50 5.32 2.82 9.08 14.80 16.35 5.64
1.5 2.79 14.09 5.02 2.82 8.32 14.09 14.98 4.93
2.0 1.39 14.09 2.49 3.52 4.33 14.09 7.80 7.05
2.5 0.92 14.09 1.65 2.82 3.43 13.39 6.17 8.46
3.0 0.84 14.09 1.52 3.52 3.27 13.39 5.89 8.46
3.5 0.73 14.09 1.32 3.52 3.06 13.39 5.50 8.46
4.0 0.60 14.09 1.07 2.82 2.82 13.39 5.08 9.16

a For these calculations, we used the vignetting function for the fully focussed
photons.
b For these calculations, we used the total vignetting function.
c Peak Effective Area.
d Effective Area at edge for this component of the PSF.
e Linear size of the FOV for a 3 by 3 array of 2 facet by 2 facet modules.

Table 16
3×3 Modules

E Corea Totalb

50% P.E.A.c 90% P.E.A.c 50% P.E.A.c 90% P.E.A.c

E.A.d FOVe E.A. FOV E.A. FOV E.A. FOV
keV (cm2) (◦) (cm2) (◦) (cm2) (◦) (cm2) (◦)

0.1 6.64 18.32 11.95 6.11 27.81 20.67 50.05 7.99
0.2 3.44 15.03 6.19 6.11 14.76 14.56 26.57 6.11
0.3 3.09 15.03 5.56 6.11 13.21 14.09 23.78 6.11
0.4 2.87 15.03 5.17 6.11 12.23 14.09 22.01 6.11
0.5 2.79 15.03 5.03 6.11 11.87 14.09 21.37 6.11
0.6 2.77 15.03 4.99 6.11 11.79 14.09 21.22 6.11
0.7 2.72 14.56 4.90 5.64 11.56 14.09 20.80 6.11
0.8 2.64 14.56 4.76 5.64 11.21 14.09 20.18 6.58
0.9 2.63 14.56 4.74 5.64 11.16 14.09 20.09 6.58
1.0 2.56 14.56 4.61 6.11 10.82 14.09 19.48 6.58
1.5 2.23 14.09 4.01 6.58 8.40 14.09 15.11 7.52
2.0 1.09 14.09 1.96 7.05 4.26 14.09 7.67 9.40
2.5 0.74 14.09 1.33 6.58 3.54 13.62 6.37 9.87
3.0 0.68 14.09 1.22 6.58 3.38 13.62 6.09 10.34
3.5 0.60 14.09 1.08 6.58 3.20 13.62 5.76 10.34
4.0 0.50 14.09 0.91 6.58 3.03 13.62 5.45 10.34

a For these calculations, we used the vignetting function for the fully focussed
photons.
b For these calculations, we used the total vignetting function.
c Peak Effective Area.
d Effective Area at edge for this component of the PSF.
e Linear size of the FOV for a 3 by 3 array of 2 facet by 2 facet modules.
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Table 17
Comparison of Modules

Energy 50%P.E.A.a 90%P.E.A.a

2× 2 3× 3 m×m 2× 2 3× 3 m×m
(◦) (◦) (facet) (◦) (◦) (facet)

0.1 28.89 28.97 11.28 22.05
0.2 16.91 17.42 6.34 12.27
0.3 16.21 16.72 6.34 11.62
0.4 15.50 16.30 6.34 11.22
0.5 15.50 16.12 6.34 11.03
0.6 15.50 16.03 5.64 10.91
0.7 15.50 15.88 5.64 10.72
0.8 14.80 15.69 5.64 10.48
0.9 14.80 15.59 5.64 10.32
1.0 14.80 15.39 5.64 10.03
1.5 14.09 14.22 4.93 8.02
2.0 14.09 14.04 7.05 9.49
2.5 13.39 14.17 8.46 10.66
3.0 13.39 14.15 8.46 10.85
3.5 13.39 14.15 8.46 11.10
4.0 13.39 14.15 9.16 11.32

a Peak Effective Area, measured for the entire PSF.
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APPENDIX

The main text is ordered in a pedagogical way, starting from some simple principals and working towards complexity.
The main text contains the mathematical derivations. The appendices, however, are arranged more in the order
required for computation and may contain pseudocode.

A. FACET CENTERS

The first quantities that must be determined are the centers of each of the facets, assuming that the optic has nx by
ny facets, each of which is F wide. It is assumed here that F includes more than the physical dimension of the glass
facet, but also the minimum space between facets.

Constant-Longitude Packing: For the constant longitude packing, the most extreme line of latitude will be φext =
(ny/2)F/Rc. The longitudes of the centers of the facets is set by the closest possible packing on the rows furthest from
the equator:

φi = (i+ 1/2− nx/2)F/Rc cos (φext) = (i+ (1 + nx)/2)F/Rc cos (φext) (A1)

while the latitudes of the centers of the facets will be

θj = (j − (1 + ny)/2)F/Rc (A2)

where the indices run from 0 to n. The (x, y) position of the center of the facet (i, j) will be

Rc cos θj sin (φi), Rc sin (θj) (A3)

Close-Packed Packing: For each row i, the extreme latitude that sets the closeness of the packing will be φext =
iF/Rc. Thus

φi = (i+ 1/2− nx/2)F/Rc cos (iF/Rc) = (i+ (1 + nx)/2)F/Rc cos (iF/Rc) (A4)

while the latitudes of the centers of the facets will be

θj = (j − (1 + ny)/2)F/Rc. (A5)

The (x, y) position of the center of the facet (i, j) is found from the longitudes and latitudes as for the constant-longitude
packing.

B. REFLECTIVITY

From the LBL site (http://http://henke.lbl.gov/optical constants/) one can get the index of refraction as a function
of energy for many materials. The data is provided in the form of δ and β where the index of refraction,

n = (1− δ)− iβ. (B1)

Then, for the reflectivity one need only apply the Fresnel equations

Rs =
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) 1
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) 1
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and

Rp =
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) 1
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(B3)

where Rs is the reflectance for s-polarized light and Rp is the reflectance for p-polarized light. For unpolarized light

R =
(Rs +Rp)

2
. (B4)

Animadversions on the optical constants for compound substances such as lead glass.

C. SURFACE ROUGHNESS

It should be noted that those constants are for perfectly smooth surfaces. There will be some surface roughness, but
it is unclear how much. It is unclear how to implement surface roughness. Doing so requires real physical optics, and
that study has simply not yet been done.

The roughness considered thus far has been implemented merely by relying on the henke.lbl.gov. That site imple-
ments a Nevot-Croce approximation.
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Figure 71. The reflectivity as a function of energy and angle of incidence. What is plotted is actually contours of 1-R. The black contours
are for Ni and the red contours are for Ir.

D. PORE DEFORMATION

D.1. Given Three Pore Corners, Find the Fourth

We can calculate the effect of pore deformation simply, but only at scales rather larger than our pores. However,
such a calculation demonstrates the functional form.

For a given pore, assume that we know the location of the pore corner closest to the optical axis (Q00), and the

length of the pore walls, d. Assume also that we know the location of the two adjacent corners: ~Q01=[x01,y01,z01] and
~Q10=[x10,y10,z10]. The task is to determine the location of the last corner, ~Q=[x,y,z]. (Technically, this should be
~Q11, but we’ll stick with ~Q to reduce the subscript confusion, at least for this subsection.) We have three equations

to solve simultaneously:

(x− x01)2 + (y − y01)2 + (z − z01)2 = c2 (D1)

(x− x10)2 + (y − y10)2 + (z − z10)2 = c2 (D2)

x2 + y2 + z2 =R2
c (D3)

where
c =

√
2R2

c(1− cos (Rc/d)). (D4)

is just the length of the chord of the curve running from ~Q01 or ~Q10 to ~Q. The first two equations are just setting the

lengths from ~Q01 and ~Q10 to ~Q on the surface of the sphere, which we render as the length of the chords connecting
~Q01 or ~Q10 to ~Q. The third equation is just the equation of the sphere.
If we take the first two equations and eliminate z, we obtain an equation for the plane that is equidistant from the

two known corners:

y =

(
(R2

c − c2)(z10− z01) + (x012z10− x102z01) + (y012z10− y102z01) + (z012z10− z102z01)
)

2(y01z10− y10z01)
− (x01z10− x10z01)

(y01z10− y10z01)
x

(D5)
which can be summarized as y = ax+ b. One can then substitute this expression for y into the last equation to solve
for z in terms of x:

z =
√
R2
c − b2 − 2abx− (1 + a)x2. (D6)

At this point one can use the expression of z = f(x) and y = f(x) and, substituting into either of the first two
equations, solve for x:

(x− xi)2 + (ax+ b− yi)2 + ((R2 − b2 − 2abx− (1 + a2)x2)
1
2 − zi)2 = c2 (D7)

where i is either 01 or 10. This clearly does not solve in a trivial manner, so one can use a root-finder.

D.2. Building a Mesh

We can now calculate the node positions for a square mesh draped over a spherical surface. We will calculate this
for a single quadrant. We can designate the location of each node as (nx, ny) where, for convenience, counting starts
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Figure 72. The functional form of the deformation as a function of location. In both plots the squares show deformation as the percentage
change in the direction of the pore’s more radial diagonal. Left: The squares show deformation as measured along the optic’s diagonal.
The red line is the function 1.5(1 − Rc sin (D/Rc)/D). Right: The deformation as a function of azimuth along the maximal inscribed
circle. The red line is a sin (2φ) function scaled by 1.5(1 − Rc sin (D/Rc)/D) for the appropriate D. Understanding the scaling factor of
1.5 remains a work in progress.

at 0. The node positions along the boundaries are given by

[Rc cos (nxd/Rc), 0, Rc sin (nxd/Rc)] (D8)

along the x̂ axis, with a similar expression along the ŷ axis. We can then start calculating the coordinates of the
remainder of the points starting with (nx, ny)=(1, 1), which is calculated from the locations for (0, 1) and (1, 0). The
calculation then proceeds to the next node for which a solution is possible which, incidentally, is always the unsolved
node closest to the optical axis.

One can run the root-finder on for either i=0 or i=1. In practice the difference in solutions is quite small20. In
implementing this, I take the average of the two solutions. In an attempt to impose the known symmetry upon the
solution, I also calculate the solutions for both node (nx, ny) and node (ny, nx), average those solutions properly, and
then apply that solution to both (nx, ny) and (ny, nx).

Clearly, such a solution can quite easily have cumulative precision problems which usually manifest themselves as
imaginary returns from the root-finder. The prime nuisance is the quantity d/Rc. So long as that ratio is > 0.01, then
one can calculate meshes of 401 by 401 (or greater, I haven’t tried it yet) without imaginary roots.

D.3. Results & Scaling Relations

Using a calculation of a mesh with Rc=100 cm, d=0.0104, and max(nx)=193, we can calculate the location of the
nodes in the upper left quadrant of the mesh. This is the equivalent of grouping the pores by 16 (i.e., 4 by 4). We
can characterize the deformation of a given pore by measuring the distance on the radial diagonal, between the corner
closest to the optical axis and that furthest from the optical axis. That is, we want to measure the distance between
~Q00 and ~Q11. We will make the further simplification that we are only interested in the chord distance rather than

the distance measured on the surface of the sphere. Figure 25 shows the variation of this distance as a function of
location.

It should be kept in mind that if you take a square with its diagonals in the x̂ and ŷ directions, then compressing

the square’s diagonal in x̂ by ∆, expands the square’s diagonal in ŷ by ∆. Thus, the change in the ~Q00 to ~Q11 distance

is directly anti-correlated with the change in the ~Q01 to ~Q10 distance.
In the main text we attempted to motivate a sin (2φ) dependence of the deformation, as well as the functional form

of the radial dependence. The right-hand panel of Figure 72 shows the deformation as a function of angle around the
optical axis for a radius of ∼ 2 cm. This plot shows that the deformation is indeed well described by the sin (2φ)
function. However, our back-of-the-envelope calculation of the amplitude is off by a significant amount. On the
third hand, the function that should describe the amplitude of the deformation has the right functional form for the
deformation as a function of radius, as can be seen in the left-hand panel of Figure 72. These two plots suggest that,
with some more careful thought, we may be able to figure out the necessary fudge factors and their derivations.

20 Using the “fx root” routine in IDL R© and running double pre- cision, the typical difference between i=01 and i=10 is < 10−9.
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